1
|
Park KT, Bartlett T. Bacterial cell division: Orthogonal rotation is a convergent strategy. Curr Biol 2025; 35:R344-R347. [PMID: 40328222 DOI: 10.1016/j.cub.2025.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Many rod-shaped bacteria divide at a fixed angle perpendicular to their long axis, while coccoid bacteria like Staphylococcus aureus rotate planes between generations. New research highlights the relationship between subtle asymmetry and division rotation in the understudied coccoid pathogen Neisseria gonorrhoeae.
Collapse
Affiliation(s)
- Kyung-Tae Park
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Thomas Bartlett
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA.
| |
Collapse
|
2
|
Ramos-León F, Ramamurthi KS. How do spherical bacteria regulate cell division? Biochem Soc Trans 2025; 53:BST20240956. [PMID: 40259574 DOI: 10.1042/bst20240956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/07/2025] [Accepted: 03/28/2025] [Indexed: 04/23/2025]
Abstract
Many bacteria divide by binary fission, producing two identical daughter cells, which requires proper placement of the division machinery at mid-cell. Spherical bacteria (cocci) face unique challenges due to their lack of natural polarity. In this review, we compile current knowledge on how cocci regulate cell division, how they select the proper division plane, and ensure accurate Z-ring positioning at mid-cell. While Streptococcus pneumoniae and Staphylococcus aureus are the most well-studied models for cell division in cocci, we also cover other less-characterized cocci across different bacterial groups and discuss the conservation of known Z-ring positioning mechanisms in these understudied bacteria.
Collapse
Affiliation(s)
- Félix Ramos-León
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, U.S.A
| |
Collapse
|
3
|
Mårli MT, Nordraak AOO, de Bakker V, Winther AR, Liu X, Veening JW, Porcellato D, Kjos M. Genome-wide analysis of fitness determinants of Staphylococcus aureus during growth in milk. PLoS Pathog 2025; 21:e1013080. [PMID: 40203072 PMCID: PMC12011298 DOI: 10.1371/journal.ppat.1013080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/21/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025] Open
Abstract
Staphylococcus aureus is a major concern in the dairy industry due to its significance as a pathogen causing bovine mastitis as well as a source of food poisoning. The nutrient-rich milk environment supports bacterial growth, but the specific genetic determinants that facilitate S. aureus proliferation and persistence in milk are poorly understood. In this study, we conducted a genome-wide CRISPR interference sequencing (CRISPRi-seq) screen with the laboratory strain S. aureus NCTC8325-4, to identify fitness determinants essential for S. aureus growth and survival in milk. We identified 282 milk-essential genes, including those with key roles in DNA replication, protein synthesis, and metabolism. Comparative analysis with brain heart infusion (BHI) as growth medium, revealed 79 genes with differential fitness, highlighting specific adaptations required for growth in milk. Notably, we found that purine biosynthesis, folate cycle pathways, and metal acquisition were particularly important in this environment. Based on this, we further demonstrate that S. aureus is more sensitive to the folate inhibitors trimethoprim-sulfamethoxazole (TMP-SMX) in milk and identify several genes whose knockdown results in hypersensitivity to TMP-SMX in milk. Additionally, our analysis showed a relatively reduced importance of cell wall components, such as teichoic acids, for S. aureus fitness in milk, which is also reflected in reduced efficiency of antimicrobials targeting teichoic acids. Together, these findings provide new insights into the genetic basis of S. aureus fitness and antibiotic susceptibility in milk, offering directions for novel treatment strategies against bovine mastitis.
Collapse
Affiliation(s)
- Marita Torrissen Mårli
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | - Vincent de Bakker
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Anja Ruud Winther
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Xue Liu
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
4
|
Izquierdo-Martinez A, Schäper S, Brito AD, Liao Q, Tesseur C, Sorg M, Botinas DS, Wang X, Pinho MG. Chromosome segregation dynamics during the cell cycle of Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638847. [PMID: 40027834 PMCID: PMC11870517 DOI: 10.1101/2025.02.18.638847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Research on chromosome organization and cell cycle progression in spherical bacteria, particularly Staphylococcus aureus, remains limited and fragmented. In this study, we established a working model to investigate chromosome dynamics in S. aureus using a Fluorescent Repressor-Operator System (FROS), which enabled precise localization of specific chromosomal loci. This approach revealed that the S. aureus cell cycle and chromosome replication cycle are not coupled, with cells exhibiting two segregated origins of replication at the start of the cell cycle. The chromosome has a specific origin-terminus-origin conformation, with origins localizing near the membrane, towards the tip of each hemisphere, or the "cell poles". We further used this system to assess the role of various proteins with a role in S. aureus chromosome biology, focusing on the ParB-parS and SMC-ScpAB systems. Our results demonstrate that ParB binds five parS chromosomal sequences and the resulting complexes influence chromosome conformation, but play a minor role in chromosome compaction and segregation. In contrast, the SMC-ScpAB complex plays a key role in S. aureus chromosome biology, contributing to chromosome compaction, segregation and spatial organization. Additionally, we systematically assessed and compared the impact of proteins linking chromosome segregation to cell division-Noc, FtsK, SpoIIIE and XerC-on origin and terminus number and positioning. This work provides a comprehensive study of the factors governing chromosome dynamics and organization in S. aureus, contributing to our knowledge on chromosome biology of spherical bacteria.
Collapse
Affiliation(s)
- Adrian Izquierdo-Martinez
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Simon Schäper
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - António D. Brito
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Qin Liao
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Coralie Tesseur
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Moritz Sorg
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Daniela S. Botinas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Mariana G. Pinho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| |
Collapse
|
5
|
Ramos-León F, Anjuwon-Foster BR, Anantharaman V, Updegrove TB, Ferreira CN, Ibrahim AM, Tai CH, Kruhlak MJ, Missiakas DM, Camberg JL, Aravind L, Ramamurthi KS. PcdA promotes orthogonal division plane selection in Staphylococcus aureus. Nat Microbiol 2024; 9:2997-3012. [PMID: 39468247 DOI: 10.1038/s41564-024-01821-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 08/30/2024] [Indexed: 10/30/2024]
Abstract
The bacterial pathogen, Staphylococcus aureus, grows by dividing in two alternating orthogonal planes. How these cell division planes are positioned correctly is not known. Here we used chemical genetic screening to identify PcdA as a division plane placement factor. Molecular biology and imaging approaches revealed non-orthogonal division plane selection for pcdA mutant bacteria. PcdA is a structurally and functionally altered member of the McrB AAA+ NTPase family, which are often found as restriction enzyme subunits. PcdA interacts with the tubulin-like divisome component, FtsZ, and the structural protein, DivIVA; it also localizes to future cell division sites. PcdA multimerization, localization and function are NTPase activity-dependent. We propose that the DivIVA/PcdA complex recruits unpolymerized FtsZ to assemble along the proper cell division plane. Although pcdA deletion did not affect S. aureus growth in several laboratory conditions, its clustered growth pattern was disrupted, sensitivity to cell-wall-targeting antibiotics increased and virulence in mice decreased. We propose that the characteristic clustered growth pattern of S. aureus, which emerges from dividing in alternating orthogonal division planes, might protect the bacterium from host defences.
