1
|
Shafer OT. 25 years of Drosophila "Sleep genes". Fly (Austin) 2025; 19:2502180. [PMID: 40326454 PMCID: PMC12064057 DOI: 10.1080/19336934.2025.2502180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025] Open
Abstract
The field of Drosophila sleep research, which began 25 years ago, has identified more than 200 genes influencing sleep. In this review, I summarize the foundation of the field and the growing list of genes implicated in sleep regulation. I compare the genetic methods used to identify genes governing sleep and circadian rhythms and the distinct outcomes of screens for genes regulating these two highly related processes. Finally, I discuss the ~ 200 sleep-regulating genes of Drosophila in the context of recent developments in the field and voice reasons for scepticism regarding the relevance of these genes to the homoeostatic regulation of sleep. Finally, I speculate on the future promise of the fly model system for revealing conserved molecular mechanisms of sleep homoeostasis.
Collapse
Affiliation(s)
- Orie Thomas Shafer
- Gill Institute for Neuroscience and Department of Biology, Indiana University in Bloomington, Bloomington, IN, USA
| |
Collapse
|
2
|
Huang S, Piao C, Zhao Z, Beuschel CB, Turrel O, Toppe D, Sigrist SJ. Enhanced memory despite severe sleep loss in Drosophila insomniac mutants. PLoS Biol 2025; 23:e3003076. [PMID: 40111981 DOI: 10.1371/journal.pbio.3003076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
Sleep is crucial for cognitive functions and life span across species. While sleep homeostasis and cognitive processes are linked through cellular and synaptic plasticity, the signaling pathways connecting them remain unclear. Here, we show that Drosophila insomniac (inc) short sleep mutants, which lack an adaptor protein for the autism-associated Cullin-3 ubiquitin ligase, exhibited enhanced Pavlovian aversive olfactory learning and memory, unlike other sleep mutants with normal or reduced memory. Through a genetic modifier screen, we found that a mild reduction of Protein Kinase A (PKA) signaling specifically rescued the sleep and longevity phenotypes of inc mutants. However, this reduction further increased their excessive memory and mushroom body overgrowth. Since inc mutants displayed higher PKA signaling, we propose that inc loss-of-function suppresses sleep via increased PKA activity, which also constrains the excessive memory of inc mutants. Our data identify a signaling cascade for balancing sleep and memory functions, and provide a plausible explanation for the sleep phenotypes of inc mutants, suggesting that memory hyperfunction can provoke sleep deficits.
Collapse
Affiliation(s)
- Sheng Huang
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Chengji Piao
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Zhiying Zhao
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Christine B Beuschel
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Oriane Turrel
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - David Toppe
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Stephan J Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
3
|
Li Q, Lim KY, Altawell R, Verderose F, Li X, Dong W, Martinez J, Dickman D, Stavropoulos N. The Cul3 ubiquitin ligase engages Insomniac as an adaptor to impact sleep and synaptic homeostasis. PLoS Genet 2025; 21:e1011574. [PMID: 39841692 PMCID: PMC11790235 DOI: 10.1371/journal.pgen.1011574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/03/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
Mutations of the Cullin-3 (Cul3) E3 ubiquitin ligase are associated with autism and schizophrenia, neurological disorders characterized by sleep disturbances and altered synaptic function. Cul3 engages dozens of adaptor proteins to recruit hundreds of substrates for ubiquitination, but the adaptors that impact sleep and synapses remain ill-defined. Here we implicate Insomniac (Inc), a conserved protein required for normal sleep and synaptic homeostasis in Drosophila, as a Cul3 adaptor. Inc binds Cul3 in vivo, and mutations within the N-terminal BTB domain of Inc that weaken Inc-Cul3 associations impair Inc activity, suggesting that Inc function requires binding to the Cul3 complex. Deletion of the conserved C-terminus of Inc does not alter Cul3 binding but abolishes Inc activity in the context of sleep and synaptic homeostasis, indicating that the Inc C-terminus has the properties of a substrate recruitment domain. Mutation of a conserved, disease-associated arginine in the Inc C-terminus also abolishes Inc function, suggesting that this residue is vital for recruiting Inc targets. Inc levels are negatively regulated by Cul3 in neurons, consistent with Inc degradation by autocatalytic ubiquitination, a hallmark of Cullin adaptors. These findings link Inc and Cul3 in vivo and support the notion that Inc-Cul3 complexes are essential for normal sleep and synaptic function. Furthermore, these results indicate that dysregulation of conserved substrates of Inc-Cul3 complexes may contribute to altered sleep and synaptic function in autism and schizophrenia associated with Cul3 mutations.
Collapse
Affiliation(s)
- Qiuling Li
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York, United States of America
| | - Kayla Y. Lim
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York, United States of America
| | - Raad Altawell
- Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Faith Verderose
- Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Xiling Li
- Department of Neurobiology, University of Southern California, Los Angeles, California, United States of America
| | - Wanying Dong
- Department of Neurobiology, University of Southern California, Los Angeles, California, United States of America
| | - Joshua Martinez
- Department of Neurobiology, University of Southern California, Los Angeles, California, United States of America
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, California, United States of America
| | - Nicholas Stavropoulos
- Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| |
Collapse
|
4
|
Shih MFM, Zhang J, Brown EB, Dubnau J, Keene AC. Targeted single cell expression profiling identifies integrators of sleep and metabolic state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614841. [PMID: 39386468 PMCID: PMC11463630 DOI: 10.1101/2024.09.25.614841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Animals modulate sleep in accordance with their internal and external environments. Metabolic cues are particularly potent regulators of sleep, allowing animals to alter their sleep timing and amount depending on food availability and foraging duration. The fruit fly, Drosophila melanogaster, suppresses sleep in response to acute food deprivation, presumably to forage for food. This process is dependent on a single pair of Lateral Horn Leucokinin (LHLK) neurons, that secrete the neuropeptide Leucokinin. These neurons signal to insulin producing cells and suppress sleep under periods of starvation. The identification of individual neurons that modulate sleep-metabolism interactions provides the opportunity to examine the cellular changes associated with sleep modulation. Here, we use single-cell sequencing of LHLK neurons to examine the transcriptional responses to starvation. We validate that a Patch-seq approach selectively isolates RNA from individual LHLK neurons. Single-cell CEL-Seq comparisons of LHLK neurons between fed and 24-hr starved flies identified 24 genes that are differentially expressed in accordance with starvation state. In total, 12 upregulated genes and 12 downregulated genes were identified. Gene-ontology analysis showed an enrichment for Attacins, a family of anti-microbial peptides, along with several transcripts with diverse roles in regulating cellular function. Targeted knockdown of differentially expressed genes identified multiple genes that function within LHLK neurons to regulate sleep-metabolism interactions. Functionally validated genes include an essential role for the E3 ubiquitin Ligase insomniac, the sorbitol dehydrogenase Sodh1, as well as AttacinC and AttacinB in starvation-induced sleep suppression. Taken together, these findings provide a pipeline for identifying novel regulators of sleep-metabolism interactions within individual neurons.
