1
|
Kotb NM, Ulukaya G, Ramamoorthy A, Park LS, Tang J, Hasson D, Rangan P. TORC1-driven translation of Nucleoporin44A promotes chromatin remodeling and germ cell-to-maternal transition in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643309. [PMID: 40161787 PMCID: PMC11952567 DOI: 10.1101/2025.03.14.643309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Oocyte specification is a critical developmental transition that requires the coordinated repression of germ cell-specific genes and activation of the maternal program to support embryogenesis. In Drosophila, the timely repression of germ cell and early oogenesis genes is essential for this transition, yet the mechanisms that coordinate this process remain unclear. Here, we uncover an unexpected translation-chromatin axis, where transient Target of Rapamycin Complex 1 (TORC1)-driven translation triggers chromatin remodeling, ensuring irreversible oocyte fate commitment. Through a screen, we identified ribosome biogenesis regulators, including Zinc finger protein RP-8 (Zfrp8) and TORC1 components, as key mediators of gene silencing. We show that TORC1 activity increases during oocyte specification, and disrupting ribosome biogenesis, translation, or TORC1 function prevents proper heterochromatin formation, leading to epigenetic instability. Polysome-seq analysis of zfrp8-depleted ovaries revealed that Zfrp8 is required for the translation of Nucleoporin 44A (Nup44A), a key nuclear pore complex (NPC) component. Given the role of the NPC in chromatin organization, independent disruption of Nup44A results in defective silencing of the germ cell and early oogenesis genes. Our findings reveal a mechanism in which translation-driven NPC remodeling coordinates heterochromatin establishment, facilitating the germ cell-to-maternal transition and ensuring proper oocyte fate commitment.
Collapse
Affiliation(s)
- Noor M. Kotb
- Department of Biomedical Sciences/Wadsworth Center, University at Albany State University of New York (SUNY), Albany, New York 12202, USA
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA
- Current address, Hologic Diagenode, 400 Morris Avenue, Suite 101, Denville, New Jersey 07834, USA
| | - Gulay Ulukaya
- Bioinformatics for Next-Generation Sequencing (BiNGS) Core, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Anupriya Ramamoorthy
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA
| | - Lina Seojin Park
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA
| | - Julia Tang
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA
| | - Dan Hasson
- Bioinformatics for Next-Generation Sequencing (BiNGS) Core, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Prashanth Rangan
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
2
|
Lavecchia A, De Virgilio C, Mansi L, Manzari C, Mylonas CC, Picardi E, Pousis C, Cox SN, Ventriglia G, Zupa R, Pesole G, Corriero A. Comparison of ovarian mRNA expression levels in wild and hatchery-produced greater amberjack Seriola dumerili. Sci Rep 2024; 14:18034. [PMID: 39098967 PMCID: PMC11298523 DOI: 10.1038/s41598-024-69091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024] Open
Abstract
The greater amberjack Seriola dumerili is a promising candidate for aquaculture production. This study compares the ovary transcriptome of greater amberjack sampled in the wild (WILD) with hatchery-produced breeders reared in aquaculture sea cages in the Mediterranean Sea. Among the seven sampled cultured fish, three were classified as reproductively dysfunctional (DysF group), while four showed no signs of reproductive alteration (NormalF group). The DysF fish showed 1,166 differentially expressed genes (DEGs) compared to WILD females, and 755 DEGs compared to the NormalF. According to gene ontology (GO) analysis, DysF females exhibited enrichment of genes belonging to the biological categories classified as Secreted, ECM-receptor interaction, and Focal adhesion. Protein-protein interaction analysis revealed proteins involved in the biological categories of ECM-receptor interaction, Enzyme-linked receptor protein signaling, Wnt signal transduction pathways, and Ovulation cycle. KEGG pathway analysis showed DEGs involved in 111 pathways, including Neuroactive ligand-receptor interaction, Steroid hormone biosynthesis, Cell cycle, Oocyte meiosis, Necroptosis, Ferroptosis, Apoptosis, Autophagy, Progesterone-mediated oocyte maturation, Endocytosis and Phagosome, as well as Hedgehog, Apelin, PPAR, Notch, and GnRH signalling pathways. Additionally, DysF females exhibited factors encoded by upregulated genes associated with hypogonadism and polycystic ovary syndrome in mammals. This study -which is part of a broader research effort examining the transcriptome of the entire reproductive axis in greater amberjack of both sexes-, enhances our comprehension of the mechanisms underlying the appearance of reproductive dysfunctions when fish are reared under aquaculture conditions.
