1
|
Fernández SG, Oria CG, Petit D, Annaert W, Ringman JM, Fox NC, Ryan NS, Chávez-Gutiérrez L. Spectrum of γ-Secretase dysfunction as a unifying predictor of ADAD age at onset across PSEN1, PSEN2 and APP causal genes. Mol Neurodegener 2025; 20:48. [PMID: 40281586 PMCID: PMC12032737 DOI: 10.1186/s13024-025-00832-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 03/30/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Autosomal Dominant Alzheimer's Disease (ADAD), caused by mutations in Presenilins (PSEN1/2) and Amyloid Precursor Protein (APP) genes, typically manifests with early onset (< 65 years). Age at symptom onset (AAO) is relatively consistent among carriers of the same PSEN1 mutation, but more variable for PSEN2 and APP variants, with these mutations associated with later AAOs than PSEN1. Understanding this clinical variability is crucial for understanding disease mechanisms, developing predictive models and tailored interventions in ADAD, with potential implications for sporadic AD. METHODS We performed biochemical assessment of γ-secretase dysfunction on 28 PSEN2 and 19 APP mutations, including disease-associated, unclear and benign variants. This analysis has been valuable in the assessment of PSEN1 variant pathogenicity, disease onset and progression. RESULTS Our analysis reveals linear correlations between the molecular composition of Aβ profiles and AAO for both PSEN2 (R2 = 0.52) and APP (R2 = 0.69) mutations. The integration of PSEN1, PSEN2 and APP correlation data shows parallel but shifted lines, suggesting a common pathogenic mechanism with gene-specific shifts in onset. We found overall "delays" in AAOs of 27 years for PSEN2 and 8 years for APP variants, compared to PSEN1. Notably, extremely inactivating PSEN1 variants delayed onset, suggesting that reduced contribution to brain APP processing underlies the later onset of PSEN2 variants. CONCLUSION This study supports a unified model of ADAD pathogenesis wherein γ-secretase dysfunction and the resulting shifts in Aβ profiles are central to disease onset across all causal genes. While similar shifts in Aβ occur across causal genes, their impact on AAO varies in the function of their contribution to APP processing in the brain. This biochemical analysis establishes quantitative relationships that enable predictive AAO modelling with implications for clinical practice and genetic research. Our findings also support the development of therapeutic strategies modulating γ-secretase across different genetic ADAD forms and potentially more broadly in AD.
Collapse
Affiliation(s)
- Sara Gutiérrez Fernández
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49 Box 602, Louvain, 3000, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49 Box 602, Louvain, 3000, Belgium
| | - Cristina Gan Oria
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49 Box 602, Louvain, 3000, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49 Box 602, Louvain, 3000, Belgium
| | - Dieter Petit
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49 Box 602, Louvain, 3000, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49 Box 602, Louvain, 3000, Belgium
| | - Wim Annaert
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49 Box 602, Louvain, 3000, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49 Box 602, Louvain, 3000, Belgium
| | - John M Ringman
- Department of Neurology, Alzheimer's Disease Research Center, Center for Health Professions, University of Southern California, 1520 Alcazar Street, Suite 210, Los Angeles, CA, 90033, USA
| | - Nick C Fox
- Dementia Research Institute at UCL, Queen Square, London, WC1 N 3BG, UK
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1 N 3BG, UK
| | - Natalie S Ryan
- Dementia Research Institute at UCL, Queen Square, London, WC1 N 3BG, UK
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1 N 3BG, UK
| | - Lucía Chávez-Gutiérrez
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49 Box 602, Louvain, 3000, Belgium.
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49 Box 602, Louvain, 3000, Belgium.
| |
Collapse
|
2
|
Wang D, Scalici A, Wang Y, Lin H, Pitsillides A, Heard-Costa N, Cruchaga C, Ziegemeier E, Bis JC, Fornage M, Boerwinkle E, De Jager PL, Wijsman E, Dupuis J, Renton AE, Seshadri S, Goate AM, DeStefano AL, Peloso GM. Frequency of variants in Mendelian Alzheimer's disease genes within the Alzheimer's Disease Sequencing Project. J Alzheimers Dis 2025; 104:841-851. [PMID: 40084664 DOI: 10.1177/13872877251320375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
BackgroundPrior studies examined variants within presenilin-2 (PSEN2), presenilin-1 (PSEN1), and amyloid precursor protein (APP) genes. However, previously-reported clinically-relevant variants and other predicted damaging missense (DM) variants have not been characterized in a newer release of the Alzheimer's Disease Sequencing Project (ADSP).ObjectiveTo characterize previously-reported clinically-relevant variants and DM variants in PSEN2, PSEN1, APP within the participants from the ADSP.MethodsWe identified rare variants (MAF < 1%) in PSEN2, PSEN1, and APP in 14,641 individuals with whole genome sequencing and 16,849 individuals with whole exome sequencing available (Ntotal = 31,490). We additionally curated variants from ClinVar, OMIM, and Alzforum and report carriers of variants in clinical databases as well as predicted DM variants in these genes.ResultsWe detected 31 previously-reported clinically-relevant variants with alternate alleles observed within the ADSP: 4 variants in PSEN2, 25 in PSEN1, and 2 in APP. The overall variant carrier rate for the 31 clinically-relevant variants in the ADSP was 0.3%. We observed that 79.5% of the variant carriers were cases compared to 3.9% were controls. In those with AD, the mean age of onset of AD among carriers of these clinically-relevant variants was 19.6 ± 1.4 years earlier compared with noncarriers (p = 7.8 × 10-57). Additionally, we identified 197 rare variants (MAF < 1%) within ADSP participants not reported in known clinical databases.ConclusionsA small proportion of individuals in the ADSP are carriers of a previously-reported clinically-relevant variant allele for AD and these participants have significantly earlier age of AD onset compared to noncarriers.
Collapse
Affiliation(s)
- Dongyu Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Alexandra Scalici
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Yanbing Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Achilleas Pitsillides
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Nancy Heard-Costa
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- NHLBI Framingham Heart Study, Framingham, MA, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Ellen Ziegemeier
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School and Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Ellen Wijsman
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Alan E Renton
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sudha Seshadri
- NHLBI Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's Disease and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anita L DeStefano
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- NHLBI Framingham Heart Study, Framingham, MA, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
3
|
Cocoș R, Popescu BO. Scrutinizing neurodegenerative diseases: decoding the complex genetic architectures through a multi-omics lens. Hum Genomics 2024; 18:141. [PMID: 39736681 DOI: 10.1186/s40246-024-00704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025] Open
Abstract
Neurodegenerative diseases present complex genetic architectures, reflecting a continuum from monogenic to oligogenic and polygenic models. Recent advances in multi-omics data, coupled with systems genetics, have significantly refined our understanding of how these data impact neurodegenerative disease mechanisms. To contextualize these genetic discoveries, we provide a comprehensive critical overview of genetic architecture concepts, from Mendelian inheritance to the latest insights from oligogenic and omnigenic models. We explore the roles of common and rare genetic variants, gene-gene and gene-environment interactions, and epigenetic influences in shaping disease phenotypes. Additionally, we emphasize the importance of multi-omics layers including genomic, transcriptomic, proteomic, epigenetic, and metabolomic data in elucidating the molecular mechanisms underlying neurodegeneration. Special attention is given to missing heritability and the contribution of rare variants, particularly in the context of pleiotropy and network pleiotropy. We examine the application of single-cell omics technologies, transcriptome-wide association studies, and epigenome-wide association studies as key approaches for dissecting disease mechanisms at tissue- and cell-type levels. Our review introduces the OmicPeak Disease Trajectory Model, a conceptual framework for understanding the genetic architecture of neurodegenerative disease progression, which integrates multi-omics data across biological layers and time points. This review highlights the critical importance of adopting a systems genetics approach to unravel the complex genetic architecture of neurodegenerative diseases. Finally, this emerging holistic understanding of multi-omics data and the exploration of the intricate genetic landscape aim to provide a foundation for establishing more refined genetic architectures of these diseases, enhancing diagnostic precision, predicting disease progression, elucidating pathogenic mechanisms, and refining therapeutic strategies for neurodegenerative conditions.
Collapse
Affiliation(s)
- Relu Cocoș
- Department of Medical Genetics, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania.
- Genomics Research and Development Institute, Bucharest, Romania.
| | - Bogdan Ovidiu Popescu
- Department of Clinical Neurosciences, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania.
| |
Collapse
|
4
|
Wang D, Scalici A, Wang Y, Lin H, Pitsillides A, Heard-Costa N, Cruchaga C, Ziegemeier E, Bis JC, Fornage M, Boerwinkle E, De Jager PL, Wijsman E, Dupuis J, Renton AE, Seshadri S, Goate AM, DeStefano AL, Peloso GM. Frequency of Variants in Mendelian Alzheimer's Disease Genes within the Alzheimer's Disease Sequencing Project (ADSP). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.10.24.23297227. [PMID: 37961373 PMCID: PMC10635182 DOI: 10.1101/2023.10.24.23297227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
BACKGROUND Prior studies using the ADSP data examined variants within presenilin-2 (PSEN2), presenilin-1 (PSEN1), and amyloid precursor protein (APP) genes. However, previously-reported clinically-relevant variants and other predicted damaging missense (DM) variants have not been characterized in a newer release of the Alzheimer's Disease Sequencing Project (ADSP). OBJECTIVE To characterize previously-reported clinically-relevant variants and DM variants in PSEN2, PSEN1, APP within the participants from the ADSP. METHODS We identified rare variants (MAF <1%) previously-reported in PSEN2, PSEN1, and APP in the available ADSP sample of 14,641 individuals with whole genome sequencing and 16,849 individuals with whole exome sequencing available for research-use (Ntotal = 31,490). We additionally curated variants in these three genes from ClinVar, OMIM, and Alzforum and report carriers of variants in clinical databases as well as predicted DM variants in these genes. RESULTS We detected 31 previously-reported clinically-relevant variants with alternate alleles observed within the ADSP: 4 variants in PSEN2, 25 in PSEN1, and 2 in APP. The overall variant carrier rate for the 31 clinically-relevant variants in the ADSP was 0.3%. We observed that 79.5% of the variant carriers were cases compared to 3.9% were controls. In those with AD, the mean age of onset of AD among carriers of these clinically-relevant variants was 19.6 ± 1.4 years earlier compared with noncarriers (p-value=7.8×10-57). CONCLUSION A small proportion of individuals in the ADSP are carriers of a previously-reported clinically-relevant variant allele for AD and these participants have significantly earlier age of AD onset compared to noncarriers.