Collapse
Affiliation(s)
| | - Jiwei Zhang
- Department of Biology, Texas A&M University, College Station, TX 77840
| | | | - Joshua Dubnau
- Dept of Anesthesiology, Stony Brook School of Medicine, Stony Brook NY, 11794
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook NY, 11794
| | - Alex C. Keene
- Department of Biology, Texas A&M University, College Station, TX 77840
| |
Collapse
|
5
|
ElGrawani W, Sun G, Kliem FP, Sennhauser S, Pierre-Ferrer S, Rosi-Andersen A, Boccalaro I, Bethge P, Heo WD, Helmchen F, Adamantidis AR, Forger DB, Robles MS, Brown SA. BDNF-TrkB signaling orchestrates the buildup process of local sleep. Cell Rep 2024; 43:114500. [PMID: 39046880 DOI: 10.1016/j.celrep.2024.114500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/15/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Sleep debt accumulates during wakefulness, leading to increased slow wave activity (SWA) during sleep, an encephalographic marker for sleep need. The use-dependent demands of prior wakefulness increase sleep SWA locally. However, the circuitry and molecular identity of this "local sleep" remain unclear. Using pharmacology and optogenetic perturbations together with transcriptomics, we find that cortical brain-derived neurotrophic factor (BDNF) regulates SWA via the activation of tyrosine kinase B (TrkB) receptor and cAMP-response element-binding protein (CREB). We map BDNF/TrkB-induced sleep SWA to layer 5 (L5) pyramidal neurons of the cortex, independent of neuronal firing per se. Using mathematical modeling, we here propose a model of how BDNF's effects on synaptic strength can increase SWA in ways not achieved through increased firing alone. Proteomic analysis further reveals that TrkB activation enriches ubiquitin and proteasome subunits. Together, our study reveals that local SWA control is mediated by BDNF-TrkB-CREB signaling in L5 excitatory cortical neurons.
Collapse
Affiliation(s)
- Waleed ElGrawani
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
| | - Guanhua Sun
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
| | - Fabian P Kliem
- Institute of Medical Psychology and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany
| | - Simon Sennhauser
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Sara Pierre-Ferrer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Alex Rosi-Andersen
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Ida Boccalaro
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland
| | - Philipp Bethge
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland; Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Won Do Heo
- Department of Biological Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Fritjof Helmchen
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland; Brain Research Institute, University of Zurich, Zurich, Switzerland; University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland
| | - Antoine R Adamantidis
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.
| | - Daniel B Forger
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| | - Maria S Robles
- Institute of Medical Psychology and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany.
| | - Steven A Brown
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Nguyen DM, Rath DH, Devost D, Pétrin D, Rizk R, Ji AX, Narayanan N, Yong D, Zhai A, Kuntz DA, Mian MUQ, Pomroy NC, Keszei AFA, Benlekbir S, Mazhab-Jafari MT, Rubinstein JL, Hébert TE, Privé GG. Structure and dynamics of a pentameric KCTD5/CUL3/Gβγ E3 ubiquitin ligase complex. Proc Natl Acad Sci U S A 2024; 121:e2315018121. [PMID: 38625940 PMCID: PMC11047111 DOI: 10.1073/pnas.2315018121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/07/2024] [Indexed: 04/18/2024] Open
Abstract
Heterotrimeric G proteins can be regulated by posttranslational modifications, including ubiquitylation. KCTD5, a pentameric substrate receptor protein consisting of an N-terminal BTB domain and a C-terminal domain, engages CUL3 to form the central scaffold of a cullin-RING E3 ligase complex (CRL3KCTD5) that ubiquitylates Gβγ and reduces Gβγ protein levels in cells. The cryo-EM structure of a 5:5:5 KCTD5/CUL3NTD/Gβ1γ2 assembly reveals a highly dynamic complex with rotations of over 60° between the KCTD5BTB/CUL3NTD and KCTD5CTD/Gβγ moieties of the structure. CRL3KCTD5 engages the E3 ligase ARIH1 to ubiquitylate Gβγ in an E3-E3 superassembly, and extension of the structure to include full-length CUL3 with RBX1 and an ARIH1~ubiquitin conjugate reveals that some conformational states position the ARIH1~ubiquitin thioester bond to within 10 Å of lysine-23 of Gβ and likely represent priming complexes. Most previously described CRL/substrate structures have consisted of monovalent complexes and have involved flexible peptide substrates. The structure of the KCTD5/CUL3NTD/Gβγ complex shows that the oligomerization of a substrate receptor can generate a polyvalent E3 ligase complex and that the internal dynamics of the substrate receptor can position a structured target for ubiquitylation in a CRL3 complex.