Collapse
Affiliation(s)
- Félix Ramos-León
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brandon R Anjuwon-Foster
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Taylor B Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Colby N Ferreira
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Amany M Ibrahim
- Department of Microbiology, Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA
| | - Chin-Hsien Tai
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Kruhlak
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dominique M Missiakas
- Department of Microbiology, Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA
| | - Jodi L Camberg
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Costa SF, Saraiva BM, Veiga H, Marques LB, Schäper S, Sporniak M, Vega DE, Jorge AM, Duarte AM, Brito AD, Tavares AC, Reed P, Pinho MG. The role of GpsB in Staphylococcus aureus cell morphogenesis. mBio 2024; 15:e0323523. [PMID: 38319093 PMCID: PMC10936418 DOI: 10.1128/mbio.03235-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 02/07/2024] Open
Abstract
For decades, cells of the Gram-positive bacterial pathogen Staphylococcus aureus were thought to lack a dedicated elongation machinery. However, S. aureus cells were recently shown to elongate before division, in a process that requires a shape elongation division and sporulation (SEDS)/penicillin-binding protein (PBP) pair for peptidoglycan synthesis, consisting of the glycosyltransferase RodA and the transpeptidase PBP3. In ovococci and rod-shaped bacteria, the elongation machinery, or elongasome, is composed of various proteins besides a dedicated SEDS/PBP pair. To identify proteins required for S. aureus elongation, we screened the Nebraska Transposon Mutant Library, which contains transposon mutants in virtually all non-essential staphylococcal genes, for mutants with modified cell shape. We confirmed the roles of RodA/PBP3 in S. aureus elongation and identified GpsB, SsaA, and RodZ as additional proteins involved in this process. The gpsB mutant showed the strongest phenotype, mediated by the partial delocalization from the division septum of PBP2 and PBP4, two penicillin-binding proteins that synthesize and cross-link peptidoglycan. Increased levels of these PBPs at the cell periphery versus the septum result in higher levels of peptidoglycan insertion/crosslinking throughout the entire cell, possibly overriding the RodA/PBP3-mediated peptidoglycan synthesis at the outer edge of the septum and/or increasing stiffness of the peripheral wall, impairing elongation. Consequently, in the absence of GpsB, S. aureus cells become more spherical. We propose that GpsB has a role in the spatio-temporal regulation of PBP2 and PBP4 at the septum versus cell periphery, contributing to the maintenance of the correct cell morphology in S. aureus. IMPORTANCE Staphylococcus aureus is a Gram-positive clinical pathogen, which is currently the second cause of death by antibiotic-resistant infections worldwide. For decades, S. aureus cells were thought to be spherical and lack the ability to undergo elongation. However, super-resolution microscopy techniques allowed us to observe the minor morphological changes that occur during the cell cycle of this pathogen, including cell elongation. S. aureus elongation is not required for normal growth in laboratory conditions. However, it seems to be essential in the context of some infections, such as osteomyelitis, during which S. aureus cells apparently elongate to invade small channels in the bones. In this work, we uncovered new determinants required for S. aureus cell elongation. In particular, we show that GpsB has an important role in the spatio-temporal regulation of PBP2 and PBP4, two proteins involved in peptidoglycan synthesis, contributing to the maintenance of the correct cell morphology in S. aureus.
Collapse
Affiliation(s)
- Sara F. Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Bruno M. Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Helena Veiga
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Leonor B. Marques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Simon Schäper
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Marta Sporniak
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Daniel E. Vega
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Ana M. Jorge
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Andreia M. Duarte
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - António D. Brito
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Andreia C. Tavares
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Patricia Reed
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Mariana G. Pinho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| |
Collapse
|
7
|
Bartlett TM, Sisley TA, Mychack A, Walker S, Baker RW, Rudner DZ, Bernhardt TG. FacZ is a GpsB-interacting protein that prevents aberrant division-site placement in Staphylococcus aureus. Nat Microbiol 2024; 9:801-813. [PMID: 38443581 PMCID: PMC10914604 DOI: 10.1038/s41564-024-01607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/15/2024] [Indexed: 03/07/2024]
Abstract
Staphylococcus aureus is a Gram-positive pathogen responsible for antibiotic-resistant infections. To identify vulnerabilities in cell envelope biogenesis that may overcome resistance, we enriched for S. aureus transposon mutants with defects in cell surface integrity or cell division by sorting for cells that stain with propidium iodide or have increased light-scattering properties, respectively. Transposon sequencing of the sorted populations identified more than 20 previously uncharacterized factors impacting these processes. Cells inactivated for one of these proteins, factor preventing extra Z-rings (FacZ, SAOUHSC_01855), showed aberrant membrane invaginations and multiple FtsZ cytokinetic rings. These phenotypes were suppressed in mutants lacking the conserved cell-division protein GpsB, which forms an interaction hub bridging envelope biogenesis factors with the cytokinetic ring in S. aureus. FacZ was found to interact directly with GpsB in vitro and in vivo. We therefore propose that FacZ is an envelope biogenesis factor that antagonizes GpsB function to prevent aberrant division events in S. aureus.
Collapse
Affiliation(s)
- Thomas M Bartlett
- Department of Microbiology Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Tyler A Sisley
- Department of Microbiology Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Aaron Mychack
- Department of Microbiology Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Suzanne Walker
- Department of Microbiology Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Richard W Baker
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Z Rudner
- Department of Microbiology Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Thomas G Bernhardt
- Department of Microbiology Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Sharkey LKR, Guerillot R, Walsh CJ, Turner AM, Lee JYH, Neville SL, Klatt S, Baines SL, Pidot SJ, Rossello FJ, Seemann T, McWilliam HEG, Cho E, Carter GP, Howden BP, McDevitt CA, Hachani A, Stinear TP, Monk IR. The two-component system WalKR provides an essential link between cell wall homeostasis and DNA replication in Staphylococcus aureus. mBio 2023; 14:e0226223. [PMID: 37850732 PMCID: PMC10746227 DOI: 10.1128/mbio.02262-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE The opportunistic human pathogen Staphylococcus aureus uses an array of protein sensing systems called two-component systems (TCS) to sense environmental signals and adapt its physiology in response by regulating different genes. This sensory network is key to S. aureus versatility and success as a pathogen. Here, we reveal for the first time the full extent of the regulatory network of WalKR, the only staphylococcal TCS that is indispensable for survival under laboratory conditions. We found that WalKR is a master regulator of cell growth, coordinating the expression of genes from multiple, fundamental S. aureus cellular processes, including those involved in maintaining cell wall metabolism, protein biosynthesis, nucleotide metabolism, and the initiation of DNA replication.
