1
|
Fan H, Lü D, Lu Z, Li H, Qi Z, Sun S, Guan D, Long M, Gao M, Liu S. TRPML1 ion channel promotes HepaRG cell differentiation under simulated microgravity conditions. NPJ Microgravity 2025; 11:9. [PMID: 40089547 PMCID: PMC11910645 DOI: 10.1038/s41526-025-00461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/17/2025] [Indexed: 03/17/2025] Open
Abstract
Stem cell differentiation must be regulated by intricate and complex interactions between cells and their surrounding environment, ensuring normal organ and tissue morphology such as the liver1. Though it is well acknowledged that microgravity provides necessary mechanical force signals for cell fate2, how microgravity affects growth, differentiation, and communication is still largely unknown due to the lack of real experimental scenarios and reproducibility tools. Here, Rotating Flat Chamber (RFC) was used to simulate ground-based microgravity effects to study how microgravity effects affect the differentiation of HepaRG (hepatic progenitor cells) cells. Unexpectedly, the results show that RFC conditions could promote HepaRG cell differentiation which exhibited increased expression of Alpha-fetoprotein (AFP), albumin (ALB), and Recombinant Cytokeratin 18 (CK18). Through screening a series of mechanical receptors, the ion channel TRPML1 was critical for promoting the differentiation effect under RFC conditions. Once TRPML1 was activated by stimulated microgravity effects, the concentration of lysosomal calcium ions was increased to activate the Wnt/β-catenin signaling pathway, which finally led to enhanced cell differentiation of HepaRG cells. In addition, the cytoskeleton was remodeled under RFC conditions to influence the expression of PI (3,5) P2, which is the best-known activator of TRPML1. In summary, our findings have established a mechanism by which simulated microgravity promotes the differentiation of HepaRG cells through the TRPML1 signaling pathway, which provides a potential target for the regulation of hepatic stem/progenitor cell differentiation and embryonic liver development under real microgravity conditions.
Collapse
Affiliation(s)
- Huancai Fan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Dongyuan Lü
- University of Chinese Academy of Sciences, Beijing, P.R. China
- Center of Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Zheng Lu
- University of Chinese Academy of Sciences, Beijing, P.R. China
- Center of Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Hangyu Li
- University of Chinese Academy of Sciences, Beijing, P.R. China
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Zijuan Qi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, P.R. China
| | - Shujin Sun
- University of Chinese Academy of Sciences, Beijing, P.R. China
- Center of Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Dongshi Guan
- University of Chinese Academy of Sciences, Beijing, P.R. China
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Mian Long
- University of Chinese Academy of Sciences, Beijing, P.R. China
- Center of Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China.
- University of Chinese Academy of Sciences, Beijing, P.R. China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, P.R. China
| |
Collapse
|
2
|
Xia J, Wang H, Zhong Z, Jiang J. Inhibition of PIKfyve Leads to Lysosomal Disorders via Dysregulation of mTOR Signaling. Cells 2024; 13:953. [PMID: 38891085 PMCID: PMC11171791 DOI: 10.3390/cells13110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
PIKfyve is an endosomal lipid kinase that synthesizes phosphatidylinositol 3,5-biphosphate from phosphatidylinositol 3-phsphate. Inhibition of PIKfyve activity leads to lysosomal enlargement and cytoplasmic vacuolation, attributed to impaired lysosomal fission processes and homeostasis. However, the precise molecular mechanisms underlying these effects remain a topic of debate. In this study, we present findings from PIKfyve-deficient zebrafish embryos, revealing enlarged macrophages with giant vacuoles reminiscent of lysosomal storage disorders. Treatment with mTOR inhibitors or effective knockout of mTOR partially reverses these abnormalities and extend the lifespan of mutant larvae. Further in vivo and in vitro mechanistic investigations provide evidence that PIKfyve activity is essential for mTOR shutdown during early zebrafish development and in cells cultured under serum-deprived conditions. These findings underscore the critical role of PIKfyve activity in regulating mTOR signaling and suggest potential therapeutic applications of PIKfyve inhibitors for the treatment of lysosomal storage disorders.
Collapse
Affiliation(s)
- Jianhong Xia
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (J.X.); (H.W.)
| | - Haiyun Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (J.X.); (H.W.)
