1
|
Zheng B, Iwanaszko M, Soliman SHA, Ishi Y, Gold S, Qiu R, Howard BC, Das M, Zhao Z, Hashizume R, Wang L, Shilatifard A. Ectopic expression of testis-specific transcription elongation factor in driving cancer. SCIENCE ADVANCES 2025; 11:eads4200. [PMID: 40085698 PMCID: PMC11908497 DOI: 10.1126/sciadv.ads4200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
The testis-specific BET protein BRDT structurally resembles the ubiquitous BRD4 and is misexpressed in cancer, and we show that BRDT misexpression may affect lung cancer progression. BRDT knockdown in lung cancer cells slowed tumor growth and prolonged survival in a xenograft model. Comparative characterization of PTEFb complex participation and chromatin binding indicates BRD4-redundant and BRD4-distinct BRDT functions. Unlike dual depletion, individual BRD4 or BRDT knockdown did not impair transcriptional responses to hypoxia in BRDT-expressing cells, consistent with redundant function. However, BRD4 depletion/BRDT complementation revealed that BRDT can also release paused RNA polymerase II independently of its bromodomains as we previously demonstrated not to be required for Pol II pause/release function of BRD4, underscoring the functional importance of the C-terminal domains in both BRD4 and BRDT and their potential as therapeutic targets in solid tumors. Based on this study, future investigations should explore BRD4-distinct BRDT functions and BRDT misexpression driving cancer pathogenesis.
Collapse
Affiliation(s)
- Bin Zheng
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marta Iwanaszko
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shimaa Hassan AbdelAziz Soliman
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yukitomo Ishi
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sarah Gold
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ruxuan Qiu
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Benjamin Charles Howard
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Madhurima Das
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Zibo Zhao
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rintaro Hashizume
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Lu Wang
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Olp MD, Bursch KL, Wynia-Smith SL, Nuñez R, Goetz CJ, Jackson V, Smith BC. Multivalent nucleosome scaffolding by bromodomain and extraterminal domain tandem bromodomains. J Biol Chem 2025; 301:108289. [PMID: 39938804 PMCID: PMC11930079 DOI: 10.1016/j.jbc.2025.108289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/29/2025] [Accepted: 02/01/2025] [Indexed: 02/14/2025] Open
Abstract
Promoter-promoter and enhancer-promoter interactions are enriched in histone acetylation and central to chromatin organization in active genetic regions. Bromodomains are epigenetic "readers" that recognize and bind histone acetylation. Bromodomains often exist in tandem or with other reader domains. Cellular knockdown of the bromodomain and extraterminal domain (BET) protein family disrupts chromatin organization, but the mechanisms through which BET proteins preserve chromatin structure are largely unknown. We hypothesize that BET proteins maintain overall chromatin structure by employing their tandem bromodomains to multivalently scaffold acetylated nucleosomes in an intranucleosomal or internucleosomal manner. To test this hypothesis biophysically, we used small-angle X-ray scattering, electron paramagnetic resonance, and Rosetta protein modeling to show that a disordered linker separates BET tandem bromodomain acetylation binding sites by 15 to 157 Å. Most of these modeled distances are sufficient to span the length of a nucleosome (>57 Å). Focusing on the BET family member BRD4, we employed bioluminescence resonance energy transfer and isothermal titration calorimetry to show that BRD4 bromodomain binding of multiple acetylation sites on a histone tail does not increase BRD4-histone tail affinity, suggesting that BET bromodomain intranucleosome binding is not biologically relevant. Using sucrose gradients and amplified luminescent proximity homogeneous (AlphaScreen) assays, we provide the first direct biophysical evidence that BET bromodomains can scaffold multiple acetylated nucleosomes. Taken together, our results demonstrate that BET bromodomains are capable of multivalent internucleosome scaffolding in vitro. The knowledge gained provides implications for how BET bromodomain-mediated acetylated internucleosome scaffolding may maintain cellular chromatin interactions in active genetic regions.
Collapse
Affiliation(s)
- Michael D Olp
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Karina L Bursch
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sarah L Wynia-Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Raymundo Nuñez
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christopher J Goetz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vaughn Jackson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
3
|
Wan RD, Gao X, Wang GW, Wu SX, Yang QL, Zhang YW, Yang QE. Identification of candidate genes related to hybrid sterility by genomic structural variation and transcriptome analyses in cattle-yak. J Dairy Sci 2025; 108:679-693. [PMID: 39414017 DOI: 10.3168/jds.2024-24770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024]
Abstract
Hybrids between closely related but genetically incompatible species are often inviable or sterile. Cattle-yak, an interspecific hybrid of yak and cattle, exhibits male-specific sterility, which limits the fixation of its desired traits and prevents genetic improvement in yak through crossbreeding. Transcriptome profiles of testicular tissues have been generated in cattle, yak, and cattle-yak; however, the genetic variations underlying differential gene expression associated with hybrid sterility have yet to be elucidated. We detected differences in the cellular composition and gene expression of testes from yak and cattle-yak at 3 mo of age, 10 mo of age, and adulthood. Histological analysis revealed that the most advanced germ cells were gonocytes (prospermatogonia) at 3 mo and spermatocytes at 10 mo. Complete spermatogenesis occurred in the seminiferous tubules of adult yak, whereas only spermatogonia and a limited number of spermatocytes were detected in the testis of adult cattle-yak. Transcriptome analysis revealed 180, 6,310, and 6,112 differentially expressed genes (DEG) in yak and cattle-yak at each stage, respectively. Next, we examined the spermatogenic cell types in the backcross generation (BC1) and detected the appearance of round spermatids, indicating the partial recovery of spermatogenesis in these animals. Compared with those in cattle-yak, 272 DEG were identified in the testes of BC1 animals. Notably, we discovered that the expression of X chromosome-linked genes was upregulated in the testis of cattle-yak compared with yak, suggesting a possible abnormality in the process of meiotic sex chromosome inactivation in hybrid animals. We next screened DEG harboring structural variations (SV) and identified a list of SV genes associated with spermatogonial development, meiotic recombination, and double-strand break repair. Furthermore, we found that the SV genes ESCO2 (establishment of sister chromatid cohesion N-acetyltransferase 2) and BRDT (bromodomain testis associated) may be involved in meiotic arrest of cattle-yak spermatocytes. Overall, our research provides a valuable database for identifying structural variant loci that contribute to hybrid sterility.
Collapse
Affiliation(s)
- Rui-Dong Wan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China
| | - Xue Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China
| | - Guo-Wen Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China
| | - Shi-Xin Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China
| | - Qi-Lin Yang
- Department of Veterinary Sciences, Qinghai Vocational Technical College of Animal Science and Agriculture, Xining 810016, China
| | - Yi-Wen Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China.
| |
Collapse
|
4
|
Menon DU, Chakraborty P, Murcia N, Magnuson T. ARID1A governs the silencing of sex-linked transcription during male meiosis in the mouse. eLife 2024; 12:RP88024. [PMID: 39589400 PMCID: PMC11594533 DOI: 10.7554/elife.88024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Abstract
We present evidence implicating the BAF (BRG1/BRM Associated Factor) chromatin remodeler in meiotic sex chromosome inactivation (MSCI). By immunofluorescence (IF), the putative BAF DNA binding subunit, ARID1A (AT-rich Interaction Domain 1 a), appeared enriched on the male sex chromosomes during diplonema of meiosis I. Germ cells showing a Cre-induced loss of ARID1A arrested in pachynema and failed to repress sex-linked genes, indicating a defective MSCI. Mutant sex chromosomes displayed an abnormal presence of elongating RNA polymerase II coupled with an overall increase in chromatin accessibility detectable by ATAC-seq. We identified a role for ARID1A in promoting the preferential enrichment of the histone variant, H3.3, on the sex chromosomes, a known hallmark of MSCI. Without ARID1A, the sex chromosomes appeared depleted of H3.3 at levels resembling autosomes. Higher resolution analyses by CUT&RUN revealed shifts in sex-linked H3.3 associations from discrete intergenic sites and broader gene-body domains to promoters in response to the loss of ARID1A. Several sex-linked sites displayed ectopic H3.3 occupancy that did not co-localize with DMC1 (DNA meiotic recombinase 1). This observation suggests a requirement for ARID1A in DMC1 localization to the asynapsed sex chromatids. We conclude that ARID1A-directed H3.3 localization influences meiotic sex chromosome gene regulation and DNA repair.
Collapse
Affiliation(s)
- Debashish U Menon
- Department of Genetics, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Prabuddha Chakraborty
- Department of Genetics, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Noel Murcia
- Department of Genetics, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Terry Magnuson
- Department of Genetics, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|
5
|
Risha KS, Rasal KD, Reang D, Iquebal MA, Sonwane A, Brahmane M, Chaudhari A, Nagpure N. DNA Methylation Profiling in Genetically Selected Clarias magur (Hamilton, 1822) Provides Insights into the Epigenetic Regulation of Growth and Development. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:776-789. [PMID: 39037491 DOI: 10.1007/s10126-024-10346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
DNA methylation is an epigenetic alteration that impacts gene expression without changing the DNA sequence affecting an organism's phenotype. This study utilized a reduced representation bisulfite sequencing (RRBS) approach to investigate the patterns of DNA methylation in genetically selected Clarias magur stocks. RRBS generated 249.22 million reads, with an average of 490,120 methylation sites detected in various parts of genes, including exons, introns, and intergenic regions. A total of 896 differentially methylated regions (DMRs) were identified; 356 and 540 were detected as hyper-methylated and hypo-methylated regions, respectively. The DMRs and their association with overlapping genes were explored using whole genome data of magur, which revealed 205 genes in exonic, 210 in intronic, and 480 in intergenic regions. The analysis identified the maximum number of genes enriched in biological processes such as RNA biosynthetic process, response to growth factors, nervous system development, neurogenesis, and anatomical structure morphogenesis. Differentially methylated genes (DMGs) such as myrip, mylk3, mafb, egr3, ndnf, meis2a, foxn3, bmp1a, plxna3, fgf6, sipa1l1, mcu, cnot8, trim55b, and myof were associated with growth and development. The selected DMGs were analyzed using real-time PCR, which showed altered mRNA expression levels. This work offers insights into the epigenetic mechanisms governing growth performance regulation in magur stocks. This work provides a valuable resource of epigenetic data that could be integrated into breeding programs to select high-performing individuals.