Collapse
Affiliation(s)
- Duc Minh Nguyen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Deanna H. Rath
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Dominic Devost
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 1Y6, Canada
| | - Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 1Y6, Canada
| | - Robert Rizk
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 1Y6, Canada
| | - Alan X. Ji
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Naveen Narayanan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Darren Yong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Andrew Zhai
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Douglas A. Kuntz
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Maha U. Q. Mian
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Neil C. Pomroy
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | | | - Samir Benlekbir
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Mohammad T. Mazhab-Jafari
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 2M9, Canada
| | - John L. Rubinstein
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 2M9, Canada
| | - Terence E. Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 1Y6, Canada
| | - Gilbert G. Privé
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 2M9, Canada
| |
Collapse
|
7
|
Abstract
Dystonia is a clinically and genetically highly heterogeneous neurological disorder characterized by abnormal movements and postures caused by involuntary sustained or intermittent muscle contractions. A number of groundbreaking genetic and molecular insights have recently been gained. While they enable genetic testing and counseling, their translation into new therapies is still limited. However, we are beginning to understand shared pathophysiological pathways and molecular mechanisms. It has become clear that dystonia results from a dysfunctional network involving the basal ganglia, cerebellum, thalamus, and cortex. On the molecular level, more than a handful of, often intertwined, pathways have been linked to pathogenic variants in dystonia genes, including gene transcription during neurodevelopment (e.g., KMT2B, THAP1), calcium homeostasis (e.g., ANO3, HPCA), striatal dopamine signaling (e.g., GNAL), endoplasmic reticulum stress response (e.g., EIF2AK2, PRKRA, TOR1A), autophagy (e.g., VPS16), and others. Thus, different forms of dystonia can be molecularly grouped, which may facilitate treatment development in the future.
Collapse
Affiliation(s)
- Mirja Thomsen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| | - Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| |
Collapse
|
8
|
Tener SJ, Lin Z, Park SJ, Oraedu K, Ulgherait M, Van Beek E, Martínez-Muñiz A, Pantalia M, Gatto JA, Volpi J, Stavropoulos N, Ja WW, Canman JC, Shirasu-Hiza M. Neuronal knockdown of Cullin3 as a Drosophila model of autism spectrum disorder. Sci Rep 2024; 14:1541. [PMID: 38233464 PMCID: PMC10794434 DOI: 10.1038/s41598-024-51657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/06/2024] [Indexed: 01/19/2024] Open
Abstract
Mutations in Cullin-3 (Cul3), a conserved gene encoding a ubiquitin ligase, are strongly associated with autism spectrum disorder (ASD). Here, we characterize ASD-related pathologies caused by neuron-specific Cul3 knockdown in Drosophila. We confirmed that neuronal Cul3 knockdown causes short sleep, paralleling sleep disturbances in ASD. Because sleep defects and ASD are linked to metabolic dysregulation, we tested the starvation response of neuronal Cul3 knockdown flies; they starved faster and had lower triacylglyceride levels than controls, suggesting defects in metabolic homeostasis. ASD is also characterized by increased biomarkers of oxidative stress; we found that neuronal Cul3 knockdown increased sensitivity to hyperoxia, an exogenous oxidative stress. Additional hallmarks of ASD are deficits in social interactions and learning. Using a courtship suppression assay that measures social interactions and memory of prior courtship, we found that neuronal Cul3 knockdown reduced courtship and learning compared to controls. Finally, we found that neuronal Cul3 depletion alters the anatomy of the mushroom body, a brain region required for memory and sleep. Taken together, the ASD-related phenotypes of neuronal Cul3 knockdown flies establish these flies as a genetic model to study molecular and cellular mechanisms underlying ASD pathology, including metabolic and oxidative stress dysregulation and neurodevelopment.
Collapse
Affiliation(s)
- Samantha J Tener
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Zhi Lin
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Scarlet J Park
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Kairaluchi Oraedu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Matthew Ulgherait
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Emily Van Beek
- Waksman Institute, Rutgers University, Piscataway, NJ, 08854, USA
| | - Andrés Martínez-Muñiz
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Meghan Pantalia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jared A Gatto
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Julia Volpi
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | | | - William W Ja
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
9
|
Negrutskii BS, Porubleva LV, Malinowska A, Novosylna OV, Dadlez M, Knudsen CR. Understanding functions of eEF1 translation elongation factors beyond translation. A proteomic approach. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:67-99. [PMID: 38220433 DOI: 10.1016/bs.apcsb.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Mammalian translation elongation factors eEF1A1 and eEF1A2 are 92% homologous isoforms whose mutually exclusive tissue-specific expression is regulated during development. The isoforms have similar translation functionality, but show differences in spatial organization and participation in various processes, such as oncogenesis and virus reproduction. The differences may be due to their ability to interact with isoform-specific partner proteins. We used the identified sets of eEF1A1 or eEF1A2 partner proteins to identify cell complexes and/or processes specific to one particular isoform. As a result, we found isoform-specific interactions reflecting the involvement of different eEF1A isoforms in different cellular processes, including actin-related, chromatin-remodeling, ribonuclease H2, adenylyl cyclase, and Cul3-RING ubiquitin ligase complexes as well as initiation of mitochondrial transcription. An essential by-product of our analysis is the elucidation of a number of cellular processes beyond protein biosynthesis, where both isoforms appear to participate such as large ribosomal subunit biogenesis, mRNA splicing, DNA mismatch repair, 26S proteasome activity, P-body and exosomes formation, protein targeting to the membrane. This information suggests that a relatively high content of eEF1A in the cell may be necessary not only to maintain efficient translation, but also to ensure its participation in various cellular processes, where some roles of eEF1A have not yet been described. We believe that the data presented here will be useful for deciphering new auxiliary functions of eEF1A and its isoforms, and provide a new look at the known non-canonical functions of this main component of the human translation-elongation machinery.
Collapse
Affiliation(s)
- Boris S Negrutskii
- Institute of Molecular Biology and Genetics, Kyiv, Ukraine; Aarhus Institute of Advanced Sciences, Høegh-Guldbergs, Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen, Aarhus C, Denmark.
| | | | - Agata Malinowska
- Institute of Biochemistry and Biophysics, PAN, Pawinskiego, Warsaw, Poland
| | | | - Michal Dadlez
- Institute of Biochemistry and Biophysics, PAN, Pawinskiego, Warsaw, Poland
| | - Charlotte R Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen, Aarhus C, Denmark
| |
Collapse
|
10
|
Durkin J, Poe AR, Belfer SJ, Rodriguez A, Tang SH, Walker JA, Kayser MS. Neurofibromin 1 regulates early developmental sleep in Drosophila. Neurobiol Sleep Circadian Rhythms 2023; 15:100101. [PMID: 37593040 PMCID: PMC10428071 DOI: 10.1016/j.nbscr.2023.100101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/30/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023] Open
Abstract
Sleep disturbances are common in neurodevelopmental disorders, but knowledge of molecular factors that govern sleep in young animals is lacking. Evidence across species, including Drosophila, suggests that juvenile sleep has distinct functions and regulatory mechanisms in comparison to sleep in maturity. In flies, manipulation of most known adult sleep regulatory genes is not associated with sleep phenotypes during early developmental (larval) stages. Here, we examine the role of the neurodevelopmental disorder-associated gene Neurofibromin 1 (Nf1) in sleep during numerous developmental periods. Mutations in Neurofibromin 1 (Nf1) are associated with sleep and circadian disorders in humans and adult flies. We find in flies that Nf1 acts to regulate sleep across the lifespan, beginning during larval stages. Nf1 is required in neurons for this function, as is signaling via the Alk pathway. These findings identify Nf1 as one of a small number of genes positioned to regulate sleep across developmental periods.
