1
|
Assiri A, Vallejo‐Trujillo A, Al‐Abri M, Bahbahani H, Almathen F, Ahbara A, Al Marzooqi W, Tijjani A, Lawal R, Hanotte O. Comparative genomics reveals common diversity and adaptation to harsh environments in the Arabian Peninsula indigenous chickens. Anim Genet 2025; 56:e70014. [PMID: 40313212 PMCID: PMC12046372 DOI: 10.1111/age.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/03/2025]
Abstract
Identifying genomic regions under selection is crucial for comprehending the evolutionary history of the domestic chicken. Arabian Peninsula (AP) indigenous chickens are mostly found outdoors, being reared alongside other livestock for production purposes. These birds show high resilience to extreme temperatures (hot and cold), typical of the desert environment. The selection pressures responsible for unique local adaptations in these birds remain largely unidentified. Here, we aimed to investigate the genome diversity and structure of 15 indigenous chicken populations including 13 populations from the AP (n = 5), Ethiopia (n = 6), and the People's Republic of China (n = 2). We also included two commercial chicken populations, Fayoumi (selected for heat tolerance) and Chantecler (known for its cold tolerance). Principal component (PC) analysis separated all the populations based on their geographic areas of origin. PC1 separates the Ethiopian populations from the Chinese and AP populations, while PC2 separates the AP populations from the Chantecler, and the Ethiopian populations from the Dulong and Chantecler. The genome-wide signatures of analyses identified many candidate regions under positive selection. They include genes that may be associated with thermotolerance. These are involved in energy balance and metabolism (SUGCT, HECW1, MMADHC), cells apoptosis (APP, SRBD1, NTN1, PUF60, SLC26A8, DAP, SUGCT), angiogenesis (RYR2, LDB2, SOX5), skin protection to solar radiation (FZD10, BCO2, WNT5B, COL6A2, SIRT1) as well as growth (NELL1). Our findings suggest that Arabian chicken populations have a distinct gene pool polymorphism in relation to their adaptation to the harsh climatic environments of the AP.
Collapse
Affiliation(s)
- Abdulwahad Assiri
- Department of Livestock and Fish ProductionKing Faisal UniversityAl‐AhsaSaudi Arabia
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Adriana Vallejo‐Trujillo
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin InstituteThe University of EdinburghEdinburghUK
| | - Mohammed Al‐Abri
- Department of Animal and Veterinary SciencesSultan Qaboos UniversityMuscatOman
| | - Hussain Bahbahani
- Department of Biological Sciences, Faculty of Sciences, Sh. Sabah Al‐Salem campusKuwait UniversityAl‐ShadadiyaKuwait
| | - Faisal Almathen
- Department of Veterinary Public Health and Animal Husbandry, College of Veterinary MedicineKing Faisal UniversityAl‐AhsaSaudi Arabia
- Camel Research CentreKing Faisal UniversityAl‐AhsaSaudi Arabia
| | - Abulgasim Ahbara
- Animal and Veterinary SciencesScotland's Rural College (SRUC)MidlothianUK
- Department of Zoology, Faculty of SciencesMisurata UniversityMisurataLibya
| | - Waleed Al Marzooqi
- Department of Animal and Veterinary SciencesSultan Qaboos UniversityMuscatOman
| | - Abdulfatai Tijjani
- The Feinstein Institutes of Medical Research (Northwell Health)ManhassetNew YorkUSA
| | | | - Olivier Hanotte
- School of Life SciencesUniversity of NottinghamNottinghamUK
- Centre for Tropical Livestock Genetics and Health (CTLGH)ILRIAddis AbabaEthiopia
| |
Collapse
|
2
|
Zhou L, Sun S, Zhu L, Chen X, Xu R, Wu L, Gu S. Genome-Wide Identification and Expression Analysis of the Mediator Complex Subunit Gene Family in Cassava. Int J Mol Sci 2025; 26:1666. [PMID: 40004128 PMCID: PMC11855191 DOI: 10.3390/ijms26041666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
The Mediator complex (MED) functions as a co-activator in plants, transmitting transcriptional signals to regulate gene expression, including responses to environmental stresses. While the MED gene family has been identified in several species, it has not yet been reported in cassava. In this study, we identified 32 members of the MeMED gene family in cassava (Manihot esculenta Crantz) distributed across 13 chromosomes. These genes were categorized into distinct Mediator subunits based on their similarity to Arabidopsis modules. Promoter analysis revealed the presence of various cis-regulatory elements, which likely play key roles in regulating plant growth, development, and stress responses. RNA-seq data showed tissue-specific expression patterns for the MeMED genes, with significant expression observed in leaves, roots, petioles, stems, friable embryogenic callus, and shoot apical meristems. Further RT-qPCR analysis under various abiotic stress conditions-including drought, exogenous hydrogen peroxide, cold, heat, and salt-demonstrated that 10 selected MeMED genes exhibited significant differential expression, indicating their potential functional involvement in stress adaptation. These findings offer insights into the biological roles of the MeMED gene family in cassava, with implications for improving stress tolerance in future breeding programs.
Collapse
Affiliation(s)
- Lingling Zhou
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (L.Z.); (S.S.); (L.Z.); (X.C.); (R.X.)
| | - Shuhui Sun
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (L.Z.); (S.S.); (L.Z.); (X.C.); (R.X.)
| | - Linlong Zhu
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (L.Z.); (S.S.); (L.Z.); (X.C.); (R.X.)
| | - Xian Chen
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (L.Z.); (S.S.); (L.Z.); (X.C.); (R.X.)
| | - Ran Xu
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (L.Z.); (S.S.); (L.Z.); (X.C.); (R.X.)
| | - Lian Wu
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (L.Z.); (S.S.); (L.Z.); (X.C.); (R.X.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shuang Gu
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (L.Z.); (S.S.); (L.Z.); (X.C.); (R.X.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Yang H, Yuan Y, Li Z. Dehydration priming remodels protein abundance and phosphorylation level regulating tolerance to subsequent dehydration or salt stress in creeping bentgrass. J Proteomics 2025; 310:105325. [PMID: 39369954 DOI: 10.1016/j.jprot.2024.105325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/15/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Dehydration priming (DP) induces stress memory which plays a positive role in plant adaptability, but it is not well understood how DP differentially regulates subsequent dehydration (cis priming) or salt (trans priming) tolerance at the post-translational level. Purpose of this study was to identify proteins, phosphorylation levels and sites, and relevant metabolic pathways for DP-induced dehydration or salt tolerance in Agrostis stolonifera. DP-induced differentially regulated proteins (DRPs) were mostly located in the cytoplasm, chloroplast, and cell membrane, and differentially regulated phosphoproteins (DRPPs) were mostly nuclear proteins and cytoplasmic proteins. DP regulated common phosphorylation sites ([SP] and [RxxS]) under dehydration and salt conditions and also individually affected 8 or 11 phosphorylation sites under dehydration or salt stress. DP-regulated DRPPs were mainly rich in glycolysis and glutathione metabolism pathways, RNA splicing, and dynamin family proteins under dehydration stress, whereas DP-regulated salt tolerance was mainly related to chlorophyll metabolism, photosynthesis, MAPK signaling cascade, and ABC transporter I family at the phosphorylation level. In addition, the DP also significantly up-regulated phosphorylation of histones (ATXR3 and SETD1A) in response to subsequent dehydration and salt stress as well as abundances of antioxidant enzymes, dynamin family protein, and KCS6 under dehydration stress or abundances of PETE, HMGA, XTH, and ABCI6 under salt stress, respectively. Transcriptomics analysis further indicated that DP-regulated dehydration or salt tolerance was also related to transcriptional regulation in the early stage. Current results provided better understanding of the role of stress memory in plant adaptability to repeated or crossed stress via post-translational modifications (PTMs). SIGNIFICANCE: Recurrent moderate drought may buffer drought legacies in many plant species. When plants were exposed to repeated drought stress, their adaptability to subsequent stress could be enhanced, which is known as "stress memory". Dehydration priming has been found to be an important approach to induce stress memory. Current results provided better understanding of the role of stress memory in plant adaptability to repeated or crossed stress via post-translational modifications.
Collapse
Affiliation(s)
- Huizhen Yang
- Department of Turf Science and engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Yuan
- Department of Turf Science and engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhou Li
- Department of Turf Science and engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
4
|
Jiao Z, Shi X, Xu R, Zhang M, Chong L, Zhu Y. HOS1 ubiquitinates SPL9 for degradation to modulate salinity-delayed flowering. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2600-2612. [PMID: 39412431 DOI: 10.1111/jipb.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 12/07/2024]
Abstract
Soil salinity is a serious environmental threat to plant growth and flowering. Flowering in the right place, at the right time, ensures maximal reproductive success for plants. Salinity-delayed flowering is considered a stress coping/survival strategy and the molecular mechanisms underlying this process require further studies to enhance the crop's salt tolerance ability. A nuclear pore complex (NPC) component, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 1 (HOS1), has been recognized as a negative regulator of plant cold responses and flowering. Here, we challenged the role of HOS1 in regulating flowering in response to salinity stress. Interestingly, we discovered that HOS1 can directly interact with and ubiquitinate transcription factor SPL9 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9) to promote its protein degradation in response to salinity stress. Moreover, we demonstrated that HOS1 and SPL9 antagonistically regulate plant flowering under both normal and salt stress conditions. HOS1 was further shown to negatively regulate the expression of SPLs and several key flowering genes in response to salinity stress. These results jointly revealed that HOS1 is an important integrator in the process of modulating salinity-delayed flowering, thus offering new perspectives on a salinity stress coping strategy of plants.
Collapse
Affiliation(s)
- Zhixin Jiao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Xiaoning Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Rui Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Mingxia Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Leelyn Chong
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
- Sanya Institute of Henan University, Sanya, 570203, China
| |
Collapse
|
5
|
Xie N, Shi H, Shang X, Zhao Z, Fang Y, Wu H, Luo P, Cui Y, Chen W. RhMED15a-like, a subunit of the Mediator complex, is involved in the drought stress response in Rosa hybrida. BMC PLANT BIOLOGY 2024; 24:351. [PMID: 38684962 PMCID: PMC11059607 DOI: 10.1186/s12870-024-05059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Rose (Rosa hybrida) is a globally recognized ornamental plant whose growth and distribution are strongly limited by drought stress. The role of Mediator, a multiprotein complex crucial for RNA polymerase II-driven transcription, has been elucidated in drought stress responses in plants. However, its physiological function and regulatory mechanism in horticultural crop species remain elusive. RESULTS In this study, we identified a Tail module subunit of Mediator, RhMED15a-like, in rose. Drought stress, as well as treatment with methyl jasmonate (MeJA) and abscisic acid (ABA), significantly suppressed the transcript level of RhMED15a-like. Overexpressing RhMED15a-like markedly bolstered the osmotic stress tolerance of Arabidopsis, as evidenced by increased germination rate, root length, and fresh weight. In contrast, the silencing of RhMED15a-like through virus induced gene silencing in rose resulted in elevated malondialdehyde accumulation, exacerbated leaf wilting, reduced survival rate, and downregulated expression of drought-responsive genes during drought stress. Additionally, using RNA-seq, we identified 972 differentially expressed genes (DEGs) between tobacco rattle virus (TRV)-RhMED15a-like plants and TRV controls. Gene Ontology (GO) analysis revealed that some DEGs were predominantly associated with terms related to the oxidative stress response, such as 'response to reactive oxygen species' and 'peroxisome'. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment highlighted pathways related to 'plant hormone signal transduction', in which the majority of DEGs in the jasmonate (JA) and ABA signalling pathways were induced in TRV-RhMED15a-like plants. CONCLUSION Our findings underscore the pivotal role of the Mediator subunit RhMED15a-like in the ability of rose to withstand drought stress, probably by controlling the transcript levels of drought-responsive genes and signalling pathway elements of stress-related hormones, providing a solid foundation for future research into the molecular mechanisms underlying drought tolerance in rose.