Collapse
Affiliation(s)
- K Shasti Risha
- Fish Genetics and Biotechnology, ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Kiran D Rasal
- Fish Genetics and Biotechnology, ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India.
| | - Dhalongsaih Reang
- Fish Genetics and Biotechnology, ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Arvind Sonwane
- Fish Genetics and Biotechnology, ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Manoj Brahmane
- Fish Genetics and Biotechnology, ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Aparna Chaudhari
- Fish Genetics and Biotechnology, ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Naresh Nagpure
- Fish Genetics and Biotechnology, ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| |
Collapse
|
6
|
Wu M, Guan G, Yin H, Niu Q. A Review of the Bromodomain and Extraterminal Domain Epigenetic Reader Proteins: Function on Virus Infection and Cancer. Viruses 2024; 16:1096. [PMID: 39066258 PMCID: PMC11281655 DOI: 10.3390/v16071096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
The BET (bromodomain and extraterminal domain) family of proteins, particularly BRD4 (bromodomain-containing protein 4), plays a crucial role in transcription regulation and epigenetic mechanisms, impacting key cellular processes such as proliferation, differentiation, and the DNA damage response. BRD4, the most studied member of this family, binds to acetylated lysines on both histones and non-histone proteins, thereby regulating gene expression and influencing diverse cellular functions such as the cell cycle, tumorigenesis, and immune responses to viral infections. Given BRD4's involvement in these fundamental processes, it is implicated in various diseases, including cancer and inflammation, making it a promising target for therapeutic development. This review comprehensively explores the roles of the BET family in gene transcription, DNA damage response, and viral infection, discussing the potential of targeted small-molecule compounds and highlighting BET proteins as promising candidates for anticancer therapy.
Collapse
Affiliation(s)
- Mengli Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Qingli Niu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| |
Collapse
|
7
|
Menon DU, Chakraborty P, Murcia N, Magnuson T. ARID1A governs the silencing of sex-linked transcription during male meiosis in the mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.25.542290. [PMID: 37292940 PMCID: PMC10245947 DOI: 10.1101/2023.05.25.542290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present evidence implicating the BAF (BRG1/BRM Associated Factor) chromatin remodeler in meiotic sex chromosome inactivation (MSCI). By immunofluorescence (IF), the putative BAF DNA binding subunit, ARID1A (AT-rich Interaction Domain 1a), appeared enriched on the male sex chromosomes during diplonema of meiosis I. Those germ cells showing a Cre-induced loss of ARID1A were arrested in pachynema and failed to repress sex-linked genes, indicating a defective MSCI. Consistent with this defect, mutant sex chromosomes displayed an abnormal presence of elongating RNA polymerase II coupled with an overall increase in chromatin accessibility detectable by ATAC-seq. By investigating potential mechanisms underlying these anomalies, we identified a role for ARID1A in promoting the preferential enrichment of the histone variant, H3.3, on the sex chromosomes, a known hallmark of MSCI. Without ARID1A, the sex chromosomes appeared depleted of H3.3 at levels resembling autosomes. Higher resolution analyses by CUT&RUN revealed shifts in sex-linked H3.3 associations from discrete intergenic sites and broader gene-body domains to promoters in response to the loss of ARID1A. Several sex-linked sites displayed ectopic H3.3 occupancy that did not co-localize with DMC1 (DNA Meiotic Recombinase 1). This observation suggests a requirement for ARID1A in DMC1 localization to the asynapsed sex chromatids. We conclude that ARID1A-directed H3.3 localization influences meiotic sex chromosome gene regulation and DNA repair.
Collapse
|
8
|
Pasquariello R, Bogliolo L, Di Filippo F, Leoni GG, Nieddu S, Podda A, Brevini TAL, Gandolfi F. Use of assisted reproductive technologies (ARTs) to shorten the generational interval in ruminants: current status and perspectives. Theriogenology 2024; 225:16-32. [PMID: 38788626 DOI: 10.1016/j.theriogenology.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
The challenges posed by climate change and increasing world population are stimulating renewed efforts for improving the sustainability of animal production. To meet such challenges, the contribution of genomic selection approaches, in combination with assisted reproductive technologies (ARTs), to spreading and preserving animal genetics is essential. The largest increase in genetic gain can be achieved by shortening the generation interval. This review provides an overview of the current status and progress of advanced ARTs that could be applied to reduce the generation time in both female and male of domestic ruminants. In females, the use of juvenile in vitro embryo transfer (JIVET) enables to generate offspring after the transfer of in vitro produced embryos derived from oocytes of prepubertal genetically superior donors reducing the generational interval and acceleration genetic gain. The current challenge is increasing in vitro embryo production (IVEP) from prepubertal derived oocytes which is still low and variable. The two main factors limiting IVEP success are the intrinsic quality of prepubertal oocytes and the culture systems for in vitro maturation (IVM). In males, advancements in ARTs are providing new strategies to in vitro propagate spermatogonia and differentiate them into mature sperm or even to recapitulate the whole process of spermatogenesis from embryonic stem cells. Moreover, the successful use of immature cells, such as round spermatids, for intracytoplasmic injection (ROSI) and IVEP could allow to complete the entire process in few months. However, these approaches have been successfully applied to human and mouse whereas only a few studies have been published in ruminants and results are still controversial. This is also dependent on the efficiency of ROSI that is limited by the current isolation and selection protocols of round spermatids. In conclusion, the current efforts for improving these reproductive methodologies could lead toward a significant reduction of the generational interval in livestock animals that could have a considerable impact on agriculture sustainability.
Collapse
Affiliation(s)
- Rolando Pasquariello
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy
| | - Luisa Bogliolo
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Francesca Di Filippo
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy
| | | | - Stefano Nieddu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Andrea Podda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy.
| |
Collapse
|
9
|
Ding X, Singh P, Schimenti K, Tran TN, Fragoza R, Hardy J, Orwig KE, Olszewska M, Kurpisz MK, Yatsenko AN, Conrad DF, Yu H, Schimenti JC. In vivo versus in silico assessment of potentially pathogenic missense variants in human reproductive genes. Proc Natl Acad Sci U S A 2023; 120:e2219925120. [PMID: 37459509 PMCID: PMC10372637 DOI: 10.1073/pnas.2219925120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/25/2023] [Indexed: 07/20/2023] Open
Abstract
Infertility is a heterogeneous condition, with genetic causes thought to underlie a substantial fraction of cases. Genome sequencing is becoming increasingly important for genetic diagnosis of diseases including idiopathic infertility; however, most rare or minor alleles identified in patients are variants of uncertain significance (VUS). Interpreting the functional impacts of VUS is challenging but profoundly important for clinical management and genetic counseling. To determine the consequences of these variants in key fertility genes, we functionally evaluated 11 missense variants in the genes ANKRD31, BRDT, DMC1, EXO1, FKBP6, MCM9, M1AP, MEI1, MSH4 and SEPT12 by generating genome-edited mouse models. Nine variants were classified as deleterious by most functional prediction algorithms, and two disrupted a protein-protein interaction (PPI) in the yeast two hybrid (Y2H) assay. Though these genes are essential for normal meiosis or spermiogenesis in mice, only one variant, observed in the MCM9 gene of a male infertility patient, compromised fertility or gametogenesis in the mouse models. To explore the disconnect between predictions and outcomes, we compared pathogenicity calls of missense variants made by ten widely used algorithms to 1) those annotated in ClinVar and 2) those evaluated in mice. All the algorithms performed poorly in terms of predicting the effects of human missense variants modeled in mice. These studies emphasize caution in the genetic diagnoses of infertile patients based primarily on pathogenicity prediction algorithms and emphasize the need for alternative and efficient in vitro or in vivo functional validation models for more effective and accurate VUS description to either pathogenic or benign categories.
Collapse
Affiliation(s)
- Xinbao Ding
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Priti Singh
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Kerry Schimenti
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Tina N. Tran
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Robert Fragoza
- Department of Computational Biology, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| | - Jimmaline Hardy
- School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA15213
| | - Kyle E. Orwig
- School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA15213
| | - Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan60-479, Poland
| | - Maciej K. Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan60-479, Poland
| | - Alexander N. Yatsenko
- School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA15213
| | - Donald F. Conrad
- Oregon Health & Science University, Division of Genetics, Oregon National Primate Research Center, Beaverton, OR97006
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| | - John C. Schimenti
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| |
Collapse
|
10
|
Ozturk S. Genetic variants underlying spermatogenic arrests in men with non-obstructive azoospermia. Cell Cycle 2023; 22:1021-1061. [PMID: 36740861 PMCID: PMC10081088 DOI: 10.1080/15384101.2023.2171544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
Spermatogenic arrest is a severe form of non-obstructive azoospermia (NOA), which occurs in 10-15% of infertile men. Interruption in spermatogenic progression at premeiotic, meiotic, or postmeiotic stage can lead to arrest in men with NOA. Recent studies have intensively focused on defining genetic variants underlying these spermatogenic arrests by making genome/exome sequencing. A number of variants were discovered in the genes involving in mitosis, meiosis, germline differentiation and other basic cellular events. Herein, defined variants in NOA cases with spermatogenic arrests and created knockout mouse models for the related genes are comprehensively reviewed. Also, importance of gene panel-based screening for NOA cases was discussed. Screening common variants in these infertile men with spermatogenic arrests may contribute to elucidating the molecular background and designing novel treatment strategies.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
11
|
Alexander AK, Rice EJ, Lujic J, Simon LE, Tanis S, Barshad G, Zhu L, Lama J, Cohen PE, Danko CG. A-MYB and BRDT-dependent RNA Polymerase II pause release orchestrates transcriptional regulation in mammalian meiosis. Nat Commun 2023; 14:1753. [PMID: 36990976 PMCID: PMC10060231 DOI: 10.1038/s41467-023-37408-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
During meiotic prophase I, spermatocytes must balance transcriptional activation with homologous recombination and chromosome synapsis, biological processes requiring extensive changes to chromatin state. We explored the interplay between chromatin accessibility and transcription through prophase I of mammalian meiosis by measuring genome-wide patterns of chromatin accessibility, nascent transcription, and processed mRNA. We find that Pol II is loaded on chromatin and maintained in a paused state early during prophase I. In later stages, paused Pol II is released in a coordinated transcriptional burst mediated by the transcription factors A-MYB and BRDT, resulting in ~3-fold increase in transcription. Transcriptional activity is temporally and spatially segregated from key steps of meiotic recombination: double strand breaks show evidence of chromatin accessibility earlier during prophase I and at distinct loci from those undergoing transcriptional activation, despite shared chromatin marks. Our findings reveal mechanisms underlying chromatin specialization in either transcription or recombination in meiotic cells.
Collapse
Affiliation(s)
- Adriana K Alexander
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Edward J Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Jelena Lujic
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Leah E Simon
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Stephanie Tanis
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gilad Barshad
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Lina Zhu
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Jyoti Lama
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Paula E Cohen
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
- Cornell Reproductive Sciences Center (CoRe), Cornell University, Ithaca, NY, 14853, USA.