Collapse
|
5
|
Yang Y, Bagyinszky E, An SSA. A Novel Rare PSEN2 Val226Ala in PSEN2 in a Korean Patient with Atypical Alzheimer's Disease, and the Importance of PSEN2 5th Transmembrane Domain (TM5) in AD Pathogenesis. Int J Mol Sci 2024; 25:9678. [PMID: 39273625 PMCID: PMC11395454 DOI: 10.3390/ijms25179678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
In this manuscript, a novel presenilin-2 (PSEN2) mutation, Val226Ala, was found in a 59-year-old Korean patient who exhibited rapid progressive memory dysfunction and hallucinations six months prior to her first visit to the hospital. Her Magnetic Resonance Imaging (MRI) showed brain atrophy, and both amyloid positron emission tomography (PET) and multimer detection system-oligomeric amyloid-beta (Aβ) results were positive. The patient was diagnosed with early onset Alzheimer's disease. The whole-exome analysis revealed a new PSEN2 Val226Ala mutation with heterozygosity in the 5th transmembrane domain of the PSEN2 protein near the lumen region. Analyses of the structural prediction suggested structural changes in the helix, specifically a loss of a hydrogen bond between Val226 and Gln229, which may lead to elevated helix motion. Multiple PSEN2 mutations were reported in PSEN2 transmembrane-5 (TM5), such as Tyr231Cys, Ile235Phe, Ala237Val, Leu238Phe, Leu238Pro, and Met239Thr, highlighting the dynamic importance of the 5th transmembrane domain of PSEN2. Mutations in TM5 may alter the access tunnel of the Aβ substrate in the membrane to the gamma-secretase active site, indicating a possible influence on enzyme function that increases Aβ production. Interestingly, the current patient with the Val226Ala mutation presented with a combination of hallucinations and memory dysfunction. Although the causal mechanisms of hallucinations in AD remain unclear, it is possible that PSEN2 interacts with other disease risk factors, including Notch Receptor 3 (NOTCH3) or Glucosylceramidase Beta-1 (GBA) variants, enhancing the occurrence of hallucinations. In conclusion, the direct or indirect role of PSEN2 Val226Ala in AD onset cannot be ruled out.
Collapse
Affiliation(s)
- YoungSoon Yang
- Department of Neurology, Soonchunhyang University College of Medicine, Cheonan Hospital, Cheonan 31151, Republic of Korea;
| | - Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Gachon University Graduate School of Environment, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Medical Research Institute, College of Bionano Technology, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
6
|
Calzari L, Dragani DF, Zanotti L, Inglese E, Danesi R, Cavagnola R, Brusati A, Ranucci F, Di Blasio AM, Persani L, Campi I, De Martino S, Farsetti A, Barbi V, Gottardi Zamperla M, Baldrighi GN, Gaetano C, Parati G, Gentilini D. Epigenetic patterns, accelerated biological aging, and enhanced epigenetic drift detected 6 months following COVID-19 infection: insights from a genome-wide DNA methylation study. Clin Epigenetics 2024; 16:112. [PMID: 39164752 PMCID: PMC11337605 DOI: 10.1186/s13148-024-01724-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND The epigenetic status of patients 6-month post-COVID-19 infection remains largely unexplored. The existence of long-COVID, or post-acute sequelae of SARS-CoV-2 infection (PASC), suggests potential long-term changes. Long-COVID includes symptoms like fatigue, neurological issues, and organ-related problems, regardless of initial infection severity. The mechanisms behind long-COVID are unclear, but virus-induced epigenetic changes could play a role. METHODS AND RESULTS Our study explores the lasting epigenetic impacts of SARS-CoV-2 infection. We analyzed genome-wide DNA methylation patterns in an Italian cohort of 96 patients 6 months after COVID-19 exposure, comparing them to 191 healthy controls. We identified 42 CpG sites with significant methylation differences (FDR < 0.05), primarily within CpG islands and gene promoters. Dysregulated genes highlighted potential links to glutamate/glutamine metabolism, which may be relevant to PASC symptoms. Key genes with potential significance to COVID-19 infection and long-term effects include GLUD1, ATP1A3, and ARRB2. Furthermore, Horvath's epigenetic clock showed a slight but significant age acceleration in post-COVID-19 patients. We also observed a substantial increase in stochastic epigenetic mutations (SEMs) in the post-COVID-19 group, implying potential epigenetic drift. SEM analysis identified 790 affected genes, indicating dysregulation in pathways related to insulin resistance, VEGF signaling, apoptosis, hypoxia response, T-cell activation, and endothelin signaling. CONCLUSIONS Our study provides valuable insights into the epigenetic consequences of COVID-19. Results suggest possible associations with accelerated aging, epigenetic drift, and the disruption of critical biological pathways linked to insulin resistance, immune response, and vascular health. Understanding these epigenetic changes could be crucial for elucidating the complex mechanisms behind long-COVID and developing targeted therapeutic interventions.
Collapse
Affiliation(s)
- Luciano Calzari
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy
| | - Davide Fernando Dragani
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy
| | - Lucia Zanotti
- Department of Cardiology, S. Luca Hospital, IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Elvira Inglese
- Clinical Chemistry Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Romano Danesi
- Clinical Chemistry Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milan, Italy
| | - Rebecca Cavagnola
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Alberto Brusati
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Francesco Ranucci
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Anna Maria Di Blasio
- Molecular Biology Laboratory, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy
| | - Luca Persani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, Lab of Endocrine and Metabolic Research, San Luca Hospital, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Irene Campi
- Department of Endocrine and Metabolic Diseases, Lab of Endocrine and Metabolic Research, San Luca Hospital, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Sara De Martino
- Consiglio Nazionale delle Ricerche (CNR) - IASI, Rome, Italy
| | | | - Veronica Barbi
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100, Pavia, Italy
| | - Michela Gottardi Zamperla
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100, Pavia, Italy
| | - Giulia Nicole Baldrighi
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100, Pavia, Italy
| | - Gianfranco Parati
- Department of Cardiology, S. Luca Hospital, IRCCS, Istituto Auxologico Italiano, Milan, Italy
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Davide Gentilini
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy.
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy.
| |
Collapse
|
7
|
Fernandez MV, Liu M, Beric A, Johnson M, Cetin A, Patel M, Budde J, Kohlfeld P, Bergmann K, Lowery J, Flynn A, Brock W, Sanchez Montejo B, Gentsch J, Sykora N, Norton J, Gentsch J, Valdez O, Gorijala P, Sanford J, Sun Y, Wang C, Western D, Timsina J, Mangetti Goncalves T, Do AN, Sung YJ, Zhao G, Morris JC, Moulder K, Holtzman DM, Bateman RJ, Karch C, Hassenstab J, Xiong C, Schindler SE, Balls-Berry JJ, Benzinger TLS, Perrin RJ, Denny A, Snider BJ, Stark SL, Ibanez L, Cruchaga C. Genetic and multi-omic resources for Alzheimer disease and related dementia from the Knight Alzheimer Disease Research Center. Sci Data 2024; 11:768. [PMID: 38997326 PMCID: PMC11245521 DOI: 10.1038/s41597-024-03485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/06/2024] [Indexed: 07/14/2024] Open
Abstract
The Knight-Alzheimer Disease Research Center (Knight-ADRC) at Washington University in St. Louis has pioneered and led worldwide seminal studies that have expanded our clinical, social, pathological, and molecular understanding of Alzheimer Disease. Over more than 40 years, research volunteers have been recruited to participate in cognitive, neuropsychologic, imaging, fluid biomarkers, genomic and multi-omic studies. Tissue and longitudinal data collected to foster, facilitate, and support research on dementia and aging. The Genetics and high throughput -omics core (GHTO) have collected of more than 26,000 biological samples from 6,625 Knight-ADRC participants. Samples available include longitudinal DNA, RNA, non-fasted plasma, cerebrospinal fluid pellets, and peripheral blood mononuclear cells. The GHTO has performed deep molecular profiling (genomic, transcriptomic, epigenomic, proteomic, and metabolomic) from large number of brain (n = 2,117), CSF (n = 2,012) and blood/plasma (n = 8,265) samples with the goal of identifying novel risk and protective variants, identify novel molecular biomarkers and causal and druggable targets. Overall, the resources available at GHTO support the increase of our understanding of Alzheimer Disease.
Collapse
Affiliation(s)
- Maria Victoria Fernandez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Research Center and Memory Clinic, ACE Alzheimer Center, Barcelona, Spain
| | - Menghan Liu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Aleksandra Beric
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Matt Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Arda Cetin
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Maulik Patel
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - John Budde
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Pat Kohlfeld
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kristy Bergmann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joseph Lowery
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Allison Flynn
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - William Brock
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brenda Sanchez Montejo
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jen Gentsch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Nicholas Sykora
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joanne Norton
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jen Gentsch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Olga Valdez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Priyanka Gorijala
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jessie Sanford
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yichen Sun
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ciyang Wang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Dan Western
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | - Anh N Do
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Guoyan Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Pathology and Immunology Department, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Krista Moulder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Dominantly Inherited Alzheimer Disease Network (DIAN), St. Louis, USA
| | - Celeste Karch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Dominantly Inherited Alzheimer Disease Network (DIAN), St. Louis, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Dominantly Inherited Alzheimer Disease Network (DIAN), St. Louis, USA
| | - Suzanne E Schindler
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Joyce Joy Balls-Berry
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Tammie L S Benzinger
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Dominantly Inherited Alzheimer Disease Network (DIAN), St. Louis, USA
- Radiology Department, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Richard J Perrin
- Pathology and Immunology Department, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Dominantly Inherited Alzheimer Disease Network (DIAN), St. Louis, USA
| | - Andrea Denny
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - B Joy Snider
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan L Stark
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Occupational Therapy, Neurology and Social Work, St. Louis, USA
| | - Laura Ibanez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Dominantly Inherited Alzheimer Disease Network (DIAN), St. Louis, USA.
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA.