Collapse
Affiliation(s)
- Liam K. R. Sharkey
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Romain Guerillot
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Calum J. Walsh
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Adrianna M. Turner
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jean Y. H. Lee
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephanie L. Neville
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephan Klatt
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah L. Baines
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Sacha J. Pidot
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Fernando J. Rossello
- University of Melbourne Centre for Cancer Research, The University of Melbourne, Melbourne, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Torsten Seemann
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, Centre for Pathogen Genomics, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Hamish E. G. McWilliam
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Ellie Cho
- Biological Optical Microscopy Platform, University of Melbourne, Melbourne, Victoria, Australia
| | - Glen P. Carter
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin P. Howden
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, Centre for Pathogen Genomics, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher A. McDevitt
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Abderrahman Hachani
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, Centre for Pathogen Genomics, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Ian R. Monk
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Ramos-León F, Anjuwon-Foster BR, Anantharaman V, Ferreira CN, Ibrahim AM, Tai CH, Missiakas DM, Camberg JL, Aravind L, Ramamurthi KS. Protein coopted from a phage restriction system dictates orthogonal cell division plane selection in Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.03.556088. [PMID: 37886572 PMCID: PMC10602043 DOI: 10.1101/2023.09.03.556088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The spherical bacterium Staphylococcus aureus, a leading cause of nosocomial infections, undergoes binary fission by dividing in two alternating orthogonal planes, but the mechanism by which S. aureus correctly selects the next cell division plane is not known. To identify cell division placement factors, we performed a chemical genetic screen that revealed a gene which we termed pcdA. We show that PcdA is a member of the McrB family of AAA+ NTPases that has undergone structural changes and a concomitant functional shift from a restriction enzyme subunit to an early cell division protein. PcdA directly interacts with the tubulin-like central divisome component FtsZ and localizes to future cell division sites before membrane invagination initiates. This parallels the action of another McrB family protein, CTTNBP2, which stabilizes microtubules in animals. We show that PcdA also interacts with the structural protein DivIVA and propose that the DivIVA/PcdA complex recruits unpolymerized FtsZ to assemble along the proper cell division plane. Deletion of pcdA conferred abnormal, non-orthogonal division plane selection, increased sensitivity to cell wall-targeting antibiotics, and reduced virulence in a murine infection model. Targeting PcdA could therefore highlight a treatment strategy for combatting antibiotic-resistant strains of S. aureus.
Collapse
Affiliation(s)
- Félix Ramos-León
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Brandon R. Anjuwon-Foster
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
| | - Colby N. Ferreira
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, USA
| | - Amany M. Ibrahim
- Department of Microbiology, Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, USA
| | - Chin-Hsien Tai
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Dominique M. Missiakas
- Department of Microbiology, Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, USA
| | - Jodi L. Camberg
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
| | - Kumaran S. Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, USA
| |
Collapse
|
10
|
Stone MC, Mychack A, Coe KA, Walker S. Combining Signal Peptidase and Lipoprotein Processing Inhibitors Overcomes Ayr Resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2023; 67:e0011523. [PMID: 37097175 PMCID: PMC10190671 DOI: 10.1128/aac.00115-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/30/2023] [Indexed: 04/26/2023] Open
Abstract
Antibiotic resistance in bacterial pathogens is an ongoing public health concern. The arylomycins are a class of natural product antibiotics that target the type I signal peptidase, which carries out the terminal step in protein secretion. Here, we used transposon sequencing (Tn-Seq) to profile the effects of the optimized arylomycin derivative G0775 in Staphylococcus aureus. Our transposon libraries include both upregulation and inactivation mutants, allowing us to identify resistance mechanisms and targets for synergism. We identified several cell envelope pathways that, when inactivated, sensitize S. aureus to the arylomycin G0775. These pathways include the lipoprotein processing pathway, and we have shown that inhibitors of this pathway synergize with G0775 even though lipoprotein processing is nonessential in S. aureus. Moreover, we found that blocking this pathway completely reverses Ayr resistance, which is a major resistance mechanism to arylomycins, including G0775. Our Tn-Seq data also showed that upregulation of mprF and several other genes is protective against G0775. Because a subset of these genes was previously found in a Tn-Seq profile of the clinically important antibiotic daptomycin, we tested a set of daptomycin-nonsusceptible clinical isolates with gain-of-function mutations in mprF for susceptibility to arylomycin G0775. Despite structural and mechanistic differences between these antibiotics, we observed similar decreases in susceptibility. Taken together, our results highlight how Tn-Seq profiles that include both gene inactivation and upregulation can identify targets, antibiotic resistance mechanisms, and strategies to overcome resistance.
Collapse
Affiliation(s)
- Madeleine C. Stone
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Aaron Mychack
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Kathryn A. Coe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Bartlett TM, Sisley TA, Mychack A, Walker S, Baker RW, Rudner DZ, Bernhardt TG. Identification of FacZ as a division site placement factor in Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538170. [PMID: 37162900 PMCID: PMC10168275 DOI: 10.1101/2023.04.24.538170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Staphylococcus aureus is a gram-positive pathogen responsible for life-threatening infections that are difficult to treat due to antibiotic resistance. The identification of new vulnerabilities in essential processes like cell envelope biogenesis represents a promising avenue towards the development of anti-staphylococcal therapies that overcome resistance. To this end, we performed cell sorting-based enrichments for S. aureus mutants with defects in envelope integrity and cell division. We identified many known envelope biogenesis factors as well as a large collection of new factors with roles in this process. Mutants inactivated for one of the hits, the uncharacterized SAOUHSC_01855 protein, displayed aberrant membrane invaginations and multiple FtsZ cytokinetic ring structures. This factor is broadly distributed among Firmicutes, and its inactivation in B. subtilis similarly caused division and membrane defects. We therefore renamed the protein FacZ (Firmicute-associated coordinator of Z-rings). In S. aureus, inactivation of the conserved cell division protein GpsB suppressed the division and morphological defects of facZ mutants. Additionally, FacZ and GpsB were found to interact directly in a purified system. Thus, FacZ is a novel antagonist of GpsB function with a conserved role in controlling division site placement in S. aureus and other Firmicutes.
Collapse
Affiliation(s)
- Thomas M. Bartlett
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Tyler A. Sisley
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Aaron Mychack
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard W. Baker
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Z. Rudner
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas G. Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Sukhoverkov KV, Jalal ASB, Ault JR, Sobott F, Lawson DM, Le TBK. The CTP-binding domain is disengaged from the DNA-binding domain in a cocrystal structure of Bacillus subtilis Noc-DNA complex. J Biol Chem 2023; 299:103063. [PMID: 36841481 PMCID: PMC10060749 DOI: 10.1016/j.jbc.2023.103063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
In Bacillus subtilis, a ParB-like nucleoid occlusion protein (Noc) binds specifically to Noc-binding sites (NBSs) on the chromosome to help coordinate chromosome segregation and cell division. Noc does so by binding to CTP to form large membrane-associated nucleoprotein complexes to physically inhibit the assembly of the cell division machinery. The site-specific binding of Noc to NBS DNA is a prerequisite for CTP-binding and the subsequent formation of a membrane-active DNA-entrapped protein complex. Here, we solve the structure of a C-terminally truncated B. subtilis Noc bound to NBS DNA to reveal the conformation of Noc at this crucial step. Our structure reveals the disengagement between the N-terminal CTP-binding domain and the NBS-binding domain of each DNA-bound Noc subunit; this is driven, in part, by the swapping of helices 4 and 5 at the interface of the two domains. Site-specific crosslinking data suggest that this conformation of Noc-NBS exists in solution. Overall, our results lend support to the recent proposal that parS/NBS binding catalyzes CTP binding and DNA entrapment by preventing the reengagement of the CTP-binding domain and the DNA-binding domain from the same ParB/Noc subunit.
