1
|
Chen Y, Dong Y, Wei S, Gao X, Li W, Zhao P. Genomic Integration of Hepatitis B Virus Into Human Hepatocytes in Early Childhood Cirrhosis. Liver Int 2025; 45:e70080. [PMID: 40130949 DOI: 10.1111/liv.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 02/09/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND AND AIMS Hepatitis B virus (HBV) remains a major global health problem. HBV DNA can be integrated into the human chromosomes. The integration in young cirrhotic chronic hepatitis B children has not been explored. This study aims to investigate HBV DNA integration in early childhood cirrhosis. METHODS Biopsy liver specimens from cirrhotic and matched non-cirrhotic chronic hepatitis B children were collected. HBV DNA integration was detected through targeted HBV DNA fragment capture sequencing. RESULTS Twenty cirrhotic and 20 non-cirrhotic children with chronic hepatitis B were included in the study. The cirrhotic group included 14 males and 6 females, and the non-cirrhotic group included 13 males and 7 females. Compared to non-cirrhotic children, cirrhotic children had lower serum HBsAg quantification (p = 0.001). The median number of HBV integrants in the cirrhotic group was 59 and that in the non-cirrhotic group was 98. No significant difference existed between the two groups (p = 0.529). In the multivariate linear regression analysis, serum HBV DNA level was correlated with the number of HBV integrants (p < 0.001, R2 = 0.322). Six differential intragenic high-frequency viral integration sites in cirrhotic children were revealed, all of which have protein-coding functions. CONCLUSION Several frequently integrated genes were observed in early childhood cirrhosis. Detailed associations between genetic alterations induced by HBV integration and early childhood cirrhosis need further exploration.
Collapse
Affiliation(s)
- Ying Chen
- Department of Clinical Laboratory, 962nd Hospital of PLA Joint Logistic Support Force, Harbin, Heilongjiang Province, China
| | - Yi Dong
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
| | - Shizhang Wei
- Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Gao
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
| | - Weijie Li
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Pan Zhao
- The Fifth Medical Center (formerly Beijing 302 Hospital), Chinese PLA General Hospital, Beijing, China
- Xinxiang Medical University, Xinxiang, Henan Province, China
| |
Collapse
|
2
|
Dang D, Zhang L, Gao L, Peng L, Chen J, Yang L. Analysis of genomic copy number variations through whole-genome scan in Yunling cattle. Front Vet Sci 2024; 11:1413504. [PMID: 39104544 PMCID: PMC11298805 DOI: 10.3389/fvets.2024.1413504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Yunling cattle is a new breed of beef cattle bred in Yunnan Province, China, which has the advantages of fast growth, excellent meat quality, improved tolerance ability, and important landscape value. Copy number variation (CNV) is a significant source of gene structural variation and plays a crucial role in evolution and phenotypic diversity. Based on the latest reference genome ARS-UCD2.0, this study analyzed the genome-wide distribution of CNVs in Yunling cattle using short-read whole-genome sequencing data (n = 129) and single-molecule long-read sequencing data (n = 1), and a total of 16,507 CNVs were detected. After merging CNVs with overlapping genomic positions, 3,728 CNV regions (CNVRs) were obtained, accounting for 0.61% of the reference genome. The functional analysis indicated significant enrichment of CNVRs in 96 GO terms and 57 KEGG pathways, primarily related to cell adhesion, signal transduction, neuromodulation, and nutritional metabolism. Additionally, 111 CNVRs overlapped with 76 quantitative trait loci (QTLs), including Subcutaneous fat thickness QTL, Longissimus muscle area QTL, and Marbling score QTL. Several CNVR-overlapping genes, including BZW1, AOX1, and LOC100138449, overlap with regions associated with meat color and quality QTLs. Furthermore, Vst analysis showed that PSMB4, ERICH1, SMC2, and PPP4R3A were highly divergent between Yunling and Brahman cattle. In summary, we have constructed the genomic CNV map of Yunling cattle for the first time using whole-genome resequencing. This provides valuable genetic variation resources for the study of the Yunling cattle genome and contributes to the study of economic traits in Yunling cattle.