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
- Cornell Reproductive Sciences Center (CoRe), Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
12
|
Tan X, Zheng C, Zhuang Y, Jin P, Wang F. The m6A reader PRRC2A is essential for meiosis I completion during spermatogenesis. Nat Commun 2023; 14:1636. [PMID: 36964127 PMCID: PMC10039029 DOI: 10.1038/s41467-023-37252-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/08/2023] [Indexed: 03/26/2023] Open
Abstract
N6-methyladenosine (m6A) and its reader proteins YTHDC1, YTHDC2, and YTHDF2 have been shown to exert essential functions during spermatogenesis. However, much remains unknown about m6A regulation mechanisms and the functions of specific readers during the meiotic cell cycle. Here, we show that the m6A reader Proline rich coiled-coil 2A (PRRC2A) is essential for male fertility. Germ cell-specific knockout of Prrc2a causes XY asynapsis and impaired meiotic sex chromosome inactivation in late-prophase spermatocytes. Moreover, PRRC2A-null spermatocytes exhibit delayed metaphase entry, chromosome misalignment, and spindle disorganization at metaphase I and are finally arrested at this stage. Sequencing data reveal that PRRC2A decreases the RNA abundance or improves the translation efficiency of targeting transcripts. Specifically, PRRC2A recognizes spermatogonia-specific transcripts and downregulates their RNA abundance to maintain the spermatocyte expression pattern during the meiosis prophase. For genes involved in meiotic cell division, PRRC2A improves the translation efficiency of their transcripts. Further, co-immunoprecipitation data show that PRRC2A interacts with several proteins regulating mRNA metabolism or translation (YBX1, YBX2, PABPC1, FXR1, and EIF4G3). Our study reveals post-transcriptional functions of PRRC2A and demonstrates its critical role in the completion of meiosis I in spermatogenesis.
Collapse
Affiliation(s)
- Xinshui Tan
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Caihong Zheng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, 100101, China
| | - Yinghua Zhuang
- National Institute of Biological Sciences, Beijing, China
| | - Pengpeng Jin
- National Institute of Biological Sciences, Beijing, China
| | - Fengchao Wang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
| |
Collapse
|
13
|
de la Iglesia A, Jodar M, Oliva R, Castillo J. Insights into the sperm chromatin and implications for male infertility from a protein perspective. WIREs Mech Dis 2023; 15:e1588. [PMID: 36181449 DOI: 10.1002/wsbm.1588] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
Male germ cells undergo an extreme but fascinating process of chromatin remodeling that begins in the testis during the last phase of spermatogenesis and continues through epididymal sperm maturation. Most of the histones are replaced by small proteins named protamines, whose high basicity leads to a tight genomic compaction. This process is epigenetically regulated at many levels, not only by posttranslational modifications, but also by readers, writers, and erasers, in a context of a highly coordinated postmeiotic gene expression program. Protamines are key proteins for acquiring this highly specialized chromatin conformation, needed for sperm functionality. Interestingly, and contrary to what could be inferred from its very specific DNA-packaging function across protamine-containing species, human sperm chromatin contains a wide spectrum of protamine proteoforms, including truncated and posttranslationally modified proteoforms. The generation of protamine knock-out models revealed not only chromatin compaction defects, but also collateral sperm alterations contributing to infertile phenotypes, evidencing the importance of sperm chromatin protamination toward the generation of a new individual. The unique features of sperm chromatin have motivated its study, applying from conventional to the most ground-breaking techniques to disentangle its peculiarities and the cellular mechanisms governing its successful conferment, especially relevant from the protein point of view due to the important epigenetic role of sperm nuclear proteins. Gathering and contextualizing the most striking discoveries will provide a global understanding of the importance and complexity of achieving a proper chromatin compaction and exploring its implications on postfertilization events and beyond. This article is categorized under: Reproductive System Diseases > Genetics/Genomics/Epigenetics Reproductive System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Alberto de la Iglesia
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain
| | - Meritxell Jodar
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain.,Biochemistry and Molecular Genetics Service, Hospital Clinic, Barcelona, Spain
| | - Rafael Oliva
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain.,Biochemistry and Molecular Genetics Service, Hospital Clinic, Barcelona, Spain
| | - Judit Castillo
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
14
|
Odroniec A, Olszewska M, Kurpisz M. Epigenetic markers in the embryonal germ cell development and spermatogenesis. Basic Clin Androl 2023; 33:6. [PMID: 36814207 PMCID: PMC9948345 DOI: 10.1186/s12610-022-00179-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/25/2022] [Indexed: 02/24/2023] Open
Abstract
Spermatogenesis is the process of generation of male reproductive cells from spermatogonial stem cells in the seminiferous epithelium of the testis. During spermatogenesis, key spermatogenic events such as stem cell self-renewal and commitment to meiosis, meiotic recombination, meiotic sex chromosome inactivation, followed by cellular and chromatin remodeling of elongating spermatids occur, leading to sperm cell production. All the mentioned events are at least partially controlled by the epigenetic modifications of DNA and histones. Additionally, during embryonal development in primordial germ cells, global epigenetic reprogramming of DNA occurs. In this review, we summarized the most important epigenetic modifications in the particular stages of germ cell development, in DNA and histone proteins, starting from primordial germ cells, during embryonal development, and ending with histone-to-protamine transition during spermiogenesis.
Collapse
Affiliation(s)
- Amadeusz Odroniec
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60–479 Poznan, Poland
| | - Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60–479 Poznan, Poland
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60–479 Poznan, Poland
| |
Collapse
|
15
|
He H, Ding T, Zhang T, Geng W, Xu J, Wei Y, Zhai J. BDE-209 disturbed proliferation and differentiation of spermatogonia during mitotic process through estrogen receptor α. Reprod Biol 2023; 23:100737. [PMID: 36821943 DOI: 10.1016/j.repbio.2023.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
Deca-bromodiphenyl ether (BDE-209) exposure caused spermatogenesis disorder resulting in poor sperm quality has become a public concern in recent years. Spermatogenesis refers to the process by which the division of spermatogonia stem cells (SSCs) produces haploid spermatozoa, including mitosis, meiosis, and spermiogenesis. However, the mechanism of mitosis including proliferation and differentiation of spermatogonia dysfunction induced by BDE-209 remains largely unclear. Here, our data showed that BDE-209 exposure caused a decline in sperm quality with seminiferous tubule structure disorder in rats. In addition, BDE-209 exposure damage spermatogonia proliferation and differentiation with decreasing level of PLZF and cKit in testis. Moreover, rats exposed to BDE-209 decreased the expression of ERα, whereas an elevated expression of Wnt3a and Wnt5a. Mechanistically, supplementation with propipyrazole triol (PPT, a selective ERα pathway agonist) rescued sperm quality and attenuated impairment of proliferation and differentiation of spermatogonia in BDE-209-induced rats. Therefore, ERα plays a crucial role in the proliferation and differentiation of spermatogonia during mitotic process. In conclusion, our study clarified the role of ERα in BDE-209-induced spermatogonia proliferation and differentiation in rats and provides a potential therapeutic application on poor sperm quality caused by BDE-209 exposure.
Collapse
Affiliation(s)
- Huan He
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Tao Ding
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China; Guangming District Center for Disease Control and Prevention, Shenzhen, Guangdong 518106, China
| | - Taifa Zhang
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Wenfeng Geng
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Jixiang Xu
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Yu Wei
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China.
| |
Collapse
|
16
|
Matveevsky S, Tropin N, Kucheryavyy A, Kolomiets O. The First Analysis of Synaptonemal Complexes in Jawless Vertebrates: Chromosome Synapsis and Transcription Reactivation at Meiotic Prophase I in the Lamprey Lampetra fluviatilis (Petromyzontiformes, Cyclostomata). Life (Basel) 2023; 13:life13020501. [PMID: 36836858 PMCID: PMC9959970 DOI: 10.3390/life13020501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Transcription is known to be substage-specific in meiotic prophase I. If transcription is reactivated in the mid pachytene stage in mammals when synapsis is completed, then this process is observed in the zygotene stage in insects. The process of transcriptional reactivation has been studied in a small number of different taxa of invertebrates and vertebrates. Here, for the first time, we investigate synapsis and transcription in prophase I in the European river lamprey Lampetra fluviatilis (Petromyzontiformes, Cyclostomata), which is representative of jawless vertebrates that diverged from the main branch of vertebrates between 535 and 462 million years ago. We found that not all chromosomes complete synapsis in telomeric regions. Rounded structures were detected in chromatin and in some synaptonemal complexes, but their nature could not be determined conclusively. An analysis of RNA polymerase II distribution led to the conclusion that transcriptional reactivation in lamprey prophase I is not associated with the completion of chromosome synapsis. Monomethylated histone H3K4 is localized in meiotic chromatin throughout prophase I, and this pattern has not been previously detected in animals. Thus, the findings made it possible to identify synaptic and epigenetic patterns specific to this group and to expand knowledge about chromatin epigenetics in prophase I.
Collapse
Affiliation(s)
- Sergey Matveevsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence:
| | - Nikolay Tropin
- Vologda Branch of the Russian Federal Research Institute of Fisheries and Oceanography, 160012 Vologda, Russia
| | - Aleksandr Kucheryavyy
- Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Oxana Kolomiets
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
17
|
Sudhakar DVS, Phanindranath R, Jaishankar S, Ramani A, Kalamkar KP, Kumar U, Pawar AD, Dada R, Singh R, Gupta NJ, Deenadayal M, Tolani AD, Sharma Y, Anand A, Gopalakrishnan J, Thangaraj K. Exome sequencing and functional analyses revealed CETN1 variants leads to impaired cell division and male fertility. Hum Mol Genet 2023; 32:533-542. [PMID: 36048845 DOI: 10.1093/hmg/ddac216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 02/07/2023] Open
Abstract
Human spermatogenesis requires an orchestrated expression of numerous genes in various germ cell subtypes. Therefore, the genetic landscape of male infertility is highly complex. Known genetic factors alone account for at least 15% of male infertility. However, ~40% of infertile men remain undiagnosed and are classified as idiopathic infertile men. We performed exome sequencing in 47 idiopathic infertile men (discovery cohort), followed by replication study (40 variants in 33 genes) in 844 infertile men and 709 controls using Sequenom MassARRAY® based genotyping. We report 17 variants in twelve genes that comprise both previously reported (DNAH8, DNAH17, FISP2 and SPEF2) and novel candidate genes (BRDT, CETN1, CATSPERD, GMCL1, SPATA6, TSSK4, TSKS and ZNF318) for male infertility. The latter have a strong biological nexus to human spermatogenesis and their respective mouse knockouts are concordant with human phenotypes. One candidate gene CETN1, identified in this study, was sequenced in another independent cohort of 840 infertile and 689 fertile men. Further, CETN1 variants were functionally characterized using biophysical and cell biology approaches. We demonstrate that CETN1 variant- p.Met72Thr leads to multipolar cells, fragmented nuclei during mitosis leading to cell death and show significantly perturbed ciliary disassembly dynamics. Whereas CETN1-5' UTR variant; rs367716858 leads to loss of a methylation site and increased reporter gene expression in vitro. We report a total of eight novel candidate genes identified by exome sequencing, which may have diagnostic relevance and can contribute to improved diagnostic workup and clinical management of male infertility.