Collapse
Affiliation(s)
- Jaclyn Durkin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Amy R. Poe
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Samuel J. Belfer
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anyara Rodriguez
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Si Hao Tang
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James A. Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Matthew S. Kayser
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
11
|
Jiang W, Wang W, Kong Y, Zheng S. Structural basis for the ubiquitination of G protein βγ subunits by KCTD5/Cullin3 E3 ligase. SCIENCE ADVANCES 2023; 9:eadg8369. [PMID: 37450587 PMCID: PMC10348674 DOI: 10.1126/sciadv.adg8369] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
G protein-coupled receptor (GPCR) signaling is precisely controlled to avoid overstimulation that results in detrimental consequences. Gβγ signaling is negatively regulated by a Cullin3 (Cul3)-dependent E3 ligase, KCTD5, which triggers ubiquitination and degradation of free Gβγ. Here, we report the cryo-electron microscopy structures of the KCTD5-Gβγ fusion complex and the KCTD7-Cul3 complex. KCTD5 in pentameric form engages symmetrically with five copies of Gβγ through its C-terminal domain. The unique pentameric assembly of the KCTD5/Cul3 E3 ligase places the ubiquitin-conjugating enzyme (E2) and the modification sites of Gβγ in close proximity and allows simultaneous transfer of ubiquitin from E2 to five Gβγ subunits. Moreover, we show that ubiquitination of Gβγ by KCTD5 is important for fine-tuning cyclic adenosine 3´,5´-monophosphate signaling of GPCRs. Our studies provide unprecedented insights into mechanisms of substrate recognition by unusual pentameric E3 ligases and highlight the KCTD family as emerging regulators of GPCR signaling.
Collapse
Affiliation(s)
- Wentong Jiang
- Graduate School of Peking Union Medical College, Beijing 100730, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wei Wang
- National Institute of Biological Sciences, Beijing 102206, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Yinfei Kong
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Sanduo Zheng
- Graduate School of Peking Union Medical College, Beijing 100730, China
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Ukita Y, Okumura M, Chihara T. Ubiquitin proteasome system in circadian rhythm and sleep homeostasis: Lessons from Drosophila. Genes Cells 2022; 27:381-391. [PMID: 35438236 PMCID: PMC9322287 DOI: 10.1111/gtc.12935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022]
Abstract
Sleep is regulated by two main processes: the circadian clock and sleep homeostasis. Circadian rhythms have been well studied at the molecular level. In the Drosophila circadian clock neurons, the core clock proteins are precisely regulated by post-translational modifications and degraded via the ubiquitin-proteasome system (UPS). Sleep homeostasis, however, is less understood; nevertheless, recent reports suggest that proteasome-mediated degradation of core clock proteins or synaptic proteins contributes to the regulation of sleep amount. Here, we review the molecular mechanism of the UPS and summarize the role of protein degradation in the regulation of circadian clock and homeostatic sleep in Drosophila. Moreover, we discuss the potential interaction between circadian clock and homeostatic sleep regulation with a prime focus on E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Yumiko Ukita
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
13
|
Doldur-Balli F, Imamura T, Veatch OJ, Gong NN, Lim DC, Hart MP, Abel T, Kayser MS, Brodkin ES, Pack AI. Synaptic dysfunction connects autism spectrum disorder and sleep disturbances: A perspective from studies in model organisms. Sleep Med Rev 2022; 62:101595. [PMID: 35158305 PMCID: PMC9064929 DOI: 10.1016/j.smrv.2022.101595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/24/2021] [Accepted: 01/19/2022] [Indexed: 01/03/2023]
Abstract
Sleep disturbances (SD) accompany many neurodevelopmental disorders, suggesting SD is a transdiagnostic process that can account for behavioral deficits and influence underlying neuropathogenesis. Autism Spectrum Disorder (ASD) comprises a complex set of neurodevelopmental conditions characterized by challenges in social interaction, communication, and restricted, repetitive behaviors. Diagnosis of ASD is based primarily on behavioral criteria, and there are no drugs that target core symptoms. Among the co-occurring conditions associated with ASD, SD are one of the most prevalent. SD often arises before the onset of other ASD symptoms. Sleep interventions improve not only sleep but also daytime behaviors in children with ASD. Here, we examine sleep phenotypes in multiple model systems relevant to ASD, e.g., mice, zebrafish, fruit flies and worms. Given the functions of sleep in promoting brain connectivity, neural plasticity, emotional regulation and social behavior, all of which are of critical importance in ASD pathogenesis, we propose that synaptic dysfunction is a major mechanism that connects ASD and SD. Common molecular targets in this interplay that are involved in synaptic function might be a novel avenue for therapy of individuals with ASD experiencing SD. Such therapy would be expected to improve not only sleep but also other ASD symptoms.
