1
|
Pender CL, Dishart JG, Gildea HK, Nauta KM, Page EM, Siddiqi TF, Cheung SS, Joe L, Burton NO, Dillin A. Perception of a pathogenic signature initiates intergenerational protection. Cell 2025; 188:594-605.e10. [PMID: 39721586 DOI: 10.1016/j.cell.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/10/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
Transmission of immune responses from one generation to the next represents a powerful adaptive mechanism to protect an organism's descendants. Parental infection by the natural C. elegans pathogen Pseudomonas vranovensis induces a protective response in progeny, but the bacterial cues and intergenerational signal driving this response were previously unknown. Here, we find that animals activate a protective stress response program upon exposure to P. vranovensis-derived cyanide and that a metabolic byproduct of cyanide detoxification, β-cyanoalanine, acts as an intergenerational signal to protect progeny from infection. Remarkably, this mechanism does not require direct parental infection; rather, exposure to pathogen-derived volatiles is sufficient to enhance the survival of the next generation, indicating that parental surveillance of environmental cues can activate a protective intergenerational response. Therefore, the mere perception of a pathogen-derived toxin, in this case cyanide, can protect an animal's progeny from future pathogenic challenges.
Collapse
Affiliation(s)
- Corinne L Pender
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Julian G Dishart
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Holly K Gildea
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kelsie M Nauta
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Emily M Page
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Talha F Siddiqi
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shannon S Cheung
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Larry Joe
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas O Burton
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Andrew Dillin
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
2
|
Hajdú G, Szathmári C, Sőti C. Modeling Host-Pathogen Interactions in C. elegans: Lessons Learned from Pseudomonas aeruginosa Infection. Int J Mol Sci 2024; 25:7034. [PMID: 39000143 PMCID: PMC11241598 DOI: 10.3390/ijms25137034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Infections, such as that by the multiresistant opportunistic bacterial pathogen Pseudomonas aeruginosa, may pose a serious health risk, especially on vulnerable patient populations. The nematode Caenorhabditis elegans provides a simple organismal model to investigate both pathogenic mechanisms and the emerging role of innate immunity in host protection. Here, we review the virulence and infection strategies of P. aeruginosa and host defenses of C. elegans. We summarize the recognition mechanisms of patterns of pathogenesis, including novel pathogen-associated molecular patterns and surveillance immunity of translation, mitochondria, and lysosome-related organelles. We also review the regulation of antimicrobial and behavioral defenses by the worm's neuroendocrine system. We focus on how discoveries in this rich field align with well-characterized evolutionary conserved protective pathways, as well as on potential crossovers to human pathogenesis and innate immune responses.
Collapse
Affiliation(s)
- Gábor Hajdú
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Csenge Szathmári
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Csaba Sőti
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
3
|
Grover M, Gang SS, Troemel ER, Barkoulas M. Proteasome inhibition triggers tissue-specific immune responses against different pathogens in C. elegans. PLoS Biol 2024; 22:e3002543. [PMID: 38466732 PMCID: PMC10957088 DOI: 10.1371/journal.pbio.3002543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/21/2024] [Accepted: 02/09/2024] [Indexed: 03/13/2024] Open
Abstract
Protein quality control pathways play important roles in resistance against pathogen infection. For example, the conserved transcription factor SKN-1/NRF up-regulates proteostasis capacity after blockade of the proteasome and also promotes resistance against bacterial infection in the nematode Caenorhabditis elegans. SKN-1/NRF has 3 isoforms, and the SKN-1A/NRF1 isoform, in particular, regulates proteasomal gene expression upon proteasome dysfunction as part of a conserved bounce-back response. We report here that, in contrast to the previously reported role of SKN-1 in promoting resistance against bacterial infection, loss-of-function mutants in skn-1a and its activating enzymes ddi-1 and png-1 show constitutive expression of immune response programs against natural eukaryotic pathogens of C. elegans. These programs are the oomycete recognition response (ORR), which promotes resistance against oomycetes that infect through the epidermis, and the intracellular pathogen response (IPR), which promotes resistance against intestine-infecting microsporidia. Consequently, skn-1a mutants show increased resistance to both oomycete and microsporidia infections. We also report that almost all ORR/IPR genes induced in common between these programs are regulated by the proteasome and interestingly, specific ORR/IPR genes can be induced in distinct tissues depending on the exact trigger. Furthermore, we show that increasing proteasome function significantly reduces oomycete-mediated induction of multiple ORR markers. Altogether, our findings demonstrate that proteasome regulation keeps innate immune responses in check in a tissue-specific manner against natural eukaryotic pathogens of the C. elegans epidermis and intestine.
Collapse
Affiliation(s)
- Manish Grover
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Spencer S. Gang
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Emily R. Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | | |
Collapse
|
4
|
Onraet T, Zuryn S. C. elegans as a model to study mitochondrial biology and disease. Semin Cell Dev Biol 2024; 154:48-58. [PMID: 37149409 DOI: 10.1016/j.semcdb.2023.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Mitochondria perform a myriad of essential functions that ensure organismal homeostasis, including maintaining bioenergetic capacity, sensing and signalling the presence of pathogenic threats, and determining cell fate. Their function is highly dependent on mitochondrial quality control and the appropriate regulation of mitochondrial size, shape, and distribution during an entire lifetime, as well as their inheritance across generations. The roundworm Caenorhabditis elegans has emerged as an ideal model organism through which to study mitochondria. The remarkable conservation of mitochondrial biology has allowed C. elegans researchers to investigate complex processes that are challenging to study in higher organisms. In this review, we explore the key recent contributions of C. elegans to mitochondrial biology through the lens of mitochondrial dynamics, organellar removal, and mitochondrial inheritance, as well as their involvement in immune responses, various types of stress, and transgenerational signalling.
