1
|
Bedsole CO, Vasselli JG, Shaw BD. Endocytosis in filamentous Fungi: Coordinating polarized hyphal growth and membrane recycling. Fungal Genet Biol 2025; 179:104000. [PMID: 40368173 DOI: 10.1016/j.fgb.2025.104000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/17/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025]
Abstract
Filamentous fungi rely on a finely tuned balance between exocytosis and endocytosis to maintain polarized growth. This review highlights the essential role of the subapical endocytic collar in recycling excess plasma membrane and key proteins, enabling sustained hyphal extension. It distinguishes between clathrin-mediated and AP-2-dependent clathrin-independent pathways, emphasizing their unique contributions to membrane homeostasis and cargo trafficking. The synthesis of quantitative imaging and genetic analyses provides a comprehensive framework for understanding vesicle dynamics, with implications for addressing fungal pathogenicity and industrial applications.
Collapse
Affiliation(s)
- Caleb Oliver Bedsole
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Joseph G Vasselli
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA; (Current address) Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Brian D Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
2
|
Schuster M, Kilaru S, Wösten HAB, Steinberg G. Secretion and endocytosis in subapical cells support hyphal tip growth in the fungus Trichoderma reesei. Nat Commun 2025; 16:4402. [PMID: 40355408 PMCID: PMC12069525 DOI: 10.1038/s41467-025-59606-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025] Open
Abstract
Filamentous fungi colonise substrates by invasive growth of multi-cellular hyphae. It is commonly accepted that hyphae expand by tip growth that is restricted to the first apical cell, where turgor pressure, exocytosis and endocytosis cooperate to expand the apex. Here we show that, contrary to expectations, subapical cells play important roles in hyphal growth in the industrial enzyme-producing fungus Trichoderma reesei. We find that the second and third cells are crucial for hyphal extension, which correlates with tip-ward cytoplasmic streaming, and the fourth-to-sixth cells support rapid growth rates. Live cell imaging reveals exocytotic and endocytic activity in both apical and subapical cells, associated with microtubule-based bi-directional transport of secretory vesicles and early endosomes across septa. Moreover, visualisation of 1,3-β-glucan synthase in subapical cells reveals that these compartments deliver cell wall-forming enzymes to the apical growth region. Thus, subapical cells are active in exocytosis and endocytosis, and deliver growth supplies and enzymes to the expanding hyphal apex.
Collapse
Affiliation(s)
- Martin Schuster
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Sreedhar Kilaru
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Han A B Wösten
- Microbiology, Department of Biology, University of Utrecht, Utrecht, The Netherlands
| | - Gero Steinberg
- Department of Biosciences, University of Exeter, Exeter, United Kingdom.
- Microbiology, Department of Biology, University of Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Kriegler M, Herrero S, Fischer R. Where to grow and where to go. Fungal Genet Biol 2025; 178:103983. [PMID: 40187481 DOI: 10.1016/j.fgb.2025.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/21/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Filamentous fungi grow as very elongated tubular cells that extend by membrane extension and cell-wall biosynthesis. Membrane and enzyme delivery depend on secretory vesicles that travel along microtubules, accumulate in a structure called the Spitzenkörper and then move along actin cables towards the apical membrane. Whereas vesicle fusion and membrane insertion are well studied, less is known about the mechanisms with which the zones of vesicle fusion and hence the growth zones are defined. One mechanism by which polarity is established and maintained is the polar localization of cell-end marker proteins (CEMPs). They form multi-protein complexes with formin as F-actin polymerase. CEMP delivery depends on microtubules, and hence CEMPs coordinate the microtubule with the actin cytoskeleton. Actin filaments capture microtubule ends, and this positive feedback loop quickly establishes active growth sites. However, CEMP complexes are self-limiting, because fusing vesicles disturb local growth zones and Ca2+ influx pulses lead to F-actin disassembly. This model emerged from studies in Schizosaccharomyces pombe and Aspergillus nidulans. Surprisingly, deletion of CEMP-coding genes is not lethal. S. pombe mutants form T-shaped cells and A. nidulans germlings grow less straight. In comparison, CEMP-mutants had a strong phenotype in Arthrobotrys flagrans, a nematode-trapping fungus, which produces ring-like trapping structures. CEMP-mutants fail to form adhesive rings and instead form sticks. CEMP overexpression caused a hyperbranching phenotype. Hence, CEMPs are involved in polarity maintenance and play critical roles during modulations of polarity. Here, we are going to discuss the functions of CEMPs and their connections to other polarity determinants.