Collapse
Affiliation(s)
- Dong Dang
- College of Big Data, Yunnan Agricultural University, Kunming, China
- Yunnan Engineering Technology Research Center of Agricultural Big Data, Kunming, China
- Yunnan Engineering Research Center for Big Data Intelligent Information Processing of Green Agricultural Products, Kunming, China
| | - Lilian Zhang
- College of Big Data, Yunnan Agricultural University, Kunming, China
- Yunnan Engineering Technology Research Center of Agricultural Big Data, Kunming, China
- Yunnan Engineering Research Center for Big Data Intelligent Information Processing of Green Agricultural Products, Kunming, China
| | - Lutao Gao
- College of Big Data, Yunnan Agricultural University, Kunming, China
- Yunnan Engineering Technology Research Center of Agricultural Big Data, Kunming, China
- Yunnan Engineering Research Center for Big Data Intelligent Information Processing of Green Agricultural Products, Kunming, China
| | - Lin Peng
- College of Big Data, Yunnan Agricultural University, Kunming, China
- Yunnan Engineering Technology Research Center of Agricultural Big Data, Kunming, China
- Yunnan Engineering Research Center for Big Data Intelligent Information Processing of Green Agricultural Products, Kunming, China
| | - Jian Chen
- College of Big Data, Yunnan Agricultural University, Kunming, China
- Yunnan Engineering Technology Research Center of Agricultural Big Data, Kunming, China
- Yunnan Engineering Research Center for Big Data Intelligent Information Processing of Green Agricultural Products, Kunming, China
| | - Linnan Yang
- College of Big Data, Yunnan Agricultural University, Kunming, China
- Yunnan Engineering Technology Research Center of Agricultural Big Data, Kunming, China
- Yunnan Engineering Research Center for Big Data Intelligent Information Processing of Green Agricultural Products, Kunming, China
| |
Collapse
|
3
|
Bainbridge LJ, Daigaku Y. Adaptive use of error-prone DNA polymerases provides flexibility in genome replication during tumorigenesis. Cancer Sci 2024; 115:2125-2137. [PMID: 38651239 PMCID: PMC11247608 DOI: 10.1111/cas.16188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
Human cells possess many different polymerase enzymes, which collaborate in conducting DNA replication and genome maintenance to ensure faithful duplication of genetic material. Each polymerase performs a specialized role, together providing a balance of accuracy and flexibility to the replication process. Perturbed replication increases the requirement for flexibility to ensure duplication of the entire genome. Flexibility is provided via the use of error-prone polymerases, which maintain the progression of challenged DNA replication at the expense of mutagenesis, an enabling characteristic of cancer. This review describes our recent understanding of mechanisms that alter the usage of polymerases during tumorigenesis and examines the implications of this for cell survival and tumor progression. Although expression levels of polymerases are often misregulated in cancers, this does not necessarily alter polymerase usage since an additional regulatory step may govern the use of these enzymes. We therefore also examine how the regulatory mechanisms of DNA polymerases, such as Rad18-mediated PCNA ubiquitylation, may impact the functionalization of error-prone polymerases to tolerate oncogene-induced replication stress. Crucially, it is becoming increasingly evident that cancer cells utilize error-prone polymerases to sustain ongoing replication in response to oncogenic mutations which inactivate key DNA replication and repair pathways, such as BRCA deficiency. This accelerates mutagenesis and confers chemoresistance, but also presents a dependency that can potentially be exploited by therapeutics.