Collapse
Affiliation(s)
- Nanxin Xie
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Haoyang Shi
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiaoman Shang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zixin Zhao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yan Fang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Huimin Wu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ping Luo
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yongyi Cui
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Wen Chen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
6
|
Ndathe R, Kato N. Phosphatidic acid produced by phospholipase Dα1 and Dδ is incorporated into the internal membranes but not involved in the gene expression of RD29A in the abscisic acid signaling network in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2024; 15:1356699. [PMID: 38681216 PMCID: PMC11045897 DOI: 10.3389/fpls.2024.1356699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/21/2024] [Indexed: 05/01/2024]
Abstract
Core protein components of the abscisic acid (ABA) signaling network, pyrabactin resistance (PYR), protein phosphatases 2C (PP2C), and SNF1-related protein kinase 2 (SnRK2) are involved in the regulation of stomatal closure and gene expression downstream responses in Arabidopsis thaliana. Phosphatidic acid (PA) produced by the phospholipases Dα1 and Dδ (PLDs) in the plasma membrane has been identified as a necessary molecule in ABA-inducible stomatal closure. On the other hand, the involvement of PA in ABA-inducible gene expression has been suggested but remains a question. In this study, the involvement of PA in the ABA-inducible gene expression was examined in the model plant Arabidopsis thaliana and the canonical RD29A ABA-inducible gene that possesses a single ABA-responsive element (ABRE) in the promoter. The promoter activity and accumulation of the RD29A mRNA during ABA exposure to the plants were analyzed under conditions in which the production of PA by PLDs is abrogated through chemical and genetic modification. Changes in the subcellular localization of PA during the signal transduction were analyzed with confocal microscopy. The results obtained in this study suggest that inhibition of PA production by the PLDs does not affect the promoter activity of RD29A. PA produced by the PLDs and exogenously added PA in the plasma membrane are effectively incorporated into internal membranes to transduce the signal. However, exogenously added PA induces stomatal closure but not RD29A expression. This is because PA produced by the PLDs most likely inhibits the activity of not all but only the selected PP2C family members, the negative regulators of the RD29A promoter. This finding underscores the necessity for experimental verifications to adapt previous knowledge into a signaling network model before its construction.
Collapse
Affiliation(s)
| | - Naohiro Kato
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
7
|
Huang P, Zhang X, Cheng Z, Wang X, Miao Y, Huang G, Fu YF, Feng X. The nuclear pore Y-complex functions as a platform for transcriptional regulation of FLOWERING LOCUS C in Arabidopsis. THE PLANT CELL 2024; 36:346-366. [PMID: 37877462 PMCID: PMC10827314 DOI: 10.1093/plcell/koad271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
Abstract
The nuclear pore complex (NPC) has multiple functions beyond the nucleo-cytoplasmic transport of large molecules. Subnuclear compartmentalization of chromatin is critical for gene expression in animals and yeast. However, the mechanism by which the NPC regulates gene expression is poorly understood in plants. Here we report that the Y-complex (Nup107-160 complex, a subcomplex of the NPC) self-maintains its nucleoporin homeostasis and modulates FLOWERING LOCUS C (FLC) transcription via changing histone modifications at this locus. We show that Y-complex nucleoporins are intimately associated with FLC chromatin through their interactions with histone H2A at the nuclear membrane. Fluorescence in situ hybridization assays revealed that Nup96, a Y-complex nucleoporin, enhances FLC positioning at the nuclear periphery. Nup96 interacted with HISTONE DEACETYLASE 6 (HDA6), a key repressor of FLC expression via histone modification, at the nuclear membrane to attenuate HDA6-catalyzed deposition at the FLC locus and change histone modifications. Moreover, we demonstrate that Y-complex nucleoporins interact with RNA polymerase II to increase its occupancy at the FLC locus, facilitating transcription. Collectively, our findings identify an attractive mechanism for the Y-complex in regulating FLC expression via tethering the locus at the nuclear periphery and altering its histone modification.
Collapse
Affiliation(s)
- Penghui Huang
- Zhejiang Lab, Research Institute of Intelligent Computing, Hangzhou 310012, China
- MARA Key Laboratory of Soybean Biology (Beijing), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaomei Zhang
- MARA Key Laboratory of Soybean Biology (Beijing), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyuan Cheng
- CAS Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xu Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261325, China
| | - Yuchen Miao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Guowen Huang
- Department of Biological Sciences and Chemical Engineering, Hunan University of Science and Engineering, Yongzhou 425100, Hunan, China
| | - Yong-Fu Fu
- MARA Key Laboratory of Soybean Biology (Beijing), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianzhong Feng
- Zhejiang Lab, Research Institute of Intelligent Computing, Hangzhou 310012, China
- CAS Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
8
|
Mori K, Murakoshi Y, Tamura M, Kunitake S, Nishimura K, Ariga H, Tanaka K, Iuchi S, Yotsui I, Sakata Y, Taji T. Mutations in nuclear pore complex promote osmotolerance in Arabidopsis by suppressing the nuclear translocation of ACQOS and its osmotically induced immunity. FRONTIERS IN PLANT SCIENCE 2024; 15:1304366. [PMID: 38318497 PMCID: PMC10839096 DOI: 10.3389/fpls.2024.1304366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024]
Abstract
We have previously reported a wide variation in salt tolerance among Arabidopsis thaliana accessions and identified ACQOS, encoding a nucleotide-binding leucine-rich repeat (NLR) protein, as the causal gene responsible for the disturbance of acquired osmotolerance induced after mild salt stress. ACQOS is conserved among Arabidopsis osmosensitive accessions, including Col-0. In response to osmotic stress, it induces detrimental autoimmunity, resulting in suppression of osmotolerance, but how ACQOS triggers autoimmunity remains unclear. Here, we screened acquired osmotolerance (aot) mutants from EMS-mutagenized Col-0 seeds and isolated the aot19 mutant. In comparison with the wild type (WT), this mutant had acquired osmotolerance and decreased expression levels of pathogenesis-related genes. It had a mutation in a splicing acceptor site in NUCLEOPORIN 85 (NUP85), which encodes a component of the nuclear pore complex. A mutant with a T-DNA insertion in NUP85 acquired osmotolerance similar to aot19. The WT gene complemented the osmotolerant phenotype of aot19. We evaluated the acquired osmotolerance of five nup mutants of outer-ring NUPs and found that nup96, nup107, and aot19/nup85, but not nup43 or nup133, showed acquired osmotolerance. We examined the subcellular localization of the GFP-ACQOS protein and found that its nuclear translocation in response to osmotic stress was suppressed in aot19. We suggest that NUP85 is essential for the nuclear translocation of ACQOS, and the loss-of-function mutation of NUP85 results in acquired osmotolerance by suppressing ACQOS-induced autoimmunity in response to osmotic stress.
Collapse
Affiliation(s)
- Kento Mori
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yusuke Murakoshi
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Masashi Tamura
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Satoru Kunitake
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Kohji Nishimura
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan
| | - Hirotaka Ariga
- Department of Plant Sciences, Institute of Agrobiological Science, NARO, Tsukuba, Ibaraki, Japan
| | - Keisuke Tanaka
- Nodai Genome Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Satoshi Iuchi
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Izumi Yotsui
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yoichi Sakata
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Teruaki Taji
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
9
|
Punzo P, Suede Cigliano R, Aversano R, Grillo S, Batelli G. Determination of Differential Alternative Splicing Under Stress Conditions. Methods Mol Biol 2024; 2832:67-79. [PMID: 38869788 DOI: 10.1007/978-1-0716-3973-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Alternative splicing (AS) is an important mechanism contributing to stress-induced regulation of gene expression and proteome diversity. Massive sequencing technologies allow the identification of transcripts generated via stress-responsive AS, potentially important for adaptation to stress conditions. Several bioinformatics tools have been developed to identify differentially expressed alternative splicing events/transcripts from RNA-sequencing results. This chapter describes a detailed protocol for differential alternative splicing analysis using the rMATS tool. In addition, we provide guidelines for validation of the detected splice variants by qRT-PCR based on the obtained output files.
Collapse
Affiliation(s)
- Paola Punzo
- CNR Institute of Biosciences and Bioresources, Research Division Portici, Portici, Italy
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy
| | | | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy
| | - Stefania Grillo
- CNR Institute of Biosciences and Bioresources, Research Division Portici, Portici, Italy
| | - Giorgia Batelli
- CNR Institute of Biosciences and Bioresources, Research Division Portici, Portici, Italy.
| |
Collapse
|
10
|
Yang X, Ji C, Liu X, Wei Z, Pang Q, Zhang A. Arabidopsis nucleoporin NUP96 mediates plant salt tolerance by modulating the transcription of salt-responsive genes. PLANTA 2023; 259:34. [PMID: 38160450 DOI: 10.1007/s00425-023-04312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
MAIN CONCLUSION Physiological and molecular tests show that NUP96 plays an important role in the plant response to salt stress, resulting from the reprogramming of transcriptomic profiles, which are likely to be mediated by the influence on the nuclear/cytosol shuttling of the key regulators of salt tolerance. As a key component of the nuclear pore complex (NPC), nucleoporin 96 (NUP96) is critical for modulating plant development and interactions with environmental factors, but whether NUP96 is involved in the salt response is still unknown. Here, we analyzed the role of Arabidopsis NUP96 under salt stress. The loss-of-function mutant nup96 exhibited salt sensitivity in terms of rosette growth and root elongation, and showed attenuated capacity in maintaining ion and ROS homeostasis, which could be compensated for by the overexpression of NUP96. RNA sequencing revealed that many salt-responsive genes were misregulated after NUP96 mutation, and especially NUP96 is required for the expression of a large portion of salt-induced genes. This is likely correlated with the activity in facilitating nuclear/cytosol transport of the underlying regulators in salt tolerance such as the transcription factor ATAP2, targeted by eight downregulated genes in nup96 under salt stress. Our results illustrate that NUP96 plays an important role in the salt response, probably by regulating the nucleocytoplasmic shuttling of key mRNAs or proteins associated with plant salt responsiveness.
Collapse
Affiliation(s)
- Xiaomin Yang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Chengcheng Ji
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Xinxin Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Zhaoxin Wei
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Qiuying Pang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Aiqin Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
11
|
Guo R, Zhang X, Li M, Zhang H, Wu J, Zhang L, Xiao X, Han M, An N, Xing L, Zhang C. MdNup62 involved in salt and osmotic stress tolerance in apple. Sci Rep 2023; 13:20198. [PMID: 37980385 PMCID: PMC10657396 DOI: 10.1038/s41598-023-47024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023] Open
Abstract
Abiotic stress of plants has serious consequences on the development of the apple industry. Nuclear pore complexes (NPCs) control nucleoplasmic transport and play an important role in the regulation of plant abiotic stress response. However, the effects of NPCs on apple salt and osmotic stress responses have not been reported yet. In this study, we analyzed the expression and function of NUCLEOPORIN 62 (MdNup62), a component of apple NPC. MdNup62 expression was significantly increased by salt and mannitol (simulated osmotic stress) treatment. The MdNup62-overexpressing (OE) Arabidopsis and tomato lines exhibited significantly reduced salt stress tolerance, and MdNup62-OE Arabidopsis lines exhibited reduced osmotic stress tolerance. We further studied the function of HEAT SHOCK FACTOR A1d (MdHSFA1d), the interacting protein of MdNup62, in salt and osmotic stress tolerance. In contrast to MdNup62, MdHSFA1d-OE Arabidopsis lines showed significantly enhanced tolerance to salt and osmotic stress. Our findings suggest a possible interaction of MdNup62 with MdHSFA1d in the mediation of nuclear and cytoplasmic transport and the regulation of apple salt and osmotic stress tolerance. These results contribute to the understanding of the salt and osmotic stress response mechanism in apple.
Collapse
Affiliation(s)
- Ruxuan Guo
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, People's Republic of China
| | - Xiaoshuang Zhang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, People's Republic of China
| | - Mingyuan Li
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, People's Republic of China
| | - Huiwen Zhang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, People's Republic of China
| | - Junkai Wu
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, People's Republic of China
| | - Libin Zhang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, People's Republic of China
| | - Xiao Xiao
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, People's Republic of China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Na An
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Libo Xing
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Chenguang Zhang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, People's Republic of China.
| |
Collapse
|
12
|
Gu S, Zhang Z, Li J, Sun J, Cui Z, Li F, Zhuang J, Chen W, Su C, Wu L, Wang X, Guo Z, Xu H, Zhao M, Ma D, Chen W. Natural variation in OsSEC13 HOMOLOG 1 modulates redox homeostasis to confer cold tolerance in rice. PLANT PHYSIOLOGY 2023; 193:2180-2196. [PMID: 37471276 DOI: 10.1093/plphys/kiad420] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 06/05/2023] [Indexed: 07/22/2023]
Abstract
Rice (Oryza sativa L.) is a cold-sensitive species that often faces cold stress, which adversely affects yield productivity and quality. However, the genetic basis for low-temperature adaptation in rice remains unclear. Here, we demonstrate that 2 functional polymorphisms in O. sativa SEC13 Homolog 1 (OsSEH1), encoding a WD40-repeat nucleoporin, between the 2 subspecies O. sativa japonica and O. sativa indica rice, may have facilitated cold adaptation in japonica rice. We show that OsSEH1 of the japonica variety expressed in OsSEH1MSD plants (transgenic line overexpressing the OsSEH1 allele from Mangshuidao [MSD], cold-tolerant landrace) has a higher affinity for O. sativa metallothionein 2b (OsMT2b) than that of OsSEH1 of indica. This high affinity of OsSEH1MSD for OsMT2b results in inhibition of OsMT2b degradation, with decreased accumulation of reactive oxygen species and increased cold tolerance. Transcriptome analysis indicates that OsSEH1 positively regulates the expression of the genes encoding dehydration-responsive element-binding transcription factors, i.e. OsDREB1 genes, and induces the expression of multiple cold-regulated genes to enhance cold tolerance. Our findings highlight a breeding resource for improving cold tolerance in rice.