Collapse
Affiliation(s)
- Anna Lavecchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Caterina De Virgilio
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Luigi Mansi
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Caterina Manzari
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71003, Heraklion, Crete, Greece
| | - Ernesto Picardi
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Chrysovalentinos Pousis
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km.3, 70010, Valenzano, BA, Italy
| | - Sharon N Cox
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Gianluca Ventriglia
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km.3, 70010, Valenzano, BA, Italy
| | - Rosa Zupa
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km.3, 70010, Valenzano, BA, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Giovanni Amendola, 122/O, 70126, Bari, Italy
| | - Aldo Corriero
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km.3, 70010, Valenzano, BA, Italy.
| |
Collapse
|
3
|
Sarabia-Sánchez MA, Robles-Flores M. WNT Signaling in Stem Cells: A Look into the Non-Canonical Pathway. Stem Cell Rev Rep 2024; 20:52-66. [PMID: 37804416 PMCID: PMC10799802 DOI: 10.1007/s12015-023-10610-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 10/09/2023]
Abstract
Tissue homeostasis is crucial for multicellular organisms, wherein the loss of cells is compensated by generating new cells with the capacity for proliferation and differentiation. At the origin of these populations are the stem cells, which have the potential to give rise to cells with both capabilities, and persevere for a long time through the self-renewal and quiescence. Since the discovery of stem cells, an enormous effort has been focused on learning about their functions and the molecular regulation behind them. Wnt signaling is widely recognized as essential for normal and cancer stem cell. Moreover, β-catenin-dependent Wnt pathway, referred to as canonical, has gained attention, while β-catenin-independent Wnt pathways, known as non-canonical, have remained conspicuously less explored. However, recent evidence about non-canonical Wnt pathways in stem cells begins to lay the foundations of a conceivably vast field, and on which we aim to explain this in the present review. In this regard, we addressed the different aspects in which non-canonical Wnt pathways impact the properties of stem cells, both under normal conditions and also under disease, specifically in cancer.
Collapse
Affiliation(s)
- Miguel Angel Sarabia-Sánchez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Martha Robles-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| |
Collapse
|
4
|
Sun Z, Nystul TG, Zhong G. Single-cell RNA sequencing identifies eggplant as a regulator of germ cell development in Drosophila. EMBO Rep 2023; 24:e56475. [PMID: 37603128 PMCID: PMC10561367 DOI: 10.15252/embr.202256475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023] Open
Abstract
Drosophila ovarian germline stem cells (GSCs) are a powerful model for stem cell research. In this study, we use single-cell RNA sequencing (scRNA-seq), an RNAi screen and bioinformatic analysis, to identify genes involved in germ cell differentiation, including 34 genes with upregulated expression during early germ cell development and 19 genes that may regulate germ cell differentiation. Among these, a gene we have named eggplant (eggpl) is highly expressed in GSCs and downregulated in early daughter cells. RNAi knockdown of eggpl causes germ cell proliferation and differentiation defects. In flies fed a rich yeast diet, the expression of eggpl is significantly lower and knockdown or knockout of eggpl phenocopies a rich diet. In addition, eggpl knockdown suppresses the reduction in germ cell proliferation caused by inhibition of the insulin effector PI3K. These findings suggest that downregulation of eggpl links nutritional status to germ cell proliferation and differentiation. Collectively, this study provides new insights into the signaling networks that regulate early germ cell development and identifies eggpl as a key player in this process.