Collapse
Affiliation(s)
- Lewis J. Bainbridge
- Cancer Genome Dynamics Project, Cancer InstituteJapanese Foundation for Cancer ResearchTokyoJapan
| | - Yasukazu Daigaku
- Cancer Genome Dynamics Project, Cancer InstituteJapanese Foundation for Cancer ResearchTokyoJapan
| |
Collapse
|
4
|
Stroik S, Carvajal-Garcia J, Gupta D, Edwards A, Luthman A, Wyatt DW, Dannenberg RL, Feng W, Kunkel TA, Gupta GP, Hedglin M, Wood R, Doublié S, Rothenberg E, Ramsden DA. Stepwise requirements for polymerases δ and θ in theta-mediated end joining. Nature 2023; 623:836-841. [PMID: 37968395 PMCID: PMC10959172 DOI: 10.1038/s41586-023-06729-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/06/2023] [Indexed: 11/17/2023]
Abstract
Timely repair of chromosomal double-strand breaks is required for genome integrity and cellular viability. The polymerase theta-mediated end joining pathway has an important role in resolving these breaks and is essential in cancers defective in other DNA repair pathways, thus making it an emerging therapeutic target1. It requires annealing of 2-6 nucleotides of complementary sequence, microhomologies, that are adjacent to the broken ends, followed by initiation of end-bridging DNA synthesis by polymerase θ. However, the other pathway steps remain inadequately defined, and the enzymes required for them are unknown. Here we demonstrate requirements for exonucleolytic digestion of unpaired 3' tails before polymerase θ can initiate synthesis, then a switch to a more accurate, processive and strand-displacing polymerase to complete repair. We show the replicative polymerase, polymerase δ, is required for both steps; its 3' to 5' exonuclease activity for flap trimming, then its polymerase activity for extension and completion of repair. The enzymatic steps that are essential and specific to this pathway are mediated by two separate, sequential engagements of the two polymerases. The requisite coupling of these steps together is likely to be facilitated by physical association of the two polymerases. This pairing of polymerase δ with a polymerase capable of end-bridging synthesis, polymerase θ, may help to explain why the normally high-fidelity polymerase δ participates in genome destabilizing processes such as mitotic DNA synthesis2 and microhomology-mediated break-induced replication3.
Collapse
Affiliation(s)
- Susanna Stroik
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Dipika Gupta
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Alyssa Edwards
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam Luthman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David W Wyatt
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rachel L Dannenberg
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Wanjuan Feng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Richard Wood
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Dale A Ramsden
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Czernecki D, Nourisson A, Legrand P, Delarue M. Reclassification of family A DNA polymerases reveals novel functional subfamilies and distinctive structural features. Nucleic Acids Res 2023; 51:4488-4507. [PMID: 37070157 PMCID: PMC10201439 DOI: 10.1093/nar/gkad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/07/2023] [Accepted: 03/24/2023] [Indexed: 04/19/2023] Open
Abstract
Family A DNA polymerases (PolAs) form an important and well-studied class of extant polymerases participating in DNA replication and repair. Nonetheless, despite the characterization of multiple subfamilies in independent, dedicated works, their comprehensive classification thus far is missing. We therefore re-examine all presently available PolA sequences, converting their pairwise similarities into positions in Euclidean space, separating them into 19 major clusters. While 11 of them correspond to known subfamilies, eight had not been characterized before. For every group, we compile their general characteristics, examine their phylogenetic relationships and perform conservation analysis in the essential sequence motifs. While most subfamilies are linked to a particular domain of life (including phages), one subfamily appears in Bacteria, Archaea and Eukaryota. We also show that two new bacterial subfamilies contain functional enzymes. We use AlphaFold2 to generate high-confidence prediction models for all clusters lacking an experimentally determined structure. We identify new, conserved features involving structural alterations, ordered insertions and an apparent structural incorporation of a uracil-DNA glycosylase (UDG) domain. Finally, genetic and structural analyses of a subset of T7-like phages indicate a splitting of the 3'-5' exo and pol domains into two separate genes, observed in PolAs for the first time.