Collapse
Affiliation(s)
- Tessa Onraet
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
5
|
Taouktsi E, Kyriakou E, Voulgaraki E, Verganelakis D, Krokou S, Rigas S, Voutsinas GE, Syntichaki P. Mitochondrial p38 Mitogen-Activated Protein Kinase: Insights into Its Regulation of and Role in LONP1-Deficient Nematodes. Int J Mol Sci 2023; 24:17209. [PMID: 38139038 PMCID: PMC10743222 DOI: 10.3390/ijms242417209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
p38 Mitogen-Activated Protein Kinase (MAPK) cascades are central regulators of numerous physiological cellular processes, including stress response signaling. In C. elegans, mitochondrial dysfunction activates a PMK-3/p38 MAPK signaling pathway (MAPKmt), but its functional role still remains elusive. Here, we demonstrate the induction of MAPKmt in worms deficient in the lonp-1 gene, which encodes the worm ortholog of mammalian mitochondrial LonP1. This induction is subjected to negative regulation by the ATFS-1 transcription factor through the CREB-binding protein (CBP) ortholog CBP-3, indicating an interplay between both activated MAPKmt and mitochondrial Unfolded Protein Response (UPRmt) surveillance pathways. Our results also reveal a genetic interaction in lonp-1 mutants between PMK-3 kinase and the ZIP-2 transcription factor. ZIP-2 has an established role in innate immunity but can also modulate the lifespan by maintaining mitochondrial homeostasis during ageing. We show that in lonp-1 animals, ZIP-2 is activated in a PMK-3-dependent manner but does not confer increased survival to pathogenic bacteria. However, deletion of zip-2 or pmk-3 shortens the lifespan of lonp-1 mutants, suggesting a possible crosstalk under conditions of mitochondrial perturbation that influences the ageing process. Furthermore, loss of pmk-3 specifically diminished the extreme heat tolerance of lonp-1 worms, highlighting the crucial role of PMK-3 in the heat shock response upon mitochondrial LONP-1 inactivation.
Collapse
Affiliation(s)
- Eirini Taouktsi
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (E.V.); (D.V.); (S.K.)
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece;
| | - Eleni Kyriakou
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (E.V.); (D.V.); (S.K.)
| | - Evangelia Voulgaraki
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (E.V.); (D.V.); (S.K.)
| | - Dimitris Verganelakis
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (E.V.); (D.V.); (S.K.)
- Department of Biological Applications & Technology, University of Ioannina, 45500 Ioannina, Greece
| | - Stefania Krokou
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (E.V.); (D.V.); (S.K.)
| | - Stamatis Rigas
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece;
| | - Gerassimos E. Voutsinas
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, 15341 Athens, Greece;
| | - Popi Syntichaki
- Laboratory of Molecular Genetics of Aging, Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, 11527 Athens, Greece; (E.T.); (E.K.); (E.V.); (D.V.); (S.K.)
| |
Collapse
|
6
|
Zhang L, Gade V, Kirienko NV. Pathogen-induced dormancy in liquid limits gastrointestinal colonization of Caenorhabditis elegans. Virulence 2023; 14:2204004. [PMID: 37096826 PMCID: PMC10132241 DOI: 10.1080/21505594.2023.2204004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/10/2023] [Indexed: 04/26/2023] Open
Abstract
Colonization is generally considered a prerequisite for infection, but this event is context-dependent, as evidenced by the differing ability of the human pathogen Pseudomonas aeruginosa to efficiently colonize Caenorhabditis elegans on agar but not in liquid . In this study, we examined the impact of the environment, pathogen, host, and their interactions on host colonization. We found that the transition to a liquid environment reduces food uptake by about two-fold. Also expression of specific adhesins was significantly altered in liquid-based assays for P. aeruginosa, suggesting that it may be one factor driving diminished colonization. Unexpectedly, host immune pathways did not appear to play a significant role in decreased colonization in liquid. Although knocking down key immune pathways (e.g. daf-16 or zip-2), either alone or in combination, significantly reduced survival, the changes in colonization were very small. In spite of the limited bacterial accumulation in the liquid setting, pathogenic colonization was still required for the virulence of Enterococcus faecalis. In addition, we found that a pathogen-induced dormancy was displayed by C. elegans in liquid medium after pathogen exposure, resulting in cessation of pharyngeal pumping and a decrease in bacterial intake. We conclude that poor colonization in liquid is likely due to a combination of environmental factors and host-pathogen interactions. These results provide new insights into mechanisms for colonization in different models, enabling pathogenesis models to be fine-tuned to more accurately represent the conditions seen in human infections so that new tools for curbing bacterial and fungal infections can be developed.
Collapse
Affiliation(s)
- Liyang Zhang
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Vyshnavi Gade
- Department of BioSciences, Rice University, Houston, TX, USA
| | | |
Collapse
|
7
|
Moreno A, Taffet A, Tjahjono E, Anderson QL, Kirienko NV. Examining Sporadic Cancer Mutations Uncovers a Set of Genes Involved in Mitochondrial Maintenance. Genes (Basel) 2023; 14:1009. [PMID: 37239369 PMCID: PMC10218105 DOI: 10.3390/genes14051009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondria are key organelles for cellular health and metabolism and the activation of programmed cell death processes. Although pathways for regulating and re-establishing mitochondrial homeostasis have been identified over the past twenty years, the consequences of disrupting genes that regulate other cellular processes, such as division and proliferation, on affecting mitochondrial function remain unclear. In this study, we leveraged insights about increased sensitivity to mitochondrial damage in certain cancers, or genes that are frequently mutated in multiple cancer types, to compile a list of candidates for study. RNAi was used to disrupt orthologous genes in the model organism Caenorhabditis elegans, and a series of assays were used to evaluate these genes' importance for mitochondrial health. Iterative screening of ~1000 genes yielded a set of 139 genes predicted to play roles in mitochondrial maintenance or function. Bioinformatic analyses indicated that these genes are statistically interrelated. Functional validation of a sample of genes from this set indicated that disruption of each gene caused at least one phenotype consistent with mitochondrial dysfunction, including increased fragmentation of the mitochondrial network, abnormal steady-state levels of NADH or ROS, or altered oxygen consumption. Interestingly, RNAi-mediated knockdown of these genes often also exacerbated α-synuclein aggregation in a C. elegans model of Parkinson's disease. Additionally, human orthologs of the gene set showed enrichment for roles in human disorders. This gene set provides a foundation for identifying new mechanisms that support mitochondrial and cellular homeostasis.
Collapse
Affiliation(s)
| | | | | | | | - Natalia V. Kirienko
- Department of BioSciences, Rice University, 6100 Main St, MS140, Houston, TX 77005, USA; (A.M.); (A.T.); (E.T.); (Q.L.A.)
| |
Collapse
|
8
|
Tjahjono E, Kirienko DR, Kirienko NV. The emergent role of mitochondrial surveillance in cellular health. Aging Cell 2022; 21:e13710. [PMID: 36088658 PMCID: PMC9649602 DOI: 10.1111/acel.13710] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial dysfunction is one of the primary causatives for many pathologies, including neurodegenerative diseases, cancer, metabolic disorders, and aging. Decline in mitochondrial functions leads to the loss of proteostasis, accumulation of ROS, and mitochondrial DNA damage, which further exacerbates mitochondrial deterioration in a vicious cycle. Surveillance mechanisms, in which mitochondrial functions are closely monitored for any sign of perturbations, exist to anticipate possible havoc within these multifunctional organelles with primitive origin. Various indicators of unhealthy mitochondria, including halted protein import, dissipated membrane potential, and increased loads of oxidative damage, are on the top of the lists for close monitoring. Recent research also indicates a possibility of reductive stress being monitored as part of a mitochondrial surveillance program. Upon detection of mitochondrial stress, multiple mitochondrial stress-responsive pathways are activated to promote the transcription of numerous nuclear genes to ameliorate mitochondrial damage and restore compromised cellular functions. Co-expression occurs through functionalization of transcription factors, allowing their binding to promoter elements to initiate transcription of target genes. This review provides a comprehensive summary of the intricacy of mitochondrial surveillance programs and highlights their roles in our cellular life. Ultimately, a better understanding of these surveillance mechanisms is expected to improve healthspan.