Collapse
Affiliation(s)
- Zhipeng Sun
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural AffairsSouth China Agricultural UniversityGuangzhouChina
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of EducationSouth China Agricultural UniversityGuangzhouChina
| | | | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural AffairsSouth China Agricultural UniversityGuangzhouChina
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of EducationSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
5
|
Dong Z, Pang L, Liu Z, Sheng Y, Li X, Thibault X, Reilein A, Kalderon D, Huang J. Single-cell expression profile of Drosophila ovarian follicle stem cells illuminates spatial differentiation in the germarium. BMC Biol 2023; 21:143. [PMID: 37340484 PMCID: PMC10283321 DOI: 10.1186/s12915-023-01636-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 05/26/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND How stem cell populations are organized and regulated within adult tissues is important for understanding cancer origins and for developing cell replacement strategies. Paradigms such as mammalian gut stem cells and Drosophila ovarian follicle stem cells (FSC) are characterized by population asymmetry, in which stem cell division and differentiation are separately regulated processes. These stem cells behave stochastically regarding their contributions to derivative cells and also exhibit dynamic spatial heterogeneity. Drosophila FSCs provide an excellent model for understanding how a community of active stem cells maintained by population asymmetry is regulated. Here, we use single-cell RNA sequencing to profile the gene expression patterns of FSCs and their immediate derivatives to investigate heterogeneity within the stem cell population and changes associated with differentiation. RESULTS We describe single-cell RNA sequencing studies of a pre-sorted population of cells that include FSCs and the neighboring cell types, escort cells (ECs) and follicle cells (FCs), which they support. Cell-type assignment relies on anterior-posterior (AP) location within the germarium. We clarify the previously determined location of FSCs and use spatially targeted lineage studies as further confirmation. The scRNA profiles among four clusters are consistent with an AP progression from anterior ECs through posterior ECs and then FSCs, to early FCs. The relative proportion of EC and FSC clusters are in good agreement with the prevalence of those cell types in a germarium. Several genes with graded profiles from ECs to FCs are highlighted as candidate effectors of the inverse gradients of the two principal signaling pathways, Wnt and JAK-STAT, that guide FSC differentiation and division. CONCLUSIONS Our data establishes an important resource of scRNA-seq profiles for FSCs and their immediate derivatives that is based on precise spatial location and functionally established stem cell identity, and facilitates future genetic investigation of regulatory interactions guiding FSC behavior.
Collapse
Affiliation(s)
- Zhi Dong
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lan Pang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhiguo Liu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yifeng Sheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoping Li
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Xavier Thibault
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Amy Reilein
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Daniel Kalderon
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Jianhua Huang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Kawasaki H, Shahin R, Fujimoto S. Proliferative and preparative cell divisions in wing discs of the last larval instar are regulated by different hormones and determine the size and differentiation of the wing of Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2023; 145:104476. [PMID: 36623750 DOI: 10.1016/j.jinsphys.2023.104476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Through investigating the two different enhanced cell division stages, we tried to clarify the switch from the growth to differentiation in the wing disc of the last larval instar of Bombyx mori. The response to insulin and 20E in vitro was stage specific. Bmmyc expression in V1 wing discs showed differences after being cultured with and without insulin. Bmmyc expression in V5 wing discs also showed differences after being cultured with and without 20E. Cell cycle-related genes, BmE2F1 and BmcycE, were upregulated with insulin or 20E in cultured wing discs of V1 or V5, respectively. Bmwnt1 and Bmras1 showed upregulation with 20E in cultured wing discs. Bmwnt1 showed upregulation with insulin in cultured wing discs, but Bmras1 did not show clear upregulation with insulin treatment. In contrast, Bmdpp showed upregulation with insulin, but did not show clear upregulation with 20E. The addition of PI3K or TOR inhibitors inhibited the upregulation of Bmmyc expression that was upregulated with insulin or 20E. The upregulation of Bmmyc and Bmwnt1 with insulin or 20E was inhibited with the addition of Myc or Wnt inhibitors, respectively. Genes related to matrix metalloprotease showed upregulation with 20E, and the upregulation was inhibited by the addition of Myc or Wnt inhibitors. From the present results, we concluded that cell division during the feeding stage occurred through PI3K/TOR cascade, and that at the wandering stage occurred through ecdysone and PI3K/TOR cascade; the former is for growth and the latter for differentiation.