Collapse
Affiliation(s)
- Dariusz Czernecki
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75015 Paris, France
- Sorbonne Université, Collège Doctoral, ED 515, 75005 Paris, France
| | - Antonin Nourisson
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75015 Paris, France
- Sorbonne Université, Collège Doctoral, ED 515, 75005 Paris, France
| | - Pierre Legrand
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75015 Paris, France
- Synchrotron SOLEIL, L’Orme des Merisiers, 91190 Saint-Aubin, France
| | - Marc Delarue
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75015 Paris, France
| |
Collapse
|
6
|
Yi G, Sung Y, Kim C, Ra JS, Hirakawa H, Kato T, Fujimori A, Kim H, Takata KI. DNA polymerase θ-mediated repair of high LET radiation-induced complex DNA double-strand breaks. Nucleic Acids Res 2023; 51:2257-2269. [PMID: 36805268 PMCID: PMC10018357 DOI: 10.1093/nar/gkad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/22/2023] Open
Abstract
DNA polymerase θ (POLQ) is a unique DNA polymerase that is able to perform microhomology-mediated end-joining as well as translesion synthesis (TLS) across an abasic (AP) site and thymine glycol (Tg). However, the biological significance of the TLS activity is currently unknown. Herein we provide evidence that the TLS activity of POLQ plays a critical role in repairing complex DNA double-strand breaks (DSBs) induced by high linear energy transfer (LET) radiation. Radiotherapy with high LET radiation such as carbon ions leads to more deleterious biological effects than corresponding doses of low LET radiation such as X-rays. High LET-induced DSBs are considered to be complex, carrying additional DNA damage such as AP site and Tg in close proximity to the DSB sites. However, it is not clearly understood how complex DSBs are processed in mammalian cells. We demonstrated that genetic disruption of POLQ results in an increase of chromatid breaks and enhanced cellular sensitivity following treatment with high LET radiation. At the biochemical level, POLQ was able to bypass an AP site and Tg during end-joining and was able to anneal two single-stranded DNA tails when DNA lesions were located outside the microhomology. This study offers evidence that POLQ is directly involved in the repair of complex DSBs.
Collapse
Affiliation(s)
- Geunil Yi
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Yubin Sung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Chanwoo Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Hirokazu Hirakawa
- Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Chiba 263-8555, Japan
| | - Takamitsu A Kato
- Department of Environmental & Radiological Health Sciences, Colorado State University, Colorado 80523, USA
| | - Akira Fujimori
- Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Chiba 263-8555, Japan
| | - Hajin Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Kei-ichi Takata
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
7
|
Abstract
DNA polymerase θ (Pol θ) is a DNA repair enzyme widely conserved in animals and plants. Pol θ uses short DNA sequence homologies to initiate repair of double-strand breaks by theta-mediated end joining. The DNA polymerase domain of Pol θ is at the C terminus and is connected to an N-terminal DNA helicase-like domain by a central linker. Pol θ is crucial for maintenance of damaged genomes during development, protects DNA against extensive deletions, and limits loss of heterozygosity. The cost of using Pol θ for genome protection is that a few nucleotides are usually deleted or added at the repair site. Inactivation of Pol θ often enhances the sensitivity of cells to DNA strand-breaking chemicals and radiation. Since some homologous recombination-defective cancers depend on Pol θ for growth, inhibitors of Pol θ may be useful in treating such tumors.