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Zhihang Zhong
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Derkaczew M, Martyniuk P, Hofman R, Rutkowski K, Osowski A, Wojtkiewicz J. The Genetic Background of Abnormalities in Metabolic Pathways of Phosphoinositides and Their Linkage with the Myotubular Myopathies, Neurodegenerative Disorders, and Carcinogenesis. Biomolecules 2023; 13:1550. [PMID: 37892232 PMCID: PMC10605126 DOI: 10.3390/biom13101550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/16/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Myo-inositol belongs to one of the sugar alcohol groups known as cyclitols. Phosphatidylinositols are one of the derivatives of Myo-inositol, and constitute important mediators in many intracellular processes such as cell growth, cell differentiation, receptor recycling, cytoskeletal organization, and membrane fusion. They also have even more functions that are essential for cell survival. Mutations in genes encoding phosphatidylinositols and their derivatives can lead to many disorders. This review aims to perform an in-depth analysis of these connections. Many authors emphasize the significant influence of phosphatidylinositols and phosphatidylinositols' phosphates in the pathogenesis of myotubular myopathies, neurodegenerative disorders, carcinogenesis, and other less frequently observed diseases. In our review, we have focused on three of the most often mentioned groups of disorders. Inositols are the topic of many studies, and yet, there are no clear results of successful clinical trials. Analysis of the available literature gives promising results and shows that further research is still needed.
Collapse
Affiliation(s)
- Maria Derkaczew
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Students’ Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Piotr Martyniuk
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Students’ Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Robert Hofman
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Students’ Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Krzysztof Rutkowski
- Students’ Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- The Nicolaus Copernicus Municipal Polyclinical Hospital in Olsztyn, 10-045 Olsztyn, Poland
| | - Adam Osowski
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| |
Collapse
|
4
|
Kawaguchi K, Watanabe M, Furukawa S, Koga K, Kanamori H, Ikemoto MJ, Takashima S, Maeda M, Oh-Hashi K, Hirata Y, Furuta K, Takemori H. Intermittent inhibition of FYVE finger-containing phosphoinositide kinase induces melanosome degradation in B16F10 melanoma cells. Mol Biol Rep 2023:10.1007/s11033-023-08536-9. [PMID: 37248430 DOI: 10.1007/s11033-023-08536-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Melanosomes are lysosome-related organelles that contain melanogenic factors and synthesize melanin as they mature. FYVE finger-containing phosphoinositide kinase (PIKfyve) regulates late endosome and lysosome morphology, vesicle trafficking, and autophagy. In melanocytes, PIKfyve inhibition has been reported to induce hypopigmentation due to impairments in the metabolism of early-stage melanosomes. METHODS AND RESULTS Here, we report a new type of melanosome metabolism: post-PIKfyve inhibition, which was found during the characterization of the endosome/lysosome fluoroprobe GIF-2250. In B16F10 mouse melanoma cells, GIF-2250 highlighted vesicles positive for lysosomal-associated membrane protein 1 (lysosome marker) and other endosome/lysosome markers (CD63 and Rab7/9). When cells were continuously treated with PIKfyve inhibitors, intracellular vacuoles formed, while GIF-2250 fluorescence signals diminished and were diffusely distributed in the vacuoles. After removal of the PIKfyve inhibitors, the GIF-2250 signal intensity was restored, and some GIF-2250-positive vesicles wrapped the melanosomes, which spun at high speed. In addition, intermittent PIKfyve inhibition caused melanin diffusion in the vacuoles and possible leakage into the cytoplasmic compartments, and melanosome degradation was detected by a transmission electron microscope. Melanosome degradation was accompanied by decreased levels of melanin synthesis enzymes and increased levels of the autophagosome maker LC3BII, which is also associated with early melanosomes. However, the protein levels of p62, which is degraded during autophagy, were increased, suggesting an impairment in autophagy flux during intermittent PIKfyve inhibition. Moreover, the autophagy inhibitor 3-methyladenine does not affect these protein levels, suggesting that the melanosome degradation by the intermittent inhibition of PIKfyve is not mediated by canonical autophagy. CONCLUSIONS In conclusion, disturbance of PIKfyve activity induces melanosome degradation in a canonical autophagy-independent manner.