Collapse
Affiliation(s)
- Hideki Kawasaki
- Department of Bioproductive Science, Faculty of Agriculture, Takasaki University of Health and Welfare, 37-1 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan; Facultyof Agriculture, Utsunomiya University, 350, Mine, Utsunomiya, Tochigi 321-8505, Japan.
| | - Rima Shahin
- Department of Applied Entomology and Zoology, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
| | - Shota Fujimoto
- Department of Bioproductive Science, Faculty of Agriculture, Takasaki University of Health and Welfare, 37-1 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan
| |
Collapse
|
7
|
Qiu Y, Zhang Y, Ren H, Zhang Y, Liu X, Pu J, Yu J, Yu X, Pei X. Cistanche deserticola polysaccharides extracted from Cistanche deserticola Y.C. Ma promote the differentiation of mouse female germline stem cells in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115495. [PMID: 35753607 DOI: 10.1016/j.jep.2022.115495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese herbal medicine Cistanche deserticola Y.C. Ma has been recorded and treatment for infertility and impotence since ancient times, which is widely distributed in northwest China, and is mainly composed of phenylethanol glycosides, iridoids, lignans, polysaccharides, alkaloids, etc. C. deserticola polysaccharides (CDPs) is one of its main active ingredients, studies of its effect on germline stem cells are limited so far. AIM OF THE STUDY The aim of this study was to clarify that CDPs promoted the differentiation of FGSCs in vitro, and to initially clarify its possible cell signaling pathways. MATERIAL AND METHODS The cells were randomly divided into two groups. Normal FGSCs culture medium and the optimal concentration of CDPs (0.5 μg/mL) were added for culture, which was the selected treatment concentration that could promote cell differentiation on the basis of maintaining cell viability. After treatment for different time periods (12 h, 24 h, 36 h, 48 h), the cell proliferation and differentiation were evaluated by CCK-8, real-time PCR (qPCR), cell immunofluorescence and Western blot. Subsequently, RNA-Seq and data analysis were used to preliminarily analyze and verify the different genes and possible signal pathways. RESULTS Under the treatment of CDPs, cell viability was relatively better, and the expression of meiotic markers stimulated by retinoic acid gene 8 protein (Stra8) and synaptonemal complex protein 3 (Sycp3) significantly increased. In addition, their cell morphology was more similar to oocytes. Comparison of gene expression in FGSCs identified key differential expression genes (DEGs) by RNA-Seq that consisted of 549 upregulated and 465 downregulated genes. The DEGs enriched in the functional categories of germline cell development and relevant signaling pathways, which jointly regulate self-renewal and differentiation of FGSCs. The transforming growth factor β (TGF-β) signaling pathway and bone morphogenetic protein (BMP) signaling pathway might be activated to synergistically influence cell differentiation during the CDPs treatment of FGSCs. CONCLUSION These findings indicated that CDPs could promote the differentiation of FGSCs in vitro and could be regulated by different DEGs and signal transduction. Preliminary mechanism studies have shown that CDPs can exert their biological activities by regulating the TGF-β and BMP signaling pathways.
Collapse
Affiliation(s)
- Yikai Qiu
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China
| | - Yanping Zhang
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China
| | - Hehe Ren
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China
| | - Yingxin Zhang
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China
| | - Xinrui Liu
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China
| | - Jing Pu
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China
| | - Jianqiang Yu
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiaoli Yu
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China.
| | - Xiuying Pei
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
8
|
Chen TA, Lin KY, Yang SM, Tseng CY, Wang YT, Lin CH, Luo L, Cai Y, Hsu HJ. Canonical Wnt Signaling Promotes Formation of Somatic Permeability Barrier for Proper Germ Cell Differentiation. Front Cell Dev Biol 2022; 10:877047. [PMID: 35517512 PMCID: PMC9062081 DOI: 10.3389/fcell.2022.877047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/16/2022] [Indexed: 11/22/2022] Open
Abstract
Morphogen-mediated signaling is critical for proper organ development and stem cell function, and well-characterized mechanisms spatiotemporally limit the expression of ligands, receptors, and ligand-binding cell-surface glypicans. Here, we show that in the developing Drosophila ovary, canonical Wnt signaling promotes the formation of somatic escort cells (ECs) and their protrusions, which establish a physical permeability barrier to define morphogen territories for proper germ cell differentiation. The protrusions shield germ cells from Dpp and Wingless morphogens produced by the germline stem cell (GSC) niche and normally only received by GSCs. Genetic disruption of EC protrusions allows GSC progeny to also receive Dpp and Wingless, which subsequently disrupt germ cell differentiation. Our results reveal a role for canonical Wnt signaling in specifying the ovarian somatic cells necessary for germ cell differentiation. Additionally, we demonstrate the morphogen-limiting function of this physical permeability barrier, which may be a common mechanism in other organs across species.