Collapse
Affiliation(s)
- Marius Kriegler
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Satur Herrero
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany.
| |
Collapse
|
4
|
Lin L, Wu Q, Wang S, Gong Q, Huang X, Abubakar YS, Liu Y, Cao J, Hu J, Wang Z, Lu G, Zheng W. Recycling of Trans-Golgi SNAREs Promotes Apoplastic Effector Secretion for Effective Host Invasion in Magnaporthe oryzae. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40302198 DOI: 10.1111/pce.15582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/03/2025] [Accepted: 04/17/2025] [Indexed: 05/01/2025]
Abstract
Vesicle transport is crucial for pathogenic fungi, but the mechanisms that control the secretion of effector proteins are not yet fully understood. Here, we have uncovered a novel pathway in which retromer and trans-Golgi (TGN) SNARE proteins co-regulate the proper secretion of apoplastic effectors in Magnaporthe oryzae. It was found that a TGN-associated SNARE complex, consisting of MoSnc1, MoTlg1, MoTlg2 and MoVti1, is critical for growth, development and pathogenicity in the fungus. In addition, the TGN-associated SNARE complex is indispensable for the proper secretion of apoplastic effectors. Furthermore, we found that the dynamin-like protein MoVps1, an upstream regulator of the retromer complex, regulates the fission of MoVps35-coated vesicles and the proper localisation of the TGN-associated SNARE complex. Additionally, treatment with perphenazine, a potent dynamin inhibitor, perturbs the fungal developmental similar to MoVPS1 disruption, highlighting the central regulatory role of dynamin in M. oryzae and suggesting the potential efficacy the control and management of the rice blast. Taken together, the study uncovered a specific mechanism by which MoVps1 and the retromer complex co-regulate the positioning of TGN-associated SNARE proteins to effectively promote effector secretion. This study widens our horizon on the mechanism of effector secretion in phytopathogenic fungi and underscores the importance of vesicle transport in fungal pathogenesis.
Collapse
Affiliation(s)
- Lili Lin
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiuqiu Wu
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuang Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Gong
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiuwei Huang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Yue Liu
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaying Cao
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiexiong Hu
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Guodong Lu
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhui Zheng
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
Long Y, Chen X, Chen J, Zhang H, Lin Y, Cheng S, Pu N, Zhou X, Sheng R, Abubakar YS, Zheng H, Yun Y, Lu G, Wang Z, Zheng W. Golgi-associated retrograde protein (GARP) complex recruits retromer to trans-Golgi network for FgKex2 and FgSnc1 recycling, necessary for the development and pathogenicity of Fusarium graminearum. THE NEW PHYTOLOGIST 2025; 246:666-688. [PMID: 39953835 DOI: 10.1111/nph.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 01/21/2025] [Indexed: 02/17/2025]
Abstract
In eukaryotes, the retromer complex plays a crucial role in the sorting and retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN). Despite its importance, the molecular details of this intracellular transport process remain unclear. Here, we have identified a Golgi-associated retrograde protein (GARP) complex as a mediator of vesicle transport that facilitates the recruitment of the retromer complex to the TGN to exert its functions. The GARP complex is mainly localized in the TGN where it interacts with the retromer complex. This interaction is evolutionarily conserved across species. Furthermore, we identified FgKex2 and FgSnc1 as cargo proteins in the GARP/retromer-mediated recycling pathway. Loss of GARP or retromer results in a complete missorting of FgKex2 and FgSnc1 into the vacuolar degradation pathway, which affects the growth, development, biogenesis of toxisomes and pathogenicity of Fusarium graminearum. In summary, we demonstrate for the first time that GARP promotes the recruitment of retromer from endosomes to the TGN, thereby establishing a GARP/retromer transport pathway that coordinates the recycling of cargo proteins FgKex2 and FgSnc1. This process is essential for maintaining sustained growth and development and significantly contributes to the pathogenicity of F. graminearum.
Collapse
Affiliation(s)
- Yunfei Long
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Xin Chen
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Jia Chen
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Haoran Zhang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Ying Lin
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Shuyuan Cheng
- Jiangxi Agricultural University, College of Agriculture, Nanchang, Jiangxi, 330000, China
| | - Neng Pu
- Agricultural and Rural Comprehensive Service Center, Shuitang Town, Xinping County, Yunnan, 653400, China
| | - Xuandong Zhou
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Renzhi Sheng
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, 810281, Nigeria
| | - Huawei Zheng
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Yingzi Yun
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Guodong Lu
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Zonghua Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Wenhui Zheng
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| |
Collapse
|
6
|
Zhang S, Luo J, Chen Y, Li H. Vesicle trafficking mediated by small GTPase CfRab6 in association with CfRic1 and CfRgp1 governs growth, conidiation, and pathogenicity of Colletotrichum fructicola. Int J Biol Macromol 2025; 289:138988. [PMID: 39706448 DOI: 10.1016/j.ijbiomac.2024.138988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Small GTPase of the Rab family functions as molecular switch in vesicle trafficking, regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). In our ongoing efforts to study the pathogenesis of Colletotrichum fructicola, the causal agent of anthracnose in edible-oil plant Camellia oleifera, we identified CfRab6 as the Rab GTPase and characterized its roles in C. fructicola. Consistent with our hypothesis, targeted gene deletion revealed that the ΔCfrab6 mutant displays defects in vesicle trafficking, including endocytosis and autophagy. These combined effects led to the impairments in growth, conidia, and pathogenicity. Moreover, we demonstrated the critical importance of the GDP/GTP motifs are crucial for the normal function of CfRab6. Additionally, our findings demonstrated that CfRic1 and CfRgp1 act as conserved GEFs for CfRab6, supported by their interactions with CfRab6 and the partial restoration of the active GTP-bound CfRab6, which alleviated phenotypic defects in the ΔCfric1 and ΔCfrgp1 mutants. In conclusion, our study sheds new light on the significance of CfRab6-mediated vesicle trafficking in the physiology and pathogenicity of C. fructicola, which might offer new potential targets for the management of anthracnose disease.