- Dominantly Inherited Alzheimer Disease Network (DIAN), St. Louis, USA.
| |
Collapse
|
8
|
Chia R, Ray A, Shah Z, Ding J, Ruffo P, Fujita M, Menon V, Saez-Atienzar S, Reho P, Kaivola K, Walton RL, Reynolds RH, Karra R, Sait S, Akcimen F, Diez-Fairen M, Alvarez I, Fanciulli A, Stefanova N, Seppi K, Duerr S, Leys F, Krismer F, Sidoroff V, Zimprich A, Pirker W, Rascol O, Foubert-Samier A, Meissner WG, Tison F, Pavy-Le Traon A, Pellecchia MT, Barone P, Russillo MC, Marín-Lahoz J, Kulisevsky J, Torres S, Mir P, Periñán MT, Proukakis C, Chelban V, Wu L, Goh YY, Parkkinen L, Hu MT, Kobylecki C, Saxon JA, Rollinson S, Garland E, Biaggioni I, Litvan I, Rubio I, Alcalay RN, Kwei KT, Lubbe SJ, Mao Q, Flanagan ME, Castellani RJ, Khurana V, Ndayisaba A, Calvo A, Mora G, Canosa A, Floris G, Bohannan RC, Moore A, Norcliffe-Kaufmann L, Palma JA, Kaufmann H, Kim C, Iba M, Masliah E, Dawson TM, Rosenthal LS, Pantelyat A, Albert MS, Pletnikova O, Troncoso JC, Infante J, Lage C, Sánchez-Juan P, Serrano GE, Beach TG, Pastor P, Morris HR, Albani D, Clarimon J, Wenning GK, Hardy JA, Ryten M, Topol E, Torkamani A, Chiò A, Bennett DA, De Jager PL, Low PA, Singer W, Cheshire WP, Wszolek ZK, Dickson DW, et alChia R, Ray A, Shah Z, Ding J, Ruffo P, Fujita M, Menon V, Saez-Atienzar S, Reho P, Kaivola K, Walton RL, Reynolds RH, Karra R, Sait S, Akcimen F, Diez-Fairen M, Alvarez I, Fanciulli A, Stefanova N, Seppi K, Duerr S, Leys F, Krismer F, Sidoroff V, Zimprich A, Pirker W, Rascol O, Foubert-Samier A, Meissner WG, Tison F, Pavy-Le Traon A, Pellecchia MT, Barone P, Russillo MC, Marín-Lahoz J, Kulisevsky J, Torres S, Mir P, Periñán MT, Proukakis C, Chelban V, Wu L, Goh YY, Parkkinen L, Hu MT, Kobylecki C, Saxon JA, Rollinson S, Garland E, Biaggioni I, Litvan I, Rubio I, Alcalay RN, Kwei KT, Lubbe SJ, Mao Q, Flanagan ME, Castellani RJ, Khurana V, Ndayisaba A, Calvo A, Mora G, Canosa A, Floris G, Bohannan RC, Moore A, Norcliffe-Kaufmann L, Palma JA, Kaufmann H, Kim C, Iba M, Masliah E, Dawson TM, Rosenthal LS, Pantelyat A, Albert MS, Pletnikova O, Troncoso JC, Infante J, Lage C, Sánchez-Juan P, Serrano GE, Beach TG, Pastor P, Morris HR, Albani D, Clarimon J, Wenning GK, Hardy JA, Ryten M, Topol E, Torkamani A, Chiò A, Bennett DA, De Jager PL, Low PA, Singer W, Cheshire WP, Wszolek ZK, Dickson DW, Traynor BJ, Gibbs JR, Dalgard CL, Ross OA, Houlden H, Scholz SW. Genome sequence analyses identify novel risk loci for multiple system atrophy. Neuron 2024; 112:2142-2156.e5. [PMID: 38701790 PMCID: PMC11223971 DOI: 10.1016/j.neuron.2024.04.002] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/28/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
Multiple system atrophy (MSA) is an adult-onset, sporadic synucleinopathy characterized by parkinsonism, cerebellar ataxia, and dysautonomia. The genetic architecture of MSA is poorly understood, and treatments are limited to supportive measures. Here, we performed a comprehensive analysis of whole genome sequence data from 888 European-ancestry MSA cases and 7,128 controls to systematically investigate the genetic underpinnings of this understudied neurodegenerative disease. We identified four significantly associated risk loci using a genome-wide association study approach. Transcriptome-wide association analyses prioritized USP38-DT, KCTD7, and lnc-KCTD7-2 as novel susceptibility genes for MSA within these loci, and single-nucleus RNA sequence analysis found that the associated variants acted as cis-expression quantitative trait loci for multiple genes across neuronal and glial cell types. In conclusion, this study highlights the role of genetic determinants in the pathogenesis of MSA, and the publicly available data from this study represent a valuable resource for investigating synucleinopathies.
Collapse
Affiliation(s)
- Ruth Chia
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Anindita Ray
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Zalak Shah
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Jinhui Ding
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Paola Ruffo
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA; Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Masashi Fujita
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Sara Saez-Atienzar
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Paolo Reho
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Karri Kaivola
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ronald L Walton
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Regina H Reynolds
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK; Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Ramita Karra
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Shaimaa Sait
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Fulya Akcimen
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Monica Diez-Fairen
- Memory and Movement Disorders Units, Department of Neurology, University Hospital Mutua de Terrassa, Barcelona, Spain
| | - Ignacio Alvarez
- Memory and Movement Disorders Units, Department of Neurology, University Hospital Mutua de Terrassa, Barcelona, Spain
| | | | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Susanne Duerr
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Fabian Leys
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Victoria Sidoroff
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Walter Pirker
- Department of Neurology, Klinik Ottakring - Wilhelminenspital, Vienna, Austria
| | - Olivier Rascol
- MSA French Reference Center and CIC-1436, Department of Clinical Pharmacology and Neurosciences, University of Toulouse, Toulouse, France
| | - Alexandra Foubert-Samier
- Service de Neurologie des Maladies Neurodégénératives, French Reference Center for MSA, NS-Park/FCRIN Network, CHU Bordeaux, Bordeaux, France
| | - Wassilios G Meissner
- Service de Neurologie des Maladies Neurodégénératives, French Reference Center for MSA, NS-Park/FCRIN Network, CHU Bordeaux, Bordeaux, France; University of Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France; Department of Medicine, University of Otago, and the New Zealand Brain Research Institute, Christchurch, New Zealand
| | - François Tison
- Service de Neurologie des Maladies Neurodégénératives, French Reference Center for MSA, NS-Park/FCRIN Network, CHU Bordeaux, Bordeaux, France; University of Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
| | - Anne Pavy-Le Traon
- French Reference Center for MSA, Department of Neurosciences, Centre d'Investigation Clinique de Toulouse CIC1436, UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University Hospital of Toulouse, INSERM, Toulouse, France
| | - Maria Teresa Pellecchia
- Neuroscience Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Paolo Barone
- Neuroscience Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Maria Claudia Russillo
- Neuroscience Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Juan Marín-Lahoz
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Centro de Investigación en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain; Servicio de Neurología, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Centro de Investigación en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Soraya Torres
- Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Centro de Investigación en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pablo Mir
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain; Departamento de Medicina Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Maria Teresa Periñán
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain; Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University, London, UK
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| | - Viorica Chelban
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK; The National Hospital for Neurology and Neurosurgery, London, UK
| | - Lesley Wu
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK
| | - Yee Y Goh
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK
| | - Laura Parkkinen
- Nuffield Department of Clinical Neurosciences, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Michele T Hu
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Christopher Kobylecki
- Department of Neurology, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK
| | - Jennifer A Saxon
- Cerebral Function Unit, Manchester Centre for Clinical Neurosciences, Salfort, UK; Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Sara Rollinson
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Emily Garland
- Autonomic Dysfunction Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Italo Biaggioni
- Autonomic Dysfunction Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Irene Litvan
- Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Ileana Rubio
- Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Roy N Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Kimberly T Kwei
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Steven J Lubbe
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qinwen Mao
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Margaret E Flanagan
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA; Department of Pathology, UT Health San Antonio, San Antonio, TX, USA
| | - Rudolph J Castellani
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Vikram Khurana
- Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Alain Ndayisaba
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria; Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrea Calvo
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Gabriele Mora
- Istituti Clinici Scientifici Maugeri, IRCCS, Milan, Italy
| | - Antonio Canosa
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Gianluca Floris
- Department of Neurology, University Hospital of Cagliari, Cagliari, Italy
| | - Ryan C Bohannan
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Anni Moore
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | | | - Jose-Alberto Palma
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Horacio Kaufmann
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Changyoun Kim
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Michiyo Iba
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Eliezer Masliah
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Ted M Dawson
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA; Neuroregeneration and Stem Cell Programs, Institute of Cell Engineering, Johns Hopkins University Medical Center, Baltimore, MD, USA; Department of Pharmacology and Molecular Science, Johns Hopkins University Medical Center, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Alexander Pantelyat
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Marilyn S Albert
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Olga Pletnikova
- Department of Pathology (Neuropathology), Johns Hopkins University Medical Center, Baltimore, MD, USA; Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Juan C Troncoso
- Department of Pathology (Neuropathology), Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Jon Infante
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL-UC-CIBERNED, Santander, Spain
| | - Carmen Lage
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL-UC-CIBERNED, Santander, Spain
| | - Pascual Sánchez-Juan
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL-UC-CIBERNED, Santander, Spain; Alzheimer's Centre Reina Sofia-CIEN Foundation-ISCIII, Madrid, Spain
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Pau Pastor
- Genomics and Transcriptomics of Synucleinopathies, Neurosciences, The Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain; Unit of Neurodegenerative Diseases, Department of Neurology, University Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Huw R Morris
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Diego Albani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Jordi Clarimon
- Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; The Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Gregor K Wenning
- Autonomic Unit - Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - John A Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK; UK Dementia Research Institute of UCL, UCL Institute of Neurology, University College London, London, UK; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London, UK; UCL Movement Disorders Centre, University College London, London, UK; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Mina Ryten
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK; Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK
| | - Eric Topol
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA
| | - Ali Torkamani
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA
| | - Adriano Chiò
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Institute of Cognitive Sciences and Technologies, C.N.R., Rome, Italy; Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Philip A Low
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA; RNA Therapeutics Laboratory, Therapeutics Development Branch, National Center for Advancing Translational Sciences, Rockville, MD, USA
| | - J Raphael Gibbs
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA
| | - Henry Houlden
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK; The National Hospital for Neurology and Neurosurgery, London, UK
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA.
| |
Collapse
|
9
|
Firdaus Z, Li X. Unraveling the Genetic Landscape of Neurological Disorders: Insights into Pathogenesis, Techniques for Variant Identification, and Therapeutic Approaches. Int J Mol Sci 2024; 25:2320. [PMID: 38396996 PMCID: PMC10889342 DOI: 10.3390/ijms25042320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Genetic abnormalities play a crucial role in the development of neurodegenerative disorders (NDDs). Genetic exploration has indeed contributed to unraveling the molecular complexities responsible for the etiology and progression of various NDDs. The intricate nature of rare and common variants in NDDs contributes to a limited understanding of the genetic risk factors associated with them. Advancements in next-generation sequencing have made whole-genome sequencing and whole-exome sequencing possible, allowing the identification of rare variants with substantial effects, and improving the understanding of both Mendelian and complex neurological conditions. The resurgence of gene therapy holds the promise of targeting the etiology of diseases and ensuring a sustained correction. This approach is particularly enticing for neurodegenerative diseases, where traditional pharmacological methods have fallen short. In the context of our exploration of the genetic epidemiology of the three most prevalent NDDs-amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease, our primary goal is to underscore the progress made in the development of next-generation sequencing. This progress aims to enhance our understanding of the disease mechanisms and explore gene-based therapies for NDDs. Throughout this review, we focus on genetic variations, methodologies for their identification, the associated pathophysiology, and the promising potential of gene therapy. Ultimately, our objective is to provide a comprehensive and forward-looking perspective on the emerging research arena of NDDs.