Collapse
Affiliation(s)
- Ting-An Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Kun-Yang Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Shun-Min Yang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Chen-Yuan Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Ting Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chi-Hung Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Lichao Luo
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
| | - Yu Cai
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Hwei-Jan Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Hwei-Jan Hsu,
| |
Collapse
|
9
|
McCarthy A, Sarkar K, Martin ET, Upadhyay M, Jang S, Williams ND, Forni PE, Buszczak M, Rangan P. Msl3 promotes germline stem cell differentiation in female Drosophila. Development 2022; 149:dev199625. [PMID: 34878097 PMCID: PMC8783043 DOI: 10.1242/dev.199625] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/19/2021] [Indexed: 01/07/2023]
Abstract
Gamete formation from germline stem cells (GSCs) is essential for sexual reproduction. However, the regulation of GSC differentiation is incompletely understood. Set2, which deposits H3K36me3 modifications, is required for GSC differentiation during Drosophila oogenesis. We discovered that the H3K36me3 reader Male-specific lethal 3 (Msl3) and histone acetyltransferase complex Ada2a-containing (ATAC) cooperate with Set2 to regulate GSC differentiation in female Drosophila. Msl3, acting independently of the rest of the male-specific lethal complex, promotes transcription of genes, including a germline-enriched ribosomal protein S19 paralog RpS19b. RpS19b upregulation is required for translation of RNA-binding Fox protein 1 (Rbfox1), a known meiotic cell cycle entry factor. Thus, Msl3 regulates GSC differentiation by modulating translation of a key factor that promotes transition to an oocyte fate.
Collapse
Affiliation(s)
- Alicia McCarthy
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
| | - Kahini Sarkar
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
| | - Elliot T. Martin
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
| | - Maitreyi Upadhyay
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Seoyeon Jang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nathan D. Williams
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Paolo E. Forni
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
| |
Collapse
|
10
|
Liu T, Gonzalez De Los Santos F, Hirsch M, Wu Z, Phan SH. Noncanonical Wnt Signaling Promotes Myofibroblast Differentiation in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2021; 65:489-499. [PMID: 34107237 PMCID: PMC8641847 DOI: 10.1165/rcmb.2020-0499oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/08/2021] [Indexed: 11/24/2022] Open
Abstract
The Wnt/β-catenin pathway initiates a signaling cascade that is critical in cell differentiation and the normal development of multiple organ systems. The reactivation of this pathway has been documented in experimental and human idiopathic pulmonary fibrosis, wherein Wnt/β-catenin activation has been implicated in epithelial-cell repair. Furthermore, the canonical ligand Wnt3a is known to induce myofibroblast differentiation; however, the role of noncanonical Wnt ligands remains unclear. This study showed significantly higher levels of Wnt11 expression in cells from both patients with idiopathic pulmonary fibrosis and bleomycin-treated mice, as well as in TGFβ-treated mouse lung fibroblasts. Moreover, Wnt11 induced myofibroblast differentiation as manifested by increased α-SMA (ACTA2) expression, which was similar to that induced by canonical Wnt3a/β-catenin signaling. Further investigation revealed that Wnt11 induction of α-SMA was associated with the activation of JNK (c-Jun N-terminal kinase)/c-Jun signaling and was inhibited by a JNK inhibitor. The potential importance of this signaling pathway was supported by in vivo evidence showing significantly increased levels of Wnt11 and activated JNK in the lungs of mice with bleomycin-induced pulmonary fibrosis. Interestingly, fibroblasts did not express canonical Wnt3a, but treatment of these cells with exogenous Wnt3a induced endogenous Wnt11 and Wnt5a, resulting in repression of the Wnt3a/β-catenin target gene Axin2. These findings suggested that the noncanonical Wnt induction of myofibroblast differentiation mediated by the JNK/c-Jun pathway might play a significant role in pulmonary fibrosis, in addition to or in synergy with canonical Wnt3a/β-catenin signaling. Moreover, Wnt3a activation of noncanonical Wnt signaling might trigger a switch from canonical to noncanonical Wnt signaling to induce myofibroblast differentiation.