Collapse
Affiliation(s)
- Shuang Gu
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhe Zhang
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Jinquan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Strube Research GmbH & Co. KG, Söllingen 38387, Germany
| | - Jian Sun
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhibo Cui
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Fengcheng Li
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Jia Zhuang
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Wanchun Chen
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Chang Su
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Lian Wu
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoliang Wang
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhifu Guo
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Hai Xu
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Minghui Zhao
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | | | - Wenfu Chen
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
13
|
Padilla‐Mejia NE, Field MC. Evolutionary, structural and functional insights in nuclear organisation and nucleocytoplasmic transport in trypanosomes. FEBS Lett 2023; 597:2501-2518. [PMID: 37789516 PMCID: PMC10953052 DOI: 10.1002/1873-3468.14747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
One of the remarkable features of eukaryotes is the nucleus, delimited by the nuclear envelope (NE), a complex structure and home to the nuclear lamina and nuclear pore complex (NPC). For decades, these structures were believed to be mainly architectural elements and, in the case of the NPC, simply facilitating nucleocytoplasmic trafficking. More recently, the critical roles of the lamina, NPC and other NE constituents in genome organisation, maintaining chromosomal domains and regulating gene expression have been recognised. Importantly, mutations in genes encoding lamina and NPC components lead to pathogenesis in humans, while pathogenic protozoa disrupt the progression of normal development and expression of pathogenesis-related genes. Here, we review features of the lamina and NPC across eukaryotes and discuss how these elements are structured in trypanosomes, protozoa of high medical and veterinary importance, highlighting lineage-specific and conserved aspects of nuclear organisation.
Collapse
Affiliation(s)
| | - Mark C. Field
- School of Life SciencesUniversity of DundeeUK
- Institute of Parasitology, Biology CentreCzech Academy of SciencesČeské BudějoviceCzechia
| |
Collapse
|
14
|
Chen G, Xu D, Liu Q, Yue Z, Dai B, Pan S, Chen Y, Feng X, Hu H. Regulation of FLC nuclear import by coordinated action of the NUP62-subcomplex and importin β SAD2. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2086-2106. [PMID: 37278318 DOI: 10.1111/jipb.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/05/2023] [Indexed: 06/07/2023]
Abstract
Flowering locus C (FLC) is a central transcriptional repressor that controls flowering time. However, how FLC is imported into the nucleus is unknown. Here, we report that Arabidopsis nucleoporins 62 (NUP62), NUP58, and NUP54 composed NUP62-subcomplex modulates FLC nuclear import during floral transition in an importin α-independent manner, via direct interaction. NUP62 recruits FLC to the cytoplasmic filaments and imports it into the nucleus through the NUP62-subcomplex composed central channel. Importin β supersensitive to ABA and drought 2 (SAD2), a carrier protein, is critical for FLC nuclear import and flower transition, which facilitates FLC import into the nucleus mainly through the NUP62-subcomplex. Proteomics, RNA-seq, and cell biological analyses indicate that the NUP62-subcomplex mainly mediates the nuclear import of cargos with unconventional nuclear localization sequences (NLSs), such as FLC. Our findings illustrate the mechanisms of the NUP62-subcomplex and SAD2 on FLC nuclear import process and floral transition, and provide insights into the role of NUP62-subcomplex and SAD2 in protein nucleocytoplasmic transport in plants.
Collapse
Affiliation(s)
- Gang Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Danyun Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhichuang Yue
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Biao Dai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shujuan Pan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongqiang Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinhua Feng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
15
|
Sahara A, Roberdi R, Wiendi NMA, Liwang T. Transcriptome profiling of high and low somatic embryogenesis rate of oil palm ( Elaeis guineensis Jacq. var. Tenera). FRONTIERS IN PLANT SCIENCE 2023; 14:1142868. [PMID: 37251752 PMCID: PMC10213556 DOI: 10.3389/fpls.2023.1142868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023]
Abstract
Oil palm micropropagation through tissue culture is a technique to provide elite oil palms to meet the desired traits. This technique is commonly carried out through somatic embryogenesis. However, the oil palm's somatic embryogenesis rate is quite low. Several approaches have been made to overcome this problem, including transcriptome profiling through RNA-seq to identify key genes involved in oil palm somatic embryogenesis. RNA sequencing was applied in high- and low-embryogenic ortets of Tenera varieties based on the somatic embryoid rate at the callus, globular, scutellar, and coleoptilar embryoid stages. Cellular analysis of embryoid inductions and proliferations showed that high-embryogenic ortets resulted in higher embryoid proliferation and germinations than low-embryogenic ortets. Transcriptome profiling showed that there are a total of 1,911 differentially expressed genes (DEGs) between high- and low-embryogenic ortets. ABA signaling-related genes such as LEA, DDX28, and vicilin-like protein are upregulated in high-embryogenic ortets. Furthermore, DEGs associated with other hormone signaling, such as HD-ZIP associated with brassinosteroids and NPF associated with auxin, are upregulated in high-embryogenic ortets. This result suggests a physiological difference between high- and low-embryogenic ortets that is connected to their capacity for somatic embryogenesis. These DEGs will be used as potential biomarkers for high-embryogenic ortets and will be validated in further studies.
Collapse
Affiliation(s)
- Asri Sahara
- Biotechnology Department, Plant Production and Biotechnology Division, PT SMART Tbk, Bogor, Indonesia
| | - Roberdi Roberdi
- Biotechnology Department, Plant Production and Biotechnology Division, PT SMART Tbk, Bogor, Indonesia
| | - Ni Made Armini Wiendi
- Agronomy and Horticulture Department, Agriculture Faculty, Bogor Agricultural University, Bogor, Indonesia
| | - Tony Liwang
- Biotechnology Department, Plant Production and Biotechnology Division, PT SMART Tbk, Bogor, Indonesia
| |
Collapse
|
16
|
CPR5-mediated nucleo-cytoplasmic localization of IAA12 and IAA19 controls lateral root development during abiotic stress. Proc Natl Acad Sci U S A 2023; 120:e2209781120. [PMID: 36623191 PMCID: PMC9934060 DOI: 10.1073/pnas.2209781120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Plasticity of the root system architecture (RSA) is essential in enabling plants to cope with various environmental stresses and is mainly controlled by the phytohormone auxin. Lateral root development is a major determinant of RSA. Abiotic stresses reduce auxin signaling output, inhibiting lateral root development; however, how abiotic stress translates into a lower auxin signaling output is not fully understood. Here, we show that the nucleo-cytoplasmic distribution of the negative regulators of auxin signaling AUXIN/INDOLE-3-ACETIC ACID INDUCIBLE 12 (AUX/IAA12 or IAA12) and IAA19 determines lateral root development under various abiotic stress conditions. The cytoplasmic localization of IAA12 and IAA19 in the root elongation zone enforces auxin signaling output, allowing lateral root development. Among components of the nuclear pore complex, we show that CONSTITUTIVE EXPRESSOR OF PATHOGENESIS-RELATED GENES 5 (CPR5) selectively mediates the cytoplasmic translocation of IAA12/19. Under abiotic stress conditions, CPR5 expression is strongly decreased, resulting in the accumulation of nucleus-localized IAA12/19 in the root elongation zone and the suppression of lateral root development, which is reiterated in the cpr5 mutant. This study reveals a regulatory mechanism for auxin signaling whereby the spatial distribution of AUX/IAA regulators is critical for lateral root development, especially in fluctuating environmental conditions.
Collapse
|
17
|
Gu S, Zhuang J, Zhang Z, Chen W, Xu H, Zhao M, Ma D. Multi-omics approach reveals the contribution of OsSEH1 to rice cold tolerance. FRONTIERS IN PLANT SCIENCE 2023; 13:1110724. [PMID: 36714747 PMCID: PMC9880419 DOI: 10.3389/fpls.2022.1110724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
As low environmental temperature adversely affects the growth, development and geographical distribution, plants have evolved multiple mechanisms involving changing physiological and metabolic processes to adapt to cold stress. In this study, we revealed that nucleoporin-coding gene OsSEH1 was a positive regulator of cold stress in rice. Physiological assays showed that the activity of antioxidant enzymes showed a significant difference between osseh1 knock-out lines and wild type under cold stress. Metabolome analysis revealed that the contents of large-scale flavonoids serving as ROS scavengers were lower in osseh1 mutants compared with wild type under cold stress. Transcriptome analysis indicated that the DEGs between osseh1 knock-out lines and wild type plants were enriched in defense response, regulation of hormone levels and oxidation-reduction process. Integration of transcriptomic and metabolic profiling revealed that OsSEH1 plays a role in the oxidation-reduction process by coordinately regulating genes expression and metabolite accumulation involved in phenylpropanoid and flavonoid biosynthetic pathway. In addition, Exogenous ABA application assays indicated that osseh1 lines had hypersensitive phenotypes compared with wild type plants, suggesting that OsSEH1 may mediate cold tolerance by regulating ABA levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dianrong Ma
- *Correspondence: Minghui Zhao, ; Dianrong Ma,
| |
Collapse
|
18
|
Meng X, Liu S, Zhang C, He J, Ma D, Wang X, Dong T, Guo F, Cai J, Long T, Li Z, Zhu M. The unique sweet potato NAC transcription factor IbNAC3 modulates combined salt and drought stresses. PLANT PHYSIOLOGY 2023; 191:747-771. [PMID: 36315103 PMCID: PMC9806649 DOI: 10.1093/plphys/kiac508] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Plants often simultaneously experience combined stresses rather than a single stress, causing more serious damage, but the underlying mechanisms remain unknown. Here, we identified the stress-induced IbNAC3 from sweet potato (Ipomoea batatas) as a nucleus-localized transcription activator. IbNAC3 contains a unique activation domain whose MKD sequence confers transactivation activities to multiple other TFs and is essential for the activated expression of downstream target genes. Ectopic expression of IbNAC3 conferred tolerance to single and combined salt and drought stresses in Arabidopsis (Arabidopsis thaliana), and a group of NAM, ATAF1/2, and CUC2 (NAC) TFs, including ANAC011, ANAC072, ANAC083, ANAC100, and NAP, interacted with IbNAC3, and the specific domains responsible for each interaction varied. Intriguingly, IbNAC3 repressed the interaction among the five NACs, and knockout or mutation of ANAC011 and ANAC072 dramatically impaired combined stress tolerance. IbNAC3-ANAC072 and IbNAC3-NAP modules synergistically activated the MICROTUBULE-RELATED E3 LIGASE57 (MREL57) gene. Consistently, mutation of MREL57 and overexpression of WAVE-DAM-PENED2-LIKE7, encoding a target protein of MREL57, both remarkably impaired combined stress tolerance. Moreover, transgenic plants displayed abscisic acid (ABA) hyposensitivity by directly promoting the transcription of ENHANCED RESPONSE TO ABA 1, a key negative regulator of ABA signaling. The data unravel the unique IbNAC3 TF functions as a pivotal component in combined stress tolerance by integrating multiple regulatory events and ubiquitin pathways, which is essential for developing high-tolerant plants in natural environments.
Collapse
Affiliation(s)
- Xiaoqing Meng
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Siyuan Liu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Chengbin Zhang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Junna He
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Daifu Ma
- Jiangsu Xuzhou Sweetpotato Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xuzhou, 221131, China
| | - Xin Wang
- Jiangsu Xuzhou Sweetpotato Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xuzhou, 221131, China
| | - Tingting Dong
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Fen Guo
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Jing Cai
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Tiandan Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Mingku Zhu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
19
|
Song M, Linghu B, Huang S, Hu S, An R, Wei S, Mu J, Zhang Y. Identification of nuclear pore complexes (NPCs) and revealed outer-ring component BnHOS1 related to cold tolerance in B. napus. Int J Biol Macromol 2022; 223:1450-1461. [PMID: 36402381 DOI: 10.1016/j.ijbiomac.2022.11.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Nuclear pore complexes (NPCs) consist of ~30 different nucleoporins (Nups), are the unique channels that govern development, hormonal response, and roles in both biotic and abiotic responses, as well as the transport and information exchange of biomacromolecules between nucleoplasms. Here, we report the comprehensive identification of 77 BnNups throughout the zhongshuang11 (ZS11) genome, which were classified into 29 distinct categories based on their evolutionary connections. We compared and contrasted different BnNups by analyzing at their gene structures, protein domains, putative three-dimensional (3D) models and expression patterns. Additional examples of genome-wide duplication events and cross-species synteny are provided to demonstrate the proliferation and evolutionary conservation of BnNups. When BnHOS1 was modified using CRISPR/Cas9 technology, the resulting L10 and L28 lines exhibited substantial freezing resistance. This not only demonstrated the negative regulatory impact of BnHOS1 on cold stress, but also offered a promising candidate gene for cold tolerance breeding and augmented the available B. napus material. These findings not only help us learn more about the composition and function of BnNPCs in B. napus, but they also provide light on how NPCs in other eukaryotic organism functions.