Collapse
Affiliation(s)
| | - Regur Phanindranath
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, 500007, India
| | - Shveta Jaishankar
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Anand Ramani
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf 40225, Germany
| | - Kaustubh P Kalamkar
- Institute for Neurophysiology, University of Cologne, Cologne D-50931, Germany
| | - Umesh Kumar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, 500007, India
| | - Asmita D Pawar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, 500007, India
| | - Rima Dada
- All India Institute of Medical Sciences, New Delhi, India
| | - Rajender Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | | | | | | | - Yogendra Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, 500007, India.,Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, India
| | - Anuranjan Anand
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf 40225, Germany
| | - Kumarasamy Thangaraj
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, 500007, India.,Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| |
Collapse
|
18
|
Disruption of male fertility-critical Dcaf17 dysregulates mouse testis transcriptome. Sci Rep 2022; 12:21456. [PMID: 36509865 PMCID: PMC9744869 DOI: 10.1038/s41598-022-25826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
During mammalian spermatogenesis, the ubiquitin proteasome system maintains protein homoeostasis (proteastasis) and spermatogenic cellular functions. DCAF17 is a substrate receptor in the ubiquitin CRL4 E3 Ligase complex, absence of which causes oligoasthenoteratozoospermia in mice resulting in male infertility. To determine the molecular phenomenon underlying the infertility phenotype caused by disrupting Dcaf17, we performed RNA-sequencing-based gene expression profiling of 3-weeks and 8-weeks old Dcaf17 wild type and Dcaf17 disrupted mutant mice testes. At three weeks, 44% and 56% differentially expressed genes (DEGs) were up- and down-regulated, respectively, with 32% and 68% DEGs were up- and down-regulated, respectively at 8 weeks. DEGs include protein coding genes and lncRNAs distributed across all autosomes and the X chromosome. Gene ontology analysis revealed major biological processes including proteolysis, regulation of transcription and chromatin remodelling are affected due to Dcaf17 disruption. We found that Dcaf17 disruption up-regulated several somatic genes, while germline-associated genes were down-regulated. Up to 10% of upregulated, and 12% of downregulated, genes were implicated in male reproductive phenotypes. Moreover, a large proportion of the up-regulated genes were highly expressed in spermatogonia and spermatocytes, while the majority of downregulated genes were predominantly expressed in round spermatids. Collectively, these data show that the Dcaf17 disruption affects directly or indirectly testicular proteastasis and transcriptional signature in mouse.
Collapse
|
19
|
H4K5 Butyrylation Coexist with Acetylation during Human Spermiogenesis and Are Retained in the Mature Sperm Chromatin. Int J Mol Sci 2022; 23:ijms232012398. [PMID: 36293256 PMCID: PMC9604518 DOI: 10.3390/ijms232012398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Male germ cells experience a drastic chromatin remodeling through the nucleo-histone to nucleo-protamine (NH-NP) transition necessary for proper sperm functionality. Post-translational modifications (PTMs) of H4 Lys5, such as acetylation (H4K5ac), play a crucial role in epigenetic control of nucleosome disassembly facilitating protamine incorporation into paternal DNA. It has been shown that butyrylation on the same residue (H4K5bu) participates in temporal regulation of NH-NP transition in mice, delaying the bromodomain testis specific protein (BRDT)-dependent nucleosome disassembly and potentially marking retained nucleosomes. However, no information was available so far on this modification in human sperm. Here, we report a dual behavior of H4K5bu and H4K5ac in human normal spermatogenesis, suggesting a specific role of H4K5bu during spermatid elongation, coexisting with H4K5ac although with different starting points. This pattern is stable under different testicular pathologies, suggesting a highly conserved function of these modifications. Despite a drastic decrease of both PTMs in condensed spermatids, they are retained in ejaculated sperm, with 30% of non-colocalizing nucleosome clusters, which could reflect differential paternal genome retention. Whereas no apparent effect of these PTMs was observed associated with sperm quality, their presence in mature sperm could entail a potential role in the zygote.
Collapse
|
20
|
Genomic inbreeding and runs of homozygosity analysis of indigenous cattle populations in southern China. PLoS One 2022; 17:e0271718. [PMID: 36006904 PMCID: PMC9409551 DOI: 10.1371/journal.pone.0271718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
Runs of homozygosity (ROH) are continuous homozygous segments from the common ancestor of parents. Evaluating ROH pattern can help to understand inbreeding level and genetic basis of important traits. In this study, three representative cattle populations including Leiqiong cattle (LQC), Lufeng cattle (LFC) and Hainan cattle (HNC) were genotyped using the Illumina BovineHD SNPs array (770K) to assess ROH pattern at genome wide level. Totally, we identified 26,537 ROH with an average of 153 ROH per individual. The sizes of ROH ranged from 0.5 to 53.26Mb, and the average length was 1.03Mb. The average of FROH ranged from 0.10 (LQC) to 0.15 (HNC). Moreover, we identified 34 ROH islands (with frequency > 0.5) across genome. Based on these regions, we observed several breed-specific candidate genes related to adaptive traits. Several common genes related to immunity (TMEM173, MZB1 and SIL1), and heat stress (DNAJC18) were identified in all three populations. Three genes related to immunity (UGP2), development (PURA) and reproduction (VPS54) were detected in both HNC and LQC. Notably, we identified several breed-specific genes related to sperm development (BRDT and SPAG6) and heat stress (TAF7) in HNC, and immunity (CDC23 and NME5) and development (WNT87) in LFC. Our findings provided valuable insights into understanding the genomic homozygosity pattern and promoting the conservation of genetic resources of Chinese indigenous cattle.
Collapse
|
21
|
Guan X, Cheryala N, Karim RM, Chan A, Berndt N, Qi J, Georg GI, Schönbrunn E. Bivalent BET Bromodomain Inhibitors Confer Increased Potency and Selectivity for BRDT via Protein Conformational Plasticity. J Med Chem 2022; 65:10441-10458. [PMID: 35867655 PMCID: PMC11727429 DOI: 10.1021/acs.jmedchem.2c00453] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Bromodomain and extraterminal domain (BET) proteins are important regulators of gene transcription and chromatin remodeling. BET family members BRD4 and BRDT are validated targets for cancer and male contraceptive drug development, respectively. Due to the high structural similarity of the acetyl-lysine binding sites, most reported inhibitors lack intra-BET selectivity. We surmised that protein-protein interactions induced by bivalent inhibitors may differ between BRD4 and BRDT, conferring an altered selectivity profile. Starting from nonselective monovalent inhibitors, we developed cell-active bivalent BET inhibitors with increased activity and selectivity for BRDT. X-ray crystallographic and solution studies revealed unique structural states of BRDT and BRD4 upon interaction with bivalent inhibitors. Varying spacer lengths and symmetric vs unsymmetric connections resulted in the same dimeric states, whereas different chemotypes induced different dimers. The findings indicate that the increased intra-BET selectivity of bivalent inhibitors is due to the differential plasticity of BET bromodomains upon inhibitor-induced dimerization.
Collapse
Affiliation(s)
- Xianghong Guan
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, 717 Delaware Street, MN 55414, USA
| | - Narsihmulu Cheryala
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, 717 Delaware Street, MN 55414, USA
| | - Rezaul Md Karim
- Moffitt Cancer Center, Drug Discovery Department, 12902 Magnolia Drive, Tampa, Fl 33612, USA
| | - Alice Chan
- Moffitt Cancer Center, Drug Discovery Department, 12902 Magnolia Drive, Tampa, Fl 33612, USA
| | - Norbert Berndt
- Moffitt Cancer Center, Drug Discovery Department, 12902 Magnolia Drive, Tampa, Fl 33612, USA
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Gunrda I. Georg
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, 717 Delaware Street, MN 55414, USA
| | - Ernst Schönbrunn
- Moffitt Cancer Center, Drug Discovery Department, 12902 Magnolia Drive, Tampa, Fl 33612, USA
| |
Collapse
|
22
|
Wang X, Sang M, Gong S, Chen Z, Zhao X, Wang G, Li Z, Huang Y, Chen S, Xie G, Duan E, Sun F. BET bromodomain inhibitor JQ1 regulates spermatid development by changing chromatin conformation in mouse spermatogenesis. Genes Dis 2022; 9:1062-1073. [PMID: 35685458 PMCID: PMC9170580 DOI: 10.1016/j.gendis.2020.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/18/2020] [Accepted: 12/22/2020] [Indexed: 11/01/2022] Open
Abstract
As a BET bromodomain inhibitor, JQ1 has been proven have efficacy against a number of different cancers. In terms of male reproduction, JQ1 may be used as a new type of contraceptive, since JQ1 treatment in male mice could lead to germ cell defects and a decrease of sperm motility, moreover, this effect is reversible. However, the mechanism of JQ1 acting on gene regulation in spermatogenesis remains unclear. Here, we performed single-cell RNA sequencing (scRNA-seq) on mouse testes treated with JQ1 or vehicle control to determine the transcriptional regulatory function of JQ1 in spermatogenesis at the single cell resolution. We confirmed that JQ1 treatment could increase the numbers of somatic cells and spermatocytes and decrease the numbers of spermatid cells. Gene Ontology (GO) analysis demonstrated that differentially expressed genes which were down-regulated after JQ1 injection were mainly enriched in "DNA conformation change" biological process in early developmental germ cells and "spermatid development" biological process in spermatid cells. ATAC-seq data further confirmed that JQ1 injection could change the open state of chromatin. In addition, JQ1 could change the numbers of accessible meiotic DNA double-stranded break sites and the types of transcription factor motif that functioned in pachytene spermatocytes and round spermatids. The multi-omics analysis revealed that JQ1 had the ability to regulate gene transcription by changing chromatin conformation in mouse spermatogenesis, which would potentiate the availability of JQ1 in male contraceptive.