Collapse
|
9
|
Renfro Z, White BE, Stephens KE. CCAAT enhancer binding protein gamma (C/EBP-γ): An understudied transcription factor. Adv Biol Regul 2022; 84:100861. [PMID: 35121409 PMCID: PMC9376885 DOI: 10.1016/j.jbior.2022.100861] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 05/03/2023]
Abstract
The CCAAT enhancer binding protein (C/EBP) family of transcription factors are important transcriptional mediators of a wide range of physiologic processes. C/EBP-γ is the shortest C/EBP protein and lacks a canonical activation domain for the recruitment of transcriptional machinery. Despite its ubiquitous expression and ability to dimerize with other C/EBP proteins, C/EBP-γ has been studied far less than other C/EBP proteins, and, to our knowledge, no review of its functions has been written. This review seeks to integrate the current knowledge about C/EBP-γ and its physiologic roles, especially in cell proliferation, the integrated stress response, oncogenesis, hematopoietic and nervous system development, and metabolism, as well as to identify areas for future research.
Collapse
Affiliation(s)
- Zachary Renfro
- Department of Pediatrics, Division of Infectious Diseases, College of Medicine, University of Arkansas for Medical Sciences, USA; Arkansas Children's Research Institute, 13 Children's Way, Mail slot 512-47, Little Rock, AR, 72202, USA.
| | - Bryan E White
- Department of Pediatrics, Division of Infectious Diseases, College of Medicine, University of Arkansas for Medical Sciences, USA; Arkansas Children's Research Institute, 13 Children's Way, Mail slot 512-47, Little Rock, AR, 72202, USA.
| | - Kimberly E Stephens
- Department of Pediatrics, Division of Infectious Diseases, College of Medicine, University of Arkansas for Medical Sciences, USA; Arkansas Children's Research Institute, 13 Children's Way, Mail slot 512-47, Little Rock, AR, 72202, USA.
| |
Collapse
|
10
|
Tjahjono E, Revtovich AV, Kirienko NV. Box C/D small nucleolar ribonucleoproteins regulate mitochondrial surveillance and innate immunity. PLoS Genet 2022; 18:e1010103. [PMID: 35275914 PMCID: PMC8942280 DOI: 10.1371/journal.pgen.1010103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/23/2022] [Accepted: 02/14/2022] [Indexed: 12/27/2022] Open
Abstract
Monitoring mitochondrial function is crucial for organismal survival. This task is performed by mitochondrial surveillance or quality control pathways, which are activated by signals originating from mitochondria and relayed to the nucleus (retrograde response) to start transcription of protective genes. In Caenorhabditis elegans, several systems are known to play this role, including the UPRmt, MAPKmt, and the ESRE pathways. These pathways are highly conserved and their loss compromises survival following mitochondrial stress. In this study, we found a novel interaction between the box C/D snoRNA core proteins (snoRNPs) and mitochondrial surveillance and innate immune pathways. We showed that box C/D, but not box H/ACA, snoRNPs are required for the full function of UPRmt and ESRE upon stress. The loss of box C/D snoRNPs reduced mitochondrial mass, mitochondrial membrane potential, and oxygen consumption rate, indicating overall degradation of mitochondrial function. Concomitantly, the loss of C/D snoRNPs increased immune response and reduced host intestinal colonization by infectious bacteria, improving host resistance to pathogenesis. Our data may indicate a model wherein box C/D snoRNP machinery regulates a "switch" of the cell's activity between mitochondrial surveillance and innate immune activation. Understanding this mechanism is likely to be important for understanding multifactorial processes, including responses to infection and aging.
Collapse
Affiliation(s)
- Elissa Tjahjono
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Alexey V. Revtovich
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Natalia V. Kirienko
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| |
Collapse
|
11
|
Lažetić V, Wu F, Cohen LB, Reddy KC, Chang YT, Gang SS, Bhabha G, Troemel ER. The transcription factor ZIP-1 promotes resistance to intracellular infection in Caenorhabditis elegans. Nat Commun 2022; 13:17. [PMID: 35013162 PMCID: PMC8748929 DOI: 10.1038/s41467-021-27621-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Defense against intracellular infection has been extensively studied in vertebrate hosts, but less is known about invertebrate hosts; specifically, the transcription factors that induce defense against intracellular intestinal infection in the model nematode Caenorhabditis elegans remain understudied. Two different types of intracellular pathogens that naturally infect the C. elegans intestine are the Orsay virus, which is an RNA virus, and microsporidia, which comprise a phylum of fungal pathogens. Despite their molecular differences, these pathogens induce a common host transcriptional response called the intracellular pathogen response (IPR). Here we show that zip-1 is an IPR regulator that functions downstream of all known IPR-activating and regulatory pathways. zip-1 encodes a putative bZIP transcription factor, and we show that zip-1 controls induction of a subset of genes upon IPR activation. ZIP-1 protein is expressed in the nuclei of intestinal cells, and is at least partially required in the intestine to upregulate IPR gene expression. Importantly, zip-1 promotes resistance to infection by the Orsay virus and by microsporidia in intestinal cells. Altogether, our results indicate that zip-1 represents a central hub for triggers of the IPR, and that this transcription factor has a protective function against intracellular pathogen infection in C. elegans. Intestinal immune responses to intracellular infection of Caenorhabditis elegans and other Invertebrate hosts are not well understood. Here the authors show a key role for the transcription factor ZIP-1 during intestinal intracellular infection.