Collapse
Affiliation(s)
- Zeba Firdaus
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
10
|
Mathioudakis L, Dimovasili C, Bourbouli M, Latsoudis H, Kokosali E, Gouna G, Vogiatzi E, Basta M, Kapetanaki S, Panagiotakis S, Kanterakis A, Boumpas D, Lionis C, Plaitakis A, Simos P, Vgontzas A, Kafetzopoulos D, Zaganas I. Study of Alzheimer's disease- and frontotemporal dementia-associated genes in the Cretan Aging Cohort. Neurobiol Aging 2023; 123:111-128. [PMID: 36117051 DOI: 10.1016/j.neurobiolaging.2022.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 02/02/2023]
Abstract
Using exome sequencing, we analyzed 196 participants of the Cretan Aging Cohort (CAC; 95 with Alzheimer's disease [AD], 20 with mild cognitive impairment [MCI], and 81 cognitively normal controls). The APOE ε4 allele was more common in AD patients (23.2%) than in controls (7.4%; p < 0.01) and the PSEN2 p.Arg29His and p.Cys391Arg variants were found in 3 AD and 1 MCI patient, respectively. Also, we found the frontotemporal dementia (FTD)-associated TARDBP gene p.Ile383Val variant in 2 elderly patients diagnosed with AD and in 2 patients, non CAC members, with the amyotrophic lateral sclerosis/FTD phenotype. Furthermore, the p.Ser498Ala variant in the positively selected GLUD2 gene was less frequent in AD patients (2.11%) than in controls (16%; p < 0.01), suggesting a possible protective effect. While the same trend was found in another local replication cohort (n = 406) and in section of the ADNI cohort (n = 808), this finding did not reach statistical significance and therefore it should be considered preliminary. Our results attest to the value of genetic testing to study aged adults with AD phenotype.
Collapse
Affiliation(s)
- Lambros Mathioudakis
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Christina Dimovasili
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Mara Bourbouli
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Helen Latsoudis
- Minotech Genomics Facility, Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Heraklion, Crete, Greece
| | - Evgenia Kokosali
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Garyfallia Gouna
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Emmanouella Vogiatzi
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Maria Basta
- University of Crete, Medical School, Psychiatry Department, Heraklion, Crete, Greece
| | - Stefania Kapetanaki
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Simeon Panagiotakis
- University of Crete, Medical School, Internal Medicine Department, Heraklion, Crete, Greece
| | - Alexandros Kanterakis
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas (ICS-FORTH), Heraklion, Crete, Greece
| | - Dimitrios Boumpas
- University of Crete, Medical School, Internal Medicine Department, Heraklion, Crete, Greece
| | - Christos Lionis
- University of Crete, Medical School, Clinic of Social and Family Medicine, Heraklion, Crete, Greece
| | - Andreas Plaitakis
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Panagiotis Simos
- University of Crete, Medical School, Psychiatry Department, Heraklion, Crete, Greece
| | - Alexandros Vgontzas
- University of Crete, Medical School, Psychiatry Department, Heraklion, Crete, Greece
| | - Dimitrios Kafetzopoulos
- Minotech Genomics Facility, Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Heraklion, Crete, Greece
| | - Ioannis Zaganas
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece.
| |
Collapse
|
11
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
12
|
Reyes‐Dumeyer D, Faber K, Vardarajan B, Goate A, Renton A, Chao M, Boeve B, Cruchaga C, Pericak‐Vance M, Haines JL, Rosenberg R, Tsuang D, Sweet RA, Bennett DA, Wilson RS, Foroud T, Mayeux R. The National Institute on Aging Late-Onset Alzheimer's Disease Family Based Study: A resource for genetic discovery. Alzheimers Dement 2022; 18:1889-1897. [PMID: 34978149 PMCID: PMC9250549 DOI: 10.1002/alz.12514] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/25/2021] [Accepted: 08/11/2021] [Indexed: 02/02/2023]
Abstract
INTRODUCTION The National Institute on Aging Late-Onset Alzheimer's Disease Family Based Study (NIA-LOAD FBS) was established to study the genetic etiology of Alzheimer's disease (AD). METHODS Recruitment focused on families with two living affected siblings and a third first-degree relative similar in age with or without dementia. Uniform assessments were completed, DNA was obtained, as was neuropathology, when possible. Apolipoprotein E (APOE) genotypes, genome-wide single nucleotide polymorphism (SNP) arrays, and sequencing was completed in most families. RESULTS APOE genotype modified the age-at-onset in many large families. Novel variants and known variants associated with early- and late-onset AD and frontotemporal dementia were identified supporting an international effort to solve AD genetics. DISCUSSION The NIA-LOAD FBS is the largest collection of familial AD worldwide, and data or samples have been included in 123 publications addressing the genetic etiology of AD. Genetic heterogeneity and variability in the age-at-onset provides opportunities to investigate the complexity of familial AD.
Collapse
Affiliation(s)
- Dolly Reyes‐Dumeyer
- Department of NeurologyTaub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky Center, Columbia University in the City of New YorkNew YorkNew YorkUSA
| | - Kelley Faber
- Department of Medical and Molecular GeneticsNational Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD)Indiana University School of MedicineIndianapolisIndianaUSA
| | - Badri Vardarajan
- Department of NeurologyTaub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky Center, Columbia University in the City of New YorkNew YorkNew YorkUSA
| | - Alison Goate
- Department of Genetics & Genomic SciencesRonald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Alan Renton
- Department of Genetics & Genomic SciencesRonald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Michael Chao
- Department of Genetics & Genomic SciencesRonald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Brad Boeve
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
| | - Carlos Cruchaga
- Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA
| | - Margaret Pericak‐Vance
- John P. Hussman Institute for Human GenomicsDr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of MedicineMiamiFloridaUSA
| | - Jonathan L. Haines
- Department of Population & Quantitative Health Sciences and Cleveland Institute for Computational BiologyCase Western Reserve UniversityClevelandOhioUSA
| | - Roger Rosenberg
- Department of NeurologyUniversity of Texas Southwestern Medical Center at DallasDallasTexasUSA
| | - Debby Tsuang
- GRECC VA Puget SoundDepartment of Psychiatry and Behavioral SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Robert A. Sweet
- Departments of Psychiatry and NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Robert S. Wilson
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Tatiana Foroud
- Department of Medical and Molecular GeneticsNational Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD)Indiana University School of MedicineIndianapolisIndianaUSA
| | - Richard Mayeux
- Department of NeurologyTaub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky Center, Columbia University in the City of New YorkNew YorkNew YorkUSA
| |
Collapse
|
13
|
Chen HH, Eteleeb A, Wang C, Fernandez MV, Budde JP, Bergmann K, Norton J, Wang F, Ebl C, Morris JC, Perrin RJ, Bateman RJ, McDade E, Xiong C, Goate A, Farlow M, Chhatwal J, Schofield PR, Chui H, Harari O, Cruchaga C, Ibanez L, Dominantly Inherited Alzheimer Network. Circular RNA detection identifies circPSEN1 alterations in brain specific to autosomal dominant Alzheimer's disease. Acta Neuropathol Commun 2022; 10:29. [PMID: 35246267 PMCID: PMC8895634 DOI: 10.1186/s40478-022-01328-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/07/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Autosomal-dominant Alzheimer's disease (ADAD) is caused by pathogenic mutations in APP, PSEN1, and PSEN2, which usually lead to an early age at onset (< 65). Circular RNAs are a family of non-coding RNAs highly expressed in the nervous system and especially in synapses. We aimed to investigate differences in brain gene expression of linear and circular transcripts from the three ADAD genes in controls, sporadic AD, and ADAD. METHODS We obtained and sequenced RNA from brain cortex using standard protocols. Linear counts were obtained using the TOPMed pipeline; circular counts, using python package DCC. After stringent quality control (QC), we obtained the counts for PSEN1, PSEN2 and APP genes. Only circPSEN1 passed QC. We used DESeq2 to compare the counts across groups, correcting for biological and technical variables. Finally, we performed in-silico functional analyses using the Circular RNA interactome website and DIANA mirPath software. RESULTS Our results show significant differences in gene counts of circPSEN1 in ADAD individuals, when compared to sporadic AD and controls (ADAD = 21, AD = 253, Controls = 23-ADADvsCO: log2FC = 0.794, p = 1.63 × 10-04, ADADvsAD: log2FC = 0.602, p = 8.22 × 10-04). The high gene counts are contributed by two circPSEN1 species (hsa_circ_0008521 and hsa_circ_0003848). No significant differences were observed in linear PSEN1 gene expression between cases and controls, indicating that this finding is specific to the circular forms. In addition, the high circPSEN1 levels do not seem to be specific to PSEN1 mutation carriers; the counts are also elevated in APP and PSEN2 mutation carriers. In-silico functional analyses suggest that circPSEN1 is involved in several pathways such as axon guidance (p = 3.39 × 10-07), hippo signaling pathway (p = 7.38 × 10-07), lysine degradation (p = 2.48 × 10-05) or Wnt signaling pathway (p = 5.58 × 10-04) among other KEGG pathways. Additionally, circPSEN1 counts were able to discriminate ADAD from sporadic AD and controls with an AUC above 0.70. CONCLUSIONS Our findings show the differential expression of circPSEN1 is increased in ADAD. Given the biological function previously ascribed to circular RNAs and the results of our in-silico analyses, we hypothesize that this finding might be related to neuroinflammatory events that lead or that are caused by the accumulation of amyloid-beta.