Collapse
Affiliation(s)
- Xiaorong Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Mengmeng Sang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Shengnan Gong
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Zhichuan Chen
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Xi Zhao
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Guishuan Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Zhiran Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Yingying Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Shitao Chen
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, PR China
| | - Gangcai Xie
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226001, PR China
| |
Collapse
|
23
|
Jia B, Zhang L, Ma F, Wang X, Li J, Diao N, Leng X, Shi K, Zeng F, Zong Y, Liu F, Gong Q, Cai R, Yang F, Du R, Chang Z. Comparison of miRNA and mRNA Expression in Sika Deer Testes With Age. Front Vet Sci 2022; 9:854503. [PMID: 35464385 PMCID: PMC9019638 DOI: 10.3389/fvets.2022.854503] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022] Open
Abstract
To elucidate the complex physiological process of testis development and spermatogenesis in Sika deer, this study evaluated the changes of miRNA and mRNA profiles in the four developmental stages of testis in the juvenile (1-year-old), adolescence (3-year-old), adult (5-year-old), and aged (10-year-old) stages. The results showed that a total of 198 mature, 66 novel miRNAs, and 23,558 differentially expressed (DE) unigenes were obtained; 14,918 (8,413 up and 6,505 down), 4,988 (2,453 up and 2,535 down), and 5,681 (2,929 up and 2,752 down) DE unigenes, as well as 88 (43 up and 45 down), 102 (44 up and 58 down), and 54 (18 up and 36 down) DE miRNAs were identified in 3- vs. 1-, 5- vs. 3-, and 10- vs. 5-year-old testes, respectively. By integrating miRNA and mRNA expression profiles, we predicted 10,790 mRNA-mRNA and 69,883 miRNA-mRNA interaction sites. The target genes were enriched by GO and KEGG pathways to obtain DE mRNA (IGF1R, ALKBH5, Piwil, HIF1A, BRDT, etc.) and DE miRNA (miR-140, miR-145, miR-7, miR-26a, etc.), which play an important role in testis development and spermatogenesis. The data show that DE miRNAs could regulate testis developmental and spermatogenesis through signaling pathways, including the MAPK signaling pathway, p53 signaling pathway, PI3K-Akt signaling pathway, Hippo signaling pathway, etc. miR-140 was confirmed to directly target mutant IGF1R-3'UTR by the Luciferase reporter assays. This study provides a useful resource for future studies on the role of miRNA regulation in testis development and spermatogenesis.
Collapse
Affiliation(s)
- Boyin Jia
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Linlin Zhang
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Fuquan Ma
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xue Wang
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jianming Li
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Naichao Diao
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Xue Leng
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Kun Shi
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Fanli Zeng
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Ying Zong
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Fei Liu
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Qinglong Gong
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Ruopeng Cai
- College of Animal Medicine/College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Fuhe Yang
- Institute of Wild Economic Animals and Plants and State Key Laboratory for Molecular Biology of Special Economical Animals, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Rui Du
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.,College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Zhiguang Chang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
24
|
Wu D, Khan FA, Huo L, Sun F, Huang C. Alternative splicing and MicroRNA: epigenetic mystique in male reproduction. RNA Biol 2022; 19:162-175. [PMID: 35067179 PMCID: PMC8786336 DOI: 10.1080/15476286.2021.2024033] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Infertility is rarely life threatening, however, it poses a serious global health issue posing far-reaching socio-economic impacts affecting 12–15% of couples worldwide where male factor accounts for 70%. Functional spermatogenesis which is the result of several concerted coordinated events to produce sperms is at the core of male fertility, Alternative splicing and microRNA (miRNA) mediated RNA silencing (RNAi) constitute two conserved post-transcriptional gene (re)programming machinery across species. The former by diversifying transcriptome signature and the latter by repressing target mRNA activity orchestrate a spectrum of testicular events, and their dysfunctions has several implications in male infertility. This review recapitulates the knowledge of these mechanistic events in regulation of spermatogenesis and testicular homoeostasis. In addition, miRNA payload in sperm, vulnerable to paternal inputs, including unhealthy diet, infection and trauma, creates epigenetic memory to initiate intergenerational phenotype. Naive zygote injection of sperm miRNAs from stressed father recapitulates phenotypes of offspring of stressed father. The epigenetic inheritance of paternal pathologies through miRNA could be a tantalizing avenue to better appreciate ‘Paternal Origins of Health and Disease’ and the power of tiny sperm.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Faheem Ahmed Khan
- Laboratory of Molecular Biology and Genomics, Department of Zoology, Faculty of Science, University of Central Punjab, Lahore, Pakistan
| | - Lijun Huo
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
25
|
Xie C, Wang W, Tu C, Meng L, Lu G, Lin G, Lu LY, Tan YQ. OUP accepted manuscript. Hum Reprod Update 2022; 28:763-797. [PMID: 35613017 DOI: 10.1093/humupd/dmac024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/18/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Chunbo Xie
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Weili Wang
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Chaofeng Tu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lanlan Meng
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Guangxiu Lu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ge Lin
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lin-Yu Lu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue-Qiu Tan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
26
|
Sinha S, Knapp M, Pywtorak J, McCain G, Wingerden K, VanDervoort C, Gondek JM, Madrid P, Parman T, Gerrard S, Long JE, Blithe DL, Moss S, Lee MS. Contraceptive and Infertility Target DataBase: a contraceptive drug development tool for targeting and analysis of human reproductive specific tissues†. Biol Reprod 2021; 105:1366-1374. [PMID: 34514504 DOI: 10.1093/biolre/ioab172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022] Open
Abstract
The long and challenging drug development process begins with discovery biology for the selection of an appropriate target for a specific indication. Target is a broad term that can be applied to a range of biological entities such as proteins, genes, and ribonucleic acids (RNAs). Although there are numerous databases available for mining biological entities, publicly available searchable, downloadable databases to aid in target selection for a specific disease or indication (e.g., developing contraceptives and infertility treatments) are limited. We report the development of the Contraceptive and Infertility Target DataBase (https://www.citdbase.org), which provides investigators an interface to mine existing transcriptomic and proteomic resources to identify high-quality contraceptive/infertility targets. The development of similar databases is applicable to the identification of targets for other diseases and conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jill E Long
- Contraceptive Development Program, Division of Intramural Population Health Research, Bethesda, MD, USA
| | - Diana L Blithe
- Contraceptive Development Program, Division of Intramural Population Health Research, Bethesda, MD, USA
| | - Stuart Moss
- Fertility and Infertility Branch, Division of Extramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Min S Lee
- Contraceptive Development Program, Division of Intramural Population Health Research, Bethesda, MD, USA
| |
Collapse
|
27
|
Branigan GL, Olsen KS, Burda I, Haemmerle MW, Ho J, Venuto A, D’Antonio ND, Briggs IE, DiBenedetto AJ. Zebrafish Paralogs brd2a and brd2b Are Needed for Proper Circulatory, Excretory and Central Nervous System Formation and Act as Genetic Antagonists during Development. J Dev Biol 2021; 9:jdb9040046. [PMID: 34842711 PMCID: PMC8629005 DOI: 10.3390/jdb9040046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Brd2 belongs to the BET family of epigenetic transcriptional co-regulators that act as adaptor-scaffolds for the assembly of chromatin-modifying complexes and other factors at target gene promoters. Brd2 is a protooncogene and candidate gene for juvenile myoclonic epilepsy in humans, a homeobox gene regulator in Drosophila, and a maternal-zygotic factor and cell death modulator that is necessary for normal development of the vertebrate central nervous system (CNS). As two copies of Brd2 exist in zebrafish, we use antisense morpholino knockdown to probe the role of paralog Brd2b, as a comparative study to Brd2a, the ortholog of human Brd2. A deficiency in either paralog results in excess cell death and dysmorphology of the CNS, whereas only Brd2b deficiency leads to loss of circulation and occlusion of the pronephric duct. Co-knockdown of both paralogs suppresses single morphant defects, while co-injection of morpholinos with paralogous RNA enhances them, suggesting novel genetic interaction with functional antagonism. Brd2 diversification includes paralog-specific RNA variants, a distinct localization of maternal factors, and shared and unique spatiotemporal expression, providing unique insight into the evolution and potential functions of this gene.
Collapse
Affiliation(s)
- Gregory L. Branigan
- Medical Scientist Training Program, Center for Innovation in Brain Science, Department of Pharmacology, University of Arizona College of Medicine-Tucson, 1501 N Campbell Ave., Tucson, AZ 85724, USA;
| | - Kelly S. Olsen
- Biological and Biomedical Sciences Program, Department of Microbiology and Immunology, University of North Carolina School of Medicine-Chapel Hill, 321 S Columbia St., Chapel Hill, NC 27516, USA;
| | - Isabella Burda
- Department of Molecular Biology and Genetics, Weill Institute for Cell & Molecular Biology, Cornell University, 239 Weill Hall, Ithaca, NY 14853, USA;
| | - Matthew W. Haemmerle
- Institute for Diabetes, Obesity, and Metabolism, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Room 12-124, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA;
| | - Jason Ho
- Robert Wood Johnson Medical School, Rutgers University, Clinical Academic Building (CAB), 125 Paterson St., New Brunswick, NJ 08901, USA;
| | - Alexandra Venuto
- Department of Biology, East Carolina University, Greenville, NC 27858, USA;
| | - Nicholas D. D’Antonio
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, 1025 Walnut St. #100, Philadelphia, PA 19107, USA;
| | - Ian E. Briggs
- Department of Biology, Villanova University, 800 Lancaster Ave., Villanova, PA 19085, USA;
| | - Angela J. DiBenedetto
- Department of Biology, Villanova University, 800 Lancaster Ave., Villanova, PA 19085, USA;
- Correspondence:
| |
Collapse
|
28
|
Fan X, Moustakas I, Torrens-Juaneda V, Lei Q, Hamer G, Louwe LA, Pilgram GSK, Szuhai K, Matorras R, Eguizabal C, van der Westerlaken L, Mei H, Chuva de Sousa Lopes SM. Transcriptional progression during meiotic prophase I reveals sex-specific features and X chromosome dynamics in human fetal female germline. PLoS Genet 2021; 17:e1009773. [PMID: 34499650 PMCID: PMC8428764 DOI: 10.1371/journal.pgen.1009773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
During gametogenesis in mammals, meiosis ensures the production of haploid gametes. The timing and length of meiosis to produce female and male gametes differ considerably. In contrast to males, meiotic prophase I in females initiates during development. Hence, the knowledge regarding progression through meiotic prophase I is mainly focused on human male spermatogenesis and female oocyte maturation during adulthood. Therefore, it remains unclear how the different stages of meiotic prophase I between human oogenesis and spermatogenesis compare. Analysis of single-cell transcriptomics data from human fetal germ cells (FGC) allowed us to identify the molecular signatures of female meiotic prophase I stages leptotene, zygotene, pachytene and diplotene. We have compared those between male and female germ cells in similar stages of meiotic prophase I and revealed conserved and specific features between sexes. We identified not only key players involved in the process of meiosis, but also highlighted the molecular components that could be responsible for changes in cellular morphology that occur during this developmental period, when the female FGC acquire their typical (sex-specific) oocyte shape as well as sex-differences in the regulation of DNA methylation. Analysis of X-linked expression between sexes during meiotic prophase I suggested a transient X-linked enrichment during female pachytene, that contrasts with the meiotic sex chromosome inactivation in males. Our study of the events that take place during meiotic prophase I provide a better understanding not only of female meiosis during development, but also highlights biomarkers that can be used to study infertility and offers insights in germline sex dimorphism in humans.