Collapse
Affiliation(s)
| | | | - Mitchell Hirsch
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Zhe Wu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | | |
Collapse
|
11
|
Wnt6 regulates the homeostasis of the stem cell niche via Rac1-and Cdc42-mediated noncanonical Wnt signalling pathways in Drosophila testis. Exp Cell Res 2021; 402:112511. [PMID: 33582096 DOI: 10.1016/j.yexcr.2021.112511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 11/23/2022]
Abstract
The homeostasis of the stem cell niche is regulated by both intrinsic and extrinsic factors, and the complex and ordered molecular and cellular regulatory mechanisms need to be further explored. In Drosophila testis, germline stem cells (GSCs) rely on hub cells for self-renewal and physical attachment. GSCs are also in contact with somatic cyst stem cells (CySCs). Utilizing genetic manipulation in Drosophila, we investigated the role of Wnt6 in vivo and in vitro. In Drosophila testis, we found that Wnt6 is required for GSC differentiation and CySC self-renewal. In Schneider 2 (S2) cells, we found that Wnt6 regulates cell proliferation and apoptosis. Mechanistically, we demonstrated that Wnt6 can downregulate the expression levels of Arm, Rac1 and Cdc42 in S2 cells. Notably, Rac1 and Cdc42, which act downstream of the noncanonical Wnt signalling pathway, imitated the phenotypes of Wnt6 in Drosophila testis. Thus, the newly discovered Wnt6-Rac1/Cdc42 signal axis is required for the homeostasis of the stem cell niche in the Drosophila testis.
Collapse
|
12
|
Waghmare I, Wang X, Page-McCaw A. Dally-like protein sequesters multiple Wnt ligands in the Drosophila germarium. Dev Biol 2020; 464:88-102. [PMID: 32473955 DOI: 10.1016/j.ydbio.2020.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022]
Abstract
Cells in multicellular organisms rely on secreted ligands for development and morphogenesis. Several mechanisms modulate the availability and distribution of secreted ligands, determining their ability to signal locally and at long range from their source. One of these mechanisms is Dally-like protein (Dlp), a cell-surface glypican that exhibits biphasic functions in Drosophila wing discs, promoting Wg signaling at long-range from Wg source cells and inhibiting Wg signaling near source cells. In the germarium at the tip of the ovary, Dlp promotes long-range distribution of Wg from cap cells to follicle stem cells. However, the germarium also expresses other Wnts - Wnt2, Wnt4, and Wnt6 - that function locally in escort cells to promote oogenesis. Whether and how local functions of these Wnts are regulated remains unknown. Here we show that the dlp overexpression phenotype is multifaceted and phenocopies multiple Wnt loss-of-function phenotypes. Each aspect of dlp overexpression phenotype is suppressed by co-expression of individual Wnts, and the suppression pattern exhibited by each Wnt suggests that Wnts have functional specificity in the germarium. Further, dlp knockdown phenocopies Wnt gain-of-function phenotypes. Together these data show that Dlp inhibits the functions of each Wnt. All four Wnts co-immunoprecipitate with Dlp in S2R+ cells, suggesting that in the germarium, Dlp sequesters Wnts to inhibit local paracrine Wnt signaling. Our results indicate that Dlp modulates the availability of multiple extracellular Wnts for local paracrine Wnt signaling in the germarium.