Collapse
Affiliation(s)
- Vladimir Lažetić
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, CA, USA
| | - Fengting Wu
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, CA, USA
| | - Lianne B Cohen
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, CA, USA
| | - Kirthi C Reddy
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, CA, USA
| | - Ya-Ting Chang
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Spencer S Gang
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, CA, USA
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Emily R Troemel
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, CA, USA.
| |
Collapse
|
12
|
Held JP, Feng G, Saunders BR, Pereira CV, Burkewitz K, Patel MR. A tRNA processing enzyme is a key regulator of the mitochondrial unfolded protein response. eLife 2022; 11:71634. [PMID: 35451962 PMCID: PMC9064297 DOI: 10.7554/elife.71634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) has emerged as a predominant mechanism that preserves mitochondrial function. Consequently, multiple pathways likely exist to modulate UPRmt. We discovered that the tRNA processing enzyme, homolog of ELAC2 (HOE-1), is key to UPRmt regulation in Caenorhabditis elegans. We find that nuclear HOE-1 is necessary and sufficient to robustly activate UPRmt. We show that HOE-1 acts via transcription factors ATFS-1 and DVE-1 that are crucial for UPRmt. Mechanistically, we show that HOE-1 likely mediates its effects via tRNAs, as blocking tRNA export prevents HOE-1-induced UPRmt. Interestingly, we find that HOE-1 does not act via the integrated stress response, which can be activated by uncharged tRNAs, pointing toward its reliance on a new mechanism. Finally, we show that the subcellular localization of HOE-1 is responsive to mitochondrial stress and is subject to negative regulation via ATFS-1. Together, we have discovered a novel RNA-based cellular pathway that modulates UPRmt.
Collapse
Affiliation(s)
- James P Held
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Gaomin Feng
- Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States
| | - Benjamin R Saunders
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Claudia V Pereira
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Kristopher Burkewitz
- Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States
| | - Maulik R Patel
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States,Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States,Diabetes Research and Training Center, Vanderbilt University School of MedicineNashvilleUnited States
| |
Collapse
|
13
|
An integrated view of innate immune mechanisms in C. elegans. Biochem Soc Trans 2021; 49:2307-2317. [PMID: 34623403 DOI: 10.1042/bst20210399] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022]
Abstract
The simple notion 'infection causes an immune response' is being progressively refined as it becomes clear that immune mechanisms cannot be understood in isolation, but need to be considered in a more global context with other cellular and physiological processes. In part, this reflects the deployment by pathogens of virulence factors that target diverse cellular processes, such as translation or mitochondrial respiration, often with great molecular specificity. It also reflects molecular cross-talk between a broad range of host signalling pathways. Studies with the model animal C. elegans have uncovered a range of examples wherein innate immune responses are intimately connected with different homeostatic mechanisms, and can influence reproduction, ageing and neurodegeneration, as well as various other aspects of its biology. Here we provide a short overview of a number of such connections, highlighting recent discoveries that further the construction of a fully integrated view of innate immunity.
Collapse
|
14
|
Tjahjono E, Revtovich AV, Kirienko NV. Imaging and Fluorescence Quantification in Caenorhabditis eleganswith Flow Vermimetry and Automated Microscopy. Bio Protoc 2021; 11:e4024. [PMID: 34150931 DOI: 10.21769/bioprotoc.4024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022] Open
Abstract
Gene activation and cellular biomarkers are commonly monitored using fluorescent signals from transgenic reporters or dyes. These quantifiable markers are critical for biological research and serve as an incredibly powerful tool, even more so when combined with high-throughput screening. Caenorhabditis elegans is a particularly useful model in this regard, as it is inexpensive to grow in vast numbers, has a rapid generation time, is optically transparent, and can readily fit within 384-well plates. However, fluorescence quantification in worms is often cumbersome. Quantification is frequently performed using laborious, low-throughput, bias-prone methods that measure fluorescence in a comparatively small number of individual worms. Here we describe two methods, flow vermimetry using a COPAS BioSorter and an automated imaging platform and analysis pipeline using a Cytation5 multimode plate reader and image analysis software, that enable high-throughput, high-content screening in C. elegans. Flow vermimetry provides a better signal-to-noise ratio with fewer processing steps, while the Cytation5 provides a convenient platform to image samples across time. Fluorescence values from the two methods show strong correlation. Either method can be easily extended to include other parameters, such as the measurement of various metabolites, worm viability, and other aspects of cell physiology. This broadens the utility of the system and allows it to be used for a wide range of molecular biological purposes.
Collapse
Affiliation(s)
- Elissa Tjahjono
- Department of BioSciences, 6100 Main St, MS140, Rice University, Houston, TX 77005, USA
| | - Alexey V Revtovich
- Department of BioSciences, 6100 Main St, MS140, Rice University, Houston, TX 77005, USA
| | - Natalia V Kirienko
- Department of BioSciences, 6100 Main St, MS140, Rice University, Houston, TX 77005, USA
| |
Collapse
|
15
|
Abstract
Antimicrobial resistance is a serious medical threat, particularly given the decreasing rate of discovery of new treatments. Although attempts to find new treatments continue, it has become clear that merely discovering new antimicrobials, even if they are new classes, will be insufficient. It is essential that new strategies be aggressively pursued. Toward that end, the search for treatments that can mitigate bacterial virulence and tilt the balance of host-pathogen interactions in favor of the host has become increasingly popular. In this review, we will discuss recent progress in this field, with a special focus on synthetic small molecule antivirulents that have been identified from high-throughput screens and on treatments that are effective against the opportunistic human pathogen Pseudomonas aeruginosa.
Collapse
|
16
|
Revtovich AV, Tjahjono E, Singh KV, Hanson BM, Murray BE, Kirienko NV. Development and Characterization of High-Throughput Caenorhabditis elegans - Enterococcus faecium Infection Model. Front Cell Infect Microbiol 2021; 11:667327. [PMID: 33996637 PMCID: PMC8116795 DOI: 10.3389/fcimb.2021.667327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022] Open
Abstract
The genus Enterococcus includes two Gram-positive pathogens of particular clinical relevance: E. faecalis and E. faecium. Infections with each of these pathogens are becoming more frequent, particularly in the case of hospital-acquired infections. Like most other bacterial species of clinical importance, antimicrobial resistance (and, specifically, multi-drug resistance) is an increasing threat, with both species considered to be of particular importance by the World Health Organization and the US Centers for Disease Control. The threat of antimicrobial resistance is exacerbated by the staggering difference in the speeds of development for the discovery and development of the antimicrobials versus resistance mechanisms. In the search for alternative strategies, modulation of host-pathogen interactions in general, and virulence inhibition in particular, have drawn substantial attention. Unfortunately, these approaches require a fairly comprehensive understanding of virulence determinants. This requirement is complicated by the fact that enterococcal infection models generally require vertebrates, making them slow, expensive, and ethically problematic, particularly when considering the thousands of animals that would be needed for the early stages of experimentation. To address this problem, we developed the first high-throughput C. elegans-E. faecium infection model involving host death. Importantly, this model recapitulates many key aspects of murine peritonitis models, including utilizing similar virulence determinants. Additionally, host death is independent of peroxide production, unlike other E. faecium-C. elegans virulence models, which allows the assessment of other virulence factors. Using this system, we analyzed a panel of lab strains with deletions of targeted virulence factors. Although removal of certain virulence factors (e.g., Δfms15) was sufficient to affect virulence, multiple deletions were generally required to affect pathogenesis, suggesting that host-pathogen interactions are multifactorial. These data were corroborated by genomic analysis of selected isolates with high and low levels of virulence. We anticipate that this platform will be useful for identifying new treatments for E. faecium infection.