Collapse
Affiliation(s)
- Xueying Fan
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ioannis Moustakas
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Vanessa Torrens-Juaneda
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Qijing Lei
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Geert Hamer
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Leoni A. Louwe
- Department of Gynaecology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gonneke S. K. Pilgram
- Department of Gynaecology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Roberto Matorras
- IVIRMA, IVI Bilbao, Bilbao, Spain; Human Reproduction Unit, Cruces University Hospital, Bilbao, Spain; Department of Obstetrics and Gynecology, Basque Country University, Spain; Biocruces Bizkaia Health Research Institute, Bilbao, Spain
| | - Cristina Eguizabal
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, Galdakao, Spain
- Biocruces Bizkaia Health Research Institute, Cell Therapy, Stem Cells and Tissues Group, Barakaldo, Spain
| | | | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Susana M. Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- * E-mail:
| |
Collapse
|
29
|
Wu R, Zhan J, Zheng B, Chen Z, Li J, Li C, Liu R, Zhang X, Huang X, Luo M. SYMPK Is Required for Meiosis and Involved in Alternative Splicing in Male Germ Cells. Front Cell Dev Biol 2021; 9:715733. [PMID: 34434935 PMCID: PMC8380814 DOI: 10.3389/fcell.2021.715733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
SYMPK is a scaffold protein that supports polyadenylation machinery assembly on nascent transcripts and is also involved in alternative splicing in some mammalian somatic cells. However, the role of SYMPK in germ cells remains unknown. Here, we report that SYMPK is highly expressed in male germ cells, and germ cell-specific knockout (cKO) of Sympk in mouse leads to male infertility. Sympk cKODdx4–cre mice showed reduced spermatogonia at P4 and almost no germ cells at P18. Sympk cKOStra8–Cre spermatocytes exhibit defects in homologous chromosome synapsis, DNA double-strand break (DSB) repair, and meiotic recombination. RNA-Seq analyses reveal that SYMPK is associated with alternative splicing, besides regulating the expressions of many genes in spermatogenic cells. Importantly, Sympk deletion results in abnormal alternative splicing and a decreased expression of Sun1. Taken together, our results demonstrate that SYMPK is pivotal for meiotic progression by regulating pre-mRNA alternative splicing in male germ cells.
Collapse
Affiliation(s)
- Rui Wu
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.,Reproductive Medicine Center, Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Junfeng Zhan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo Zheng
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zhen Chen
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Jianbo Li
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Changrong Li
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Rong Liu
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Mengcheng Luo
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
30
|
Imran S, Neeland MR, Koplin J, Dharmage S, Tang MLK, Sawyer S, Dang T, McWilliam V, Peters R, Perrett KP, Novakovic B, Saffery R. Epigenetic programming underpins B-cell dysfunction in peanut and multi-food allergy. Clin Transl Immunology 2021; 10:e1324. [PMID: 34466226 PMCID: PMC8384135 DOI: 10.1002/cti2.1324] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/07/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Rates of IgE-mediated food allergy (FA) have increased over the last few decades, and mounting evidence implicates disruption of epigenetic profiles in various immune cell types in FA development. Recent data implicate B-cell dysfunction in FA; however, few studies have examined epigenetic changes within these cells. METHODS We assessed epigenetic and transcriptomic profiles in purified B cells from adolescents with FA, comparing single-food-allergic (peanut only), multi-food-allergic (peanut and ≥1 other food) and non-allergic (control) individuals. Adolescents represent a phenotype of persistent and severe FA indicative of a common immune deviation. RESULTS We identified 144 differentially methylated probes (DMPs) and 116 differentially expressed genes (DEGs) that distinguish B cells of individuals with FA from controls, including differential methylation of the PM20D1 promoter previously associated with allergic disorders. Subgroup comparisons found 729 DMPs specific to either single-food- or multi-food-allergic individuals, suggesting epigenetic distinctions between allergy groups. This included two regions with increased methylation near three S100 genes in multi-food-allergic individuals. Ontology results of DEGs specific to multi-food-allergic individuals revealed enrichment of terms associated with myeloid cell activation. Motif enrichment analysis of promoters associated with DMPs and DEGs showed differential enrichment for motifs recognised by transcription factors regulating B- and T-cell development, B-cell lineage determination and TGF-β signalling pathway between the multi-food-allergic and single-food-allergic groups. CONCLUSION Our data highlight epigenetic changes in B cells associated with peanut allergy, distinguishing features of the epigenome between single-food- and multi-food-allergic individuals and revealing differential developmental pathways potentially underpinning these distinct phenotypes.
Collapse
Affiliation(s)
- Samira Imran
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
| | - Melanie R Neeland
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
| | - Jennifer Koplin
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
| | - Shyamali Dharmage
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
- Allergy and Lung Health UnitMelbourne School of Population and Global HealthUniversity of MelbourneCarltonVICAustralia
| | - Mimi LK Tang
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
- Department of Allergy and ImmunologyRoyal Children's HospitalMelbourneVICAustralia
| | - Susan Sawyer
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
- Centre for Adolescent HealthRoyal Children's HospitalMelbourneVICAustralia
| | - Thanh Dang
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
| | - Vicki McWilliam
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
- Department of Allergy and ImmunologyRoyal Children's HospitalMelbourneVICAustralia
| | - Rachel Peters
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
| | - Kirsten P Perrett
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
- Department of Allergy and ImmunologyRoyal Children's HospitalMelbourneVICAustralia
| | - Boris Novakovic
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
| | - Richard Saffery
- Murdoch Children’s Research Institute, and Department of PaediatricsUniversity of MelbourneRoyal Children's HospitalParkvilleVICAustralia
| |
Collapse
|
31
|
Wu Q, Chen DQ, Sun L, Huan XJ, Bao XB, Tian CQ, Hu J, Lv KK, Wang YQ, Xiong B, Miao ZH. Novel bivalent BET inhibitor N2817 exhibits potent anticancer activity and inhibits TAF1. Biochem Pharmacol 2021; 185:114435. [PMID: 33539817 DOI: 10.1016/j.bcp.2021.114435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 01/14/2023]
Abstract
Bromodomain and extra-terminal domain (BET) family proteins are promising anticancer targets. Most BET inhibitors in clinical trials are monovalent. They competitively bind to one of the bromodomains (BD1 and BD2) in BET proteins and exhibit relatively weak anticancer activity, poor pharmacokinetics, and low metabolic stability. Here, we evaluated the anticancer activity of a novel bivalent BET inhibitor, N2817, which consists of two molecules of the monovalent BET inhibitor 8124-053 connected by a common piperazine ring, rendering a long linker unnecessary. Compared with ABBV-075, one of the potent monovalent BET inhibitors reported to date, N2817 showed greater potency in inhibiting proliferation, arresting cell-cycle, inducing apoptosis, and suppressing the growth of tumor xenografts. Moreover, N2817 showed high metabolic stability, a relatively long half-life, and no brain penetration after oral administration. Additionally, N2817 directly bound and inhibited another BD-containing protein, TAF1 (BD2), as evidenced by a reduction in mRNA and protein levels. TAF1 inhibition contributed to the anticancer effect of N2817. Therefore, this study offers a new paradigm for designing bivalent BET inhibitors and introduces a novel potent bivalent BET inhibitor and a new anticancer mechanism.
Collapse
Affiliation(s)
- Qian Wu
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China
| | - Dan-Qi Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Lin Sun
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China
| | - Xia-Juan Huan
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Xu-Bin Bao
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Chang-Qing Tian
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China
| | - Jianping Hu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Kai-Kai Lv
- University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Ying-Qing Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China.
| | - Bing Xiong
- University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.
| | - Ze-Hong Miao
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
32
|
Her YR, Wang L, Chepelev I, Manterola M, Berkovits B, Cui K, Zhao K, Wolgemuth DJ. Genome-wide chromatin occupancy of BRDT and gene expression analysis suggest transcriptional partners and specific epigenetic landscapes that regulate gene expression during spermatogenesis. Mol Reprod Dev 2021; 88:141-157. [PMID: 33469999 DOI: 10.1002/mrd.23449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/13/2020] [Accepted: 12/27/2020] [Indexed: 11/09/2022]
Abstract
BRDT, a member of the BET family of double bromodomain-containing proteins, is essential for spermatogenesis in the mouse and has been postulated to be a key regulator of transcription in meiotic and post-meiotic cells. To understand the function of BRDT in these processes, we first characterized the genome-wide distribution of the BRDT binding sites, in particular within gene units, by ChIP-Seq analysis of enriched fractions of pachytene spermatocytes and round spermatids. In both cell types, BRDT binding sites were mainly located in promoters, first exons, and introns of genes. BRDT binding sites in promoters overlapped with several histone modifications and histone variants associated with active transcription, and were enriched for consensus sequences for specific transcription factors, including MYB, RFX, ETS, and ELF1 in pachytene spermatocytes, and JunD, c-Jun, CRE, and RFX in round spermatids. Subsequent integration of the ChIP-seq data with available transcriptome data revealed that stage-specific gene expression programs are associated with BRDT binding to their gene promoters, with most of the BDRT-bound genes being upregulated. Gene Ontology analysis further identified unique sets of genes enriched in diverse biological processes essential for meiosis and spermiogenesis between the two cell types, suggesting distinct developmentally stage-specific functions for BRDT. Taken together, our data suggest that BRDT cooperates with different transcription factors at distinctive chromatin regions within gene units to regulate diverse downstream target genes that function in male meiosis and spermiogenesis.