Collapse
Affiliation(s)
- Indrayani Waghmare
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Xiaoxi Wang
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Andrea Page-McCaw
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| |
Collapse
|
13
|
Rust K, Nystul T. Signal transduction in the early Drosophila follicle stem cell lineage. CURRENT OPINION IN INSECT SCIENCE 2020; 37:39-48. [PMID: 32087562 PMCID: PMC7155752 DOI: 10.1016/j.cois.2019.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/13/2019] [Accepted: 11/16/2019] [Indexed: 05/08/2023]
Abstract
The follicle stem cell (FSC) lineage in the Drosophila ovary is a highly informative model of in vivo epithelial stem cell biology. Studies over the past 30 years have identified roles for every major signaling pathway in the early FSC lineage. These pathways regulate a wide variety of cell behaviors, including self-renewal, proliferation, survival and differentiation. Studies of cell signaling in the follicle epithelium have provided new insights into how these cell behaviors are coordinated within an epithelial stem cell lineage and how signaling pathways interact with each other in the native, in vivo context of a living tissue. Here, we review these studies, with a particular focus on how these pathways specify differences between the FSCs and their daughter cells. We also describe common themes that have emerged from these studies, and highlight new research directions that have been made possible by the detailed understanding of the follicle epithelium.
Collapse
|
14
|
Fadiga J, Nystul TG. The follicle epithelium in the Drosophila ovary is maintained by a small number of stem cells. eLife 2019; 8:e49050. [PMID: 31850843 PMCID: PMC6946398 DOI: 10.7554/elife.49050] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
The follicle stem cells (FSCs) in the Drosophila ovary are an important experimental model for the study of epithelial stem cell biology. Although decades of research support the conclusion that there are two FSCs per ovariole, a recent study used a novel clonal marking system to conclude that there are 15-16 FSCs per ovariole. We performed clonal analysis using both this novel clonal marking system and standard clonal marking systems, and identified several problems that may have contributed to the overestimate of FSC number. In addition, we developed new methods for accurately measuring clone size, and found that FSC clones produce, on average, half of the follicle cells in each ovariole. Our findings provide strong independent support for the conclusion that there are typically two active FSCs per ovariole, though they are consistent with up to four FSCs per germarium.
Collapse
Affiliation(s)
- Jocelyne Fadiga
- Department of AnatomyUniversity of California, San FranciscoSan FranciscoUnited States
- Department of OB/GYN-RS, Center for Reproductive SciencesUniversity of California, San FranciscoSan FranciscoUnited States
| | - Todd G Nystul
- Department of AnatomyUniversity of California, San FranciscoSan FranciscoUnited States
- Department of OB/GYN-RS, Center for Reproductive SciencesUniversity of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
15
|
Kim-Yip RP, Nystul TG. Wingless promotes EGFR signaling in follicle stem cells to maintain self-renewal. Development 2018; 145:dev.168716. [PMID: 30389852 DOI: 10.1242/dev.168716] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022]
Abstract
Adult stem cell niche boundaries must be precisely maintained to facilitate the segregation of stem cell and daughter cell fates. However, the mechanisms that govern this process in epithelial tissues are not fully understood. In this study, we investigated the relationship between two signals, Wnt and EGFR, that are necessary for self-renewal of the epithelial follicle stem cells (FSCs) in the Drosophila ovary, but must be downregulated in cells that have exited the niche to allow for differentiation. We found that Wingless produced by inner germarial sheath (IGS) cells acts over a short distance to activate Wnt signaling in FSCs, and that movement across the FSC niche boundary is limited. In addition, we show that Wnt signaling functions genetically upstream of EGFR signaling by activating the expression of the EGFR ligand, Spitz, and that constitutive activation of EGFR partially rescues the self-renewal defect caused by loss of Wnt signaling. Collectively, our findings support a model in which the Wnt and EGFR pathways operate in a signaling hierarchy to promote FSC self-renewal.
Collapse
Affiliation(s)
- Rebecca P Kim-Yip
- Center for Reproductive Sciences, Departments of Anatomy and OB/GYN-RS, University of California, San Francisco, CA 94143-0452, USA
| | - Todd G Nystul
- Center for Reproductive Sciences, Departments of Anatomy and OB/GYN-RS, University of California, San Francisco, CA 94143-0452, USA
| |
Collapse
|