Collapse
Affiliation(s)
- Min Song
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bin Linghu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuhua Huang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Shengwu Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ran An
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Shihao Wei
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Jianxin Mu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China.
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China.
| |
Collapse
|
20
|
Chang YN, Wang Z, Ren Z, Wang CH, Wang P, Zhu JK, Li X, Duan CG. NUCLEAR PORE ANCHOR and EARLY IN SHORT DAYS 4 negatively regulate abscisic acid signaling by inhibiting Snf1-related protein kinase2 activity and stability in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2060-2074. [PMID: 35984097 DOI: 10.1111/jipb.13349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Abscisic acid (ABA) is a key regulator of plant responses to abiotic stresses, such as drought. Abscisic acid receptors and coreceptors perceive ABA to activate Snf1-related protein kinase2s (SnRK2s) that phosphorylate downstream effectors, thereby activating ABA signaling and the stress response. As stress responses come with fitness penalties for plants, it is crucial to tightly control SnRK2 kinase activity to restrict ABA signaling. However, how SnRK2 kinases are inactivated remains elusive. Here, we show that NUCLEAR PORE ANCHOR (NUA), a nuclear pore complex (NPC) component, negatively regulates ABA-mediated inhibition of seed germination and post-germination growth, and drought tolerance in Arabidopsis thaliana. The role of NUA in response to ABA depends on SnRK2.2 and SnRK2.3 for seed germination and on SnRK2.6 for drought. NUA does not directly inhibit the phosphorylation of these SnRK2s or affects their abundance. However, the NUA-interacting protein EARLY IN SHORT DAYS 4 (ESD4), a SUMO protease, negatively regulates ABA signaling by directly interacting with and inhibiting SnRK2 phosphorylation and protein levels. More importantly, we demonstrated that SnRK2.6 can be SUMOylated in vitro, and ESD4 inhibits its SUMOylation. Taken together, we identified NUA and ESD4 as SnRK2 kinase inhibitors that block SnRK2 activity, and reveal a mechanism whereby NUA and ESD4 negatively regulate plant responses to ABA and drought stress possibly through SUMOylation-dependent regulation of SnRK2s.
Collapse
Affiliation(s)
- Ya-Nan Chang
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, the Chinese Academy of Science, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhijuan Wang
- National Key Laboratory of Crop Genetic and Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ziyin Ren
- National Key Laboratory of Crop Genetic and Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Han Wang
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, the Chinese Academy of Science, Shanghai, 201602, China
| | - Pengcheng Wang
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, the Chinese Academy of Science, Shanghai, 201602, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, the Chinese Academy of Science, Shanghai, 201602, China
- Department of Horticulture and Architecture Landscape, Purdue University, West Lafayette, IN 47907, USA
| | - Xia Li
- National Key Laboratory of Crop Genetic and Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng-Guo Duan
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, the Chinese Academy of Science, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
21
|
Tang Y, Ho MI, Kang BH, Gu Y. GBPL3 localizes to the nuclear pore complex and functionally connects the nuclear basket with the nucleoskeleton in plants. PLoS Biol 2022; 20:e3001831. [PMID: 36269771 PMCID: PMC9629626 DOI: 10.1371/journal.pbio.3001831] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/02/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022] Open
Abstract
The nuclear basket (NB) is an essential structure of the nuclear pore complex (NPC) and serves as a dynamic and multifunctional platform that participates in various critical nuclear processes, including cargo transport, molecular docking, and gene expression regulation. However, the underlying molecular mechanisms are not completely understood, particularly in plants. Here, we identified a guanylate-binding protein (GBP)-like GTPase (GBPL3) as a novel NPC basket component in Arabidopsis. Using fluorescence and immunoelectron microscopy, we found that GBPL3 localizes to the nuclear rim and is enriched in the nuclear pore. Proximity labeling proteomics and protein-protein interaction assays revealed that GBPL3 is predominantly distributed at the NPC basket, where it physically associates with NB nucleoporins and recruits chromatin remodelers, transcription apparatus and regulators, and the RNA splicing and processing machinery, suggesting a conserved function of the NB in transcription regulation as reported in yeasts and animals. Moreover, we found that GBPL3 physically interacts with the nucleoskeleton via disordered coiled-coil regions. Simultaneous loss of GBPL3 and one of the 4 Arabidopsis nucleoskeleton genes CRWNs led to distinct development- and stress-related phenotypes, ranging from seedling lethality to lesion development, and aberrant transcription of stress-related genes. Our results indicate that GBPL3 is a bona fide component of the plant NPC and physically and functionally connects the NB with the nucleoskeleton, which is required for the coordination of gene expression during plant development and stress responses.
Collapse
Affiliation(s)
- Yu Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- Innovative Genomics Institute, University of California, Berkeley, California, United States of America
| | - Man Ip Ho
- School of Life Sciences, Center for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Byung-Ho Kang
- School of Life Sciences, Center for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yangnan Gu
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- Innovative Genomics Institute, University of California, Berkeley, California, United States of America
| |
Collapse
|
22
|
Wang T, Zhou Q, Wu X, Wang D, Yang L, Luo W, Wang J, Yang Y, Liu Z. Arabidopsis thaliana E3 ligase AIRP4 is involved in GA synthesis. JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153805. [PMID: 36087409 DOI: 10.1016/j.jplph.2022.153805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Arabidopsis abscisic acid ABA-Insensitive RING Proteins (AtAIRP1-4) are RING E3s that play significant roles in ABA-signaling pathways. However, it is still unclear whether they have other functions. Here, AtAIRP4 was determined to play a role in response to gibberellin A3 (GA3) in Arabidopsis thaliana. After proAtAIRP4::GUS transgenic lines were treated with GA3, the GUS activity decreased in hypocotyls. Increased hypocotyl elongation in response to GA3 seen in WT was not observed in the AtAIRP4-overexpression lines, whereas AtAIRP4-overexpression lines were hypersensitive to Paclobutrazol (PAC, an inhibitor of GA biosynthesis) during the seed germination stage. Additionally, AtAIRP4-overexpressing lines showed the lowest level of primary root elongation in the presence of GA3. The levels of endogenous GA3 in 35S::AtAIRP4 lines were lower than those in wild-type. In addition, among the plants, the mRNA levels of the GA synthetic gene GIBBERELLIN 20-OXIDASE1 (GA20ox1) was the lowest in overexpressing line. However, the expression of the response gene DELLA RGA-LIKE3 (RGL3) was the highest in overexpressing lines after treatment with GA3. Thus, AtAIRP4 plays a negative role in GA-mediated hypocotyl elongation and root growth, and it inhibits the synthesis of endogenous biologically active GA3 to some extent.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Qin Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xiaobo Wu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Duo Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Liang Yang
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Wenmin Luo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhibin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
23
|
Zhang C, Zhang XI, Cheng B, Wu J, Zhang L, Xiao X, Zhang D, Zhao C, An N, Han M, Xing L. MdNup54 Interactions With MdHSP70 Involved in Flowering in Apple. FRONTIERS IN PLANT SCIENCE 2022; 13:903808. [PMID: 35865288 PMCID: PMC9296068 DOI: 10.3389/fpls.2022.903808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Flowering-related problems in "Fuji" apple have severely restricted the development of China's apple industry. Nuclear pore complexes (NPCs) control nucleoplasmic transport and play an important role in the regulation of plant growth and development. However, the effects of NPCs on apple flowering have not been reported. Here, we analysed the expression and function of MdNup54, a component of apple NPC. MdNup54 expression was the highest in flower buds and maintained during 30-70 days after flowering. MdNup54-overexpressing (OE) Arabidopsis lines displayed significantly earlier flowering than that of the wild type. We further confirmed that MdNup54 interacts with MdHSP70, MdMYB11, and MdKNAT4/6. Consistent with these observations, flowering time of MdHSP70-OE Arabidopsis lines was also significantly earlier. Therefore, our findings suggest a possible interaction of MdNup54 with MdHSP70 to mediate its nuclear and cytoplasmic transport and to regulate apple flowering. The results enhance the understanding of the flowering mechanism in apple and propose a novel strategy to study nucleoporins.
Collapse
Affiliation(s)
- Chenguang Zhang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, China
| | - XIaoshuang Zhang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, China
| | - Bo Cheng
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Junkai Wu
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, China
| | - Libin Zhang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, China
| | - Xiao Xiao
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Caiping Zhao
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Na An
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Libo Xing
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
24
|
Zhang C, An N, Jia P, Zhang W, Liang J, Zhou H, Zhang D, Ma J, Zhao C, Han M, Ren X, Xing L. MdNup62 interactions with MdHSFs involved in flowering and heat-stress tolerance in apple. BMC PLANT BIOLOGY 2022; 22:317. [PMID: 35786201 PMCID: PMC9251929 DOI: 10.1186/s12870-022-03698-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Because of global warming, the apple flowering period is occurring significantly earlier, increasing the probability and degree of freezing injury. Moreover, extreme hot weather has also seriously affected the development of apple industry. Nuclear pore complexes (NPCs) are main channels controlling nucleocytoplasmic transport, but their roles in regulating plant development and stress responses are still unknown. Here, we analysed the components of the apple NPC and found that MdNup62 interacts with MdNup54, forming the central NPC channel. MdNup62 was localized to the nuclear pore, and its expression was significantly up-regulated in 'Nagafu No. 2' tissue-cultured seedlings subjected to heat treatments. To determine MdNup62's function, we obtained MdNup62-overexpressed (OE) Arabidopsis and tomato lines that showed significantly reduced high-temperature resistance. Additionally, OE-MdNup62 Arabidopsis lines showed significantly earlier flowering compared with wild-type. Furthermore, we identified 62 putative MdNup62-interacting proteins and confirmed MdNup62 interactions with multiple MdHSFs. The OE-MdHSFA1d and OE-MdHSFA9b Arabidopsis lines also showed significantly earlier flowering phenotypes than wild-type, but had enhanced high-temperature resistance levels. Thus, MdNUP62 interacts with multiple MdHSFs during nucleocytoplasmic transport to regulate flowering and heat resistance in apple. The data provide a new theoretical reference for managing the impact of global warming on the apple industry.
Collapse
Affiliation(s)
- Chenguang Zhang
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Na An
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Peng Jia
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Wei Zhang
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Jiayan Liang
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Hua Zhou
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Juanjuan Ma
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Caiping Zhao
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Libo Xing
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
25
|
Zhang Y, Li TT, Wang LF, Guo JX, Lu KK, Song RF, Zuo JX, Chen HH, Liu WC. Abscisic acid facilitates phosphate acquisition through the transcription factor ABA INSENSITIVE5 in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:269-281. [PMID: 35506310 DOI: 10.1111/tpj.15791] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Low phosphate (LP) in soil is a common nutrient stress that severely restricts agricultural production, but the role, if any, of the major stress phytohormone abscisic acid (ABA) in plant phosphate (Pi) starvation responses remains elusive. Here, we report that LP-induced ABA accumulation promotes Pi uptake in an ABA INSENSITIVE5 (ABI5)-dependent manner in Arabidopsis thaliana. LP significantly activated plant ABA biosynthesis, metabolism, and stress responses, suggesting a role of ABA in the plant response to Pi availability. LP-induced ABA accumulation and expression of two major high-affinity phosphate transporter genes PHOSPHATE TRANSPORTER1;1/1;4 (PHT1;1/1;4) were severely impaired in a mutant lacking BETA-GLUCOSIDASE1 (BG1), which converts conjugated ABA to active ABA, and the mutant had shorter roots and less Pi content than wild-type plants under LP conditions. Moreover, a mutant of ABI5, which encodes a central transcription factor in ABA signaling, also exhibited suppressed root elongation and had reduced Pi content under LP conditions. ABI5 facilitated Pi acquisition by activating the expression of PHT1;1 by directly binding to its promoter, while overexpression of PHT1;1 completely rescued its Pi content under LP conditions. Together, our findings illustrate a molecular mechanism by which ABA positively modulates phosphate acquisition through ABI5 in the Arabidopsis response to phosphate deficiency.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Ting-Ting Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lin-Feng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jia-Xing Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Kai-Kai Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Ru-Feng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jia-Xin Zuo
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Hui-Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
26
|
Liu Z, Abou-Elwafa SF, Xie J, Liu Y, Li S, Aljabri M, Zhang D, Gao F, Zhang L, Wang Z, Sun C, Zhu B, Bao M, Hu X, Chen Y, Ku L, Ren Z, Wei L. A Nucleoporin NUP58 modulates responses to drought and salt stress in maize (Zea mays L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111296. [PMID: 35643613 DOI: 10.1016/j.plantsci.2022.111296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/09/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Nuclear pore complex (NUP) is the main transport channel between cytoplasm and nucleoplasm, which plays an important role in stress response. The function of NUPs was widely reported in yeast and vertebrate but rarely in plants. Here, we identified a nuclear pore complex (ZmNUP58), that is tightly associated with drought and salt tolerance phenotype accompanied with phenotypic and physiological changes under drought and salt stress. The overexpression of ZmNUP58 in maize (Zea mays L.) significantly promotes both chlorophyll content and activities of antioxidant enzymes under drought- and salt-stressed conditions. RNA-Seq analysis showed that ZmNUP58 could regulate the expression of genes related to phytohormone synthesis and signaling, osmotic adjustment substances, antioxidant enzyme system, cell wall biosynthesis, glucose metabolism and aquaporin. The results provide novel insights into the regulatory role of ZmNUP58 in improving drought and salt tolerance through regulating phytohormone and other stress response genes in maize.