Collapse
Affiliation(s)
- Yoon Ra Her
- Department of Genetics & Development, Columbia University Medical Center, New York, New York, USA
| | - Li Wang
- Department of Genetics & Development, Columbia University Medical Center, New York, New York, USA
| | - Iouri Chepelev
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.,Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marcia Manterola
- Human Genetics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Binyamin Berkovits
- Department of Genetics & Development, Columbia University Medical Center, New York, New York, USA
| | - Kairong Cui
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Debra J Wolgemuth
- Department of Genetics & Development, Columbia University Medical Center, New York, New York, USA.,Department Obstetrics & Gynecology, Columbia University Medical Center, New York, New York, USA.,Institute of Human Nutrition, Columbia University Medical Center, New York, New York, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
33
|
Insights into the Mechanism of Bovine Spermiogenesis Based on Comparative Transcriptomic Studies. Animals (Basel) 2021; 11:ani11010080. [PMID: 33466297 PMCID: PMC7824766 DOI: 10.3390/ani11010080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/26/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Any irregularity in spermiogenesis reduces the quality of semen and may lead to male sterility in cattle and humans. Thus, we investigated the differential transcriptomics of spermatids from round spermatid to epididymal sperm and compared them with the transcriptomics of mice in the same period. We found differentially expressed genes (DEGs) involved in sperm head and tail formation, and epigenetic regulatory networks which regulated genetic material condensation, the deformation of the spermatid, and the expression of genes in it. According to the sterility report on the ART3 protein and its possible epigenetic function, we detected that it was localised outside the spermatocyte, in round and elongated spermatids. Interestingly, we observed that the ART3 protein on round and elongated spermatids was localised approximately to the lumen of seminiferous tubule. It was also localised on the head and tail part near the head in epididymal sperm, suggesting its important role in the deformation from round spermatids to sperm. Our findings provide new insights into the molecular mechanism underlying bovine spermiogenesis, thereby contributing to the improved reproductive potential of cattle and the development of strategies for the diagnosis and treatment of male infertility. Abstract To reduce subfertility caused by low semen quality and provide theoretical guidance for the eradication of human male infertility, we sequenced the bovine transcriptomes of round, elongated spermatids and epididymal sperms. The differential analysis was carried out with the reference of the mouse transcriptome, and the homology trends of gene expression to the mouse were also analysed. First, to explore the physiological mechanism of spermiogenesis that profoundly affects semen quality, homological trends of differential genes were compared during spermiogenesis in dairy cattle and mice. Next, Gene Ontology (GO), Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment, protein–protein interaction network (PPI network), and bioinformatics analyses were performed to uncover the regulation network of acrosome formation during the transition from round to elongated spermatids. In addition, processes that regulate gene expression during spermiogenesis from elongated spermatid to epididymal sperm, such as ubiquitination, acetylation, deacetylation, and glycosylation, and the functional ART3 gene may play important roles during spermiogenesis. Therefore, its localisation in the seminiferous tubules and epididymal sperm were investigated using immunofluorescent analysis, and its structure and function were also predicted. Our findings provide a deeper understanding of the process of spermiogenesis, which involves acrosome formation, histone replacement, and the fine regulation of gene expression.
Collapse
|
34
|
Wan P, Chen Z, Zhong W, Jiang H, Huang Z, Peng D, He Q, Chen N. BRDT is a novel regulator of eIF4EBP1 in renal cell carcinoma. Oncol Rep 2020; 44:2475-2486. [PMID: 33125143 PMCID: PMC7610328 DOI: 10.3892/or.2020.7796] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Among all types of kidney diseases, renal cell carcinoma (RCC) has the highest mortality, recurrence and metastasis rates, which results in high numbers of tumor-associated mortalities in China. Identifying a novel therapeutic target has attracted increasing attention. Bromodomain and extraterminal domain (BET) proteins have the ability to read the epigenome, leading to regulation of gene transcription. As an important member of the BET family, bromodomain testis-specific protein (BRDT) has been well studied; however, the mechanism underlying BRDT in the regulation of RCC has not been fully investigated. Eukaryotic translation initiation factor 4E-binding protein 1 (eIF4EBP1) is a binding partner of eIF4E that is involved in affecting the progression of various cancer types via regulating gene transcription. To identify novel regulators of eIF4EBP1, an immunoprecipitation assay and mass spectrometry analysis was performed in RCC cells. It was revealed that eIF4EBP1 interacted with BRDT, a novel interacting protein. In addition, the present study further demonstrated that BRDT inhibitors PLX51107 and INCB054329 blocked the progression of RCC cells, along with suppressing eIF4EBP1 and c-myc expression. Small interfering (si) RNAs were used to knock down BRDT expression, which suppressed RCC cell proliferation and eIF4EBP1 protein expression. In addition, overexpression of eIF4EBP1 partially abolished the inhibited growth function of PLX51107 but knocking down eIF4EBP1 improved the inhibitory effects of PLX51107. Furthermore, treatment with PLX51107 or knockdown of BRDT expression decreased c-myc expression at both the mRNA and protein levels, and attenuated its promoter activity, as determined by luciferase reporter assays. PLX51107 also significantly altered the interaction between the c-myc promoter with eIF4EBP1 and significantly attenuated the increase of RCC tumors, accompanied by decreased c-myc mRNA and protein levels in vivo. Taken together, these data suggested that blocking of BRDT by PLX51107, INCB054329 or BRDT knockdown suppressed the growth of RCC via decreasing eIF4EBP1, thereby leading to decreased c-myc transcription levels. Considering the regulatory function of BET proteins in gene transcription, the present study suggested that there is a novel mechanism underlying eIF4EBP1 regulation by BRDT, and subsequently decreased c-myc in RCC, and further identified a new approach by regulating eIF4EBP1 or c-myc for enhancing BRDT-targeting RCC therapy.
Collapse
Affiliation(s)
- Pei Wan
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| | - Zhilin Chen
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| | - Weifeng Zhong
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| | - Huiming Jiang
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| | - Zhicheng Huang
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| | - Dong Peng
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| | - Qiang He
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| | - Nanhui Chen
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| |
Collapse
|
35
|
Kulikowski E, Rakai BD, Wong NCW. Inhibitors of bromodomain and extra-terminal proteins for treating multiple human diseases. Med Res Rev 2020; 41:223-245. [PMID: 32926459 PMCID: PMC7756446 DOI: 10.1002/med.21730] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Clinical development of bromodomain and extra‐terminal (BET) protein inhibitors differs from the traditional course of drug development. These drugs are simultaneously being evaluated for treating a wide spectrum of human diseases due to their novel mechanism of action. BET proteins are epigenetic “readers,” which play a primary role in transcription. Here, we briefly describe the BET family of proteins, of which BRD4 has been studied most extensively. We discuss BRD4 activity at latent enhancers as an example of BET protein function. We examine BRD4 redistribution and enhancer reprogramming in embryonic development, cancer, cardiovascular, autoimmune, and metabolic diseases, presenting hallmark studies that highlight BET proteins as attractive targets for therapeutic intervention. We review the currently available approaches to targeting BET proteins, methods of selectively targeting individual bromodomains, and review studies that compare the effects of selective BET inhibition to those of pan‐BET inhibition. Lastly, we examine the current clinical landscape of BET inhibitor development.
Collapse
|
36
|
Crespo M, Damont A, Blanco M, Lastrucci E, Kennani SE, Ialy-Radio C, Khattabi LE, Terrier S, Louwagie M, Kieffer-Jaquinod S, Hesse AM, Bruley C, Chantalat S, Govin J, Fenaille F, Battail C, Cocquet J, Pflieger D. Multi-omic analysis of gametogenesis reveals a novel signature at the promoters and distal enhancers of active genes. Nucleic Acids Res 2020; 48:4115-4138. [PMID: 32182340 PMCID: PMC7192594 DOI: 10.1093/nar/gkaa163] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/30/2020] [Accepted: 03/07/2020] [Indexed: 12/17/2022] Open
Abstract
Epigenetic regulation of gene expression is tightly controlled by the dynamic modification of histones by chemical groups, the diversity of which has largely expanded over the past decade with the discovery of lysine acylations, catalyzed from acyl-coenzymes A. We investigated the dynamics of lysine acetylation and crotonylation on histones H3 and H4 during mouse spermatogenesis. Lysine crotonylation appeared to be of significant abundance compared to acetylation, particularly on Lys27 of histone H3 (H3K27cr) that accumulates in sperm in a cleaved form of H3. We identified the genomic localization of H3K27cr and studied its effects on transcription compared to the classical active mark H3K27ac at promoters and distal enhancers. The presence of both marks was strongly associated with highest gene expression. Assessment of their co-localization with transcription regulators (SLY, SOX30) and chromatin-binding proteins (BRD4, BRDT, BORIS and CTCF) indicated systematic highest binding when both active marks were present and different selective binding when present alone at chromatin. H3K27cr and H3K27ac finally mark the building of some sperm super-enhancers. This integrated analysis of omics data provides an unprecedented level of understanding of gene expression regulation by H3K27cr in comparison to H3K27ac, and reveals both synergistic and specific actions of each histone modification.
Collapse
Affiliation(s)
- Marion Crespo
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France
| | - Annelaure Damont
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, 91191 Gif-sur-Yvette, France
| | - Melina Blanco
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014 Paris, France
| | | | - Sara El Kennani
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France.,CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Côme Ialy-Radio
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014 Paris, France
| | - Laila El Khattabi
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014 Paris, France
| | - Samuel Terrier
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, 91191 Gif-sur-Yvette, France
| | | | | | - Anne-Marie Hesse
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France
| | | | - Sophie Chantalat
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 2 rue Gaston Crémieux, CP 5706, 91057 Evry Cedex, France
| | - Jérôme Govin
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France.,CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - François Fenaille
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, 91191 Gif-sur-Yvette, France
| | - Christophe Battail
- Univ. Grenoble Alpes, CEA, INSERM, Biosciences and Biotechnology Institute of Grenoble, Biology of Cancer and Infection UMR_S 1036, 38000 Grenoble, France
| | - Julie Cocquet
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014 Paris, France
| | - Delphine Pflieger
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France.,CNRS, IRIG-BGE, 38000 Grenoble, France
| |
Collapse
|
37
|
Chen S, Wang G, Zheng X, Ge S, Dai Y, Ping P, Chen X, Liu G, Zhang J, Yang Y, Zhang X, Zhong A, Zhu Y, Chu Q, Huang Y, Zhang Y, Shen C, Yuan Y, Yuan Q, Pei X, Cheng CY, Sun F. Whole-exome sequencing of a large Chinese azoospermia and severe oligospermia cohort identifies novel infertility causative variants and genes. Hum Mol Genet 2020; 29:2451-2459. [PMID: 32469048 DOI: 10.1093/hmg/ddaa101] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
Abstract
Rare coding variants have been proven to be one of the significant factors contributing to spermatogenic failure in patients with non-obstructive azoospermia (NOA) and severe oligospermia (SO). To delineate the molecular characteristics of idiopathic NOA and SO, we performed whole-exome sequencing of 314 unrelated patients of Chinese Han origin and verified our findings by comparing to 400 fertile controls. We detected six pathogenic/likely pathogenic variants and four variants of unknown significance, in genes known to cause NOA/SO, and 9 of which had not been earlier reported. Additionally, we identified 20 novel NOA candidate genes affecting 25 patients. Among them, five (BRDT, CHD5, MCM9, MLH3 and ZFX) were considered as strong candidates based on the evidence obtained from murine functional studies and human single-cell (sc)RNA-sequencing data. These genetic findings provide insight into the aetiology of human NOA/SO and pave the way for further functional analysis and molecular diagnosis of male infertility.