Collapse
Affiliation(s)
| | - Elissa Tjahjono
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Kavindra V. Singh
- Division of Infectious Diseases, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Blake M. Hanson
- Division of Infectious Diseases, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center, Houston, TX, United States
| | - Barbara E. Murray
- Division of Infectious Diseases, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | | |
Collapse
|
17
|
Abstract
In its natural habitat, C. elegans encounters a wide variety of microbes, including food, commensals and pathogens. To be able to survive long enough to reproduce, C. elegans has developed a complex array of responses to pathogens. These activities are coordinated on scales that range from individual organelles to the entire organism. Often, the response is triggered within cells, by detection of infection-induced damage, mainly in the intestine or epidermis. C. elegans has, however, a capacity for cell non-autonomous regulation of these responses. This frequently involves the nervous system, integrating pathogen recognition, altering host biology and governing avoidance behavior. Although there are significant differences with the immune system of mammals, some mechanisms used to limit pathogenesis show remarkable phylogenetic conservation. The past 20 years have witnessed an explosion of host-pathogen interaction studies using C. elegans as a model. This review will discuss the broad themes that have emerged and highlight areas that remain to be fully explored.
Collapse
Affiliation(s)
- Céline N Martineau
- Aix Marseille Université, Inserm, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | | | - Nathalie Pujol
- Aix Marseille Université, Inserm, CNRS, CIML, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
18
|
Abstract
Trends moving in opposite directions (increasing antimicrobial resistance and declining novel antimicrobial development) have precipitated a looming crisis: a nearly complete inability to safely and effectively treat bacterial infections. To avert this, new approaches are needed. Traditionally, treatments for bacterial infection have focused on killing the microbe or preventing its growth. As antimicrobial resistance becomes more ubiquitous, the feasibility of this approach is beginning to wane and attention has begun to shift toward disrupting the host-pathogen interaction by improving the host defense. Using a high-throughput, fragment-based screen to identify compounds that alleviate Pseudomonas aeruginosa-mediated killing of Caenorhabditis elegans, we identified over 20 compounds that stimulated host defense gene expression. Five of these molecules were selected for further characterization. Four of five compounds showed little toxicity against mammalian cells or worms, consistent with their identification in a phenotypic, high-content screen. Each of the compounds activated several host defense pathways, but the pathways were generally dispensable for compound-mediated rescue in liquid killing, suggesting redundancy or that the activation of unknown pathway(s) may be driving compound effects. A genetic mechanism was identified for LK56, which required the Mediator subunit MDT-15/MED15 and NHR-49/HNF4 for its function. Interestingly, LK32, LK34, LK38, and LK56 also rescued C. elegans from P. aeruginosa in an agar-based assay, which uses different virulence factors and defense mechanisms. Rescue in an agar-based assay for LK38 entirely depended upon the PMK-1/p38 MAPK pathway. Three compounds—LK32, LK34, and LK56—also conferred resistance to Enterococcus faecalis, and the two lattermost, LK34 and LK56, also reduced pathogenesis from Staphylococcus aureus. This study supports a growing role for MDT-15 and NHR-49 in immune response and identifies five molecules that have significant potential for use as tools in the investigation of innate immunity. IMPORTANCE Trends moving in opposite directions (increasing antimicrobial resistance and declining novel antimicrobial development) have precipitated a looming crisis: the nearly complete inability to safely and effectively treat bacterial infections. To avert this, new approaches are needed. One idea is to stimulate host defense pathways to improve the clearance of bacterial infection. Here, we describe five small molecules that promote resistance to infectious bacteria by activating C. elegans’ innate immune pathways. Several are effective against both Gram-positive and Gram-negative pathogens. One of the compounds was mapped to the action of MDT-15/MED15 and NHR-49/HNF4, a pair of transcriptional regulators more generally associated with fatty acid metabolism, potentially highlighting a new link between these biological functions. These studies pave the way for future characterization of the anti-infective activity of the molecules in higher organisms and highlight the compounds’ potential utility for further investigation of immune modulation as a novel therapeutic approach.
Collapse
|
19
|
Shi J, Zhang F, Chen L, Bravo A, Soberón M, Sun M. Systemic mitochondrial disruption is a key event in the toxicity of bacterial pore-forming toxins to Caenorhabditis elegans. Environ Microbiol 2020; 23:4896-4907. [PMID: 33368933 DOI: 10.1111/1462-2920.15376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/28/2020] [Accepted: 12/21/2020] [Indexed: 11/29/2022]
Abstract
Pore-forming toxins (PFTs) are important weapons of multiple bacterial pathogens to establish their infections. PFTs generally form pores in the plasma membrane of target cells; however, the intracellular pathogenic processes triggered after pore-formation remain poorly understood. Using Caenorhabditis elegans as a model and Bacillus thuringiensis nematicidal Cry PFTs, we show here that the localized PFT attack causes a systemic mitochondrial damage, important for the PFT toxicity. We find that PFTs punch pores only in gut cells of nematodes, but unexpectedly mitochondrial disruption is able to occur in distal unperforated regions, such as the head and muscle tissues. We demonstrate that PFTs affect the activity of the mitochondrial respiratory chain (MRC) complex I resulting in the loss of mitochondrial membrane potential (ΔΨm ), which causes further mitochondrial fragmentation and the reduction of total mitochondrial content. Worms with decreased ΔΨm or inhibited MRC activity show higher sensitivity to PFTs. The inhibition of mitochondrial fission or the increase of mitochondrial content markedly improves the survival of animals treated with PFTs. These findings suggest that mitochondrial changes underpin PFT-mediated toxicity against nematodes and that systemic mitochondrial disruption caused by localized pore-formation represents a conserved key intracellular event in the mode of action of PFTs.