Collapse
Affiliation(s)
- Kirill V Sukhoverkov
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Adam S B Jalal
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom; Section of Structural and Synthetic Biology, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - James R Ault
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - David M Lawson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom.
| |
Collapse
|
13
|
Barbuti MD, Myrbråten IS, Morales Angeles D, Kjos M. The cell cycle of Staphylococcus aureus: An updated review. Microbiologyopen 2023; 12:e1338. [PMID: 36825883 PMCID: PMC9733580 DOI: 10.1002/mbo3.1338] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
As bacteria proliferate, DNA replication, chromosome segregation, cell wall synthesis, and cytokinesis occur concomitantly and need to be tightly regulated and coordinated. Although these cell cycle processes have been studied for decades, several mechanisms remain elusive, specifically in coccus-shaped cells such as Staphylococcus aureus. In recent years, major progress has been made in our understanding of how staphylococci divide, including new, fundamental insights into the mechanisms of cell wall synthesis and division site selection. Furthermore, several novel proteins and mechanisms involved in the regulation of replication initiation or progression of the cell cycle have been identified and partially characterized. In this review, we will summarize our current understanding of the cell cycle processes in the spheroid model bacterium S. aureus, with a focus on recent advances in the understanding of how these processes are regulated.
Collapse
Affiliation(s)
- Maria D. Barbuti
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Ine S. Myrbråten
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Danae Morales Angeles
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| |
Collapse
|
14
|
RefZ and Noc Act Synthetically to Prevent Aberrant Divisions during Bacillus subtilis Sporulation. J Bacteriol 2022; 204:e0002322. [PMID: 35506695 DOI: 10.1128/jb.00023-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During sporulation, Bacillus subtilis undergoes an atypical cell division that requires overriding mechanisms that protect chromosomes from damage and ensure inheritance by daughter cells. Instead of assembling between segregated chromosomes at midcell, the FtsZ-ring coalesces polarly, directing division over one chromosome. The DNA-binding protein RefZ facilitates the timely assembly of polar Z-rings and partially defines the region of chromosome initially captured in the forespore. RefZ binds to motifs (RBMs) located proximal to the origin of replication (oriC). Although refZ and the RBMs are conserved across the Bacillus genus, a refZ deletion mutant sporulates with wild-type efficiency, so the functional significance of RefZ during sporulation remains unclear. To further investigate RefZ function, we performed a candidate-based screen for synthetic sporulation defects by combining ΔrefZ with deletions of genes previously implicated in FtsZ regulation and/or chromosome capture. Combining ΔrefZ with deletions of ezrA, sepF, parA, or minD did not detectably affect sporulation. In contrast, a ΔrefZ Δnoc mutant exhibited a sporulation defect, revealing a genetic interaction between RefZ and Noc. Using reporters of sporulation progression, we determined the ΔrefZ Δnoc mutant exhibited sporulation delays after Spo0A activation but prior to late sporulation, with a subset of cells failing to divide polarly or activate the first forespore-specific sigma factor, SigF. The ΔrefZ Δnoc mutant also exhibited extensive dysregulation of cell division, producing cells with extra, misplaced, or otherwise aberrant septa. Our results reveal a previously unknown epistatic relationship that suggests refZ and noc contribute synthetically to regulating cell division and supporting spore development. IMPORTANCE The DNA-binding protein RefZ and its binding sites (RBMs) are conserved in sequence and location on the chromosome across the Bacillus genus and contribute to the timing of polar FtsZ-ring assembly during sporulation. Only a small number of noncoding and nonregulatory DNA motifs are known to be conserved in chromosomal position in bacteria, suggesting there is strong selective pressure for their maintenance; however, a refZ deletion mutant sporulates efficiently, providing no clues as to their functional significance. Here, we find that in the absence of the nucleoid occlusion factor Noc, deletion of refZ results in a sporulation defect characterized by developmental delays and aberrant divisions.
Collapse
|
15
|
Jalal ASB, Tran NT, Wu LJ, Ramakrishnan K, Rejzek M, Gobbato G, Stevenson CEM, Lawson DM, Errington J, Le TBK. CTP regulates membrane-binding activity of the nucleoid occlusion protein Noc. Mol Cell 2021; 81:3623-3636.e6. [PMID: 34270916 DOI: 10.1101/2021.02.11.430593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/25/2021] [Accepted: 06/18/2021] [Indexed: 05/25/2023]
Abstract
ATP- and GTP-dependent molecular switches are extensively used to control functions of proteins in a wide range of biological processes. However, CTP switches are rarely reported. Here, we report that a nucleoid occlusion protein Noc is a CTPase enzyme whose membrane-binding activity is directly regulated by a CTP switch. In Bacillus subtilis, Noc nucleates on 16 bp NBS sites before associating with neighboring non-specific DNA to form large membrane-associated nucleoprotein complexes to physically occlude assembly of the cell division machinery. By in vitro reconstitution, we show that (1) CTP is required for Noc to form the NBS-dependent nucleoprotein complex, and (2) CTP binding, but not hydrolysis, switches Noc to a membrane-active state. Overall, we suggest that CTP couples membrane-binding activity of Noc to nucleoprotein complex formation to ensure productive recruitment of DNA to the bacterial cell membrane for nucleoid occlusion activity.
Collapse
Affiliation(s)
- Adam S B Jalal
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Ngat T Tran
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Ling J Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | | | - Martin Rejzek
- Chemistry Platform, John Innes Centre, Norwich, NR4 7UH, UK
| | - Giulia Gobbato
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | | | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK.
| |
Collapse
|
16
|
Jalal ASB, Tran NT, Wu LJ, Ramakrishnan K, Rejzek M, Gobbato G, Stevenson CEM, Lawson DM, Errington J, Le TBK. CTP regulates membrane-binding activity of the nucleoid occlusion protein Noc. Mol Cell 2021; 81:3623-3636.e6. [PMID: 34270916 PMCID: PMC8429893 DOI: 10.1016/j.molcel.2021.06.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/25/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
ATP- and GTP-dependent molecular switches are extensively used to control functions of proteins in a wide range of biological processes. However, CTP switches are rarely reported. Here, we report that a nucleoid occlusion protein Noc is a CTPase enzyme whose membrane-binding activity is directly regulated by a CTP switch. In Bacillus subtilis, Noc nucleates on 16 bp NBS sites before associating with neighboring non-specific DNA to form large membrane-associated nucleoprotein complexes to physically occlude assembly of the cell division machinery. By in vitro reconstitution, we show that (1) CTP is required for Noc to form the NBS-dependent nucleoprotein complex, and (2) CTP binding, but not hydrolysis, switches Noc to a membrane-active state. Overall, we suggest that CTP couples membrane-binding activity of Noc to nucleoprotein complex formation to ensure productive recruitment of DNA to the bacterial cell membrane for nucleoid occlusion activity. CTP is required for Noc to form a higher-order nucleoprotein complex on DNA CTP binding switches DNA-entrapped Noc to a membrane-active state CTP hydrolysis likely reverses the association between Noc-DNA and the membrane The membrane-targeting helix adopts an autoinhibitory conformation in apo-Noc
Collapse
Affiliation(s)
- Adam S B Jalal
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Ngat T Tran
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Ling J Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | | | - Martin Rejzek
- Chemistry Platform, John Innes Centre, Norwich, NR4 7UH, UK
| | - Giulia Gobbato
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | | | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK.