Collapse
Affiliation(s)
- Kyoka Kawaguchi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Miyu Watanabe
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Saho Furukawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kenichi Koga
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hiromitsu Kanamori
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Mitsushi J Ikemoto
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, 305-8566, Ibaraki, Japan
- Graduate School of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Chiba, Japan
- Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sports Sciences, University of Tsukuba, Tsukuba, 305-8574, Japan
| | - Shigeo Takashima
- Institute for Glycocore Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences of Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Miwa Maeda
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kentaro Oh-Hashi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences of Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yoko Hirata
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences of Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kyoji Furuta
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences of Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hiroshi Takemori
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
- The United Graduate School of Drug Discovery and Medical Information Sciences of Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| |
Collapse
|
5
|
Qiu S, Lavallée-Adam M, Côté M. Proximity Interactome Map of the Vac14-Fig4 Complex Using BioID. J Proteome Res 2021; 20:4959-4973. [PMID: 34554760 DOI: 10.1021/acs.jproteome.1c00408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Conversion between phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-bisphosphate on endosomal membranes is critical for the maturation of early endosomes to late endosomes/lysosomes and is regulated by the PIKfyve-Vac14-Fig4 complex. Despite the importance of this complex for endosomal homeostasis and vesicular trafficking, there is little known about how its activity is regulated or how it interacts with other cellular proteins. Here, we screened for the cellular interactome of Vac14 and Fig4 using proximity-dependent biotin labeling (BioID). After independently screening the interactomes of Vac14 and Fig4, we identified 89 high-confidence protein hits shared by both proteins. Network analysis of these hits revealed pathways with known involvement of the PIKfyve-Vac14-Fig4 complex, including vesicular organization and PI3K/Akt signaling, as well as novel pathways including cell cycle and mitochondrial regulation. We also identified subunits of coatomer complex I (COPI), a Golgi-associated complex with an emerging role in endosomal dynamics. Using proximity ligation assays, we validated the interaction between Vac14 and COPI subunit COPB1 and between Vac14 and Arf1, a GTPase required for COPI assembly. In summary, this study used BioID to comprehensively map the Vac14-Fig4 interactome, revealing potential roles for these proteins in diverse cellular processes and pathways, including preliminary evidence of an interaction between Vac14 and COPI. Data are available via ProteomeXchange with the identifier PXD027917.
Collapse
Affiliation(s)
- Shirley Qiu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa K1H 8M5, Canada.,Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Mathieu Lavallée-Adam
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa K1H 8M5, Canada.,Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa K1H 8M5, Canada
| |
Collapse
|
6
|
Wakamatsu K, Zippin JH, Ito S. Chemical and biochemical control of skin pigmentation with special emphasis on mixed melanogenesis. Pigment Cell Melanoma Res 2021; 34:730-747. [PMID: 33751833 DOI: 10.1111/pcmr.12970] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/24/2021] [Accepted: 03/07/2021] [Indexed: 02/06/2023]
Abstract
Melanins are widely distributed in animals and plants; in vertebrates, most melanins are present on the body surface. The diversity of pigmentation in vertebrates is mainly attributed to the quantity and ratio of eumelanin and pheomelanin synthesis. Most natural melanin pigments in animals consist of both eumelanin and pheomelanin in varying ratios, and thus, their combined synthesis is called "mixed melanogenesis." Gene expression is an established mechanism for controlling melanin synthesis; however, there are multiple factors that affect melanin synthesis besides gene expression. Due to the differential sensitivity of the eumelanin and pheomelanin synthetic pathways to pH, melanosomal pH likely plays a major role in mixed melanogenesis. Here, we focused on various factors affecting mixed melanogenesis including (1) chemical regulation of melanin synthesis, (2) melanosomal pH regulation during normal melanogenesis and effect on mixed melanogenesis, and (3) mechanisms of melanosomal pH control (proton pumps, channels, transporters, and signaling pathways).