Collapse
Affiliation(s)
- Jianwei Shi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fengjuan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ling Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
20
|
An In Vitro Cell Culture Model for Pyoverdine-Mediated Virulence. Pathogens 2020; 10:pathogens10010009. [PMID: 33374230 PMCID: PMC7824568 DOI: 10.3390/pathogens10010009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa is a multidrug-resistant, opportunistic pathogen that utilizes a wide-range of virulence factors to cause acute, life-threatening infections in immunocompromised patients, especially those in intensive care units. It also causes debilitating chronic infections that shorten lives and worsen the quality of life for cystic fibrosis patients. One of the key virulence factors in P. aeruginosa is the siderophore pyoverdine, which provides the pathogen with iron during infection, regulates the production of secreted toxins, and disrupts host iron and mitochondrial homeostasis. These roles have been characterized in model organisms such as Caenorhabditis elegans and mice. However, an intermediary system, using cell culture to investigate the activity of this siderophore has been absent. In this report, we describe such a system, using murine macrophages treated with pyoverdine. We demonstrate that pyoverdine-rich filtrates from P. aeruginosa exhibit substantial cytotoxicity, and that the inhibition of pyoverdine production (genetic or chemical) is sufficient to mitigate virulence. Furthermore, consistent with previous observations made in C. elegans, pyoverdine translocates into cells and disrupts host mitochondrial homeostasis. Most importantly, we observe a strong correlation between pyoverdine production and virulence in P. aeruginosa clinical isolates, confirming pyoverdine’s value as a promising target for therapeutic intervention. This in vitro cell culture model will allow rapid validation of pyoverdine antivirulents in a simple but physiologically relevant manner.
Collapse
|
21
|
Hummell NA, Kirienko NV. Repurposing bioactive compounds for treating multidrug-resistant pathogens. J Med Microbiol 2020; 69:881-894. [PMID: 32163353 DOI: 10.1099/jmm.0.001172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction. Antimicrobial development is being outpaced by the rising rate of antimicrobial resistance in the developing and industrialized world. Drug repurposing, where novel antibacterial functions can be found for known molecular entities, reduces drug development costs, reduces regulatory hurdles, and increases rate of success.Aim. We sought to characterize the antimicrobial properties of five known bioactives (DMAQ-B1, carboplatin, oxaliplatin, CD437 and PSB-069) that were discovered in a high-throughput phenotypic screen for hits that extend Caenorhabditis elegans survival during exposure to Pseudomonas aeruginosa PA14.Methodology. c.f.u. assays, biofilm staining and fluorescence microscopy were used to assay the compounds' effect on various virulence determinants. Checkerboard assays were used to assess synergy between compounds and conventional antimicrobials. C. elegans-based assays were used to test whether the compounds could also rescue against Enterococcus faecalis and Staphyloccus aureus. Finally, toxicity was assessed in C. elegans and mammalian cells.Results. Four of the compounds rescued C. elegans from a second bacterial pathogen and two of them (DMAQ-B1, a naturally occurring insulin mimetic, and CD437, an agonist of the retinoic acid receptor) rescued against all three. The platinum complexes displayed increased antimicrobial activity against P. aeruginosa. Of the molecules tested, only CD437 showed slight synergy with ampicillin. The two most effective compounds, DMAQ-B1 and CD437, showed toxicity to mammalian cells.Conclusion. Although these compounds' potential for repurposing is limited by their toxicity, our results contribute to this growing field and provide a simple road map for using C. elegans for preliminary testing of known bioactive compounds with predicted antimicrobial activity.
Collapse
|
22
|
Tjahjono E, McAnena AP, Kirienko NV. The evolutionarily conserved ESRE stress response network is activated by ROS and mitochondrial damage. BMC Biol 2020; 18:74. [PMID: 32600387 PMCID: PMC7322875 DOI: 10.1186/s12915-020-00812-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Background Mitochondrial dysfunction causes or contributes to a wide variety of pathologies, including neurodegenerative diseases, cancer, metabolic diseases, and aging. Cells actively surveil a number of mitochondrial readouts to ensure that cellular homeostasis is maintained. Results In this article, we characterize the role of the ethanol and stress response element (ESRE) pathway in mitochondrial surveillance and show that it is robustly activated when the concentration of reactive oxygen species (ROS) in the cell increases. While experiments were mostly performed in Caenorhabditis elegans, we observed similar gene activation profile in human cell lines. The linear relationship between ROS and ESRE activation differentiates ESRE from known mitochondrial surveillance pathways, such as the mitochondrial unfolded protein response (UPRmt), which monitor mitochondrial protein import. The ability of the ESRE network to be activated by increased ROS allows the cell to respond to oxidative and reductive stresses. The ESRE network works in tandem with other mitochondrial surveillance mechanisms as well, in a fashion that suggests a partially redundant hierarchy. For example, mutation of the UPRmt pathway results in earlier and more robust activation of the ESRE pathway. Interestingly, full expression of ATFS-1, a key transcription factor for the UPRmt, requires the presence of an ESRE motif in its promoter region. Conclusion The ESRE pathway responds to mitochondrial damage by monitoring ROS levels. This response is conserved in humans. The ESRE pathway is activated earlier when other mitochondrial surveillance pathways are unavailable during mitochondrial crises, potentially to mitigate stress and restore health. However, the exact mechanisms of pathway activation and crosstalk remain to be elucidated. Ultimately, a better understanding of this network, and its role in the constellation of mitochondrial and cellular stress networks, will improve healthspan.
Collapse
Affiliation(s)
- Elissa Tjahjono
- Department of BioSciences, Rice University, 6100 Main St, MS140, Houston, TX, 77005, USA
| | - Aidan P McAnena
- Department of BioSciences, Rice University, 6100 Main St, MS140, Houston, TX, 77005, USA
| | - Natalia V Kirienko
- Department of BioSciences, Rice University, 6100 Main St, MS140, Houston, TX, 77005, USA.
| |
Collapse
|
23
|
Rajan M, Anderson CP, Rindler PM, Romney SJ, Ferreira dos Santos MC, Gertz J, Leibold EA. NHR-14 loss of function couples intestinal iron uptake with innate immunity in C. elegans through PQM-1 signaling. eLife 2019; 8:e44674. [PMID: 31532389 PMCID: PMC6777940 DOI: 10.7554/elife.44674] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023] Open
Abstract
Iron is essential for survival of most organisms. All organisms have thus developed mechanisms to sense, acquire and sequester iron. In C. elegans, iron uptake and sequestration are regulated by HIF-1. We previously showed that hif-1 mutants are developmentally delayed when grown under iron limitation. Here we identify nhr-14, encoding a nuclear receptor, in a screen conducted for mutations that rescue the developmental delay of hif-1 mutants under iron limitation. nhr-14 loss upregulates the intestinal metal transporter SMF-3 to increase iron uptake in hif-1 mutants. nhr-14 mutants display increased expression of innate immune genes and DAF-16/FoxO-Class II genes, and enhanced resistance to Pseudomonas aeruginosa. These responses are dependent on the transcription factor PQM-1, which localizes to intestinal cell nuclei in nhr-14 mutants. Our data reveal how C. elegans utilizes nuclear receptors to regulate innate immunity and iron availability, and show iron sequestration as a component of the innate immune response.