| |
Collapse
|
17
|
Jalal ASB, Tran NT, Stevenson CE, Chan EW, Lo R, Tan X, Noy A, Lawson DM, Le TBK. Diversification of DNA-Binding Specificity by Permissive and Specificity-Switching Mutations in the ParB/Noc Protein Family. Cell Rep 2021; 32:107928. [PMID: 32698006 PMCID: PMC7383237 DOI: 10.1016/j.celrep.2020.107928] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/25/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022] Open
Abstract
Specific interactions between proteins and DNA are essential to many biological processes. Yet, it remains unclear how the diversification in DNA-binding specificity was brought about, and the mutational paths that led to changes in specificity are unknown. Using a pair of evolutionarily related DNA-binding proteins, each with a different DNA preference (ParB [Partitioning Protein B] and Noc [Nucleoid Occlusion Factor], which both play roles in bacterial chromosome maintenance), we show that specificity is encoded by a set of four residues at the protein-DNA interface. Combining X-ray crystallography and deep mutational scanning of the interface, we suggest that permissive mutations must be introduced before specificity-switching mutations to reprogram specificity and that mutational paths to new specificity do not necessarily involve dual-specificity intermediates. Overall, our results provide insight into the possible evolutionary history of ParB and Noc and, in a broader context, might be useful for understanding the evolution of other classes of DNA-binding proteins. DNA-binding specificity for parS and NBS is conserved within ParB and Noc family Specificity is encoded by a set of four residues at the protein-DNA interface Mutations must be introduced in a defined order to reprogram specificity
Collapse
Affiliation(s)
- Adam S B Jalal
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | - Ngat T Tran
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | - Clare E Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
| | - Elliot W Chan
- Department of Physics, Biological Physical Sciences Institute, University of York, York YO10, UK
| | - Rebecca Lo
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | - Xiao Tan
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | - Agnes Noy
- Department of Physics, Biological Physical Sciences Institute, University of York, York YO10, UK
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
18
|
Abstract
In bacteria, a condensed structure of FtsZ (Z-ring) recruits cell division machinery at the midcell, and Z-ring formation is discouraged over the chromosome by a poorly understood phenomenon called nucleoid occlusion. In B. subtilis, nucleoid occlusion has been reported to be mediated, at least in part, by the DNA-membrane bridging protein, Noc. Bacteria that divide by binary fission form FtsZ rings at the geometric midpoint of the cell between the bulk of the replicated nucleoids. In Bacillus subtilis, the DNA- and membrane-binding Noc protein is thought to participate in nucleoid occlusion by preventing FtsZ rings from forming over the chromosome. To explore the role of Noc, we used time-lapse fluorescence microscopy to monitor FtsZ and the nucleoid of cells growing in microfluidic channels. Our data show that Noc does not prevent de novo FtsZ ring formation over the chromosome nor does Noc control cell division site selection. Instead, Noc corrals FtsZ at the cytokinetic ring and reduces migration of protofilaments over the chromosome to the future site of cell division. Moreover, we show that FtsZ protofilaments travel due to a local reduction in ZapA association, and the diffuse FtsZ rings observed in the Noc mutant can be suppressed by ZapA overexpression. Thus, Noc sterically hinders FtsZ migration away from the Z-ring during cytokinesis and retains FtsZ at the postdivisional polar site for full disassembly by the Min system.
Collapse
|
19
|
Karaboja X, Ren Z, Brandão HB, Paul P, Rudner DZ, Wang X. XerD unloads bacterial SMC complexes at the replication terminus. Mol Cell 2021; 81:756-766.e8. [PMID: 33472056 DOI: 10.1016/j.molcel.2020.12.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/11/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022]
Abstract
Bacillus subtilis structural maintenance of chromosomes (SMC) complexes are topologically loaded at centromeric sites adjacent to the replication origin by the partitioning protein ParB. These ring-shaped ATPases then translocate down the left and right chromosome arms while tethering them together. Here, we show that the site-specific recombinase XerD, which resolves chromosome dimers, is required to unload SMC tethers when they reach the terminus. We identify XerD-specific binding sites in the terminus region and show that they dictate the site of unloading in a manner that depends on XerD but not its catalytic residue, its partner protein XerC, or the recombination site dif. Finally, we provide evidence that ParB and XerD homologs perform similar functions in Staphylococcus aureus. Thus, two broadly conserved factors that act at the origin and terminus have second functions in loading and unloading SMC complexes that travel between them.
Collapse
Affiliation(s)
- Xheni Karaboja
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Zhongqing Ren
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Hugo B Brandão
- Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Payel Paul
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
20
|
Chaudhary R, Mishra S, Kota S, Misra H. Molecular interactions and their predictive roles in cell pole determination in bacteria. Crit Rev Microbiol 2021; 47:141-161. [PMID: 33423591 DOI: 10.1080/1040841x.2020.1857686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Bacterial cell cycle is divided into well-coordinated phases; chromosome duplication and segregation, cell elongation, septum formation, and cytokinesis. The temporal separation of these phases depends upon the growth rates and doubling time in different bacteria. The entire process of cell division starts with the assembly of divisome complex at mid-cell position followed by constriction of the cell wall and septum formation. In the mapping of mid-cell position for septum formation, the gradient of oscillating Min proteins across the poles plays a pivotal role in several bacteria genus. The cues in the cell that defines the poles and plane of cell division are not fully characterized in cocci. Recent studies have shed some lights on molecular interactions at the poles and the underlying mechanisms involved in pole determination in non-cocci. In this review, we have brought forth recent findings on these aspects together, which would suggest a model to explain the mechanisms of pole determination in rod shaped bacteria and could be extrapolated as a working model in cocci.
Collapse
Affiliation(s)
- Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Shruti Mishra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Hari Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
21
|
CcrZ is a pneumococcal spatiotemporal cell cycle regulator that interacts with FtsZ and controls DNA replication by modulating the activity of DnaA. Nat Microbiol 2021; 6:1175-1187. [PMID: 34373624 PMCID: PMC8387234 DOI: 10.1038/s41564-021-00949-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Most bacteria replicate and segregate their DNA concomitantly while growing, before cell division takes place. How bacteria synchronize these different cell cycle events to ensure faithful chromosome inheritance by daughter cells is poorly understood. Here, we identify Cell Cycle Regulator protein interacting with FtsZ (CcrZ) as a conserved and essential protein in pneumococci and related Firmicutes such as Bacillus subtilis and Staphylococcus aureus. CcrZ couples cell division with DNA replication by controlling the activity of the master initiator of DNA replication, DnaA. The absence of CcrZ causes mis-timed and reduced initiation of DNA replication, which subsequently results in aberrant cell division. We show that CcrZ from Streptococcus pneumoniae interacts directly with the cytoskeleton protein FtsZ, which places CcrZ in the middle of the newborn cell where the DnaA-bound origin is positioned. This work uncovers a mechanism for control of the bacterial cell cycle in which CcrZ controls DnaA activity to ensure that the chromosome is replicated at the right time during the cell cycle.
Collapse
|
22
|
Schaefer K, Owens TW, Page JE, Santiago M, Kahne D, Walker S. Structure and reconstitution of a hydrolase complex that may release peptidoglycan from the membrane after polymerization. Nat Microbiol 2021; 6:34-43. [PMID: 33168989 PMCID: PMC7755832 DOI: 10.1038/s41564-020-00808-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 10/02/2020] [Indexed: 12/24/2022]
Abstract
Bacteria are encapsulated by a peptidoglycan cell wall that is essential for their survival1. During cell wall assembly, a lipid-linked disaccharide-peptide precursor called lipid II is polymerized and cross-linked to produce mature peptidoglycan. As lipid II is polymerized, nascent polymers remain membrane-anchored at one end, and the other end becomes cross-linked to the matrix2-4. How bacteria release newly synthesized peptidoglycan strands from the membrane to complete the synthesis of mature peptidoglycan is a long-standing question. Here, we show that a Staphylococcus aureus cell wall hydrolase and a membrane protein that contains eight transmembrane helices form a complex that may function as a peptidoglycan release factor. The complex cleaves nascent peptidoglycan internally to produce free oligomers as well as lipid-linked oligomers that can undergo further elongation. The polytopic membrane protein, which is similar to a eukaryotic CAAX protease, controls the length of these products. A structure of the complex at a resolution of 2.6 Å shows that the membrane protein scaffolds the hydrolase to orient its active site for cleaving the glycan strand. We propose that this complex functions to detach newly synthesized peptidoglycan polymer from the cell membrane to complete integration into the cell wall matrix.