Collapse
Affiliation(s)
- Fusun Doldur-Balli
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Toshihiro Imamura
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Olivia J Veatch
- Department of Psychiatry and Behavioral Sciences, School of Medicine, The University of Kansas Medical Center, Kansas City, USA
| | - Naihua N Gong
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Diane C Lim
- Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Department of Medicine, Miller School of Medicine, University of Miami, Miami, USA
| | - Michael P Hart
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ted Abel
- Iowa Neuroscience Institute and Department of Neuroscience & Pharmacology, University of Iowa, Iowa City, USA
| | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Edward S Brodkin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Allan I Pack
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
14
|
Bock J, Covassin N, Somers V. Excessive daytime sleepiness: an emerging marker of cardiovascular risk. Heart 2022; 108:1761-1766. [DOI: 10.1136/heartjnl-2021-319596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/12/2022] [Indexed: 12/19/2022] Open
Abstract
Excessive daytime sleepiness (EDS) is classically viewed as a consequence of insufficient sleep or a symptom of sleep disorders. Epidemiological and clinical evidence have shown that patients reporting EDS in tandem with sleep disorders (e.g., obstructive sleep apnoea) are at greater cardiovascular risk than non-sleepy patients. While this may simply be attributable to EDS being present in patients with a more severe condition, treatment of sleep disorders does not consistently alleviate EDS, indicating potential aetiological differences. Moreover, not all patients with sleep disorders report EDS, and daytime sleepiness may be present even in the absence of any identifiable sleep disorder; thus, EDS could represent an independent pathophysiology. The purpose of this review is twofold: first, to highlight evidence that EDS increases cardiovascular risk in the presence of sleep disorders such as obstructive sleep apnoea, narcolepsy and idiopathic hypersomnia and second, to propose the notion that EDS may also increase cardiovascular risk in the absence of known sleep disorders, as supported by some epidemiological and observational data. We further highlight preliminary evidence suggesting systemic inflammation, which could be attributable to dysfunction of the gut microbiome and adipose tissue, as well as deleterious epigenetic changes, may promote EDS while also increasing cardiovascular risk; however, these pathways may be reciprocal and/or circumstantial. Additionally, gaps within the literature are noted followed by directions for future research.
Collapse
|
15
|
Li Q, Jang H, Lim KY, Lessing A, Stavropoulos N. insomniac links the development and function of a sleep-regulatory circuit. eLife 2021; 10:65437. [PMID: 34908527 PMCID: PMC8758140 DOI: 10.7554/elife.65437] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Although many genes are known to influence sleep, when and how they impact sleep-regulatory circuits remain ill-defined. Here, we show that insomniac (inc), a conserved adaptor for the autism-associated Cul3 ubiquitin ligase, acts in a restricted period of neuronal development to impact sleep in adult Drosophila. The loss of inc causes structural and functional alterations within the mushroom body (MB), a center for sensory integration, associative learning, and sleep regulation. In inc mutants, MB neurons are produced in excess, develop anatomical defects that impede circuit assembly, and are unable to promote sleep when activated in adulthood. Our findings link neurogenesis and postmitotic development of sleep-regulatory neurons to their adult function and suggest that developmental perturbations of circuits that couple sensory inputs and sleep may underlie sleep dysfunction in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Qiuling Li
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of MedicineNew YorkUnited States
| | - Hyunsoo Jang
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of MedicineNew YorkUnited States
| | - Kayla Y Lim
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of MedicineNew YorkUnited States
| | - Alexie Lessing
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of MedicineNew YorkUnited States
| | - Nicholas Stavropoulos
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of MedicineNew YorkUnited States
- Waksman Institute, Rutgers UniversityPiscatawayUnited States
| |
Collapse
|
16
|
Keller Sarmiento IJ, Mencacci NE. Genetic Dystonias: Update on Classification and New Genetic Discoveries. Curr Neurol Neurosci Rep 2021; 21:8. [PMID: 33564903 DOI: 10.1007/s11910-021-01095-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Since the advent of next-generation sequencing, the number of genes associated with dystonia has been growing exponentially. We provide here a comprehensive review of the latest genetic discoveries in the field of dystonia and discuss how the growing knowledge of biology underlying monogenic dystonias may influence and challenge current classification systems. RECENT FINDINGS Pathogenic variants in genes without previously confirmed roles in human disease have been identified in subjects affected by isolated or combined dystonia (KMT2B, VPS16, HPCA, KCTD17, DNAJC12, SLC18A2) and complex dystonia (SQSTM1, IRF2BPL, YY1, VPS41). Importantly, the classical distinction between isolated and combined dystonias has become harder to sustain since many genes have been shown to determine multiple dystonic presentations (e.g., ANO3, GNAL, ADCY5, and ATP1A3). In addition, a growing number of genes initially linked to other neurological phenotypes, such as developmental delay, epilepsy, or ataxia, are now recognized to cause prominent dystonia, occasionally in an isolated fashion (e.g., GNAO1, GNB1, SCN8A, RHOBTB2, and COQ8A). Finally, emerging analyses suggest biological convergence of genes linked to different dystonic phenotypes. While our knowledge on the genetic basis of monogenic dystonias has tremendously grown, their clinical boundaries are becoming increasingly blurry. The current phenotype-based classification may not reflect the molecular structure of the disease, urging the need for new systems based on shared biological pathways among dystonia-linked genes.
Collapse
Affiliation(s)
| | - Niccolò Emanuele Mencacci
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
17
|
Gonzalez-Latapi P, Marotta N, Mencacci NE. Emerging and converging molecular mechanisms in dystonia. J Neural Transm (Vienna) 2021; 128:483-498. [DOI: 10.1007/s00702-020-02290-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
|
18
|
Wang JKT. Uniting homeostatic plasticity and exosome biology: A revision of the conceptual framework for drug discovery in neurodegenerative diseases? ADVANCES IN PHARMACOLOGY 2020; 90:277-306. [PMID: 33706937 DOI: 10.1016/bs.apha.2020.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Neurodegenerative diseases (NDDs) are in need of new drug discovery approaches. Our previous systematic analyses of Huntington's Disease (HD) literature for protein-protein interactors (PPIs) and modifiers of mutant Huntingtin-driven phenotypes revealed enrichment for PPIs of genes required for homeostatic synaptic plasticity (HSP) and exosome (EV) function and exosomal proteins, which in turn highly overlapped each other and with PPIs of genes associated with other NDDs. We proposed that HSP and EVs are linked to each other and are also involved in NDD pathophysiology. Recent studies showed that HSP is indeed altered in HD and AD, and that presynaptic homeostatic plasticity in motoneurons compensates for ALS pathology. Eliminating it causes earlier degeneration and death. If this holds true in other NDDs, drug discovery in animal models should then include elucidation of homeostatic compensation that either masks phenotypes of physiologically expressed mutant genes or are overridden by their overexpression. In this new conceptual framework, enhancing such underlying homeostatic compensation forms the basis for novel therapeutic strategies to slow progression of NDDs. Moreover, if EVs are linked to HSP, then their ability to penetrate the brain, target cell types, deliver miRNA and other molecules can be leveraged to develop attractive drug modalities. Testing this new framework is posed as four questions on model development and mechanistic studies progressing from higher throughput platforms to mouse models. Similar approaches may apply to other CNS disorders including schizophrenia, autism, Rett and Fragile X syndromes due to potential links of their susceptibility genes to HSP and EVs.