Collapse
Affiliation(s)
- Malini Rajan
- Department of Medicine, Division of HematologyUniversity of UtahSalt Lake CityUnited States
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUnited States
| | - Cole P Anderson
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUnited States
- Department of Oncological SciencesUniversity of UtahSalt Lake CityUnited States
| | - Paul M Rindler
- Department of Medicine, Division of HematologyUniversity of UtahSalt Lake CityUnited States
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUnited States
| | - Steven Joshua Romney
- Department of Medicine, Division of HematologyUniversity of UtahSalt Lake CityUnited States
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUnited States
| | - Maria C Ferreira dos Santos
- Department of Medicine, Division of HematologyUniversity of UtahSalt Lake CityUnited States
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUnited States
| | - Jason Gertz
- Department of Oncological SciencesUniversity of UtahSalt Lake CityUnited States
- Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUnited States
| | - Elizabeth A Leibold
- Department of Medicine, Division of HematologyUniversity of UtahSalt Lake CityUnited States
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUnited States
- Department of Oncological SciencesUniversity of UtahSalt Lake CityUnited States
| |
Collapse
|
24
|
Revtovich AV, Lee R, Kirienko NV. Interplay between mitochondria and diet mediates pathogen and stress resistance in Caenorhabditis elegans. PLoS Genet 2019; 15:e1008011. [PMID: 30865620 PMCID: PMC6415812 DOI: 10.1371/journal.pgen.1008011] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 02/09/2019] [Indexed: 12/22/2022] Open
Abstract
Diet is a crucial determinant of organismal biology; interactions between the host, its diet, and its microbiota are critical to determining the health of an organism. A variety of genetic and biochemical means were used to assay stress sensitivity in C. elegans reared on two standard laboratory diets: E. coli OP50, the most commonly used food for C. elegans, or E. coli HT115, which is typically used for RNAi-mediated gene knockdown. We demonstrated that the relatively subtle shift to a diet of E. coli HT115 had a dramatic impact on C. elegans's survival after exposure to pathogenic or abiotic stresses. Interestingly, this was independent of canonical host defense pathways. Instead the change arises from improvements in mitochondrial health, likely due to alleviation of a vitamin B12 deficiency exhibited by worms reared on an E. coli OP50 diet. Increasing B12 availability, by feeding on E. coli HT115, supplementing E. coli OP50 with exogenous vitamin B12, or overexpression of the B12 transporter, improved mitochondrial homeostasis and increased resistance. Loss of the methylmalonyl-CoA mutase gene mmcm-1/MUT, which requires vitamin B12 as a cofactor, abolished these improvements, establishing a genetic basis for the E. coli OP50-incurred sensitivity. Our study forges a mechanistic link between a dietary deficiency (nutrition/microbiota) and a physiological consequence (host sensitivity), using the host-microbiota-diet framework.
Collapse
Affiliation(s)
- Alexey V. Revtovich
- Department of BioSciences, Rice University, Houston TX, United States of America
| | - Ryan Lee
- Department of BioSciences, Rice University, Houston TX, United States of America
| | - Natalia V. Kirienko
- Department of BioSciences, Rice University, Houston TX, United States of America
- * E-mail:
| |
Collapse
|
25
|
Kirienko DR, Kang D, Kirienko NV. Novel Pyoverdine Inhibitors Mitigate Pseudomonas aeruginosa Pathogenesis. Front Microbiol 2019; 9:3317. [PMID: 30687293 PMCID: PMC6333909 DOI: 10.3389/fmicb.2018.03317] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/20/2018] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a clinically important pathogen that causes a variety of infections, including urinary, respiratory, and other soft-tissue infections, particularly in hospitalized patients with immune defects, cystic fibrosis, or significant burns. Antimicrobial resistance is a substantial problem in P. aeruginosa treatment due to the inherent insensitivity of the pathogen to a wide variety of antimicrobial drugs and its rapid acquisition of additional resistance mechanisms. One strategy to circumvent this problem is the use of anti-virulent compounds to disrupt pathogenesis without directly compromising bacterial growth. One of the principle regulatory mechanisms for P. aeruginosa’s virulence is the iron-scavenging siderophore pyoverdine, as it governs in-host acquisition of iron, promotes expression of multiple virulence factors, and is directly toxic. Some combination of these activities renders pyoverdine indispensable for pathogenesis in mammalian models. Here we report identification of a panel of novel small molecules that disrupt pyoverdine function. These molecules directly act on pyoverdine, rather than affecting its biosynthesis. The compounds reduce the pathogenic effect of pyoverdine and improve the survival of Caenorhabditis elegans when challenged with P. aeruginosa by disrupting only this single virulence factor. Finally, these compounds can synergize with conventional antimicrobials, forming a more effective treatment. These compounds may help to identify, or be modified to become, viable drug leads in their own right. Finally, they also serve as useful tool compounds to probe pyoverdine activity.
Collapse
Affiliation(s)
- Daniel R Kirienko
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Donghoon Kang
- Department of BioSciences, Rice University, Houston, TX, United States
| | | |
Collapse
|
26
|
Kwon S, Kim EJE, Lee SJV. Mitochondria-mediated defense mechanisms against pathogens in Caenorhabditis elegans. BMB Rep 2018; 51:274-279. [PMID: 29764564 PMCID: PMC6033066 DOI: 10.5483/bmbrep.2018.51.6.111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are crucial organelles that generate cellular energy and metabolites. Recent studies indicate that mitochondria also regulate immunity. In this review, we discuss key roles of mitochondria in immunity against pathogen infection and underlying mechanisms, focusing on discoveries using Caenorhabditis elegans. Various mitochondrial processes, including mitochondrial surveillance mechanisms, mitochondrial unfolded protein response (UPRmt), mitophagy, and reactive oxygen species (ROS) production, contribute to immune responses and resistance of C. elegans against pathogens. Biological processes of C. elegans are usually conserved across phyla. Thus, understanding the mechanisms of mitochondria-mediated defense responses in C. elegans may provide insights into similar mechanisms in complex organisms, including mammals.