Collapse
Affiliation(s)
- Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, Texas, USA;
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA;
| |
Collapse
|
8
|
Ramsden DA, Carvajal-Garcia J, Gupta GP. Mechanism, cellular functions and cancer roles of polymerase-theta-mediated DNA end joining. Nat Rev Mol Cell Biol 2022; 23:125-140. [PMID: 34522048 DOI: 10.1038/s41580-021-00405-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 02/08/2023]
Abstract
Cellular pathways that repair chromosomal double-strand breaks (DSBs) have pivotal roles in cell growth, development and cancer. These DSB repair pathways have been the target of intensive investigation, but one pathway - alternative end joining (a-EJ) - has long resisted elucidation. In this Review, we highlight recent progress in our understanding of a-EJ, especially the assignment of DNA polymerase theta (Polθ) as the predominant mediator of a-EJ in most eukaryotes, and discuss a potential molecular mechanism by which Polθ-mediated end joining (TMEJ) occurs. We address possible cellular functions of TMEJ in resolving DSBs that are refractory to repair by non-homologous end joining (NHEJ), DSBs generated following replication fork collapse and DSBs present owing to stalling of repair by homologous recombination. We also discuss how these context-dependent cellular roles explain how TMEJ can both protect against and cause genome instability, and the emerging potential of Polθ as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Dale A Ramsden
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Juan Carvajal-Garcia
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Leal AZ, Schwebs M, Briggs E, Weisert N, Reis H, Lemgruber L, Luko K, Wilkes J, Butter F, McCulloch R, Janzen CJ. Genome maintenance functions of a putative Trypanosoma brucei translesion DNA polymerase include telomere association and a role in antigenic variation. Nucleic Acids Res 2020; 48:9660-9680. [PMID: 32890403 PMCID: PMC7515707 DOI: 10.1093/nar/gkaa686] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 08/03/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Maintenance of genome integrity is critical to guarantee transfer of an intact genome from parent to offspring during cell division. DNA polymerases (Pols) provide roles in both replication of the genome and the repair of a wide range of lesions. Amongst replicative DNA Pols, translesion DNA Pols play a particular role: replication to bypass DNA damage. All cells express a range of translesion Pols, but little work has examined their function in parasites, including whether the enzymes might contribute to host-parasite interactions. Here, we describe a dual function of one putative translesion Pol in African trypanosomes, which we now name TbPolIE. Previously, we demonstrated that TbPolIE is associated with telomeric sequences and here we show that RNAi-mediated depletion of TbPolIE transcripts results in slowed growth, altered DNA content, changes in cell morphology, and increased sensitivity to DNA damaging agents. We also show that TbPolIE displays pronounced localization at the nuclear periphery, and that its depletion leads to chromosome segregation defects and increased levels of endogenous DNA damage. Finally, we demonstrate that TbPolIE depletion leads to deregulation of telomeric variant surface glycoprotein genes, linking the function of this putative translesion DNA polymerase to host immune evasion by antigenic variation.
Collapse
Affiliation(s)
- Andrea Zurita Leal
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Marie Schwebs
- Department of Cell & Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Emma Briggs
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Nadine Weisert
- Department of Cell & Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Helena Reis
- Department of Cell & Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Leandro Lemgruber
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Katarina Luko
- Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Jonathan Wilkes
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Christian J Janzen
- Department of Cell & Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Hwang T, Reh S, Dunbayev Y, Zhong Y, Takata Y, Shen J, McBride KM, Murnane JP, Bhak J, Lee S, Wood RD, Takata KI. Defining the mutation signatures of DNA polymerase θ in cancer genomes. NAR Cancer 2020; 2:zcaa017. [PMID: 32885167 PMCID: PMC7454005 DOI: 10.1093/narcan/zcaa017] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 01/25/2023] Open
Abstract
DNA polymerase theta (POLQ)-mediated end joining (TMEJ) is a distinct pathway for mediating DNA double-strand break (DSB) repair. TMEJ is required for the viability of BRCA-mutated cancer cells. It is crucial to identify tumors that rely on POLQ activity for DSB repair, because such tumors are defective in other DSB repair pathways and have predicted sensitivity to POLQ inhibition and to cancer therapies that produce DSBs. We define here the POLQ-associated mutation signatures in human cancers, characterized by short insertions and deletions in a specific range of microhomologies. By analyzing 82 COSMIC (Catalogue of Somatic Mutations in Cancer) signatures, we found that BRCA-mutated cancers with a higher level of POLQ expression have a greatly enhanced representation of the small insertion and deletion signature 6, as well as single base substitution signature 3. Using human cancer cells with disruptions of POLQ, we further show that TMEJ dominates end joining of two separated DSBs (distal EJ). Templated insertions with microhomology are enriched in POLQ-dependent distal EJ. The use of this signature analysis will aid in identifying tumors relying on POLQ activity.