Collapse
Affiliation(s)
- Hsiang-Han Chen
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Abdallah Eteleeb
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Ciyang Wang
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Maria Victoria Fernandez
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - John P. Budde
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Kristy Bergmann
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Joanne Norton
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Fengxian Wang
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Curtis Ebl
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - John C. Morris
- Hope Center for Neurological Disorders, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Richard J. Perrin
- Hope Center for Neurological Disorders, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Randall J. Bateman
- Hope Center for Neurological Disorders, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Eric McDade
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Alison Goate
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Martin Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Jasmeer Chhatwal
- Department of Neurology, Massachusetts General Hospital, Boston, MA USA
| | - Peter R. Schofield
- Neuroscience Research Australia, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Helena Chui
- Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA USA
| | - Oscar Harari
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Hope Center for Neurological Disorders, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Hope Center for Neurological Disorders, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Genetics, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Laura Ibanez
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Dominantly Inherited Alzheimer Network
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Hope Center for Neurological Disorders, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Division of Biostatistics, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA USA
- Neuroscience Research Australia, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
- Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA USA
- Department of Genetics, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| |
Collapse
|
14
|
Luukkainen L, Huttula S, Väyrynen H, Helisalmi S, Kytövuori L, Haapasalo A, Hiltunen M, Remes AM, Krüger J. Mutation Analysis of the Genes Associated with Parkinson's Disease in a Finnish Cohort of Early-Onset Dementia. J Alzheimers Dis 2021; 76:955-965. [PMID: 32568194 DOI: 10.3233/jad-200069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease, frontotemporal lobar degeneration, dementia with Lewy bodies, and Parkinson's disease (PD) overlap in clinical characteristics, neuropathology, and genetics. OBJECTIVE The aim of this study was to evaluate the role of pathogenic mutations and rare variants in genes associated with PD among early-onset dementia (EOD) patients. METHODS Rare non-synonymous variants (MAF < 0.01) in ten genes (SNCA, PARK2, PARK7, LRRK2, PINK1, ATP13A2, UCHL1, HTRA2, GBA, and SNCAIP) and low-frequency (MAF < 0.05) GBA variants were screened using a targeted next-generation sequencing panel in a strictly defined cohort of 37 early-onset (age at onset (AAO) <65 years) dementia patients presenting with atypical features (e.g., myoclonia or spasticity), rapidly progressive course of the disease or with a family history of dementia. The identified variations were further screened in a larger cohort of EOD (n = 279, mean AAO 57, range 36-65) patients. RESULTS No pathogenic mutations were found, but we identified seven possible risk variants for neurodegeneration (LRRK2 p.Arg793Met, PARK2 p.Ala82Glu, SNCAIP p.Arg240Gln, SNCAIP p.Phe369Leu, GBA p.Asn409Ser, GBA p.Glu365Lys, GBA p.Thr408Met). DISCUSSION Altogether, the frequency of these variants was two times higher in the first selected cohort compared to the whole cohort. This suggests that specific rare variants in the genes associated with PD might play a role also especially in familial EOD.
Collapse
Affiliation(s)
- Laura Luukkainen
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,Unit of Cancer and Translational Research, Pathology, University of Oulu, Oulu, Finland.,MRC, Oulu University Hospital, Oulu, Finland
| | - Samuli Huttula
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,MRC, Oulu University Hospital, Oulu, Finland
| | - Henri Väyrynen
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,MRC, Oulu University Hospital, Oulu, Finland
| | - Seppo Helisalmi
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Laura Kytövuori
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,MRC, Oulu University Hospital, Oulu, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Anne M Remes
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,MRC, Oulu University Hospital, Oulu, Finland
| | - Johanna Krüger
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,MRC, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
15
|
Moreno-Grau S, Fernández MV, de Rojas I, Garcia-González P, Hernández I, Farias F, Budde JP, Quintela I, Madrid L, González-Pérez A, Montrreal L, Alarcón-Martín E, Alegret M, Maroñas O, Pineda JA, Macías J, Marquié M, Valero S, Benaque A, Clarimón J, Bullido MJ, García-Ribas G, Pástor P, Sánchez-Juan P, Álvarez V, Piñol-Ripoll G, García-Alberca JM, Royo JL, Franco-Macías E, Mir P, Calero M, Medina M, Rábano A, Ávila J, Antúnez C, Real LM, Orellana A, Carracedo Á, Sáez ME, Tárraga L, Boada M, Cruchaga C, Ruiz A. Long runs of homozygosity are associated with Alzheimer's disease. Transl Psychiatry 2021; 11:142. [PMID: 33627629 PMCID: PMC7904832 DOI: 10.1038/s41398-020-01145-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 11/12/2022] Open
Abstract
Long runs of homozygosity (ROH) are contiguous stretches of homozygous genotypes, which are a footprint of inbreeding and recessive inheritance. The presence of recessive loci is suggested for Alzheimer's disease (AD); however, their search has been poorly assessed to date. To investigate homozygosity in AD, here we performed a fine-scale ROH analysis using 10 independent cohorts of European ancestry (11,919 AD cases and 9181 controls.) We detected an increase of homozygosity in AD cases compared to controls [βAVROH (CI 95%) = 0.070 (0.037-0.104); P = 3.91 × 10-5; βFROH (CI95%) = 0.043 (0.009-0.076); P = 0.013]. ROHs increasing the risk of AD (OR > 1) were significantly overrepresented compared to ROHs increasing protection (p < 2.20 × 10-16). A significant ROH association with AD risk was detected upstream the HS3ST1 locus (chr4:11,189,482‒11,305,456), (β (CI 95%) = 1.09 (0.48 ‒ 1.48), p value = 9.03 × 10-4), previously related to AD. Next, to search for recessive candidate variants in ROHs, we constructed a homozygosity map of inbred AD cases extracted from an outbred population and explored ROH regions in whole-exome sequencing data (N = 1449). We detected a candidate marker, rs117458494, mapped in the SPON1 locus, which has been previously associated with amyloid metabolism. Here, we provide a research framework to look for recessive variants in AD using outbred populations. Our results showed that AD cases have enriched homozygosity, suggesting that recessive effects may explain a proportion of AD heritability.
Collapse
Affiliation(s)
- Sonia Moreno-Grau
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
| | - Maria Victoria Fernández
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Itziar de Rojas
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
| | - Pablo Garcia-González
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Isabel Hernández
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Fabiana Farias
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States of America
| | - John P Budde
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Inés Quintela
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Laura Madrid
- CAEBI. Centro Andaluz de Estudios Bioinformáticos, Sevilla, Spain
| | | | - Laura Montrreal
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Emilio Alarcón-Martín
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Montserrat Alegret
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Olalla Maroñas
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan Antonio Pineda
- Unidad Clínica de Enfermedades Infecciosas y Microbiología. Hospital Universitario de Valme, Sevilla, Spain
| | - Juan Macías
- Unidad Clínica de Enfermedades Infecciosas y Microbiología. Hospital Universitario de Valme, Sevilla, Spain
| | - Marta Marquié
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
| | - Sergi Valero
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
| | - Alba Benaque
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Jordi Clarimón
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Jesus Bullido
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria "Hospital la Paz" (IdIPaz), Madrid, Spain
| | | | - Pau Pástor
- Fundació per la Recerca Biomèdica i Social Mútua Terrassa, and Memory Disorders Unit, Department of Neurology, Hospital Universitari Mútua de Terrassa, University of Barcelona School of Medicine, Terrassa, Barcelona, Spain
| | - Pascual Sánchez-Juan
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
- Neurology Service "Marqués de Valdecilla" University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | - Victoria Álvarez
- Laboratorio de Genética Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Gerard Piñol-Ripoll
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Institut de Recerca Biomédica de Lleida (IRBLLeida), Lleida, Spain
| | | | - José Luis Royo
- Dep. of Surgery, Biochemistry and Molecular Biology, School of Medicine, University of Málaga, Málaga, Spain
| | - Emilio Franco-Macías
- Unidad de Demencias, Servicio de Neurología y Neurofisiología. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Pablo Mir
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Miguel Calero
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
- CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
- Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Miguel Medina
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
- CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Alberto Rábano
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
- CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
- BT-CIEN, Madrid, Spain
| | - Jesús Ávila
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Carmen Antúnez
- Unidad de Demencias, Hospital Clínico Universitario Virgen de la Arrixaca, Madrid, Spain
| | - Luis Miguel Real
- Unidad Clínica de Enfermedades Infecciosas y Microbiología. Hospital Universitario de Valme, Sevilla, Spain
- Dep. of Surgery, Biochemistry and Molecular Biology, School of Medicine, University of Málaga, Málaga, Spain
| | - Adelina Orellana
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica- CIBERER-IDIS, Santiago de Compostela, Spain
| | | | - Lluís Tárraga
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
| | - Mercè Boada
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Agustín Ruiz
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain.