Collapse
Affiliation(s)
- Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Jonathan H Zippin
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| |
Collapse
|
7
|
Peng P, Jia D, Cao L, Lu W, Liu X, Liang C, Pan Z, Fang Z. Akebia saponin E, as a novel PIKfyve inhibitor, induces lysosome-associated cytoplasmic vacuolation to inhibit proliferation of hepatocellular carcinoma cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113446. [PMID: 33031902 DOI: 10.1016/j.jep.2020.113446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hepatocellular carcinoma (HCC) is an aggressive malignancy with increasing mortality in China. Screening and identifying effective anticancer compounds from active traditional Chinese herbs for HCC are in demand. Akebia trifoliata (Thunb) Koidz, with pharmacological anti-HCC activities in clinical, has been shown in previous research. In the present research, we elucidated a potential anticancer effect of Akebia saponin E (ASE), which is isolated from the immature seeds of Akebia trifoliata (Thunb.) Koidz, and revealed that ASE could induce severe expanded vacuoles in HCC cells. But the potential mechanism of vacuole-formation and the anti-HCC effects by ASE remain uncover. AIM OF THIS STUDY To elucidate the potential mechanism of vacuole-formation and the proliferation inhibition effects by ASE in HCC cell lines. MATERIALS AND METHODS MTT assay, colony formation assay and flow cytometry were performed to detect cell viability. Immunofluorescence analysis was used to examine the biomarkers of endomembrane. Cells were infected with tandem mRFP-GFP-LC3 lentivirus to assess autophagy flux. RNA-seq was conducted to analyze the genome-wide transcriptional between treatment cell groups. In vitro PIKfyve kinase assay is detected by the ADP-GloTM Kinase Assay Kit. RESULTS ASE could inhibit the proliferation of HCC with severe expanded vacuoles in vitro, and could significantly reduce the size and weight of xenograft tumor in vivo. Further, the vacuoles induced by ASE were aberrant enlarged lysosomes instead of autophagosome or autolysosomes. With cytoplasmic vacuolation, ASE induced a mTOR-independent TFEB activation for lysosomal biogenesis and a decrement of cholesterol levels in HCC cells. Furthermore, ASE could reduce the activity of PIKfyve (phosphoinositide kinase containing a FYVE-type finger), causing aberrant lysosomal biogenesis and cholesterol dyshomeostasis which triggered the expanded vacuole formation. CONCLUSION ASE can prospectively inhibit the kinase activity of PIKfyve to induce lysosome-associated cytoplasmic vacuolation, and may be utilized as an alternative candidate to treat human HCC.
Collapse
Affiliation(s)
- Peike Peng
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Dongwei Jia
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linna Cao
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenli Lu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaomei Liu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Liang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiqiang Pan
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaoqin Fang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
8
|
Tian X, Cui Z, Liu S, Zhou J, Cui R. Melanosome transport and regulation in development and disease. Pharmacol Ther 2020; 219:107707. [PMID: 33075361 DOI: 10.1016/j.pharmthera.2020.107707] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Melanosomes are specialized membrane-bound organelles that synthesize and organize melanin, ultimately providing color to the skin, hair, and eyes. Disorders in melanogenesis and melanosome transport are linked to pigmentary diseases, such as Hermansky-Pudlak syndrome, Chediak-Higashi syndrome, and Griscelli syndrome. Clinical cases of these pigmentary diseases shed light on the molecular mechanisms that control melanosome-related pathways. However, only an improved understanding of melanogenesis and melanosome transport will further the development of diagnostic and therapeutic approaches. Herein, we review the current literature surrounding melanosomes with particular emphasis on melanosome membrane transport and cytoskeleton-mediated melanosome transport. We also provide perspectives on melanosome regulatory mechanisms which include hormonal action, inflammation, autophagy, and organelle interactions.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ziyong Cui
- Harvard College, Cambridge, MA 02138, United States of America
| | - Song Liu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China; State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Rutao Cui
- Skin Disease Research Institute, The 2nd Hospital, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Abstract
Melanin pigments are responsible for human skin and hair color, and they protect the body from harmful ultraviolet light. The black and brown melanin pigments are synthesized in specialized lysosome-related organelles called melanosomes in melanocytes. Mature melanosomes are transported within melanocytes and transferred to adjacent keratinocytes, which constitute the principal part of human skin. The melanosomes are then deposited inside the keratinocytes and darken the skin (a process called tanning). Owing to their dark color, melanosomes can be seen easily with an ordinary light microscope, and melanosome research dates back approximately 150 years; since then, biochemical studies aimed at isolating and purifying melanosomes have been conducted. Moreover, in the last two decades, hundreds of molecules involved in regulating melanosomal functions have been identified by analyses of the genes of coat-color mutant animals and patients with genetic diseases characterized by pigment abnormalities, such as hypopigmentation. In recent years, dynamic analyses by more precise microscopic observations have revealed specific functions of a variety of molecules involved in melanogenesis. This review article focuses on the latest findings with regard to the steps (or mechanisms) involved in melanosome formation and transport of mature melanosomes within epidermal melanocytes. Finally, we will touch on current topics in melanosome research, particularly on the "melanosome transfer" and "post-transfer" steps, and discuss future directions in pigment research.