Collapse
Affiliation(s)
- Sujeong Kwon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Eun Ji E Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Seung-Jae V Lee
- Department of Life Sciences and Information Technology Convergence Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
27
|
Kang D, Kirienko DR, Webster P, Fisher AL, Kirienko NV. Pyoverdine, a siderophore from Pseudomonas aeruginosa, translocates into C. elegans, removes iron, and activates a distinct host response. Virulence 2018. [PMID: 29532717 PMCID: PMC5955448 DOI: 10.1080/21505594.2018.1449508] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pseudomonas aeruginosa, a re-emerging, opportunistic human pathogen, encodes a variety of virulence determinants. Pyoverdine, a siderophore produced by this bacterium, is essential for pathogenesis in mammalian infections. This observation is generally attributed to its roles in acquiring iron and/or regulating other virulence factors. Here we report that pyoverdine translocates into the host, where it binds and extracts iron. Pyoverdine-mediated iron extraction damages host mitochondria, disrupting their function and triggering mitochondrial turnover via autophagy. The host detects this damage via a conserved mitochondrial surveillance pathway mediated by the ESRE network. Our findings illuminate the pathogenic mechanisms of pyoverdine and highlight the importance of this bacterial product in host-pathogen interactions.
Collapse
Affiliation(s)
- Donghoon Kang
- a Department of BioSciences , Rice University , Houston TX , USA
| | | | - Phillip Webster
- b Center for Healthy Aging , University of Texas Health Sciences Center , San Antonio TX , USA
| | - Alfred L Fisher
- b Center for Healthy Aging , University of Texas Health Sciences Center , San Antonio TX , USA.,c GRECC, South Texas VA Healthcare System , San Antonio TX , USA
| | | |
Collapse
|
28
|
Anderson QL, Revtovich AV, Kirienko NV. A High-throughput, High-content, Liquid-based C. elegans Pathosystem. J Vis Exp 2018. [PMID: 30010665 DOI: 10.3791/58068] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The number of new drugs identified by traditional, in vitro screens has waned, reducing the success of this approach in the search for new weapons to combat multiple drug resistance. This has led to the conclusion that researchers do not only need to find new drugs, but also need to develop new ways of finding them. Amongst the most promising candidate methods are whole-organism, in vivo assays that use high-throughput, phenotypic readouts and hosts that range from Caenorhabditis elegans to Danio rerio. These hosts have several powerful advantages, including dramatic reductions in false positive hits, as compounds that are toxic to the host and/or biounavailable are typically dropped in the initial screen, prior to costly follow up. Here we show how our assay has been used to interrogate host variation in the well-documented C. elegans-Pseudomonas aeruginosa liquid killing pathosystem. We also demonstrate several extensions of this well-worked out technique. For example, we are able to carry out high-throughput genetic screens using RNAi in 24- or 96-well plate formats to query host factors in this host-pathogen interaction. Using this assay, whole genome screens can be completed in only a few months, which can dramatically simplify the task of identifying drug targets, potentially without the need for laborious biochemical purification approaches. We also report here a variation of our method that substitutes the gram-positive bacterium Enterococcus faecalis for the gram-negative pathogen P. aeruginosa. Much as is the case for P. aeruginosa, killing by E. faecalis is time-dependent. Unlike previous C. elegans-E. faecalis assays, our assay for E. faecalis does not require preinfection, improving its safety profile and reducing the chances of contaminating liquid-handling equipment. The assay is highly robust, showing ~95% death rates 96 h post infection.
Collapse
|
29
|
Peterson ND, Pukkila-Worley R. Caenorhabditis elegans in high-throughput screens for anti-infective compounds. Curr Opin Immunol 2018; 54:59-65. [PMID: 29935375 DOI: 10.1016/j.coi.2018.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/20/2022]
Abstract
New classes of antimicrobials that are effective therapies for infections with multi-drug resistant pathogens are urgently needed. The nematode Caenorhabditis elegans has been incorporated into small molecule screening platforms to identify anti-infective compounds that provide protection of a host during infection. The use of a live animal in these screening systems offers several advantages, including the ability to identify molecules that boost innate immune responses in a manner advantageous to host survival and compounds that disrupt bacterial virulence mechanisms. In addition, new classes of antimicrobials that target the pathogen have been uncovered, as well as interesting chemical probes that can be used to dissect new mechanisms of host-pathogen interactions.
Collapse
Affiliation(s)
- Nicholas D Peterson
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01655, United States
| | - Read Pukkila-Worley
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01655, United States.
| |
Collapse
|
30
|
King CD, Singh D, Holden K, Govan AB, Keith SA, Ghazi A, Robinson RA. Proteomic identification of virulence-related factors in young and aging C. elegans infected with Pseudomonas aeruginosa. J Proteomics 2018; 181:92-103. [DOI: 10.1016/j.jprot.2018.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 03/26/2018] [Accepted: 04/09/2018] [Indexed: 12/16/2022]
|
31
|
Kang D, Turner KE, Kirienko NV. PqsA Promotes Pyoverdine Production via Biofilm Formation. Pathogens 2017; 7:pathogens7010003. [PMID: 29295589 PMCID: PMC5874729 DOI: 10.3390/pathogens7010003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 01/03/2023] Open
Abstract
Biofilms create an impermeable barrier against antimicrobial treatment and immune cell access, severely complicating treatment and clearance of nosocomial Pseudomonas aeruginosa infections. We recently reported that biofilm also contributes to pathogen virulence by regulating the production of the siderophore pyoverdine. In this study, we investigated the role of PqsA, a key cell-signaling protein, in this regulatory pathway. We demonstrate that PqsA promotes pyoverdine production in a biofilm-dependent manner. Under nutritionally deficient conditions, where biofilm and pyoverdine are decoupled, PqsA is dispensable for pyoverdine production. Interestingly, although PqsA-dependent pyoverdine production does not rely upon Pseudomonas quinolone signal (PQS) biosynthesis, exogenous PQS can also trigger biofilm-independent production of pyoverdine. Adding PQS rapidly induced planktonic cell aggregation. Moreover, these clumps of cells exhibit strong expression of pyoverdine biosynthetic genes and show substantial production of this siderophore. Finally, we surveyed the relationship between biofilm formation and pyoverdine production in various clinical and environmental isolates of P. aeruginosa to evaluate the clinical significance of targeting biofilm during infections. Our findings implicate PqsA in P. aeruginosa virulence by regulating biofilm formation and pyoverdine production.
Collapse
Affiliation(s)
- Donghoon Kang
- Department of Biosciences, Rice University, Houston, TX 77005, USA.
| | - Kelly E Turner
- Department of Biosciences, Rice University, Houston, TX 77005, USA.
| | | |
Collapse
|