Collapse
Affiliation(s)
- Zhixue Liu
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | | | - Jiarong Xie
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Yajing Liu
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Siyuan Li
- Corn Breeding and Research, China Seeds International Seeds Co., Ltd, Zhengzhou, Henan, 450046, China
| | - Maha Aljabri
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah 21421, Saudi Arabia
| | - Dongling Zhang
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Fengran Gao
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Lili Zhang
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Zhiyong Wang
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Chongyu Sun
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Bingqi Zhu
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Miaomiao Bao
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Xiaomeng Hu
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Yanhui Chen
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Lixia Ku
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Zhenzhen Ren
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Li Wei
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| |
Collapse
|
27
|
Wang Z, Liu M, Yao M, Zhang X, Qu C, Du H, Lu K, Li J, Wei L, Liang Y. Rapeseed ( Brassica napus) Mitogen-Activated Protein Kinase 1 Enhances Shading Tolerance by Regulating the Photosynthesis Capability of Photosystem II. FRONTIERS IN PLANT SCIENCE 2022; 13:902989. [PMID: 35720537 PMCID: PMC9201689 DOI: 10.3389/fpls.2022.902989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Rapeseed (Brassica napus) is the third-largest source of vegetable oil in the world with an edible, medicinal, and ornamental value. However, insufficient light or high planting density directly affects its growth, development, yield, and quality. Mitogen-activated protein kinases (MAPKs) are serine/threonine protein kinases that play key roles in regulating the responses to biotic and abiotic stresses in plants. In this study, we found that the promoter of BnaMAPK1 contained several light-responsive elements (including the AT1-motif, G-Box, and TCT-motif), consistent with its shading stress-induced upregulation. Compared with the wild type under shading stress, BnaMAPK1-overexpressing plants showed higher light capture efficiency and carbon assimilation capacity, enhancing their shading tolerance. Using RNA sequencing, we systematically investigated the function of BnaMAPK1 in shading stress on photosynthetic structure, Calvin cycle, and light-driven electron transport. Notably, numerous genes encoding light-harvesting chlorophyll a/b-binding proteins (BnaLHCBs) in photosystem II-light-harvesting complex (LHC) II supercomplex were significantly downregulated in the BnaMAPK1-overexpressing lines relative to the wild type under shading stress. Combining RNA sequencing and yeast library screening, a candidate interaction partner of BnaMAPK1 regulating in shading stress, BnaLHCB3, was obtained. Moreover, yeast two-hybrid and split-luciferase complementation assays confirmed the physical interaction relationship between BnaLHCB3 and BnaMAPK1, suggesting that BnaMAPK1 may involve in stabilizing the photosystem II-LHC II supercomplex. Taken together, our results demonstrate that BnaMAPK1 positively regulates photosynthesis capability to respond to shading stress in rapeseed, possibly by controlling antenna proteins complex in photosystem II, and could provide valuable information for further breeding for rapeseed stress tolerance.
Collapse
Affiliation(s)
- Zhen Wang
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Miao Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering College, Guizhou University, Guiyang, China
| | - Mengnan Yao
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, China
| | - Xiaoli Zhang
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Cunmin Qu
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Hai Du
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Kun Lu
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Jiana Li
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Lijuan Wei
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Ying Liang
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| |
Collapse
|
28
|
Wu C, Lin M, Chen F, Chen J, Liu S, Yan H, Xiang Y. Homologous Drought-Induced 19 Proteins, PtDi19-2 and PtDi19-7, Enhance Drought Tolerance in Transgenic Plants. Int J Mol Sci 2022; 23:ijms23063371. [PMID: 35328791 PMCID: PMC8954995 DOI: 10.3390/ijms23063371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Drought-induced 19 (Di19) proteins play important roles in abiotic stress responses. Thus far, there are no reports about Di19 family in woody plants. Here, eight Di19 genes were identified in poplar. We analyzed phylogenetic tree, conserved protein domain, and gene structure of Di19 gene members in seven species. The results showed the Di19 gene family was very conservative in both dicotyledonous and monocotyledonous forms. On the basis of transcriptome data, the expression patterns of Di19s in poplar under abiotic stress and ABA treatment were further studied. Subsequently, homologous genes PtDi19-2 and PtDi19-7 with strong response to drought stress were identified. PtDi19-2 functions as a nuclear transcriptional activator with a transactivation domain at the C-terminus. PtDi19-7 is a nuclear and membrane localization protein. Additionally, PtDi19-2 and PtDi19-7 were able to interact with each other in yeast two-hybrid system. Overexpression of PtDi19-2 and PtDi19-7 in Arabidopsis was found. Phenotype identification and physiological parameter analysis showed that transgenic Arabidopsis increased ABA sensitivity and drought tolerance. PtDi19-7 was overexpressed in hybrid poplar 84K (Populus alba × Populus glandulosa). Under drought treatment, the phenotype and physiological parameters of transgenic poplar were consistent with those of transgenic Arabidopsis. In addition, exogenous ABA treatment induced lateral bud dormancy of transgenic poplar and stomatal closure of transgenic Arabidopsis. The expression of ABA/drought-related marker genes was upregulated under drought treatment. These results indicated that PtDi19-2 and PtDi19-7 might play a similar role in improving the drought tolerance of transgenic plants through ABA-dependent signaling pathways.
Collapse
Affiliation(s)
- Caijuan Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230061, China; (C.W.); (M.L.); (F.C.); (J.C.); (S.L.); (H.Y.)
| | - Miao Lin
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230061, China; (C.W.); (M.L.); (F.C.); (J.C.); (S.L.); (H.Y.)
| | - Feng Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230061, China; (C.W.); (M.L.); (F.C.); (J.C.); (S.L.); (H.Y.)
| | - Jun Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230061, China; (C.W.); (M.L.); (F.C.); (J.C.); (S.L.); (H.Y.)
| | - Shifan Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230061, China; (C.W.); (M.L.); (F.C.); (J.C.); (S.L.); (H.Y.)
| | - Hanwei Yan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230061, China; (C.W.); (M.L.); (F.C.); (J.C.); (S.L.); (H.Y.)
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230061, China; (C.W.); (M.L.); (F.C.); (J.C.); (S.L.); (H.Y.)
- National Engineering Laboratory of Crop Stress Resistance Breeding, College of Life Sciences, Anhui Agricultural University, Hefei 230061, China
- Correspondence:
| |
Collapse
|
29
|
Wu X, Han J, Guo C. Function of Nuclear Pore Complexes in Regulation of Plant Defense Signaling. Int J Mol Sci 2022; 23:3031. [PMID: 35328452 PMCID: PMC8953349 DOI: 10.3390/ijms23063031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
In eukaryotes, the nucleus is the regulatory center of cytogenetics and metabolism, and it is critical for fundamental biological processes, including DNA replication and transcription, protein synthesis, and biological macromolecule transportation. The eukaryotic nucleus is surrounded by a lipid bilayer called the nuclear envelope (NE), which creates a microenvironment for sophisticated cellular processes. The NE is perforated by the nuclear pore complex (NPC), which is the channel for biological macromolecule bi-directional transport between the nucleus and cytoplasm. It is well known that NPC is the spatial designer of the genome and the manager of genomic function. Moreover, the NPC is considered to be a platform for the continual adaptation and evolution of eukaryotes. So far, a number of nucleoporins required for plant-defense processes have been identified. Here, we first provide an overview of NPC organization in plants, and then discuss recent findings in the plant NPC to elaborate on and dissect the distinct defensive functions of different NPC subcomponents in plant immune defense, growth and development, hormone signaling, and temperature response. Nucleoporins located in different components of NPC have their unique functions, and the link between the NPC and nucleocytoplasmic trafficking promotes crosstalk of different defense signals in plants. It is necessary to explore appropriate components of the NPC as potential targets for the breeding of high-quality and broad spectrum resistance crop varieties.
Collapse
Affiliation(s)
- Xi Wu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China;
| | - Junyou Han
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China;
| | - Changkui Guo
- Laboratory of Plant Molecular and Developmental Biology, Zhejiang A & F University, Hangzhou 311300, China
| |
Collapse
|
30
|
Amoanimaa-Dede H, Su C, Yeboah A, Zhou H, Zheng D, Zhu H. Growth regulators promote soybean productivity: a review. PeerJ 2022; 10:e12556. [PMID: 35265396 PMCID: PMC8900611 DOI: 10.7717/peerj.12556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/05/2021] [Indexed: 01/06/2023] Open
Abstract
Soybean [Glycine max (L.) Merrill] is a predominant edible plant and a major supply of plant protein worldwide. Global demand for soybean keeps increasing as its seeds provide essential proteins, oil, and nutraceuticals. In a quest to meet heightened demands for soybean, it has become essential to introduce agro-technical methods that promote adaptability to complex environments, improve soybean resistance to abiotic stress , and increase productivity. Plant growth regulators are mainly exploited to achieve this due to their crucial roles in plant growth and development. Increasing research suggests the influence of plant growth regulators on soybean growth and development, yield, quality, and abiotic stress responses. In an attempt to expatiate on the topic, current knowledge, and possible applications of plant growth regulators that improve growth and yield have been reviewed and discussed. Notably, the application of plant growth regulators in their appropriate concentrations at suitable growth periods relieves abiotic stress thereby increasing the yield and yield components of soybean. Moreover, the regulation effects of different growth regulators on the morphology, physiology, and yield quality of soybean are discoursed in detail.
Collapse
Affiliation(s)
- Hanna Amoanimaa-Dede
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| | - Chuntao Su
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| | - Akwasi Yeboah
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| | - Hang Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong Province, China
| | - Hongbo Zhu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| |
Collapse
|
31
|
Ding H, Qian Y, Fang Y, Ji Y, Sheng J, Ge C. Characteristics of SlCML39, a Tomato Calmodulin-like Gene, and Its Negative Role in High Temperature Tolerance of Arabidopsis thaliana during Germination and Seedling Growth. Int J Mol Sci 2021; 22:ijms222111479. [PMID: 34768907 PMCID: PMC8584099 DOI: 10.3390/ijms222111479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
Calmodulin-like (CML) proteins are primary calcium sensors and function in plant growth and response to stress stimuli. However, so far, the function of plant CML proteins, including tomato, is still unclear. Previously, it was found that a tomato (Solanum lycopersicum) CML, here named SlCML39, was significantly induced by high temperature (HT) at transcription level, but its biological function is scarce. In this study, the characteristics of SlCML39 and its role in HT tolerance were studied. SlCML39 encodes a protein of 201 amino acids containing four EF hand motifs. Many cis-acting elements related to plant stress and hormone response appear in the promoter regions of SlCML39. SlCML39 is mainly expressed in the root, stem, and leaf and can be regulated by HT, cold, drought, and salt stresses as well as ABA and H2O2. Furthermore, heterologous overexpression of SlCML39 reduces HT tolerance in Arabidopsis thaliana at the germination and seedling growth stages. To better understand the molecular mechanism of SlCML39, the downstream gene network regulated by SlCML39 under HT was analyzed by RNA-Seq. Interestingly, we found that many genes involved in stress responses as well as ABA signal pathway are down-regulated in the transgenic seedlings under HT stress, such as KIN1, RD29B, RD26, and MAP3K18. Collectively, these data indicate that SlCML39 acts as an important negative regulator in response to HT stress, which might be mediated by the ABA signal pathway.