Collapse
Affiliation(s)
- Kaitlin Schaefer
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Tristan W Owens
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Julia E Page
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Marina Santiago
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Abstract
Proper chromosome segregation during cell division is essential in all domains of life. In the majority of bacterial species, faithful chromosome segregation is mediated by the tripartite ParABS system, consisting of an ATPase protein ParA, a CTPase and DNA-binding protein ParB, and a centromere-like parS site. The parS site is most often located near the origin of replication and is segregated first after chromosome replication. ParB nucleates on parS before binding to adjacent non-specific DNA to form a multimeric nucleoprotein complex. ParA interacts with ParB to drive the higher-order ParB–DNA complex, and hence the replicating chromosomes, to each daughter cell. Here, we review the various models for the formation of the ParABS complex and describe its role in segregating the origin-proximal region of the chromosome. Additionally, we discuss outstanding questions and challenges in understanding bacterial chromosome segregation.
Collapse
Affiliation(s)
- Adam S B Jalal
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
24
|
Silber N, Matos de Opitz CL, Mayer C, Sass P. Cell division protein FtsZ: from structure and mechanism to antibiotic target. Future Microbiol 2020; 15:801-831. [DOI: 10.2217/fmb-2019-0348] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance to virtually all clinically applied antibiotic classes severely limits the available options to treat bacterial infections. Hence, there is an urgent need to develop and evaluate new antibiotics and targets with resistance-breaking properties. Bacterial cell division has emerged as a new antibiotic target pathway to counteract multidrug-resistant pathogens. New approaches in antibiotic discovery and bacterial cell biology helped to identify compounds that either directly interact with the major cell division protein FtsZ, thereby perturbing the function and dynamics of the cell division machinery, or affect the structural integrity of FtsZ by inducing its degradation. The impressive antimicrobial activities and resistance-breaking properties of certain compounds validate the inhibition of bacterial cell division as a promising strategy for antibiotic intervention.
Collapse
Affiliation(s)
- Nadine Silber
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Cruz L Matos de Opitz
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Christian Mayer
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Peter Sass
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen 72076, Germany
| |
Collapse
|
25
|
Hesser AR, Matano LM, Vickery CR, Wood BM, Santiago AG, Morris HG, Do T, Losick R, Walker S. The length of lipoteichoic acid polymers controls Staphylococcus aureus cell size and envelope integrity. J Bacteriol 2020; 202:JB.00149-20. [PMID: 32482719 PMCID: PMC8404710 DOI: 10.1128/jb.00149-20] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023] Open
Abstract
The opportunistic pathogen Staphylococcus aureus is protected by a cell envelope that is crucial for viability. In addition to peptidoglycan, lipoteichoic acid (LTA) is an especially important component of the S. aureus cell envelope. LTA is an anionic polymer anchored to a glycolipid in the outer leaflet of the cell membrane. It was known that deleting the gene for UgtP, the enzyme that makes this glycolipid anchor, causes cell growth and division defects. In Bacillus subtilis, growth abnormalities from the loss of ugtP have been attributed to both the absence of the encoded protein and to the loss of its products. Here, we show that growth defects in S. aureus ugtP deletion mutants are due to the long, abnormal LTA polymer that is produced when the glycolipid anchor is missing from the outer leaflet of the membrane. Dysregulated cell growth leads to defective cell division, and these phenotypes are corrected by mutations in the LTA polymerase, ltaS, that reduce polymer length. We also show that S. aureus mutants with long LTA are sensitized to cell wall hydrolases, beta-lactam antibiotics, and compounds that target other cell envelope pathways. We conclude that control of LTA polymer length is important for S. aureus physiology and promotes survival under stressful conditions, including antibiotic stress.IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) is a common cause of community- and hospital-acquired infections and is responsible for a large fraction of deaths caused by antibiotic-resistant bacteria. S. aureus is surrounded by a complex cell envelope that protects it from antimicrobial compounds and other stresses. Here we show that controlling the length of an essential cell envelope polymer, lipoteichoic acid, is critical for controlling S. aureus cell size and cell envelope integrity. We also show that genes involved in LTA length regulation are required for resistance to beta-lactam antibiotics in MRSA. The proteins encoded by these genes may be targets for combination therapy with an appropriate beta-lactam.
Collapse
Affiliation(s)
- Anthony R Hesser
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Leigh M Matano
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | | | - B McKay Wood
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ace George Santiago
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Heidi G Morris
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Truc Do
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard Losick
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Cannabidiol is an effective helper compound in combination with bacitracin to kill Gram-positive bacteria. Sci Rep 2020; 10:4112. [PMID: 32139776 PMCID: PMC7057955 DOI: 10.1038/s41598-020-60952-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/19/2020] [Indexed: 01/19/2023] Open
Abstract
The cannabinoid cannabidiol (CBD) is characterised in this study as a helper compound against resistant bacteria. CBD potentiates the effect of bacitracin (BAC) against Gram-positive bacteria (Staphylococcus species, Listeria monocytogenes, and Enterococcus faecalis) but appears ineffective against Gram-negative bacteria. CBD reduced the MIC value of BAC by at least 64-fold and the combination yielded an FIC index of 0.5 or below in most Gram-positive bacteria tested. Morphological changes in S. aureus as a result of the combination of CBD and BAC included several septa formations during cell division along with membrane irregularities. Analysis of the muropeptide composition of treated S. aureus indicated no changes in the cell wall composition. However, CBD and BAC treated bacteria did show a decreased rate of autolysis. The bacteria further showed a decreased membrane potential upon treatment with CBD; yet, they did not show any further decrease upon combination treatment. Noticeably, expression of a major cell division regulator gene, ezrA, was reduced two-fold upon combination treatment emphasising the impact of the combination on cell division. Based on these observations, the combination of CBD and BAC is suggested to be a putative novel treatment in clinical settings for treatment of infections with antibiotic resistant Gram-positive bacteria.
Collapse
|
27
|
Do T, Schaefer K, Santiago AG, Coe KA, Fernandes PB, Kahne D, Pinho MG, Walker S. Staphylococcus aureus cell growth and division are regulated by an amidase that trims peptides from uncrosslinked peptidoglycan. Nat Microbiol 2020; 5:291-303. [PMID: 31932712 PMCID: PMC7046134 DOI: 10.1038/s41564-019-0632-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022]
Abstract
Bacteria are protected by a polymer of peptidoglycan that serves as an exoskeleton1. In Staphylococcus aureus, the peptidoglycan assembly enzymes relocate during the cell cycle from the periphery, where they are active during growth, to the division site where they build the partition between daughter cells2-4. But how peptidoglycan synthesis is regulated throughout the cell cycle is poorly understood5,6. Here, we used a transposon screen to identify a membrane protein complex that spatially regulates S. aureus peptidoglycan synthesis. This complex consists of an amidase that removes stem peptides from uncrosslinked peptidoglycan and a partner protein that controls its activity. Amidases typically hydrolyse crosslinked peptidoglycan between daughter cells so that they can separate7. However, this amidase controls cell growth. In its absence, peptidoglycan synthesis becomes spatially dysregulated, which causes cells to grow so large that cell division is defective. We show that the cell growth and division defects due to loss of this amidase can be mitigated by attenuating the polymerase activity of the major S. aureus peptidoglycan synthase. Our findings lead to a model wherein the amidase complex regulates the density of peptidoglycan assembly sites to control peptidoglycan synthase activity at a given subcellular location. Removal of stem peptides from peptidoglycan at the cell periphery promotes peptidoglycan synthase relocation to midcell during cell division. This mechanism ensures that cell expansion is properly coordinated with cell division.