| |
Collapse
|
16
|
Zhang W, Jiao B, Xiao T, Liu X, Liao X, Xiao X, Guo L, Yuan Z, Yan X, Tang B, Shen L. Association of rare variants in neurodegenerative genes with familial Alzheimer's disease. Ann Clin Transl Neurol 2020; 7:1985-1995. [PMID: 32941707 PMCID: PMC7545599 DOI: 10.1002/acn3.51197] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
Objective To investigate the impact of rare variants underlying neurodegenerative‐related genes to familial Alzheimer’s disease (AD). Methods We performed targeted sequencing of 277 neurodegenerative‐related genes on probands from 75 Chinese AD families non‐carrying causative mutation of dementia genes. Rare coding variants segregated in families were tested for association in an independent cohort of 506 patients with sporadic AD and 498 cognitively normal controls. East Asians data from the Exome Aggregation Consortium (ExAC) were used as a reference control. Results A novel rare variant, P410S of PLD3 was found in an early‐onset AD family. LRRK2 I2012T, a causative mutation of Parkinson’s disease, was identified in another early‐onset AD family. Missense variants in ABCA7 (P143S and A1507T) and CR1(T239M) were significantly associated with familial AD (P = 0.005437, 0.001383, 0.000549), a missense variant in TREM2(S183C) was significantly associated with AD (P = 0.000396) when compared with the East Asian controls in ExAC database. A non‐frameshift variant in FUS (G223del) was frequent in AD cases and significantly associated with familial AD (P = 0.008). Interpretation Multiple rare coding variants of causal and risk neurodegenerative genes were presented in clinically diagnosed AD families that may confer risk of AD. Our data supported that the clinical, pathological, and genetic architectures of AD, PD, and FTD/ALS may overlapping. We propose that targeted sequencing on neurodegenerative‐related genes is necessary for genetically unclear AD families.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Molecular Imaging Center, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Tingting Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Liao
- Department of Geriatric, Xiangya Hospital, Central South University, Changsha, China
| | - Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lina Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhua Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
17
|
Hogan R, Flamier A, Nardini E, Bernier G. The Role of BMI1 in Late-Onset Sporadic Alzheimer's Disease. Genes (Basel) 2020; 11:genes11070825. [PMID: 32708145 PMCID: PMC7397074 DOI: 10.3390/genes11070825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/30/2022] Open
Abstract
Late-onset sporadic Alzheimer’s disease (LOAD) seems to contain a “hidden” component that cannot be explained by classical Mendelian genetics, with advanced aging being the strongest risk factor. More surprisingly, whole genome sequencing analyses of early-onset sporadic Alzheimer’s disease cohorts also revealed that most patients do not present classical disease-associated variants or mutations. In this short review, we propose that BMI1 is possibly epigenetically silenced in LOAD. Reduced BMI1 expression is unique to LOAD compared to familial early-onset AD (EOAD) and other related neurodegenerative disorders; moreover, reduced expression of this single gene is sufficient to reproduce most LOAD pathologies in cellular and animal models. We also show the apparent amyloid and Tau-independent nature of this epigenetic alteration of BMI1 expression. Lastly, examples of the mechanisms underlying epigenetic dysregulation of other LOAD-related genes are also illustrated.
Collapse
Affiliation(s)
- Ryan Hogan
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. l’Assomption, Montreal, QC H1T 2M4, Canada;
| | - Anthony Flamier
- Whitehead Institute of Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; (A.F.); (E.N.)
| | - Eleonora Nardini
- Whitehead Institute of Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; (A.F.); (E.N.)
| | - Gilbert Bernier
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. l’Assomption, Montreal, QC H1T 2M4, Canada;
- Department of Neuroscience, University of Montreal, Montreal, QC H1T 2M4, Canada
- Correspondence:
| |
Collapse
|
18
|
Orme T, Hernandez D, Ross OA, Kun-Rodrigues C, Darwent L, Shepherd CE, Parkkinen L, Ansorge O, Clark L, Honig LS, Marder K, Lemstra A, Rogaeva E, St. George-Hyslop P, Londos E, Zetterberg H, Morgan K, Troakes C, Al-Sarraj S, Lashley T, Holton J, Compta Y, Van Deerlin V, Trojanowski JQ, Serrano GE, Beach TG, Lesage S, Galasko D, Masliah E, Santana I, Pastor P, Tienari PJ, Myllykangas L, Oinas M, Revesz T, Lees A, Boeve BF, Petersen RC, Ferman TJ, Escott-Price V, Graff-Radford N, Cairns NJ, Morris JC, Pickering-Brown S, Mann D, Halliday G, Stone DJ, Dickson DW, Hardy J, Singleton A, Guerreiro R, Bras J. Analysis of neurodegenerative disease-causing genes in dementia with Lewy bodies. Acta Neuropathol Commun 2020; 8:5. [PMID: 31996268 PMCID: PMC6990558 DOI: 10.1186/s40478-020-0879-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is a clinically heterogeneous disorder with a substantial burden on healthcare. Despite this, the genetic basis of the disorder is not well defined and its boundaries with other neurodegenerative diseases are unclear. Here, we performed whole exome sequencing of a cohort of 1118 Caucasian DLB patients, and focused on genes causative of monogenic neurodegenerative diseases. We analyzed variants in 60 genes implicated in DLB, Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, and atypical parkinsonian or dementia disorders, in order to determine their frequency in DLB. We focused on variants that have previously been reported as pathogenic, and also describe variants reported as pathogenic which remain of unknown clinical significance, as well as variants associated with strong risk. Rare missense variants of unknown significance were found in APP, CHCHD2, DCTN1, GRN, MAPT, NOTCH3, SQSTM1, TBK1 and TIA1. Additionally, we identified a pathogenic GRN p.Arg493* mutation, potentially adding to the diversity of phenotypes associated with this mutation. The rarity of previously reported pathogenic mutations in this cohort suggests that the genetic overlap of other neurodegenerative diseases with DLB is not substantial. Since it is now clear that genetics plays a role in DLB, these data suggest that other genetic loci play a role in this disease.
Collapse
|
19
|
Nguyen L, Montrasio F, Pattamatta A, Tusi SK, Bardhi O, Meyer KD, Hayes L, Nakamura K, Banez-Coronel M, Coyne A, Guo S, Laboissonniere LA, Gu Y, Narayanan S, Smith B, Nitsch RM, Kankel MW, Rushe M, Rothstein J, Zu T, Grimm J, Ranum LPW. Antibody Therapy Targeting RAN Proteins Rescues C9 ALS/FTD Phenotypes in C9orf72 Mouse Model. Neuron 2019; 105:645-662.e11. [PMID: 31831332 DOI: 10.1016/j.neuron.2019.11.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/10/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
Abstract
The intronic C9orf72 G4C2 expansion, the most common genetic cause of ALS and FTD, produces sense- and antisense-expansion RNAs and six dipeptide repeat-associated, non-ATG (RAN) proteins, but their roles in disease are unclear. We generated high-affinity human antibodies targeting GA or GP RAN proteins. These antibodies cross the blood-brain barrier and co-localize with intracellular RAN aggregates in C9-ALS/FTD BAC mice. In cells, α-GA1 interacts with TRIM21, and α-GA1 treatment reduced GA levels, increased GA turnover, and decreased RAN toxicity and co-aggregation of proteasome and autophagy proteins to GA aggregates. In C9-BAC mice, α-GA1 reduced GA as well as GP and GR proteins, improved behavioral deficits, decreased neuroinflammation and neurodegeneration, and increased survival. Glycosylation of the Fc region of α-GA1 is important for cell entry and efficacy. These data demonstrate that RAN proteins drive C9-ALS/FTD in C9-BAC transgenic mice and establish a novel therapeutic approach for C9orf72 ALS/FTD and other RAN-protein diseases.
Collapse
Affiliation(s)
- Lien Nguyen
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | | | - Amrutha Pattamatta
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Solaleh Khoramian Tusi
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Olgert Bardhi
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Kevin D Meyer
- Neurimmune AG, 8952 Schlieren, Switzerland; Institute for Regenerative Medicine-IREM, University of Zurich, 8952 Schlieren, Switzerland
| | - Lindsey Hayes
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Katsuya Nakamura
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Monica Banez-Coronel
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Alyssa Coyne
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Shu Guo
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Lauren A Laboissonniere
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Yuanzheng Gu
- Neuromuscular and Movement Disorders, Biogen, Cambridge, MA 02142, USA
| | | | - Benjamin Smith
- Neuromuscular and Movement Disorders, Biogen, Cambridge, MA 02142, USA
| | - Roger M Nitsch
- Neurimmune AG, 8952 Schlieren, Switzerland; Institute for Regenerative Medicine-IREM, University of Zurich, 8952 Schlieren, Switzerland
| | - Mark W Kankel
- Neuromuscular and Movement Disorders, Biogen, Cambridge, MA 02142, USA
| | - Mia Rushe
- Neuromuscular and Movement Disorders, Biogen, Cambridge, MA 02142, USA
| | - Jeffrey Rothstein
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Tao Zu
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Jan Grimm
- Neurimmune AG, 8952 Schlieren, Switzerland
| | - Laura P W Ranum
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
20
|
Adelson RP, Renton AE, Li W, Barzilai N, Atzmon G, Goate AM, Davies P, Freudenberg-Hua Y. Empirical design of a variant quality control pipeline for whole genome sequencing data using replicate discordance. Sci Rep 2019; 9:16156. [PMID: 31695094 PMCID: PMC6834861 DOI: 10.1038/s41598-019-52614-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/18/2019] [Indexed: 12/29/2022] Open
Abstract
The success of next-generation sequencing depends on the accuracy of variant calls. Few objective protocols exist for QC following variant calling from whole genome sequencing (WGS) data. After applying QC filtering based on Genome Analysis Tool Kit (GATK) best practices, we used genotype discordance of eight samples that were sequenced twice each to evaluate the proportion of potentially inaccurate variant calls. We designed a QC pipeline involving hard filters to improve replicate genotype concordance, which indicates improved accuracy of genotype calls. Our pipeline analyzes the efficacy of each filtering step. We initially applied this strategy to well-characterized variants from the ClinVar database, and subsequently to the full WGS dataset. The genome-wide biallelic pipeline removed 82.11% of discordant and 14.89% of concordant genotypes, and improved the concordance rate from 98.53% to 99.69%. The variant-level read depth filter most improved the genome-wide biallelic concordance rate. We also adapted this pipeline for triallelic sites, given the increasing proportion of multiallelic sites as sample sizes increase. For triallelic sites containing only SNVs, the concordance rate improved from 97.68% to 99.80%. Our QC pipeline removes many potentially false positive calls that pass in GATK, and may inform future WGS studies prior to variant effect analysis.
Collapse
Affiliation(s)
- Robert P Adelson
- Litwin-Zucker Center for Alzheimer's Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, 11030, USA
| | - Alan E Renton
- Ronald M. Loeb Center for Alzheimer's Disease and Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Wentian Li
- Robert S. Boas Center for Genomics & Human Genetics, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, 11030, USA
| | - Nir Barzilai
- Robert S. Boas Center for Genomics & Human Genetics, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, 11030, USA
| | - Gil Atzmon
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
- Faculty of Natural Sciences, University of Haifa, Haifa, 31905, Israel
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease and Departments of Neuroscience, Genetics and Genomic Sciences, and Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Peter Davies
- Litwin-Zucker Center for Alzheimer's Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, 11030, USA
| | - Yun Freudenberg-Hua
- Litwin-Zucker Center for Alzheimer's Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, 11030, USA.