Collapse
Affiliation(s)
- Taejoo Hwang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Shelley Reh
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yerkin Dunbayev
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Yi Zhong
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yoko Takata
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Jianjun Shen
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Kevin M McBride
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - John P Murnane
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jong Bhak
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Semin Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Richard D Wood
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Kei-Ichi Takata
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
11
|
Pilzecker B, Buoninfante OA, Jacobs H. DNA damage tolerance in stem cells, ageing, mutagenesis, disease and cancer therapy. Nucleic Acids Res 2019; 47:7163-7181. [PMID: 31251805 PMCID: PMC6698745 DOI: 10.1093/nar/gkz531] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/22/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
The DNA damage response network guards the stability of the genome from a plethora of exogenous and endogenous insults. An essential feature of the DNA damage response network is its capacity to tolerate DNA damage and structural impediments during DNA synthesis. This capacity, referred to as DNA damage tolerance (DDT), contributes to replication fork progression and stability in the presence of blocking structures or DNA lesions. Defective DDT can lead to a prolonged fork arrest and eventually cumulate in a fork collapse that involves the formation of DNA double strand breaks. Four principal modes of DDT have been distinguished: translesion synthesis, fork reversal, template switching and repriming. All DDT modes warrant continuation of replication through bypassing the fork stalling impediment or repriming downstream of the impediment in combination with filling of the single-stranded DNA gaps. In this way, DDT prevents secondary DNA damage and critically contributes to genome stability and cellular fitness. DDT plays a key role in mutagenesis, stem cell maintenance, ageing and the prevention of cancer. This review provides an overview of the role of DDT in these aspects.
Collapse
Affiliation(s)
- Bas Pilzecker
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Olimpia Alessandra Buoninfante
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
12
|
Abstract
The number of DNA polymerases identified in each organism has mushroomed in the past two decades. Most newly found DNA polymerases specialize in translesion synthesis and DNA repair instead of replication. Although intrinsic error rates are higher for translesion and repair polymerases than for replicative polymerases, the specialized polymerases increase genome stability and reduce tumorigenesis. Reflecting the numerous types of DNA lesions and variations of broken DNA ends, translesion and repair polymerases differ in structure, mechanism, and function. Here, we review the unique and general features of polymerases specialized in lesion bypass, as well as in gap-filling and end-joining synthesis.
Collapse
Affiliation(s)
- Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Yang Gao
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
13
|
Family A and B DNA Polymerases in Cancer: Opportunities for Therapeutic Interventions. BIOLOGY 2018; 7:biology7010005. [PMID: 29301327 PMCID: PMC5872031 DOI: 10.3390/biology7010005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/14/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023]
Abstract
DNA polymerases are essential for genome replication, DNA repair and translesion DNA synthesis (TLS). Broadly, these enzymes belong to two groups: replicative and non-replicative DNA polymerases. A considerable body of data suggests that both groups of DNA polymerases are associated with cancer. Many mutations in cancer cells are either the result of error-prone DNA synthesis by non-replicative polymerases, or the inability of replicative DNA polymerases to proofread mismatched nucleotides due to mutations in 3'-5' exonuclease activity. Moreover, non-replicative, TLS-capable DNA polymerases can negatively impact cancer treatment by synthesizing DNA past lesions generated from treatments such as cisplatin, oxaliplatin, etoposide, bleomycin, and radiotherapy. Hence, the inhibition of DNA polymerases in tumor cells has the potential to enhance treatment outcomes. Here, we review the association of DNA polymerases in cancer from the A and B families, which participate in lesion bypass, and conduct gene replication. We also discuss possible therapeutic interventions that could be used to maneuver the role of these enzymes in tumorigenesis.
Collapse
|