Collapse
Affiliation(s)
- Shitao Chen
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Guishuan Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Xiaoguo Zheng
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Shunna Ge
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Yubing Dai
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Ping Ping
- Department of Urology, Shanghai Human Sperm Bank, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, China
| | - Xiangfeng Chen
- Department of Urology, Shanghai Human Sperm Bank, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, China
| | - Guihua Liu
- Department of Andrology, Reproductive Medicine Research Center, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Jing Zhang
- Department of Andrology, Reproductive Medicine Research Center, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Yang Yang
- Department of Reproduction, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Xinzong Zhang
- Key Laboratory of Male Reproduction and Genetics, National Health and Family Planning Commission, Family Planning Research Institute of Guangdong Province, Guangzhou, 510031, China
| | - An Zhong
- Key Laboratory of Male Reproduction and Genetics, National Health and Family Planning Commission, Family Planning Research Institute of Guangdong Province, Guangzhou, 510031, China
| | - Yongtong Zhu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qingjun Chu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yonghan Huang
- The First People's Hospital of Foshan, Sun Yat-sen University, Foshan, 528000, China
| | - Yong Zhang
- Center of Assisted Reproductive Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, 100083, China
| | - Changli Shen
- Reproductive Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yiming Yuan
- Peking University First Hospital Andrology Center & Urology Department, Beijing, 100034, China
| | - Qilong Yuan
- Guangdong Province Hospital of Chinese Medicine, Guangzhou, 510140, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, 10065, USA
| | - Fei Sun
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| |
Collapse
|
38
|
Chioccarelli T, Pierantoni R, Manfrevola F, Porreca V, Fasano S, Chianese R, Cobellis G. Histone Post-Translational Modifications and CircRNAs in Mouse and Human Spermatozoa: Potential Epigenetic Marks to Assess Human Sperm Quality. J Clin Med 2020; 9:jcm9030640. [PMID: 32121034 PMCID: PMC7141194 DOI: 10.3390/jcm9030640] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Spermatozoa (SPZ) are motile cells, characterized by a cargo of epigenetic information including histone post-translational modifications (histone PTMs) and non-coding RNAs. Specific histone PTMs are present in developing germ cells, with a key role in spermatogenic events such as self-renewal and commitment of spermatogonia (SPG), meiotic recombination, nuclear condensation in spermatids (SPT). Nuclear condensation is related to chromatin remodeling events and requires a massive histone-to-protamine exchange. After this event a small percentage of chromatin is condensed by histones and SPZ contain nucleoprotamines and a small fraction of nucleohistone chromatin carrying a landascape of histone PTMs. Circular RNAs (circRNAs), a new class of non-coding RNAs, characterized by a nonlinear back-spliced junction, able to play as microRNA (miRNA) sponges, protein scaffolds and translation templates, have been recently characterized in both human and mouse SPZ. Since their abundance in eukaryote tissues, it is challenging to deepen their biological function, especially in the field of reproduction. Here we review the critical role of histone PTMs in male germ cells and the profile of circRNAs in mouse and human SPZ. Furthermore, we discuss their suggested role as novel epigenetic biomarkers to assess sperm quality and improve artificial insemination procedure.
Collapse
|
39
|
Nie H, Tang Y, Qin W. Beyond Acephalic Spermatozoa: The Complexity of Intracytoplasmic Sperm Injection Outcomes. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6279795. [PMID: 32104701 PMCID: PMC7035536 DOI: 10.1155/2020/6279795] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/21/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022]
Abstract
This review analyses the genetic mechanisms of acephalic spermatozoa (AS) defects, which are associated with primary infertility in men. Several target genes of headless sperms have been identified but intracytoplasmic sperm injection (ICSI) outcomes are complex. Based on electron microscopic observations, broken points of the sperm neck are AS defects that are based on various genes that can be classified into three subtypes: HOOK1, SUN5, and PMFBP1 genes of subtype II; TSGA10 and BRDT genes of subgroup III, while the genetic mechanism(s) and aetiology of AS defects of subtype I have not been described and remain to be explored. Interestingly, all AS sperm of subtype II achieved better ICSI outcomes than other subtypes, resulting in clinical pregnancies and live births. For subtype III, the failure of clinical pregnancy can be explained by the defects of paternal centrioles that arrest embryonic development; for subtype I, this was due to a lack of a distal centriole. Consequently, the embryo quality and potential ICSI results of AS defects can be predicted by the subtypes of AS defects. However, this conclusion with regard to ICSI outcomes based on subtypes still needs further research, while the existence of quality of oocyte and implantation failure in women cannot be ignored.
Collapse
Affiliation(s)
- Hua Nie
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China
- Department of Central Laboratory of Family Planning Research Institute of Guangdong Province of China, Guangzhou, China
- Department of Central Laboratory of Family Planning Special Hospital of Guangdong Province of China, Guangzhou, China
| | - Yunge Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China
- Department of Central Laboratory of Family Planning Research Institute of Guangdong Province of China, Guangzhou, China
- Department of Central Laboratory of Family Planning Special Hospital of Guangdong Province of China, Guangzhou, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China
- Department of Central Laboratory of Family Planning Research Institute of Guangdong Province of China, Guangzhou, China
- Department of Central Laboratory of Family Planning Special Hospital of Guangdong Province of China, Guangzhou, China
| |
Collapse
|
40
|
Wang T, Gao H, Li W, Liu C. Essential Role of Histone Replacement and Modifications in Male Fertility. Front Genet 2019; 10:962. [PMID: 31649732 PMCID: PMC6792021 DOI: 10.3389/fgene.2019.00962] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/10/2019] [Indexed: 01/19/2023] Open
Abstract
Spermiogenesis is a complex cellular differentiation process that the germ cells undergo a distinct morphological change, and the protamines replace the core histones to facilitate chromatin compaction in the sperm head. Recent studies show the essential roles of epigenetic events during the histone-to-protamine transition. Defects in either the replacement or the modification of histones might cause male infertility with azoospermia, oligospermia or teratozoospermia. Here, we summarize recent advances in our knowledge of how epigenetic regulators, such as histone variants, histone modification and their related chromatin remodelers, facilitate the histone-to-protamine transition during spermiogenesis. Understanding the molecular mechanism underlying the modification and replacement of histones during spermiogenesis will enable the identification of epigenetic biomarkers of male infertility, and shed light on potential therapies for these patients in the future.
Collapse
Affiliation(s)
- Tong Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hui Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
The DNA methylation level is associated with the superior growth of the hybrid fry in snakehead fish (Channa argus × Channa maculata). Gene 2019; 703:125-133. [PMID: 30978477 DOI: 10.1016/j.gene.2019.03.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/17/2019] [Accepted: 03/30/2019] [Indexed: 02/07/2023]
Abstract
Hybrid vigour, or heterosis, refers to the increased productivity and growth rate of hybrid offsprings relative to the parents. Various heterosis have been well exploited in fish for fisheries. However, the molecular mechanisms underlying heterosis are largely unknown in fish. In this study, two inbred and hybrid lines between the northern snakehead (NS, Channa argus) and blotched snakehead (BS, Channa maculata) were generated. The analysis on various growth traits, including body length, head length, and body height, showed that hybrid fry obviously exhibited a spontaneous growth heterosis over the inbred. Moreover, the methylation-sensitive amplification polymorphism (MSAP) analysis revealed that the DNA methylation levels were negatively related to the body growth in all fry. Especially, the DNA methylation levels in the hybrid fry were significantly lower than those in the inbred. Additionally, qRT-PCR showed that the snakehead fish Dnmt3a mRNA was initially detectable in embryos at 12 hpf and gradually increased as developing. Intriguingly, the level of Dnmt3a mRNA expression was found to be closely correlated to the DNA methylation level in embryos/fry. The results of this study firstly demonstrated the correlations between growth heterosis, DNA methylation level and Dnmt3a mRNA expression in fish fry. The findings of this study implied that the hybrids' heterosis formation is probably accompanied by DNA methylation alterations and modulated by Dnmt3a gene in fish. This study would provide new clues for further investigations on mechanisms behind heterosis formation in fish hybrid.
Collapse
|
42
|
Abstract
The evolution of heteromorphic sex chromosomes has occurred independently many times in different lineages. The differentiation of sex chromosomes leads to dramatic changes in sequence composition and function and guides the evolutionary trajectory and utilization of genes in pivotal sex determination and reproduction roles. In addition, meiotic recombination and pairing mechanisms are key in orchestrating the resultant impact, retention and maintenance of heteromorphic sex chromosomes, as the resulting exposure of unpaired DNA at meiosis triggers ancient repair and checkpoint pathways. In this review, we summarize the different ways in which sex chromosome systems are organized at meiosis, how pairing is affected, and differences in unpaired DNA responses. We hypothesize that lineage specific differences in meiotic organization is not only a consequence of sex chromosome evolution, but that the establishment of epigenetic changes on sex chromosomes contributes toward their evolutionary conservation.
Collapse
Affiliation(s)
- Tasman Daish
- Comparative Genome Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Frank Grützner
- Comparative Genome Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
43
|
Genetic Factors Affecting Sperm Chromatin Structure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1166:1-28. [PMID: 31301043 DOI: 10.1007/978-3-030-21664-1_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spermatozoa genome has unique features that make it a fascinating field of investigation: first, because, with oocyte genome, it can be transmitted generation after generation; second, because of genetic shuffling during meiosis, each spermatozoon is virtually unique in terms of genetic content, with consequences for species evolution; and finally, because its chromatin organization is very different from that of somatic cells or oocytes, as it is not based on nucleosomes but on nucleoprotamines which confer a higher order of packaging. Histone-to-protamine transition involves many actors, such as regulators of spermatid gene expression, components of the nuclear envelop, histone-modifying enzymes and readers, chaperones, histone variants, transition proteins, protamines, and certainly many more to be discovered.In this book chapter, we will present what is currently known about sperm chromatin structure and how it is established during spermiogenesis, with the aim to list the genetic factors that regulate its organization.
Collapse
|