Collapse
|
19
|
Li Q, Zheng L, Yang F, Li H, Li J, Cheng D. Effects of regular exercise on sleep and activity status in aging and Clk RNAi Drosophila melanogaster. BIOL RHYTHM RES 2020. [DOI: 10.1080/09291016.2019.1566990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Qiufang Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha City, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha City, China
| | - Fan Yang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha City, China
| | - Hanzhe Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha City, China
| | - Jinxiu Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha City, China
| | - Dan Cheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha City, China
| |
Collapse
|
20
|
Vaccaro A, Kaplan Dor Y, Nambara K, Pollina EA, Lin C, Greenberg ME, Rogulja D. Sleep Loss Can Cause Death through Accumulation of Reactive Oxygen Species in the Gut. Cell 2020; 181:1307-1328.e15. [PMID: 32502393 DOI: 10.1016/j.cell.2020.04.049] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 01/15/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
The view that sleep is essential for survival is supported by the ubiquity of this behavior, the apparent existence of sleep-like states in the earliest animals, and the fact that severe sleep loss can be lethal. The cause of this lethality is unknown. Here we show, using flies and mice, that sleep deprivation leads to accumulation of reactive oxygen species (ROS) and consequent oxidative stress, specifically in the gut. ROS are not just correlates of sleep deprivation but drivers of death: their neutralization prevents oxidative stress and allows flies to have a normal lifespan with little to no sleep. The rescue can be achieved with oral antioxidant compounds or with gut-targeted transgenic expression of antioxidant enzymes. We conclude that death upon severe sleep restriction can be caused by oxidative stress, that the gut is central in this process, and that survival without sleep is possible when ROS accumulation is prevented. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Alexandra Vaccaro
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yosef Kaplan Dor
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Keishi Nambara
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Cindy Lin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Dragana Rogulja
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Potashkin JA, Bottero V, Santiago JA, Quinn JP. Computational identification of key genes that may regulate gene expression reprogramming in Alzheimer's patients. PLoS One 2019; 14:e0222921. [PMID: 31545826 PMCID: PMC6756555 DOI: 10.1371/journal.pone.0222921] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/09/2019] [Indexed: 01/01/2023] Open
Abstract
The dementia epidemic is likely to expand worldwide as the aging population continues to grow. A better understanding of the molecular mechanisms that lead to dementia is expected to reveal potentially modifiable risk factors that could contribute to the development of prevention strategies. Alzheimer's disease is the most prevalent form of dementia. Currently we only partially understand some of the pathophysiological mechanisms that lead to development of the disease in aging individuals. In this study, Switch Miner software was used to identify key switch genes in the brain whose expression may lead to the development of Alzheimer's disease. The results indicate that switch genes are enriched in pathways involved in the proteasome, oxidative phosphorylation, Parkinson's disease, Huntington's disease, Alzheimer's disease and metabolism in the hippocampus and posterior cingulate cortex. Network analysis identified the krupel like factor 9 (KLF9), potassium channel tetramerization domain 2 (KCTD2), Sp1 transcription factor (SP1) and chromodomain helicase DNA binding protein 1 (CHD1) as key transcriptional regulators of switch genes in the brain of AD patients. These transcriptions factors have been implicated in conditions associated with Alzheimer's disease, including diabetes, glucocorticoid signaling, stroke, and sleep disorders. The specific pathways affected reveal potential modifiable risk factors by lifestyle changes.
Collapse
Affiliation(s)
- Judith A. Potashkin
- The Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States of America
- * E-mail:
| | - Virginie Bottero
- The Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States of America
| | | | - James P. Quinn
- Q Regulating Systems, LLC, Gurnee, IL, United States of America
| |
Collapse
|
22
|
Abstract
Circadian rhythms are driven by a transcription-translation feedback loop that separates anabolic and catabolic processes across the Earth's 24-h light-dark cycle. Central pacemaker neurons that perceive light entrain a distributed clock network and are closely juxtaposed with hypothalamic neurons involved in regulation of sleep/wake and fast/feeding states. Gaps remain in identifying how pacemaker and extrapacemaker neurons communicate with energy-sensing neurons and the distinct role of circuit interactions versus transcriptionally driven cell-autonomous clocks in the timing of organismal bioenergetics. In this review, we discuss the reciprocal relationship through which the central clock drives appetitive behavior and metabolic homeostasis and the pathways through which nutrient state and sleep/wake behavior affect central clock function.