- Division of Geriatric Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York, 11004, USA.
| |
Collapse
|
21
|
López-García S, Jiménez-Bonilla J, López Delgado A, Orizaola Balaguer P, Infante Ceberio J, Banzo Marraco I, Rodríguez Rodríguez E, Sánchez-Juan P. A Rare PSEN1 (Leu85Pro) Mutation Causing Alzheimer’s Disease in a 29-Year-Old Woman Presenting as Corticobasal Syndrome. J Alzheimers Dis 2019; 70:655-658. [DOI: 10.3233/jad-190107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Sara López-García
- Department of Neurology, University Hospital Marqués de Valdecilla, Santander, Spain
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain
- Universidad de Cantabria (UC), Santander, Spain
| | - Julio Jiménez-Bonilla
- Department of Nuclear Medicine, University Hospital Marqués de Valdecilla, Santander, Spain
| | - Anjana López Delgado
- Department of Neurophysiology, University Hospital Marqués de Valdecilla, Santander, Spain
| | | | - Jon Infante Ceberio
- Department of Neurology, University Hospital Marqués de Valdecilla, Santander, Spain
| | - Ignacio Banzo Marraco
- Department of Nuclear Medicine, University Hospital Marqués de Valdecilla, Santander, Spain
| | | | - Pascual Sánchez-Juan
- Department of Neurology, University Hospital Marqués de Valdecilla, Santander, Spain
| |
Collapse
|
22
|
Giau VV, Bagyinszky E, Yang YS, Youn YC, An SSA, Kim SY. Genetic analyses of early-onset Alzheimer's disease using next generation sequencing. Sci Rep 2019; 9:8368. [PMID: 31182772 PMCID: PMC6557896 DOI: 10.1038/s41598-019-44848-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/23/2019] [Indexed: 12/24/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of neurodegenerative dementia, but the cause of AD remained poorly understood. Many mutations in the amyloid precursor protein (APP) and presenilin 1 and 2 (PSEN1 and PSEN2) have been reported as the pathogenic causes of early-onset AD (EOAD), which accounts for up to 5% of all AD cases. In this study, we screened familiar/de novo EOAD (n = 67) samples by next-generation sequencing (NGS) of a 50-gene panel, which included causative and possible pathogenic variants linked to neurodegenerative disorders. Remarkably, three missense mutations in PSEN1 (T119I, G209A, and G417A) and one known variant in PSEN2 (H169N) were discovered in 6% of the cases. Additionally, 67 missense mutations in susceptibility genes for late-onset AD were identified, which may be involved in cholesterol transport, inflammatory response, and β-amyloid modulation. We identified 70 additional novel and missense variants in other genes, such as MAPT, GRN, CSF1R, and PRNP, related to neurodegenerative diseases, which may represent overlapping clinical and neuropathological features with AD. Extensive genetic screening of Korean patients with EOAD identified multiple rare variants with potential roles in AD pathogenesis. This study suggests that individuals diagnosed with AD should be screened for other neurodegenerative disease-associated genes. Our findings expand the classic set of genes involved in neurodegenerative pathogenesis, which should be screened for in clinical trials. Main limitation of this study was the absence of functional assessment for possibly and probably pathogenic variants. Additional issues were that we could not perform studies on copy number variants, and we could not verify the segregation of mutations.
Collapse
Affiliation(s)
- Vo Van Giau
- Department of Bionano Technology, Gachon University, Seongnam, 13120, South Korea
| | - Eva Bagyinszky
- Department of Bionano Technology, Gachon University, Seongnam, 13120, South Korea
| | - Young Soon Yang
- Department of Neurology, Veterans Health Service Medical Center, Seoul, 05368, South Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University Hospital, Seoul, 06973, South Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon University, Seongnam, 13120, South Korea.
| | - Sang Yun Kim
- Department of Neurology, Seoul National University College of Medicine & Neurocognitive Behavior Center, Seoul National University Bundang Hospital, Seongnam, 13620, South Korea.
| |
Collapse
|
23
|
Del-Aguila JL, Benitez BA, Li Z, Dube U, Mihindukulasuriya KA, Budde JP, Farias FHG, Fernández MV, Ibanez L, Jiang S, Perrin RJ, Cairns NJ, Morris JC, Harari O, Cruchaga C. TREM2 brain transcript-specific studies in AD and TREM2 mutation carriers. Mol Neurodegener 2019; 14:18. [PMID: 31068200 PMCID: PMC6505298 DOI: 10.1186/s13024-019-0319-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/26/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Low frequency coding variants in TREM2 are associated with Alzheimer disease (AD) risk and cerebrospinal fluid (CSF) TREM2 protein levels are different between AD cases and controls. Similarly, TREM2 risk variant carriers also exhibit differential CSF TREM2 levels. TREM2 has three different alternative transcripts, but most of the functional studies only model the longest transcript. No studies have analyzed TREM2 expression levels or alternative splicing in brains from AD and cognitively normal individuals. We wanted to determine whether there was differential expression of TREM2 in sporadic-AD cases versus AD-TREM2 carriers vs sex- and aged-matched normal controls; and if this differential expression was due to a particular TREM2 transcript. METHODS We analyzed RNA-Seq data from parietal lobe brain tissue from AD cases with TREM2 variants (n = 33), AD cases (n = 195) and healthy controls (n = 118), from three independent datasets using Kallisto and the R package tximport to determine the read count for each transcript and quantified transcript abundance as transcripts per million. RESULTS The three TREM2 transcripts were expressed in brain cortex in the three datasets. We demonstrate for the first time that the transcript that lacks the transmembrane domain and encodes a soluble form of TREM2 (sTREM2) has an expression level around 60% of the canonical transcript, suggesting that around 25% of the sTREM2 protein levels could be explained by this transcript. We did not observe a difference in the overall TREM2 expression level between cases and controls. However, the isoform which lacks the 5' exon, but includes the transmembrane domain, was significantly lower in TREM2- p.R62H carriers than in AD cases (p = 0.007). CONCLUSION Using bulk RNA-Seq data from three different cohorts, we were able to quantify the expression level of the three TREM2 transcripts, demonstrating: (1) all three transcripts of them are highly expressed in the human cortex, (2) that up to 25% of the sTREM2 may be due to the expression of a specific isoform and not TREM2 cleavage; and (3) that TREM2 risk variants do not affect expression levels, suggesting that the effect of the TREM2 variants on CSF levels occurs at post-transcriptional level.
Collapse
Affiliation(s)
- Jorge L. Del-Aguila
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Bruno A. Benitez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Zeran Li
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Umber Dube
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Kathie A. Mihindukulasuriya
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
| | - John P. Budde
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Fabiana H. G. Farias
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Maria Victoria Fernández
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Laura Ibanez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Shan Jiang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Richard J. Perrin
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO USA
| | - Nigel J. Cairns
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO USA
| | - John C. Morris
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO USA
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
| |
Collapse
|
24
|
Giau VV, Senanarong V, Bagyinszky E, An SSA, Kim S. Analysis of 50 Neurodegenerative Genes in Clinically Diagnosed Early-Onset Alzheimer's Disease. Int J Mol Sci 2019; 20:E1514. [PMID: 30917570 PMCID: PMC6471359 DOI: 10.3390/ijms20061514] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and prion diseases have a certain degree of clinical, pathological, and molecular overlapping. Previous studies revealed that many causative mutations in AD, PD, and FTD/ALS genes could be found in clinical familial and sporadic AD. To further elucidate the missing heritability in early-onset Alzheimer's disease (EOAD), we genetically characterized a Thai EOAD cohort by Next-Generation Sequencing (NGS) with a high depth of coverage, capturing variants in 50 previously recognized AD and other related disorders' genes. A novel mutation, APP p.V604M, and the known causative variant, PSEN1 p.E184G, were found in two of the familiar cases. Remarkably, among 61 missense variants were additionally discovered from 21 genes out of 50 genes, six potential mutations including MAPT P513A, LRRK2 p.R1628P, TREM2 p.L211P, and CSF1R (p.P54Q and pL536V) may be considered to be probably/possibly pathogenic and risk factors for other dementia leading to neuronal degeneration. All allele frequencies of the identified missense mutations were compared to 622 control individuals. Our study provides initial evidence that AD and other neurodegenerative diseases may represent shades of the same disease spectrum, and consideration should be given to offer exactly embracing genetic testing to patients diagnosed with EOAD. Our results need to be further confirmed with a larger cohort from this area.
Collapse
Affiliation(s)
- Vo Van Giau
- Department of Bionano Technology, Gachon University, Sungnam 13120, Korea.
| | | | - Eva Bagyinszky
- Department of Bionano Technology, Gachon University, Sungnam 13120, Korea.
| | - Seong Soo A An
- Department of Bionano Technology, Gachon University, Sungnam 13120, Korea.
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine and Neurocognitive Behavior Center, Seoul National University Bundang Hospital, Sungnam 13620, Korea.
| |
Collapse
|
25
|
Genetic screening in early-onset Alzheimer's disease identified three novel presenilin mutations. Neurobiol Aging 2019; 86:201.e9-201.e14. [PMID: 30797548 DOI: 10.1016/j.neurobiolaging.2019.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 12/23/2022]
Abstract
Mutations in presenilin 1 (PSEN1), presenilin 2 (PSEN2), and amyloid precursor protein (APP) are major genetic causes of early-onset Alzheimer's disease (EOAD). Clinical heterogeneity is frequently observed in patients with PSEN1 and PSEN2 mutations. Using whole exome sequencing, we screened a Dutch cohort of 68 patients with EOAD for rare variants in Mendelian Alzheimer's disease, frontotemporal dementia, and prion disease genes. We identified 3 PSEN1 and 2 PSEN2 variants. Three variants, 1 in PSEN1 (p.H21Profs*2) and both PSEN2 (p.A415S and p.M174I), were novel and absent in control exomes. These novel variants can be classified as probable pathogenic, except for PSEN1 (p.H21Profs*2) in which the pathogenicity is uncertain. The initial clinical symptoms between mutation carriers varied from behavioral problems to memory impairment. Our findings extend the mutation spectrum of EOAD and underline the clinical heterogeneity among PSEN1 and PSEN2 mutation carriers. Screening for Alzheimer's disease-causing genes is indicated in presenile dementia with an overlapping clinical diagnosis.