Collapse
Affiliation(s)
- Haidong Ding
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
- Correspondence: (H.D.); (C.G.); Tel./Fax: +86-514-8797-9204
| | - Ying Qian
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
| | - Yifang Fang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
| | - Yurong Ji
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
| | - Jiarong Sheng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
| | - Cailin Ge
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
- Correspondence: (H.D.); (C.G.); Tel./Fax: +86-514-8797-9204
| |
Collapse
|
32
|
Chen X, Wu X, Qiu S, Zheng H, Lu Y, Peng J, Wu G, Chen J, Rao S, Yan F. Genome-Wide Identification and Expression Profiling of the BZR Transcription Factor Gene Family in Nicotiana benthamiana. Int J Mol Sci 2021; 22:10379. [PMID: 34638720 PMCID: PMC8508657 DOI: 10.3390/ijms221910379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
Brassinazole-resistant (BZR) family genes encode plant-specific transcription factors (TFs), play essential roles in the regulation of plant growth and development, and have multiple stress-resistance functions. Nicotiana benthamiana is a model plant widely used in basic research. However, members of the BZR family in N. benthamiana have not been identified, and little is known about their function in abiotic stress. In this study, a total of 14 BZR members were identified in the N. benthamiana genome, which could be divided into four groups according to a phylogenetic tree. NbBZRs have similar exon-intron structures and conserved motifs, and may be regulated by cis-acting elements such as STRE, TCA, and ARE, etc. Organ-specific expression analysis showed that NbBZR members have different and diverse expression patterns in different tissues, and most of the members are expressed in roots, stems, and leaves. The analysis of the expression patterns in response to different abiotic stresses showed that all the tested NbBZR members showed a significant down-regulation after drought treatment. Many NbBZR genes also responded in various ways to cold, heat and salt stress treatments. The results imply that NbBZRs have multiple functions related to stress resistance.
Collapse
Affiliation(s)
- Xuwei Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (X.C.); (X.W.); (S.Q.); (H.Z.); (Y.L.); (J.P.); (G.W.); (J.C.)
| | - Xinyang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (X.C.); (X.W.); (S.Q.); (H.Z.); (Y.L.); (J.P.); (G.W.); (J.C.)
- College of Life Science, China Jiliang University, Hangzhou 310058, China
| | - Shiyou Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (X.C.); (X.W.); (S.Q.); (H.Z.); (Y.L.); (J.P.); (G.W.); (J.C.)
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (X.C.); (X.W.); (S.Q.); (H.Z.); (Y.L.); (J.P.); (G.W.); (J.C.)
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (X.C.); (X.W.); (S.Q.); (H.Z.); (Y.L.); (J.P.); (G.W.); (J.C.)
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (X.C.); (X.W.); (S.Q.); (H.Z.); (Y.L.); (J.P.); (G.W.); (J.C.)
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (X.C.); (X.W.); (S.Q.); (H.Z.); (Y.L.); (J.P.); (G.W.); (J.C.)
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (X.C.); (X.W.); (S.Q.); (H.Z.); (Y.L.); (J.P.); (G.W.); (J.C.)
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (X.C.); (X.W.); (S.Q.); (H.Z.); (Y.L.); (J.P.); (G.W.); (J.C.)
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (X.C.); (X.W.); (S.Q.); (H.Z.); (Y.L.); (J.P.); (G.W.); (J.C.)
| |
Collapse
|
33
|
Exploitation of Drought Tolerance-Related Genes for Crop Improvement. Int J Mol Sci 2021; 22:ijms221910265. [PMID: 34638606 PMCID: PMC8508643 DOI: 10.3390/ijms221910265] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 12/03/2022] Open
Abstract
Drought has become a major threat to food security, because it affects crop growth and development. Drought tolerance is an important quantitative trait, which is regulated by hundreds of genes in crop plants. In recent decades, scientists have made considerable progress to uncover the genetic and molecular mechanisms of drought tolerance, especially in model plants. This review summarizes the evaluation criteria for drought tolerance, methods for gene mining, characterization of genes related to drought tolerance, and explores the approaches to enhance crop drought tolerance. Collectively, this review illustrates the application prospect of these genes in improving the drought tolerance breeding of crop plants.
Collapse
|
34
|
Ooi SE, Feshah I, Nuraziyan A, Sarpan N, Ata N, Lim CC, Choo CN, Wong WC, Wong FH, Wong CK, Ong-Abdullah M. Leaf transcriptomic signatures for somatic embryogenesis potential of Elaeis guineensis. PLANT CELL REPORTS 2021; 40:1141-1154. [PMID: 33929599 DOI: 10.1007/s00299-021-02698-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Potentially embryogenic oil palms can be identified through leaf transcriptomic signatures. Differential expression of genes involved in flowering time, and stress and light responses may associate with somatic embryogenesis potential. Clonal propagation is an attractive approach for the mass propagation of high yielding oil palms. A major issue hampering the effectiveness of oil palm tissue culture is the low somatic embryogenesis rate. Previous studies have identified numerous genes involved in oil palm somatic embryogenesis, but their association with embryogenic potential has not been determined. In this study, differential expression analysis of leaf transcriptomes from embryogenic and non-embryogenic mother palms revealed that transcriptome profiles from non- and poor embryogenic mother palms were more similar than highly embryogenic palms. A total of 171 genes exhibiting differential expression in non- and low embryogenesis groups could also discriminate high from poor embryogenesis groups of another tissue culture agency. Genes related to flowering time or transition such as FTIP, FRIGIDA-LIKE, and NF-YA were up-regulated in embryogenic ortets, suggesting that reproduction timing of the plant may associate with somatic embryogenesis potential. Several light response or photosynthesis-related genes were down-regulated in embryogenic ortets, suggesting a link between photosynthesis activity and embryogenic potential. As expression profiles of the differentially expressed genes are very similar between non- and low embryogenic groups, machine learning approaches with several candidate genes may generate a more sensitive model to better discriminate non-embryogenic from embryogenic ortets.
Collapse
Affiliation(s)
- Siew-Eng Ooi
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, 43000, Kajang, Selangor, Malaysia.
| | - Ishak Feshah
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, 43000, Kajang, Selangor, Malaysia
| | - Azimi Nuraziyan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, 43000, Kajang, Selangor, Malaysia
| | - Norashikin Sarpan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, 43000, Kajang, Selangor, Malaysia
| | - Nabeel Ata
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, 43000, Kajang, Selangor, Malaysia
| | - Chin-Ching Lim
- United Plantations Bhd., Jenderata Estate, 36009, Teluk Intan, Perak, Malaysia
| | - Chin-Nee Choo
- Advanced Agriecological Research Sdn. Bhd., 11 Jalan Teknologi 3/6, Taman Sains Selangor 1, Kota Damansara, 47810, Petaling Jaya, Selangor, Malaysia
| | - Wei-Chee Wong
- Advanced Agriecological Research Sdn. Bhd., 11 Jalan Teknologi 3/6, Taman Sains Selangor 1, Kota Damansara, 47810, Petaling Jaya, Selangor, Malaysia
| | - Foo-Hin Wong
- United Plantations Bhd., Jenderata Estate, 36009, Teluk Intan, Perak, Malaysia
| | - Choo-Kien Wong
- Advanced Agriecological Research Sdn. Bhd., 11 Jalan Teknologi 3/6, Taman Sains Selangor 1, Kota Damansara, 47810, Petaling Jaya, Selangor, Malaysia
| | - Meilina Ong-Abdullah
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
35
|
You C, Zhang Y, Yang S, Wang X, Yao W, Jin W, Wang W, Hu X, Yang H. Proteomic Analysis of Generative and Vegetative Nuclei Reveals Molecular Characteristics of Pollen Cell Differentiation in Lily. FRONTIERS IN PLANT SCIENCE 2021; 12:641517. [PMID: 34163497 PMCID: PMC8215658 DOI: 10.3389/fpls.2021.641517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/01/2021] [Indexed: 06/13/2023]
Abstract
In plants, the cell fates of a vegetative cell (VC) and generative cell (GC) are determined after the asymmetric division of the haploid microspore. The VC exits the cell cycle and grows a pollen tube, while the GC undergoes further mitosis to produce two sperm cells for double fertilization. However, our understanding of the mechanisms underlying their fate differentiation remains limited. One major advantage of the nuclear proteome analysis is that it is the only method currently able to uncover the systemic differences between VC and GC due to GC being engulfed within the cytoplasm of VC, limiting the use of transcriptome. Here, we obtained pure preparations of the vegetative cell nuclei (VNs) and generative cell nuclei (GNs) from germinating lily pollens. Utilizing these high-purity VNs and GNs, we compared the differential nucleoproteins between them using state-of-the-art quantitative proteomic techniques. We identified 720 different amount proteins (DAPs) and grouped the results in 11 fate differentiation categories. Among them, we identified 29 transcription factors (TFs) and 10 cell fate determinants. Significant differences were found in the molecular activities of vegetative and reproductive nuclei. The TFs in VN mainly participate in pollen tube development. In comparison, the TFs in GN are mainly involved in cell differentiation and male gametogenesis. The identified novel TFs may play an important role in cell fate differentiation. Our data also indicate differences in nuclear pore complexes and epigenetic modifications: more nucleoporins synthesized in VN; more histone variants and chaperones; and structural maintenance of chromosome (SMC) proteins, chromatin remodelers, and DNA methylation-related proteins expressed in GN. The VC has active macromolecular metabolism and mRNA processing, while GC has active nucleic acid metabolism and translation. Moreover, the members of unfolded protein response (UPR) and programmed cell death accumulate in VN, and DNA damage repair is active in GN. Differences in the stress response of DAPs in VN vs. GN were also found. This study provides a further understanding of pollen cell differentiation mechanisms and also a sound basis for future studies of the molecular mechanisms behind cell fate differentiation.
Collapse
Affiliation(s)
- Chen You
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- College of Life Science, Henan Normal University, Xinxiang, China
| | - YuPing Zhang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - ShaoYu Yang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xu Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wen Yao
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - WeiHuan Jin
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - XiuLi Hu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Hao Yang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Quamruzzaman M, Manik SMN, Shabala S, Zhou M. Improving Performance of Salt-Grown Crops by Exogenous Application of Plant Growth Regulators. Biomolecules 2021; 11:788. [PMID: 34073871 PMCID: PMC8225067 DOI: 10.3390/biom11060788] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/31/2022] Open
Abstract
Soil salinity is one of the major abiotic stresses restricting plant growth and development. Application of plant growth regulators (PGRs) is a possible practical means for minimizing salinity-induced yield losses, and can be used in addition to or as an alternative to crop breeding for enhancing salinity tolerance. The PGRs auxin, cytokinin, nitric oxide, brassinosteroid, gibberellin, salicylic acid, abscisic acid, jasmonate, and ethylene have been advocated for practical use to improve crop performance and yield under saline conditions. This review summarizes the current knowledge of the effectiveness of various PGRs in ameliorating the detrimental effects of salinity on plant growth and development, and elucidates the physiological and genetic mechanisms underlying this process by linking PGRs with their downstream targets and signal transduction pathways. It is shown that, while each of these PGRs possesses an ability to alter plant ionic and redox homeostasis, the complexity of interactions between various PGRs and their involvement in numerous signaling pathways makes it difficult to establish an unequivocal causal link between PGRs and their downstream effectors mediating plants' adaptation to salinity. The beneficial effects of PGRs are also strongly dependent on genotype, the timing of application, and the concentration used. The action spectrum of PGRs is also strongly dependent on salinity levels. Taken together, this results in a rather narrow "window" in which the beneficial effects of PGR are observed, hence limiting their practical application (especially under field conditions). It is concluded that, in the light of the above complexity, and also in the context of the cost-benefit analysis, crop breeding for salinity tolerance remains a more reliable avenue for minimizing the impact of salinity on plant growth and yield. Further progress in the field requires more studies on the underlying cell-based mechanisms of interaction between PGRs and membrane transporters mediating plant ion homeostasis.
Collapse
Affiliation(s)
- Md. Quamruzzaman
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect 7250, Australia; (M.Q.); (S.M.N.M.); (S.S.)
| | - S. M. Nuruzzaman Manik
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect 7250, Australia; (M.Q.); (S.M.N.M.); (S.S.)
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect 7250, Australia; (M.Q.); (S.M.N.M.); (S.S.)
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect 7250, Australia; (M.Q.); (S.M.N.M.); (S.S.)