Collapse
Affiliation(s)
- Jonathan Cedernaes
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Nathan Waldeck
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Joseph Bass
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
23
|
Barfield R, Wang H, Liu Y, Brody JA, Swenson B, Li R, Bartz TM, Sotoodehnia N, Chen YDI, Cade BE, Chen H, Patel SR, Zhu X, Gharib SA, Johnson WC, Rotter JI, Saxena R, Purcell S, Lin X, Redline S, Sofer T. Epigenome-wide association analysis of daytime sleepiness in the Multi-Ethnic Study of Atherosclerosis reveals African-American-specific associations. Sleep 2019; 42:zsz101. [PMID: 31139831 PMCID: PMC6685317 DOI: 10.1093/sleep/zsz101] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/27/2019] [Indexed: 02/07/2023] Open
Abstract
STUDY OBJECTIVES Daytime sleepiness is a consequence of inadequate sleep, sleep-wake control disorder, or other medical conditions. Population variability in prevalence of daytime sleepiness is likely due to genetic and biological factors as well as social and environmental influences. DNA methylation (DNAm) potentially influences multiple health outcomes. Here, we explored the association between DNAm and daytime sleepiness quantified by the Epworth Sleepiness Scale (ESS). METHODS We performed multi-ethnic and ethnic-specific epigenome-wide association studies for DNAm and ESS in the Multi-Ethnic Study of Atherosclerosis (MESA; n = 619) and the Cardiovascular Health Study (n = 483), with cross-study replication and meta-analysis. Genetic variants near ESS-associated DNAm were analyzed for methylation quantitative trait loci and followed with replication of genotype-sleepiness associations in the UK Biobank. RESULTS In MESA only, we detected four DNAm-ESS associations: one across all race/ethnic groups; three in African-Americans (AA) only. Two of the MESA AA associations, in genes KCTD5 and RXRA, nominally replicated in CHS (p-value < 0.05). In the AA meta-analysis, we detected 14 DNAm-ESS associations (FDR q-value < 0.05, top association p-value = 4.26 × 10-8). Three DNAm sites mapped to genes (CPLX3, GFAP, and C7orf50) with biological relevance. We also found evidence for associations with DNAm sites in RAI1, a gene associated with sleep and circadian phenotypes. UK Biobank follow-up analyses detected SNPs in RAI1, RXRA, and CPLX3 with nominal sleepiness associations. CONCLUSIONS We identified methylation sites in multiple genes possibly implicated in daytime sleepiness. Most significant DNAm-ESS associations were specific to AA. Future work is needed to identify mechanisms driving ancestry-specific methylation effects.
Collapse
Affiliation(s)
- Richard Barfield
- Department of Epidemiology, University of Washington, Seattle, WA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Heming Wang
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Brenton Swenson
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
- Institute for Public Health Genetics, University of Washington, Seattle, WA
| | - Ruitong Li
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
- Institute for Public Health Genetics, University of Washington, Seattle, WA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Yii-der I Chen
- The Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA
| | - Brian E Cade
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Han Chen
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
- Center for Precision Health, School of Public Health & School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX
| | - Sanjay R Patel
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Sina A Gharib
- Computational Medicine Core, Center for Lung Biology, University of Washington Medicine Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, WA
| | - W Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA
| | - Richa Saxena
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
- Center for Genomic Medicine and Department of Anesthesia, Pain, and Critical Care Medicine, Massachusetts General Hospital, Boston, MA
| | - Shaun Purcell
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Department of Psychiatry, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA
| | - Xihong Lin
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA
- Department of Statistics, Harvard University, Cambridge, MA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA
| |
Collapse
|
24
|
The Structural Versatility of the BTB Domains of KCTD Proteins and Their Recognition of the GABA B Receptor. Biomolecules 2019; 9:biom9080323. [PMID: 31370201 PMCID: PMC6722564 DOI: 10.3390/biom9080323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023] Open
Abstract
Several recent investigations have demonstrated that members of the KCTD (Potassium Channel Tetramerization Domain) protein family are involved in fundamental processes. However, the paucity of structural data available on these proteins has frequently prevented the definition of their biochemical role(s). Fortunately, this scenario is rapidly changing as, in very recent years, several crystallographic structures have been reported. Although these investigations have provided very important insights into the function of KCTDs, they have also raised some puzzling issues. One is related to the observation that the BTB (broad-complex, tramtrack, and bric-à-brac) domain of these proteins presents a remarkable structural versatility, being able to adopt a variety of oligomeric states. To gain insights into this intriguing aspect, we performed extensive molecular dynamics simulations on several BTB domains of KCTD proteins in different oligomeric states (monomers, dimers, tetramers, and open/close pentamers). These studies indicate that KCTD-BTB domains are stable in the simulation timescales, even in their monomeric forms. Moreover, simulations also show that the dynamic behavior of open pentameric states is strictly related to their functional roles and that different KCTDs may form stable hetero-oligomers. Molecular dynamics (MD) simulations also provided a dynamic view of the complex formed by KCTD16 and the GABAB2 receptor, whose structure has been recently reported. Finally, simulations carried out on the isolated fragment of the GABAB2 receptor that binds KCTD16 indicate that it is able to assume the local conformation required for the binding to KCTD.
Collapse
|
25
|
Kikuma K, Li X, Perry S, Li Q, Goel P, Chen C, Kim D, Stavropoulos N, Dickman D. Cul3 and insomniac are required for rapid ubiquitination of postsynaptic targets and retrograde homeostatic signaling. Nat Commun 2019; 10:2998. [PMID: 31278365 PMCID: PMC6611771 DOI: 10.1038/s41467-019-10992-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 06/14/2019] [Indexed: 01/05/2023] Open
Abstract
At the Drosophila neuromuscular junction, inhibition of postsynaptic glutamate receptors activates retrograde signaling that precisely increases presynaptic neurotransmitter release to restore baseline synaptic strength. However, the nature of the underlying postsynaptic induction process remains enigmatic. Here, we design a forward genetic screen to discover factors in the postsynaptic compartment necessary to generate retrograde homeostatic signaling. This approach identified insomniac (inc), a putative adaptor for the Cullin-3 (Cul3) ubiquitin ligase complex, which together with Cul3 is essential for normal sleep regulation. Interestingly, we find that Inc and Cul3 rapidly accumulate at postsynaptic compartments following acute receptor inhibition and are required for a local increase in mono-ubiquitination. Finally, we show that Peflin, a Ca2+-regulated Cul3 co-adaptor, is necessary for homeostatic communication, suggesting a relationship between Ca2+ signaling and control of Cul3/Inc activity in the postsynaptic compartment. Our study suggests that Cul3/Inc-dependent mono-ubiquitination, compartmentalized at postsynaptic densities, gates retrograde signaling and provides an intriguing molecular link between the control of sleep and homeostatic plasticity at synapses. The authors use a forward genetic screen to discover postsynaptic factors required for homeostatic synaptic plasticity at the Drosophila neuromuscular junction. They identify insomniac and the ubiquitin ligase Cul3, genes involved in sleep regulation, to be necessary for retrograde homeostatic signalling at this synapse.