Collapse
|
26
|
|
27
|
Perrone F, Cacace R, Van Mossevelde S, Van den Bossche T, De Deyn PP, Cras P, Engelborghs S, van der Zee J, Van Broeckhoven C. Genetic screening in early-onset dementia patients with unclear phenotype: relevance for clinical diagnosis. Neurobiol Aging 2018; 69:292.e7-292.e14. [DOI: 10.1016/j.neurobiolaging.2018.04.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/08/2018] [Accepted: 04/27/2018] [Indexed: 12/12/2022]
|
28
|
Freudenberg-Hua Y, Li W, Davies P. The Role of Genetics in Advancing Precision Medicine for Alzheimer's Disease-A Narrative Review. Front Med (Lausanne) 2018; 5:108. [PMID: 29740579 PMCID: PMC5928202 DOI: 10.3389/fmed.2018.00108] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, which has a substantial genetic component. AD affects predominantly older people. Accordingly, the prevalence of dementia has been rising as the population ages. To date, there are no effective interventions that can cure or halt the progression of AD. The only available treatments are the management of certain symptoms and consequences of dementia. The current state-of-the-art medical care for AD comprises three simple principles: prevent the preventable, achieve early diagnosis, and manage the manageable symptoms. This review provides a summary of the current state of knowledge of risk factors for AD, biological diagnostic testing, and prospects for treatment. Special emphasis is given to recent advances in genetics of AD and the way genomic data may support prevention, early intervention, and development of effective pharmacological treatments. Mutations in the APP, PSEN1, and PSEN2 genes cause early onset Alzheimer's disease (EOAD) that follows a Mendelian inheritance pattern. For late onset Alzheimer's disease (LOAD), APOE4 was identified as a major risk allele more than two decades ago. Population-based genome-wide association studies of late onset AD have now additionally identified common variants at roughly 30 genetic loci. Furthermore, rare variants (allele frequency <1%) that influence the risk for LOAD have been identified in several genes. These genetic advances have broadened our insights into the biological underpinnings of AD. Moreover, the known genetic risk variants could be used to identify presymptomatic individuals at risk for AD and support diagnostic assessment of symptomatic subjects. Genetic knowledge may also facilitate precision medicine. The goal of precision medicine is to use biological knowledge and other health information to predict individual disease risk, understand disease etiology, identify disease subcategories, improve diagnosis, and provide personalized treatment strategies. We discuss the potential role of genetics in advancing precision medicine for AD along with its ethical challenges. We outline strategies to implement genomics into translational clinical research that will not only improve accuracy of dementia diagnosis, thus enabling more personalized treatment strategies, but may also speed up the discovery of novel drugs and interventions.
Collapse
Affiliation(s)
- Yun Freudenberg-Hua
- Litwin-Zucker Center for the study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Division of Geriatric Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, United States
| | - Wentian Li
- Robert S Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Peter Davies
- Litwin-Zucker Center for the study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| |
Collapse
|
29
|
Zhang Y, Wang P. Age-Related Increase of Insulin-Degrading Enzyme Is Inversely Correlated with Cognitive Function in APPswe/PS1dE9 Mice. Med Sci Monit 2018; 24:2446-2455. [PMID: 29680859 PMCID: PMC5935016 DOI: 10.12659/msm.909596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Insulin-degrading enzyme (IDE) is an important regulator for Aβ clearance and diabetes. Although it is indispensable in removing plaques related to onset Alzheimer’s disease (AD) and in degrading insulin related to diabetes, there have been few studies on the dynamic level of IDE in different stages of AD. Material/Methods The present study explored the level IDE protein in different stages of APPswe/PS1dE9 mice and their correlations with cognitive decline. The 4-month-old, 10-month-old, and 18-month-old mice were used as the different age stages of mice. Cognitive function was evaluated using the Morris water maze test. We also observed the level of Aβ plaques in brain regions of different stages. Results The data revealed that the expression of IDE was dramatically higher than in age-matched wild mice at the age of 10 months and 18 months. In terms of distribution, Aβ plaques were deposited mostly in the cortex and hippocampus, especially in 10-month-old and 18-month-old APPswe/PS1dE9 mice. The cognitive function of 4-month-old APPswe/PS1dE9 mice was not significantly differ in spatial learning. However, the cognitive function, both spatial learning and spatial memory, was dramatically lower in 10-month-old and 18-month-old groups. Conclusions There was a positive correlation between the expression of IDE and spatial memory in 10-month-old and 18-month-old APPswe/PS1dE9 mice. The study of this protein may provide reference values for the further study of IDE in Alzheimer’s disease.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Clinical Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China (mainland)
| | - Peichang Wang
- Department of Clinical Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China (mainland)
| |
Collapse
|
30
|
Ibanez L, Dube U, Davis AA, Fernandez MV, Budde J, Cooper B, Diez-Fairen M, Ortega-Cubero S, Pastor P, Perlmutter JS, Cruchaga C, Benitez BA. Pleiotropic Effects of Variants in Dementia Genes in Parkinson Disease. Front Neurosci 2018; 12:230. [PMID: 29692703 PMCID: PMC5902712 DOI: 10.3389/fnins.2018.00230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/23/2018] [Indexed: 12/17/2022] Open
Abstract
Background: The prevalence of dementia in Parkinson disease (PD) increases dramatically with advancing age, approaching 80% in patients who survive 20 years with the disease. Increasing evidence suggests clinical, pathological and genetic overlap between Alzheimer disease, dementia with Lewy bodies and frontotemporal dementia with PD. However, the contribution of the dementia-causing genes to PD risk, cognitive impairment and dementia in PD is not fully established. Objective: To assess the contribution of coding variants in Mendelian dementia-causing genes on the risk of developing PD and the effect on cognitive performance of PD patients. Methods: We analyzed the coding regions of the amyloid-beta precursor protein (APP), Presenilin 1 and 2 (PSEN1, PSEN2), and Granulin (GRN) genes from 1,374 PD cases and 973 controls using pooled-DNA targeted sequence, human exome-chip and whole-exome sequencing (WES) data by single variant and gene base (SKAT-O and burden tests) analyses. Global cognitive function was assessed using the Mini-Mental State Examination (MMSE) or the Montreal Cognitive Assessment (MoCA). The effect of coding variants in dementia-causing genes on cognitive performance was tested by multiple regression analysis adjusting for gender, disease duration, age at dementia assessment, study site and APOE carrier status. Results: Known AD pathogenic mutations in the PSEN1 (p.A79V) and PSEN2 (p.V148I) genes were found in 0.3% of all PD patients. There was a significant burden of rare, likely damaging variants in the GRN and PSEN1 genes in PD patients when compared with frequencies in the European population from the ExAC database. Multiple regression analysis revealed that PD patients carrying rare variants in the APP, PSEN1, PSEN2, and GRN genes exhibit lower cognitive tests scores than non-carrier PD patients (p = 2.0 × 10-4), independent of age at PD diagnosis, age at evaluation, APOE status or recruitment site. Conclusions: Pathogenic mutations in the Alzheimer disease-causing genes (PSEN1 and PSEN2) are found in sporadic PD patients. PD patients with cognitive decline carry rare variants in dementia-causing genes. Variants in genes causing Mendelian neurodegenerative diseases exhibit pleiotropic effects.
Collapse
Affiliation(s)
- Laura Ibanez
- Department of Psychiatry, Washington University, Saint Louis, MO, United States
| | - Umber Dube
- Department of Psychiatry, Washington University, Saint Louis, MO, United States
| | - Albert A. Davis
- Department of Neurology, Washington University, Saint Louis, MO, United States
| | - Maria V. Fernandez
- Department of Psychiatry, Washington University, Saint Louis, MO, United States
| | - John Budde
- Department of Psychiatry, Washington University, Saint Louis, MO, United States
| | - Breanna Cooper
- Department of Psychiatry, Washington University, Saint Louis, MO, United States
| | - Monica Diez-Fairen
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
- Movement Disorders Unit, Department of Neurology, University Hospital Mutua de Terrassa, Fundació per la Recerca Biomèdica i Social Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Sara Ortega-Cubero
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Neurology and Neurosurgery, Hospital Universitario de Burgos, Burgos, Spain
| | - Pau Pastor
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
- Movement Disorders Unit, Department of Neurology, University Hospital Mutua de Terrassa, Fundació per la Recerca Biomèdica i Social Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Joel S. Perlmutter
- Department of Neurology, Washington University, Saint Louis, MO, United States
- Departments of Radiology, Neuroscience, Physical Therapy, and Occupational Therapy, Washington University, Saint Louis, MO, United States
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, Saint Louis, MO, United States
| | - Bruno A. Benitez
- Department of Medicine, Washington University, Saint Louis, MO, United States
| |
Collapse
|
31
|
Fernández MV, Budde J, Del-Aguila JL, Ibañez L, Deming Y, Harari O, Norton J, Morris JC, Goate AM, NIA-LOAD family study group, NCRAD, Cruchaga C. Evaluation of Gene-Based Family-Based Methods to Detect Novel Genes Associated With Familial Late Onset Alzheimer Disease. Front Neurosci 2018; 12:209. [PMID: 29670507 PMCID: PMC5893779 DOI: 10.3389/fnins.2018.00209] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/15/2018] [Indexed: 12/22/2022] Open
Abstract
Gene-based tests to study the combined effect of rare variants on a particular phenotype have been widely developed for case-control studies, but their evolution and adaptation for family-based studies, especially studies of complex incomplete families, has been slower. In this study, we have performed a practical examination of all the latest gene-based methods available for family-based study designs using both simulated and real datasets. We examined the performance of several collapsing, variance-component, and transmission disequilibrium tests across eight different software packages and 22 models utilizing a cohort of 285 families (N = 1,235) with late-onset Alzheimer disease (LOAD). After a thorough examination of each of these tests, we propose a methodological approach to identify, with high confidence, genes associated with the tested phenotype and we provide recommendations to select the best software and model for family-based gene-based analyses. Additionally, in our dataset, we identified PTK2B, a GWAS candidate gene for sporadic AD, along with six novel genes (CHRD, CLCN2, HDLBP, CPAMD8, NLRP9, and MAS1L) as candidate genes for familial LOAD.
Collapse
Affiliation(s)
- Maria V. Fernández
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | - John Budde
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | - Jorge L. Del-Aguila
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | - Laura Ibañez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | - Yuetiva Deming
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | - Joanne Norton
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | - John C. Morris
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Alison M. Goate
- Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | | | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|