Collapse
Affiliation(s)
- Truc Do
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Kaitlin Schaefer
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | | | - Kathryn A Coe
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Pedro B Fernandes
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Mariana G Pinho
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Began J, Cordier B, Březinová J, Delisle J, Hexnerová R, Srb P, Rampírová P, Kožíšek M, Baudet M, Couté Y, Galinier A, Veverka V, Doan T, Strisovsky K. Rhomboid intramembrane protease YqgP licenses bacterial membrane protein quality control as adaptor of FtsH AAA protease. EMBO J 2020; 39:e102935. [PMID: 31930742 PMCID: PMC7231995 DOI: 10.15252/embj.2019102935] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/18/2019] [Accepted: 12/12/2019] [Indexed: 12/31/2022] Open
Abstract
Magnesium homeostasis is essential for life and depends on magnesium transporters, whose activity and ion selectivity need to be tightly controlled. Rhomboid intramembrane proteases pervade the prokaryotic kingdom, but their functions are largely elusive. Using proteomics, we find that Bacillus subtilis rhomboid protease YqgP interacts with the membrane‐bound ATP‐dependent processive metalloprotease FtsH and cleaves MgtE, the major high‐affinity magnesium transporter in B. subtilis. MgtE cleavage by YqgP is potentiated in conditions of low magnesium and high manganese or zinc, thereby protecting B. subtilis from Mn2+/Zn2+ toxicity. The N‐terminal cytosolic domain of YqgP binds Mn2+ and Zn2+ ions and facilitates MgtE cleavage. Independently of its intrinsic protease activity, YqgP acts as a substrate adaptor for FtsH, a function that is necessary for degradation of MgtE. YqgP thus unites protease and pseudoprotease function, hinting at the evolutionary origin of rhomboid pseudoproteases such as Derlins that are intimately involved in eukaryotic ER‐associated degradation (ERAD). Conceptually, the YqgP‐FtsH system we describe here is analogous to a primordial form of “ERAD” in bacteria and exemplifies an ancestral function of rhomboid‐superfamily proteins.
Collapse
Affiliation(s)
- Jakub Began
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic.,Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Baptiste Cordier
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), CNRS, UMR 7283, Aix Marseille Univ, Marseille Cedex 20, France
| | - Jana Březinová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jordan Delisle
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), CNRS, UMR 7283, Aix Marseille Univ, Marseille Cedex 20, France
| | - Rozálie Hexnerová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Petra Rampírová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Milan Kožíšek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Mathieu Baudet
- CEA, Inserm, IRIG-BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Yohann Couté
- CEA, Inserm, IRIG-BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Anne Galinier
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), CNRS, UMR 7283, Aix Marseille Univ, Marseille Cedex 20, France
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Thierry Doan
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), CNRS, UMR 7283, Aix Marseille Univ, Marseille Cedex 20, France.,Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), CNRS, UMR 7255, Aix Marseille Univ, Marseille Cedex 20, France
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| |
Collapse
|
29
|
Regulation of Cell Division in Bacteria by Monitoring Genome Integrity and DNA Replication Status. J Bacteriol 2020; 202:JB.00408-19. [PMID: 31548275 DOI: 10.1128/jb.00408-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
All organisms regulate cell cycle progression by coordinating cell division with DNA replication status. In eukaryotes, DNA damage or problems with replication fork progression induce the DNA damage response (DDR), causing cyclin-dependent kinases to remain active, preventing further cell cycle progression until replication and repair are complete. In bacteria, cell division is coordinated with chromosome segregation, preventing cell division ring formation over the nucleoid in a process termed nucleoid occlusion. In addition to nucleoid occlusion, bacteria induce the SOS response after replication forks encounter DNA damage or impediments that slow or block their progression. During SOS induction, Escherichia coli expresses a cytoplasmic protein, SulA, that inhibits cell division by directly binding FtsZ. After the SOS response is turned off, SulA is degraded by Lon protease, allowing for cell division to resume. Recently, it has become clear that SulA is restricted to bacteria closely related to E. coli and that most bacteria enforce the DNA damage checkpoint by expressing a small integral membrane protein. Resumption of cell division is then mediated by membrane-bound proteases that cleave the cell division inhibitor. Further, many bacterial cells have mechanisms to inhibit cell division that are regulated independently from the canonical LexA-mediated SOS response. In this review, we discuss several pathways used by bacteria to prevent cell division from occurring when genome instability is detected or before the chromosome has been fully replicated and segregated.
Collapse
|
30
|
Coe KA, Lee W, Stone MC, Komazin-Meredith G, Meredith TC, Grad YH, Walker S. Multi-strain Tn-Seq reveals common daptomycin resistance determinants in Staphylococcus aureus. PLoS Pathog 2019; 15:e1007862. [PMID: 31738809 PMCID: PMC6934316 DOI: 10.1371/journal.ppat.1007862] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/27/2019] [Accepted: 09/24/2019] [Indexed: 01/30/2023] Open
Abstract
Antibiotic-resistant Staphylococcus aureus remains a leading cause of antibiotic resistance-associated mortality in the United States. Given the reality of multi-drug resistant infections, it is imperative that we establish and maintain a pipeline of new compounds to replace or supplement our current antibiotics. A first step towards this goal is to prioritize targets by identifying the genes most consistently required for survival across the S. aureus phylogeny. Here we report the first direct comparison of multiple strains of S. aureus via transposon sequencing. We show that mutant fitness varies by strain in key pathways, underscoring the importance of using more than one strain to differentiate between core and strain-dependent essential genes. We treated the libraries with daptomycin to assess whether the strain-dependent differences impact pathways important for survival. Despite baseline differences in gene importance, several pathways, including the lipoteichoic acid pathway, consistently promote survival under daptomycin exposure, suggesting core vulnerabilities that can be exploited to resensitize daptomycin-nonsusceptible isolates. We also demonstrate the merit of using transposons with outward-facing promoters capable of overexpressing nearby genes for identifying clinically-relevant gain-of-function resistance mechanisms. Together, the daptomycin vulnerabilities and resistance mechanisms support a mode of action with wide-ranging effects on the cell envelope and cell division. This work adds to a growing body of literature demonstrating the nuanced insights gained by comparing Tn-Seq results across multiple bacterial strains. Antibiotic-resistant Staphylococcus aureus kills thousands of people every year in the United States alone. To stay ahead of the looming threat of multidrug-resistant infections, we must continue to develop new antibiotics and find ways to make our current repertoire of antibiotics more effective, including by finding pairs of compounds that perform best when administered together. In the age of next-generation sequencing, we can now use transposon sequencing to find potential targets for new antibiotics on a genome-wide scale, identified as either essential genes or genes that positively influence survival in the presence of an antibiotic. In this work, we created a compendium of genes that are essential across a range of S. aureus strains, as well as those that are important for growth in the presence of the antibiotic daptomycin. The results will be a resource for researchers working to develop the next generation of antibiotic therapies.