Collapse
Affiliation(s)
- Norihiko Ohbayashi
- Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi 980-8578, Japan
| |
Collapse
|
10
|
Flesher JL, Paterson-Coleman EK, Vasudeva P, Ruiz-Vega R, Marshall M, Pearlman E, MacGregor GR, Neumann J, Ganesan AK. Delineating the role of MITF isoforms in pigmentation and tissue homeostasis. Pigment Cell Melanoma Res 2020; 33:279-292. [PMID: 31562697 PMCID: PMC7822220 DOI: 10.1111/pcmr.12828] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 01/01/2023]
Abstract
MITF, a gene that is mutated in familial melanoma and Waardenburg syndrome, encodes multiple isoforms expressed from alternative promoters that share common coding exons but have unique amino termini. It is not completely understood how these isoforms influence pigmentation in different tissues and how the expression of these independent isoforms of MITF is regulated. Here, we show that melanocytes express two isoforms of MITF, MITF-A and MITF-M. The expression of MITF-A is partially regulated by a newly identified retinoid enhancer element located upstream of the MITF-A promoter. Mitf-A knockout mice have only subtle changes in melanin accumulation in the hair and reduced Tyr expression in the eye. In contrast, Mitf-M-null mice have enlarged kidneys, lack neural crest-derived melanocytes in the skin, choroid, and iris stroma, yet maintain pigmentation within the retinal pigment epithelium and iris pigment epithelium of the eye. Taken together, these studies identify a critical role for MITF-M in melanocytes, a minor role for MITF-A in regulating pigmentation in the hair and Tyr expression in the eye, and a novel role for MITF-M in size control of the kidney.
Collapse
Affiliation(s)
- Jessica L. Flesher
- Department of Biological Chemistry, University of California, Irvine, CA, USA
- Center for Cancer Systems Biology, University of California, Irvine, CA, USA
| | | | - Priya Vasudeva
- Department of Dermatology, University of California, Irvine, CA, USA
| | - Rolando Ruiz-Vega
- Center for Cancer Systems Biology, University of California, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Michaela Marshall
- Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Eric Pearlman
- Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Grant R. MacGregor
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Irvine Transgenic Mouse Facility, University Laboratory Animal Resources, Office of Research, Universitiy of California, Irvine, CA, USA
| | - Jonathan Neumann
- Irvine Transgenic Mouse Facility, University Laboratory Animal Resources, Office of Research, Universitiy of California, Irvine, CA, USA
| | - Anand K. Ganesan
- Department of Biological Chemistry, University of California, Irvine, CA, USA
- Center for Cancer Systems Biology, University of California, Irvine, CA, USA
- Department of Dermatology, University of California, Irvine, CA, USA
| |
Collapse
|
11
|
Min SH, Suzuki A, Weaver L, Guzman J, Chung Y, Jin H, Gonzalez F, Trasorras C, Zhao L, Spruce LA, Seeholzer SH, Behrens EM, Abrams CS. PIKfyve Deficiency in Myeloid Cells Impairs Lysosomal Homeostasis in Macrophages and Promotes Systemic Inflammation in Mice. Mol Cell Biol 2019; 39:e00158-19. [PMID: 31427458 PMCID: PMC6791654 DOI: 10.1128/mcb.00158-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/29/2019] [Accepted: 08/12/2019] [Indexed: 01/15/2023] Open
Abstract
Macrophages are professional phagocytes that are essential for host defense and tissue homeostasis. Proper membrane trafficking and degradative functions of the endolysosomal system are known to be critical for the function of these cells. We have found that PIKfyve, the kinase that synthesizes the endosomal phosphoinositide phosphatidylinositol-3,5-bisphosphate, is an essential regulator of lysosomal biogenesis and degradative functions in macrophages. Genetically engineered mice lacking PIKfyve in their myeloid cells (PIKfyvefl/fl LysM-Cre) develop diffuse tissue infiltration of foamy macrophages, hepatosplenomegaly, and systemic inflammation. PIKfyve loss in macrophages causes enlarged endolysosomal compartments and impairs the lysosomal degradative function. Moreover, PIKfyve deficiency increases the cellular levels of lysosomal proteins. Although PIKfyve deficiency reduced the activation of mTORC1 pathway and was associated with increased cleavage of TFEB proteins, this does not translate into transcriptional activation of lysosomal genes, suggesting that PIKfyve modulates the abundance of lysosomal proteins by affecting the degradation of these proteins. Our study shows that PIKfyve modulation of lysosomal degradative activity and protein expression is essential to maintain lysosomal homeostasis in macrophages.