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
37
|
Nagamalla SS, Alaparthi MD, Mellacheruvu S, Gundeti R, Earrawandla JPS, Sagurthi SR. Morpho-Physiological and Proteomic Response of Bt-Cotton and Non-Bt Cotton to Drought Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:663576. [PMID: 34040622 PMCID: PMC8143030 DOI: 10.3389/fpls.2021.663576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Drought stress impacts cotton plant growth and productivity across countries. Plants can initiate morphological, cellular, and proteomic changes to adapt to unfavorable conditions. However, our knowledge of how cotton plants respond to drought stress at the proteome level is limited. Herein, we elucidated the molecular coordination underlining the drought tolerance of two inbred cotton varieties, Bacillus thuringiensis-cotton [Bt-cotton + Cry1 Ac gene and Cry 2 Ab gene; NCS BG II BT (BTCS/BTDS)] and Hybrid cotton variety [Non-Bt-cotton; (HCS/HDS)]. Our morphological observations and biochemical experiments showed a different tolerance level between two inbred lines to drought stress. Our proteomic analysis using 2D-DIGE revealed that the changes among them were not obviously in respect to their controls apart from under drought stress, illustrating the differential expression of 509 and 337 proteins in BTDS and HDS compared to their controls. Among these, we identified eight sets of differentially expressed proteins (DEPs) and characterized them using MALDI-TOF/TOF mass spectrometry. Furthermore, the quantitative real-time PCR analysis was carried out with the identified drought-related proteins and confirmed differential expressions. In silico analysis of DEPs using Cytoscape network finds ATPB, NAT9, ERD, LEA, and EMB2001 to be functionally correlative to various drought-responsive genes LEA, AP2/ERF, WRKY, and NAC. These proteins play a vital role in transcriptomic regulation under stress conditions. The higher drought response in Bt cotton (BTCS/BTDS) attributed to the overexpression of photosynthetic proteins enhanced lipid metabolism, increased cellular detoxification and activation chaperones, and reduced synthesis of unwanted proteins. Thus, the Bt variety had enhanced photosynthesis, elevated water retention potential, balanced leaf stomata ultrastructure, and substantially increased antioxidant activity than the Non-Bt cotton. Our results may aid breeders and provide further insights into developing new drought-tolerant and high-yielding cotton hybrid varieties.
Collapse
|
38
|
Guo P, Chong L, Wu F, Hsu CC, Li C, Zhu JK, Zhu Y. Mediator tail module subunits MED16 and MED25 differentially regulate abscisic acid signaling in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:802-815. [PMID: 33369119 DOI: 10.1111/jipb.13062] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/19/2020] [Indexed: 05/06/2023]
Abstract
MED25 has been implicated as a negative regulator of the abscisic acid (ABA) signaling pathway. However, it is unclear whether other Mediator subunits could associate with MED25 to participate in the ABA response. Here, we used affinity purification followed by mass spectrometry to uncover Mediator subunits that associate with MED25 in transgenic plants. We found that at least 26 Mediator subunits, belonging to the head, middle, tail, and CDK8 kinase modules, were co-purified with MED25 in vivo. Interestingly, the tail module subunit MED16 was identified to associate with MED25 under both mock and ABA treatments. We further showed that the disruption of MED16 led to reduced ABA sensitivity compared to the wild type. Transcriptomic analysis revealed that the expression of several ABA-responsive genes was significantly lower in med16 than those in wild type. Furthermore, we discovered that MED16 may possibly compete with MED25 to interact with the key transcription factor ABA INSENSITIVE 5 (ABI5) to positively regulate ABA signaling. Consistently, med16 and med25 mutants displayed opposite phenotypes in ABA response, cuticle permeability, and differential ABI5-mediated EM1 and EM6 expression. Together, our data indicate that MED16 and MED25 differentially regulate ABA signaling by antagonistically affecting ABI5-mediated transcription in Arabidopsis.
Collapse
Affiliation(s)
- Pengcheng Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Leelyn Chong
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Fangming Wu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuan-Chih Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai, 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| |
Collapse
|
39
|
Ohama N, Moo TL, Chua NH. Differential requirement of MED14/17 recruitment for activation of heat inducible genes. THE NEW PHYTOLOGIST 2021; 229:3360-3376. [PMID: 33251584 DOI: 10.1111/nph.17119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/09/2020] [Indexed: 05/06/2023]
Abstract
The mechanism of heat stress response in plants has been studied, focusing on the function of transcription factors (TFs). Generally, TFs recruit coactivators, such as Mediator, are needed to assemble the transcriptional machinery. However, despite the close relationship with TFs, how coactivators are involved in transcriptional regulation under heat stress conditions is largely unclear. We found a severe thermosensitive phenotype of Arabidopsis mutants of MED14 and MED17. Transcriptomic analysis revealed that a quarter of the heat stress (HS)-inducible genes were commonly downregulated in these mutants. Furthermore, chromatin immunoprecipitation assay showed that the recruitment of Mediator by HsfA1s, the master regulators of heat stress response, is an important step for the expression of HS-inducible genes. There was a differential requirement of Mediator among genes; TF genes have a high requirement whereas heat shock proteins (HSPs) have a low requirement. Furthermore, artificial activation of HsfA1d mimicking perturbation of protein homeostasis induced HSP gene expression without MED14 recruitment but not TF gene expression. Considering the essential role of MED14 in Mediator function, other coactivators may play major roles in HSP activation depending on the cellular conditions. Our findings highlight the importance of differential recruitment of Mediator for the precise control of HS responses in plants.
Collapse
Affiliation(s)
- Naohiko Ohama
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Teck Lim Moo
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| |
Collapse
|
40
|
Yang L, Wang Z, Hua J. A Meta-Analysis Reveals Opposite Effects of Biotic and Abiotic Stresses on Transcript Levels of Arabidopsis Intracellular Immune Receptor Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:625729. [PMID: 33747005 PMCID: PMC7969532 DOI: 10.3389/fpls.2021.625729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/01/2021] [Indexed: 05/06/2023]
Abstract
Plant intracellular immune receptor NLR (nucleotide-binding leucine-rich repeat) proteins sense the presence of pathogens and trigger strong and robust immune responses. NLR genes are known to be tightly controlled at the protein level, but little is known about their dynamics at the transcript level. In this study, we presented a meta-analysis of transcript dynamics of all 207 NLR genes in the Col-0 accession of Arabidopsis thaliana under various biotic and abiotic stresses based on 88 publicly available RNA sequencing datasets from 27 independent studies. We find that about two thirds of the NLR genes are generally induced by pathogens, immune elicitors, or salicylic acid (SA), suggesting that transcriptional induction of NLR genes might be an important mechanism in plant immunity regulation. By contrast, NLR genes induced by biotic stresses are often repressed by abscisic acid, high temperature and drought, suggesting that transcriptional regulation of NLR genes might be important for interaction between abiotic and biotic stress responses. In addition, pathogen-induced expression of some NLR genes are dependent on SA induction. Interestingly, a small group of NLR genes are repressed under certain biotic stress treatments, suggesting an unconventional function of this group of NLRs. This meta-analysis thus reveals the transcript dynamics of NLR genes under biotic and abiotic stress conditions and suggests a contribution of NLR transcript regulation to plant immunity as well as interactions between abiotic and biotic stress responses.
Collapse
|
41
|
Lüdke D, Rohmann PFW, Wiermer M. Nucleocytoplasmic Communication in Healthy and Diseased Plant Tissues. FRONTIERS IN PLANT SCIENCE 2021; 12:719453. [PMID: 34394173 PMCID: PMC8357054 DOI: 10.3389/fpls.2021.719453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/09/2021] [Indexed: 05/16/2023]
Abstract
The double membrane of the nuclear envelope (NE) constitutes a selective compartment barrier that separates nuclear from cytoplasmic processes. Plant viability and responses to a changing environment depend on the spatial communication between both compartments. This communication is based on the bidirectional exchange of proteins and RNAs and is regulated by a sophisticated transport machinery. Macromolecular traffic across the NE depends on nuclear transport receptors (NTRs) that mediate nuclear import (i.e. importins) or export (i.e. exportins), as well as on nuclear pore complexes (NPCs) that are composed of nucleoporin proteins (NUPs) and span the NE. In this review, we provide an overview of plant NPC- and NTR-directed cargo transport and we consider transport independent functions of NPCs and NE-associated proteins in regulating plant developmental processes and responses to environmental stresses.
Collapse
Affiliation(s)
- Daniel Lüdke
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Philipp F. W. Rohmann
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Marcel Wiermer
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
- Molecular Biology of Plant-Microbe Interactions Research Group, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
- *Correspondence: Marcel Wiermer,
| |
Collapse
|
42
|
Zhu Y, Huang P, Guo P, Chong L, Yu G, Sun X, Hu T, Li Y, Hsu CC, Tang K, Zhou Y, Zhao C, Gao W, Tao WA, Mengiste T, Zhu JK. CDK8 is associated with RAP2.6 and SnRK2.6 and positively modulates abscisic acid signaling and drought response in Arabidopsis. THE NEW PHYTOLOGIST 2020; 228:1573-1590. [PMID: 32619295 DOI: 10.1111/nph.16787] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
CDK8 is a key subunit of Mediator complex, a large multiprotein complex that is a fundamental part of the conserved eukaryotic transcriptional machinery. However, the biological functions of CDK8 in plant abiotic stress responses remain largely unexplored. Here, we demonstrated CDK8 as a critical regulator in the abscisic acid (ABA) signaling and drought response pathways in Arabidopsis. Compared to wild-type, cdk8 mutants showed reduced sensitivity to ABA, impaired stomatal apertures and hypersensitivity to drought stress. Transcriptomic and chromatin immunoprecipitation analysis revealed that CDK8 positively regulates the transcription of several ABA-responsive genes, probably through promoting the recruitment of RNA polymerase II to their promoters. We discovered that both CDK8 and SnRK2.6 interact physically with an ERF/AP2 transcription factor RAP2.6, which can directly bind to the promoters of RD29A and COLD-REGULATED 15A (COR15A) with GCC or DRE elements, thereby promoting their expression. Importantly, we also showed that CDK8 is essential for the ABA-induced expression of RAP2.6 and RAP2.6-mediated upregulation of ABA-responsive genes, indicating that CDK8 could link the SnRK2.6-mediated ABA signaling to RNA polymerase II to promote immediate transcriptional response to ABA and drought signals. Overall, our data provide new insights into the roles of CDK8 in modulating ABA signaling and drought responses.
Collapse
Affiliation(s)
- Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Pengcheng Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Pengcheng Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Leelyn Chong
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Gaobo Yu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163711, China
| | - Xiaoli Sun
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163711, China
| | - Tao Hu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Kai Tang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wei Gao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
43
|
Li X, Gu Y. Structural and functional insight into the nuclear pore complex and nuclear transport receptors in plant stress signaling. CURRENT OPINION IN PLANT BIOLOGY 2020; 58:60-68. [PMID: 33217650 DOI: 10.1016/j.pbi.2020.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Nuclear pore complexes (NPC) are highly conserved mega protein complexes that penetrate the double-layered nuclear membrane and form channels to allow bi-directional transport of macromolecules between the nucleus and the cytosol. Non-passive nucleocytoplasmic transport also requires nuclear transport receptors (NTR), which bind cargo molecules and shuttle them across the NPC. The NPC and NTRs constitute two fundamental layers of regulatory mechanisms that together determine the selective nuclear translocation of signal molecules and play essential roles in activating the precise response of a cell to environmental stimuli. Here we discuss recent findings in the NPC made by advanced structural biology approaches, and dissect distinct functions of different NPC components and NTRs in plants' responses to various biotic and abiotic stresses.