Collapse
Affiliation(s)
- Koto Kikuma
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Xiling Li
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Qiuling Li
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, 10016, USA
| | - Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Catherine Chen
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Daniel Kim
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Nicholas Stavropoulos
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, 10016, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
26
|
Teng X, Aouacheria A, Lionnard L, Metz KA, Soane L, Kamiya A, Hardwick JM. KCTD: A new gene family involved in neurodevelopmental and neuropsychiatric disorders. CNS Neurosci Ther 2019; 25:887-902. [PMID: 31197948 PMCID: PMC6566181 DOI: 10.1111/cns.13156] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
The underlying molecular basis for neurodevelopmental or neuropsychiatric disorders is not known. In contrast, mechanistic understanding of other brain disorders including neurodegeneration has advanced considerably. Yet, these do not approach the knowledge accrued for many cancers with precision therapeutics acting on well-characterized targets. Although the identification of genes responsible for neurodevelopmental and neuropsychiatric disorders remains a major obstacle, the few causally associated genes are ripe for discovery by focusing efforts to dissect their mechanisms. Here, we make a case for delving into mechanisms of the poorly characterized human KCTD gene family. Varying levels of evidence support their roles in neurocognitive disorders (KCTD3), neurodevelopmental disease (KCTD7), bipolar disorder (KCTD12), autism and schizophrenia (KCTD13), movement disorders (KCTD17), cancer (KCTD11), and obesity (KCTD15). Collective knowledge about these genes adds enhanced value, and critical insights into potential disease mechanisms have come from unexpected sources. Translation of basic research on the KCTD-related yeast protein Whi2 has revealed roles in nutrient signaling to mTORC1 (KCTD11) and an autophagy-lysosome pathway affecting mitochondria (KCTD7). Recent biochemical and structure-based studies (KCTD12, KCTD13, KCTD16) reveal mechanisms of regulating membrane channel activities through modulation of distinct GTPases. We explore how these seemingly varied functions may be disease related.
Collapse
Affiliation(s)
- Xinchen Teng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| | - Abdel Aouacheria
- ISEM, Institut des Sciences de l'Evolution de Montpellier, CNRS, EPHE, IRDUniversité de MontpellierMontpellierFrance
| | - Loïc Lionnard
- ISEM, Institut des Sciences de l'Evolution de Montpellier, CNRS, EPHE, IRDUniversité de MontpellierMontpellierFrance
| | - Kyle A. Metz
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
- Present address:
Feinberg School of MedicineNorthwestern UniversityChicagoUSA
| | - Lucian Soane
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral SciencesJohns Hopkins School of MedicineBaltimoreMaryland
| | - J. Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| |
Collapse
|
27
|
Abstract
Dystonia is a neurological condition characterized by abnormal involuntary movements or postures owing to sustained or intermittent muscle contractions. Dystonia can be the manifesting neurological sign of many disorders, either in isolation (isolated dystonia) or with additional signs (combined dystonia). The main focus of this Primer is forms of isolated dystonia of idiopathic or genetic aetiology. These disorders differ in manifestations and severity but can affect all age groups and lead to substantial disability and impaired quality of life. The discovery of genes underlying the mendelian forms of isolated or combined dystonia has led to a better understanding of its pathophysiology. In some of the most common genetic dystonias, such as those caused by TOR1A, THAP1, GCH1 and KMT2B mutations, and idiopathic dystonia, these mechanisms include abnormalities in transcriptional regulation, striatal dopaminergic signalling and synaptic plasticity and a loss of inhibition at neuronal circuits. The diagnosis of dystonia is largely based on clinical signs, and the diagnosis and aetiological definition of this disorder remain a challenge. Effective symptomatic treatments with pharmacological therapy (anticholinergics), intramuscular botulinum toxin injection and deep brain stimulation are available; however, future research will hopefully lead to reliable biomarkers, better treatments and cure of this disorder.
Collapse
|
28
|
Cullin 3-Based Ubiquitin Ligases as Master Regulators of Mammalian Cell Differentiation. Trends Biochem Sci 2017; 43:95-107. [PMID: 29249570 DOI: 10.1016/j.tibs.2017.11.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 01/09/2023]
Abstract
Specificity of the ubiquitin proteasome system is controlled by ubiquitin E3 ligases, including their major representatives, the multisubunit cullin-RING ubiquitin (Ub) ligases (CRLs). More than 200 different CRLs are divided into seven families according to their cullin scaffolding proteins (CUL1-7) around which they are assembled. Research over two decades has revealed that different CRL families are specialized to fulfill specific cellular functions. Whereas many CUL1-based CRLs (CRL1s) ubiquitylate cell cycle regulators, CRL4 complexes often associate with chromatin to control DNA metabolism. Based on studies about differentiation programs of mesenchymal stem cells (MSCs), including myogenesis, neurogenesis, chondrogenesis, osteogenesis and adipogenesis, we propose here that CRL3 complexes evolved to fulfill a pivotal role in mammalian cell differentiation.
Collapse
|
29
|
Functional analysis of Cullin 3 E3 ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer 2017; 1869:11-28. [PMID: 29128526 DOI: 10.1016/j.bbcan.2017.11.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/14/2022]
Abstract
Cullin 3-RING ligases (CRL3) play pivotal roles in the regulation of various physiological and pathological processes, including neoplastic events. The substrate adaptors of CRL3 typically contain a BTB domain that mediates the interaction between Cullin 3 and target substrates to promote their ubiquitination and subsequent degradation. The biological implications of CRL3 adaptor proteins have been well described where they have been found to play a role as either an oncogene, tumor suppressor, or can mediate either of these effects in a context-dependent manner. Among the extensively studied CRL3-based E3 ligases, the role of the adaptor protein SPOP (speckle type BTB/POZ protein) in tumorigenesis appears to be tissue or cellular context dependent. Specifically, SPOP acts as a tumor suppressor via destabilizing downstream oncoproteins in many malignancies, especially in prostate cancer. However, SPOP has largely an oncogenic role in kidney cancer. Keap1, another well-characterized CRL3 adaptor protein, likely serves as a tumor suppressor within diverse malignancies, mainly due to its specific turnover of its downstream oncogenic substrate, NRF2 (nuclear factor erythroid 2-related factor 2). In accordance with the physiological role the various CRL3 adaptors exhibit, several pharmacological agents have been developed to disrupt its E3 ligase activity, therefore blocking its potential oncogenic activity to mitigate tumorigenesis.
Collapse
|