Collapse
Affiliation(s)
- Sang Hee Min
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Aae Suzuki
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lehn Weaver
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jessica Guzman
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yutein Chung
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Huiyan Jin
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Francina Gonzalez
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Claire Trasorras
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Liang Zhao
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lynn A Spruce
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Edward M Behrens
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Charles S Abrams
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Bissig C, Croisé P, Heiligenstein X, Hurbain I, Lenk GM, Kaufman E, Sannerud R, Annaert W, Meisler MH, Weisman LS, Raposo G, van Niel G. The PIKfyve complex regulates the early melanosome homeostasis required for physiological amyloid formation. J Cell Sci 2019; 132:jcs.229500. [PMID: 30709920 DOI: 10.1242/jcs.229500] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/14/2019] [Indexed: 12/23/2022] Open
Abstract
The metabolism of PI(3,5)P2 is regulated by the PIKfyve, VAC14 and FIG4 complex, mutations in which are associated with hypopigmentation in mice. These pigmentation defects indicate a key, but as yet unexplored, physiological relevance of this complex in the biogenesis of melanosomes. Here, we show that PIKfyve activity regulates formation of amyloid matrix composed of PMEL protein within the early endosomes in melanocytes, called stage I melanosomes. PIKfyve activity controls the membrane remodeling of stage I melanosomes, which regulates PMEL abundance, sorting and processing. PIKfyve activity also affects stage I melanosome kiss-and-run interactions with lysosomes, which are required for PMEL amyloidogenesis and the establishment of melanosome identity. Mechanistically, PIKfyve activity promotes both the formation of membrane tubules from stage I melanosomes and their release by modulating endosomal actin branching. Taken together, our data indicate that PIKfyve activity is a key regulator of the melanosomal import-export machinery that fine tunes the formation of functional amyloid fibrils in melanosomes and the maintenance of melanosome identity.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Christin Bissig
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France
| | - Pauline Croisé
- IPNP, Institute of Psychiatry and Neuroscience of Paris, Hopital Saint-Anne, Université Paris Descartes, INSERM U894, 75014 Paris, France
| | - Xavier Heiligenstein
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France.,Cell and Tissue Imaging Facility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France
| | - Ilse Hurbain
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France.,Cell and Tissue Imaging Facility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France
| | - Guy M Lenk
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA
| | - Emily Kaufman
- Life Science Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Ragna Sannerud
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Neurosciences, 3000 Leuven, Belgium
| | - Wim Annaert
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Neurosciences, 3000 Leuven, Belgium
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA
| | - Lois S Weisman
- Life Science Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Graça Raposo
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France.,Cell and Tissue Imaging Facility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France
| | - Guillaume van Niel
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France .,IPNP, Institute of Psychiatry and Neuroscience of Paris, Hopital Saint-Anne, Université Paris Descartes, INSERM U894, 75014 Paris, France.,Cell and Tissue Imaging Facility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France
| |
Collapse
|