Collapse
Affiliation(s)
- Xin Li
- Department of Plant and Microbial Biology, University of California, Berkeley, USA; Innovative Genomics Institute, University of California, Berkeley, USA
| | - Yangnan Gu
- Department of Plant and Microbial Biology, University of California, Berkeley, USA; Innovative Genomics Institute, University of California, Berkeley, USA.
| |
Collapse
|
44
|
Wang J, Nan N, Li N, Liu Y, Wang TJ, Hwang I, Liu B, Xu ZY. A DNA Methylation Reader-Chaperone Regulator-Transcription Factor Complex Activates OsHKT1;5 Expression during Salinity Stress. THE PLANT CELL 2020; 32:3535-3558. [PMID: 32938753 PMCID: PMC7610284 DOI: 10.1105/tpc.20.00301] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/31/2020] [Accepted: 09/13/2020] [Indexed: 05/20/2023]
Abstract
Irrigated lands are increasingly salinized, which adversely affects agricultural productivity. To respond to high sodium (Na+) concentrations, plants harbor multiple Na+ transport systems. Rice (Oryza sativa) HIGH-AFFINITY POTASSIUM (K+) TRANSPORTER1;5 (OsHKT1;5), a Na+-selective transporter, maintains K+/Na+ homeostasis under salt stress. However, the mechanism regulating OsHKT1;5 expression remains unknown. Here, we present evidence that a protein complex consisting of rice BCL-2-ASSOCIATED ATHANOGENE4 (OsBAG4), OsMYB106, and OsSUVH7 regulates OsHKT1;5 expression in response to salt stress. We isolated a salt stress-sensitive mutant, osbag4-1, that showed significantly reduced OsHKT1;5 expression and reduced K+ and elevated Na+ levels in shoots. Using comparative interactomics, we isolated two OsBAG4-interacting proteins, OsMYB106 (a MYB transcription factor) and OsSUVH7 (a DNA methylation reader), that were crucial for OsHKT1;5 expression. OsMYB106 and OsSUVH7 bound to the MYB binding cis-element (MYBE) and the miniature inverted-repeat transposable element (MITE) upstream of the MYBE, respectively, in the OsHKT1;5 promoter. OsBAG4 functioned as a bridge between OsSUVH7 and OsMYB106 to facilitate OsMYB106 binding to the consensus MYBE in the OsHKT1;5 promoter, thereby activating the OsHKT1;5 expression. Elimination of the MITE or knockout of OsMYB106 or OsSUVH7 decreased OsHKT1;5 expression and increased salt sensitivity. Our findings reveal a transcriptional complex, consisting of a DNA methylation reader, a chaperone regulator, and a transcription factor, that collaboratively regulate OsHKT1;5 expression during salinity stress.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, People's Republic of China
| | - Nan Nan
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, People's Republic of China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, People's Republic of China
| | - Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, People's Republic of China
| | - Tian-Jing Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, People's Republic of China
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, People's Republic of China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, People's Republic of China
| |
Collapse
|
45
|
Chong L, Guo P, Zhu Y. Mediator Complex: A Pivotal Regulator of ABA Signaling Pathway and Abiotic Stress Response in Plants. Int J Mol Sci 2020; 21:ijms21207755. [PMID: 33092161 PMCID: PMC7588972 DOI: 10.3390/ijms21207755] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023] Open
Abstract
As an evolutionarily conserved multi-protein complex, the Mediator complex modulates the association between transcription factors and RNA polymerase II to precisely regulate gene transcription. Although numerous studies have shown the diverse functions of Mediator complex in plant development, flowering, hormone signaling, and biotic stress response, its roles in the Abscisic acid (ABA) signaling pathway and abiotic stress response remain largely unclear. It has been recognized that the phytohormone, ABA, plays a predominant role in regulating plant adaption to various abiotic stresses as ABA can trigger extensive changes in the transcriptome to help the plants respond to environmental stimuli. Over the past decade, the Mediator complex has been revealed to play key roles in not only regulating the ABA signaling transduction but also in the abiotic stress responses. In this review, we will summarize current knowledge of the Mediator complex in regulating the plants’ response to ABA as well as to the abiotic stresses of cold, drought and high salinity. We will particularly emphasize the involvement of multi-functional subunits of MED25, MED18, MED16, and CDK8 in response to ABA and environmental perturbation. Additionally, we will discuss potential research directions available for further deciphering the role of Mediator complex in regulating ABA and other abiotic stress responses.
Collapse
|
46
|
Zhang C, An N, Jia P, Zhang W, Liang J, Zhang X, Zhou H, Ma W, Han M, Xing L, Ren X. Genomic identification and expression analysis of nuclear pore proteins in Malus domestica. Sci Rep 2020; 10:17426. [PMID: 33060661 PMCID: PMC7566457 DOI: 10.1038/s41598-020-74171-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/15/2020] [Indexed: 11/09/2022] Open
Abstract
The nuclear pore complex (NPC), comprised of individual nucleoporin (Nup) proteins, controls nucleo-cytoplasmic transport of RNA and protein, and is important for regulating plant growth and development. However, there are no reports on this complex in fruit tree species. In this study, we identified 38 apple Nups and named them based on the known Arabidopsis thaliana homologs. We also completed bioinformatics analyses of the intron and exon structural data for apple Nups. The proteins encoded by the apple Nups lacked a universally conserved domain. Moreover, a phylogenetic analysis separated the apple and A. thaliana Nups into three groups. The phylogenetic tree indicated that MdNup54 and MdNup62 are most closely related to genes in other Rosaceae species. To characterize the 38 candidate Malus domestica Nups, we measured their stage-specific expression levels. Our tests revealed these proteins were differentially expressed among diverse tissues. We analyzed the expression levels of seven apple Nups in response to an indole-3-acetic acid (IAA) treatment. The phytohormone treatment significantly inhibited apple flowering. A qRT-PCR analysis proved that an IAA treatment significantly inhibited the expression of these seven genes. A preliminary study regarding two members of the Nup62 subcomplex, MdNup54 and MdNup62, confirmed these two proteins can interact with each other. A yeast two-hybrid assay verified that MdNup54 can interact with MdKNAT4 and MdKNAT6. On the basis of the study results, we identified apple NPC and predicted its structure and function. The data generated in this investigation provide important reference material for follow-up research.
Collapse
Affiliation(s)
- Chenguang Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Na An
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Peng Jia
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Wei Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Jiayan Liang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Xu Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Hua Zhou
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Wenchun Ma
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, China.
| | - Libo Xing
- College of Horticulture, Northwest A&F University, Yangling, China.
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, Yangling, China.
| |
Collapse
|
47
|
Fernández-Jiménez N, Pradillo M. The role of the nuclear envelope in the regulation of chromatin dynamics during cell division. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5148-5159. [PMID: 32589712 DOI: 10.1093/jxb/eraa299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
The nuclear envelope delineates the eukaryotic cell nucleus. The membrane system of the nuclear envelope consists of an outer nuclear membrane and an inner nuclear membrane separated by a perinuclear space. It serves as more than just a static barrier, since it regulates the communication between the nucleoplasm and the cytoplasm and provides the anchoring points where chromatin is attached. Fewer nuclear envelope proteins have been identified in plants in comparison with animals and yeasts. Here, we review the current state of knowledge of the nuclear envelope in plants, focusing on its role as a chromatin organizer and regulator of gene expression, as well as on the modifications that it undergoes to be efficiently disassembled and reassembled with each cell division. Advances in knowledge concerning the mitotic role of some nuclear envelope constituents are also presented. In addition, we summarize recent progress on the contribution of the nuclear envelope elements to telomere tethering and chromosome dynamics during the meiotic division in different plant species.
Collapse
Affiliation(s)
- Nadia Fernández-Jiménez
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
48
|
Zhang A, Wang S, Kim J, Yan J, Yan X, Pang Q, Hua J. Nuclear pore complex components have temperature-influenced roles in plant growth and immunity. PLANT, CELL & ENVIRONMENT 2020; 43:1452-1466. [PMID: 32022936 DOI: 10.1111/pce.13741] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/19/2020] [Accepted: 02/01/2020] [Indexed: 05/28/2023]
Abstract
Nuclear pore complexes (NPCs) are main channels controlling nucleocytoplasmic transport and are composed of approximately 30 nucleoporins (NUPs). Emerging evidence suggests that some NUP genes have specialized functions that challenge the traditional view of NPCs as structures of uniform composition. Here, we analysed the role of six outer-ring components of NPC at normal and warm growth temperatures by examining their loss-of-function mutants in Arabidopsis thaliana. All six NUP subunits, NUP85, NUP96, NUP 133, NUP 160, SEH1 and HOS1, have a non-redundant temperature-influenced function in one or more of the processes, including rosette growth, leaf architecture and intracellular immune receptor-mediated disease resistance. At the molecular level, NUP85 and NUP133 are required for mRNA export only at warm temperature and play a larger role in the localization of transcription factor at warm temperature. In addition, NUP96 and HOS1 are essential for the expression of high temperature-responsive genes, which is correlated with their larger activity in facilitating nuclear accumulation of the transcription factor PIF4 at warm temperature. Our results show that subunits of NPC have differential roles at different temperatures, suggesting the existence of temperature-influenced NPC complexes and activities.
Collapse
Affiliation(s)
- Aiqin Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
- School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, New York
| | - Shuai Wang
- School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, New York
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jitae Kim
- School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, New York
| | - Jiapei Yan
- School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, New York
| | - Xiufeng Yan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Qiuying Pang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Jian Hua
- School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, New York
| |
Collapse
|
49
|
Zhao Q, Yang XY, Li Y, Liu F, Cao XY, Jia ZH, Song SS. N-3-oxo-hexanoyl-homoserine lactone, a bacterial quorum sensing signal, enhances salt tolerance in Arabidopsis and wheat. BOTANICAL STUDIES 2020; 61:8. [PMID: 32157475 PMCID: PMC7064656 DOI: 10.1186/s40529-020-00283-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/19/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND N-acyl-homoserine lactones (AHLs) are the quorum sensing (QS) signal molecules to coordinate the collective behavior in a population in Gram-negative bacteria. Recent evidences demonstrate their roles in plant growth and defense responses. RESULTS In present study, we show that the treatment of plant roots with N-3-oxo-hexanoyl-homoserine lactone (3OC6-HSL), one molecule of AHLs family, resulted in enhanced salt tolerance in Arabidopsis and wheat. We found that the growth inhibition phenotype including root length, shoot length and fresh weight were significantly improved by 3OC6-HSL under salt stress condition. The physiological and biochemical analysis revealed that the contents of chlorophyll and proline were increased and the contents of MDA and Na+ and Na+/K+ ratios were decreased after 3OC6-HSL treatment in Arabidopsis and wheat under salt stress condition. Molecular analysis showed that 3OC6-HSL significantly upregulated the expression of salt-responsive genes including ABA-dependent osmotic stress responsive genes COR15a, RD22, ADH and P5CS1, ABA-independent gene ERD1, and ion-homeostasis regulation genes SOS1, SOS2 and SOS3 in Arabidopsis under salt stress condition. CONCLUSIONS These results indicated that 3OC6-HSL enhanced plant salt tolerance and ABA-dependent and ABA-independent signal pathways and SOS signaling might be involved in the induction of salt resistance by 3OC6-HSL in plants. Our data provide a new insight into the plant-microbe inter-communication.
Collapse
Affiliation(s)
- Qian Zhao
- Biology Institute, Hebei Academy of Sciences, 46th South Street of Friendship, Shijiazhuang, 050051 Hebei China
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, China
| | - Xiang-Yun Yang
- College of Life Science, Hebei University, 180th East Road of Wusi, Baoding, China
| | - Yao Li
- Biology Institute, Hebei Academy of Sciences, 46th South Street of Friendship, Shijiazhuang, 050051 Hebei China
| | - Fang Liu
- Biology Institute, Hebei Academy of Sciences, 46th South Street of Friendship, Shijiazhuang, 050051 Hebei China
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, China
| | - Xiang-Yu Cao
- Biology Institute, Hebei Academy of Sciences, 46th South Street of Friendship, Shijiazhuang, 050051 Hebei China
| | - Zhen-Hua Jia
- Biology Institute, Hebei Academy of Sciences, 46th South Street of Friendship, Shijiazhuang, 050051 Hebei China
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, China
| | - Shui-Shan Song
- Biology Institute, Hebei Academy of Sciences, 46th South Street of Friendship, Shijiazhuang, 050051 Hebei China
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, China
| |
Collapse
|
50
|
Li C, Liu L, Teo ZWN, Shen L, Yu H. Nucleoporin 160 Regulates Flowering through Anchoring HOS1 for Destabilizing CO in Arabidopsis. PLANT COMMUNICATIONS 2020; 1:100033. [PMID: 33367234 PMCID: PMC7748013 DOI: 10.1016/j.xplc.2020.100033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 05/26/2023]
Abstract
Nuclear pore complexes (NPCs), which comprise multiple copies of nucleoporins (Nups), are large protein assemblies embedded in the nuclear envelope connecting the nucleus and cytoplasm. Although it has been known that Nups affect flowering in Arabidopsis, the underlying mechanisms are poorly understood. Here, we show that loss of function of Nucleoporin 160 (Nup160) leads to increased abundance of CONSTANS (CO) protein and the resulting upregulation of FLOWERING LOCUS T (FT) specifically in the morning. We demonstrate that Nup160 regulates CO protein stability through affecting NPC localization of an E3-ubiquitin ligase, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 (HOS1), which destabilizes CO protein in the morning period. Taken together, these results provide a mechanistic understanding of Nup function in the transition from vegetative to reproductive growth, suggesting that deposition of HOS1 at NPCs by Nup160 is essential for preventing precocious flowering in response to photoperiod in Arabidopsis.
Collapse
Affiliation(s)
- Chunying Li
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Lu Liu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Zhi Wei Norman Teo
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Lisha Shen
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Hao Yu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| |
Collapse
|