Collapse
Affiliation(s)
- Kathryn A. Coe
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wonsik Lee
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Madeleine C. Stone
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gloria Komazin-Meredith
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania, United States of America
| | - Timothy C. Meredith
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania, United States of America
- * E-mail: (TCM); (YHG); (SW)
| | - Yonatan H. Grad
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (TCM); (YHG); (SW)
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (TCM); (YHG); (SW)
| |
Collapse
|
31
|
Wang M, Fang C, Ma B, Luo X, Hou Z. Regulation of cytokinesis: FtsZ and its accessory proteins. Curr Genet 2019; 66:43-49. [PMID: 31209564 DOI: 10.1007/s00294-019-01005-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022]
Abstract
Bacterial cell division is a highly controlled process regulated accurately by a diverse array of proteins spatially and temporally working together. Among these proteins, FtsZ is recognized as a cytoskeleton protein because it can assemble into a ring-like structure called Z-ring at midcell. Z-ring recruits downstream proteins, thus forming a multiprotein complex termed the divisome. When the Z-ring scaffold is established and the divisome matures, peptidoglycan (PG) biosynthesis and chromosome segregation are triggered. In this review, we focus on multiple interactions between FtsZ and its accessory proteins in bacterial cell cytokinesis, including FtsZ localization, Z-ring formation and stabilization, PG biosynthesis, and chromosome segregation. Understanding the interactions among these proteins may help discover superior targets on treating bacterial infectious diseases.
Collapse
Affiliation(s)
- Mingzhi Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Chao Fang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Bo Ma
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xiaoxing Luo
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Zheng Hou
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
32
|
ParA proteins of secondary genome elements cross-talk and regulate radioresistance through genome copy number reduction in Deinococcus radiodurans. Biochem J 2019; 476:909-930. [DOI: 10.1042/bcj20180799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022]
Abstract
Abstract
Deinococcus radiodurans, an extremely radioresistant bacterium has a multipartite genome system and ploidy. Mechanisms underlying such types of bacterial genome maintenance and its role in extraordinary radioresistance are not known in this bacterium. Chromosome I (Chr I), chromosome II (Chr II) and megaplasmid (Mp) encode its own set of genome partitioning proteins. Here, we have characterized P-loop ATPases of Chr II (ParA2) and Mp (ParA3) and their roles in the maintenance of genome copies and extraordinary radioresistance. Purified ParA2 and ParA3 showed nearly similar polymerization kinetics and interaction patterns with DNA. Electron microscopic examination of purified proteins incubated with DNA showed polymerization on nicked circular dsDNA. ParA2 and ParA3 showed both homotypic and heterotypic interactions to each other, but not with ParA1 (ParA of Chr I). Similarly, ParA2 and ParA3 interacted with ParB2 and ParB3 but not with ParB1 in vivo. ParB2 and ParB3 interaction with cis-elements located upstream to the corresponding parAB operon was found to be sequence-specific. Unlike single mutant of parA2 and parA3, their double mutant (ΔparA2ΔParA3) affected copy number of cognate genome elements and resistance to γ-radiation as well as hydrogen peroxide in this bacterium. These results suggested that ParA2 and ParA3 are DNA-binding ATPases producing higher order polymers on DNA and are functionally redundant in the maintenance of secondary genome elements in D. radiodurans. The findings also suggest the involvement of secondary genome elements such as Chr II and Mp in the extraordinary radioresistance of D. radiodurans.
Collapse
|
33
|
Stamsås GA, Myrbråten IS, Straume D, Salehian Z, Veening JW, Håvarstein LS, Kjos M. CozEa and CozEb play overlapping and essential roles in controlling cell division in Staphylococcus aureus. Mol Microbiol 2018; 109:615-632. [PMID: 29884993 DOI: 10.1111/mmi.13999] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2018] [Indexed: 01/07/2023]
Abstract
Staphylococcus aureus needs to control the position and timing of cell division and cell wall synthesis to maintain its spherical shape. We identified two membrane proteins, named CozEa and CozEb, which together are important for proper cell division in S. aureus. CozEa and CozEb are homologs of the cell elongation regulator CozESpn of Streptococcus pneumoniae. While cozEa and cozEb were not essential individually, the ΔcozEaΔcozEb double mutant was lethal. To study the functions of cozEa and cozEb, we constructed a CRISPR interference (CRISPRi) system for S. aureus, allowing transcriptional knockdown of essential genes. CRISPRi knockdown of cozEa in the ΔcozEb strain (and vice versa) causes cell morphological defects and aberrant nucleoid staining, showing that cozEa and cozEb have overlapping functions and are important for normal cell division. We found that CozEa and CozEb interact with and possibly influence localization of the cell division protein EzrA. Furthermore, the CozE-EzrA interaction is conserved in S. pneumoniae, and cell division is mislocalized in cozESpn -depleted S. pneumoniae cells. Together, our results show that CozE proteins mediate control of cell division in S. aureus and S. pneumoniae, likely via interactions with key cell division proteins such as EzrA.
Collapse
Affiliation(s)
- Gro Anita Stamsås
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Ine Storaker Myrbråten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Daniel Straume
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Zhian Salehian
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Leiv Sigve Håvarstein
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
34
|
Lee W, Do T, Zhang G, Kahne D, Meredith TC, Walker S. Antibiotic Combinations That Enable One-Step, Targeted Mutagenesis of Chromosomal Genes. ACS Infect Dis 2018. [PMID: 29534563 DOI: 10.1021/acsinfecdis.8b00017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Targeted modification of bacterial chromosomes is necessary to understand new drug targets, investigate virulence factors, elucidate cell physiology, and validate results of -omics-based approaches. For some bacteria, reverse genetics remains a major bottleneck to progress in research. Here, we describe a compound-centric strategy that combines new negative selection markers with known positive selection markers to achieve simple, efficient one-step genome engineering of bacterial chromosomes. The method was inspired by the observation that certain nonessential metabolic pathways contain essential late steps, suggesting that antibiotics targeting a late step can be used to select for the absence of genes that control flux into the pathway. Guided by this hypothesis, we have identified antibiotic/counterselectable markers to accelerate reverse engineering of two increasingly antibiotic-resistant pathogens, Staphylococcus aureus and Acinetobacter baumannii. For S. aureus, we used wall teichoic acid biosynthesis inhibitors to select for the absence of tarO and for A. baumannii, we used colistin to select for the absence of lpxC. We have obtained desired gene deletions, gene fusions, and promoter swaps in a single plating step with perfect efficiency. Our method can also be adapted to generate markerless deletions of genes using FLP recombinase. The tools described here will accelerate research on two important pathogens, and the concept we outline can be readily adapted to any organism for which a suitable target pathway can be identified.
Collapse
Affiliation(s)
- Wonsik Lee
- Department of Microbiology and Immunobiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Truc Do
- Department of Microbiology and Immunobiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Ge Zhang
- Department of Microbiology and Immunobiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Timothy C. Meredith
- Department of Microbiology and Immunobiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
| |
Collapse
|
35
|
Vacca I. Splitting is never easy. Nat Rev Microbiol 2017; 15:514-515. [DOI: 10.1038/nrmicro.2017.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|