Collapse
Affiliation(s)
- Shengpei Zhang
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Changsha 410004, China; Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha 410004, China
| | - Jing Luo
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Changsha 410004, China; Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha 410004, China
| | - Yan Chen
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Changsha 410004, China; Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha 410004, China
| | - He Li
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Changsha 410004, China; Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha 410004, China.
| |
Collapse
|
7
|
González-Téllez SV, Riquelme M. CSE-8, a filamentous fungus-specific Shr3-like chaperone, facilitates endoplasmic reticulum exit of chitin synthase CHS-3 (class I) in Neurospora crassa. FRONTIERS IN FUNGAL BIOLOGY 2025; 5:1505388. [PMID: 39926406 PMCID: PMC11803449 DOI: 10.3389/ffunb.2024.1505388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/18/2024] [Indexed: 02/11/2025]
Abstract
Chitin is a crucial structural polysaccharide in fungal cell walls, essential for maintaining cellular plasticity and integrity. Its synthesis is orchestrated by chitin synthases (CHS), a major family of transmembrane proteins. In Saccharomyces cerevisiae, the cargo receptor Chs7, belonging to the Shr3-like chaperone family, plays a pivotal role in the exit of Chs3 from the endoplasmic reticulum (ER) and its subsequent activity in the plasma membrane (PM). However, the auxiliary machinery responsible for CHS trafficking in filamentous fungi remains poorly understood. The Neurospora crassa genome encodes two orthologues of Chs7: chitin synthase export (CSE) proteins CSE-7 (NCU05720) and CSE-8 (NCU01814), both of which are highly conserved among filamentous fungi. In contrast, yeast forms only possess a single copy CHS export receptor. Previous research highlighted the crucial role of CSE-7 in the localization of CHS-4 at sites of cell wall synthesis, including the Spitzenkörper (SPK) and septa. In this study, CSE-8 was identified as an export protein for CHS-3 (class I). In the Δcse-8 knockout strain of N. crassa, CHS-3-GFP fluorescence was absent from the SPK or septa, indicating that CSE-8 is required for the exit of CHS-3 from the ER. Additionally, sexual development was disrupted in the Δcse-8 strain, with 20% of perithecia from homozygous crosses exhibiting two ostioles. A Δcse-7;Δcse-8 double mutant strain showed reduced N-acetylglucosamine (GlcNAc) content and decreased radial growth. Furthermore, the loss of cell polarity and the changes in subcellular distribution of CSE-8-GFP and CHS-3-GFP observed in hyphae under ER stress induced by the addition of tunicamycin and dithiothreitol reinforce the hypothesis that CSE-8 functions as an ER protein. The current evidence suggests that the biogenesis of CHS exclusive to filamentous fungi may involve pathways independent of CSE-mediated receptors.
Collapse
Affiliation(s)
| | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Mexico
| |
Collapse
|
8
|
Sagia GM, Georgiou X, Chamilos G, Diallinas G, Dimou S. Distinct trafficking routes of polarized and non-polarized membrane cargoes in Aspergillus nidulans. eLife 2024; 13:e103355. [PMID: 39431919 DOI: 10.7554/elife.103355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024] Open
Abstract
Membrane proteins are sorted to the plasma membrane via Golgi-dependent trafficking. However, our recent studies challenged the essentiality of Golgi in the biogenesis of specific transporters. Here, we investigate the trafficking mechanisms of membrane proteins by following the localization of the polarized R-SNARE SynA versus the non-polarized transporter UapA, synchronously co-expressed in wild-type or isogenic genetic backgrounds repressible for conventional cargo secretion. In wild-type, the two cargoes dynamically label distinct secretory compartments, highlighted by the finding that, unlike SynA, UapA does not colocalize with the late-Golgi. In line with early partitioning into distinct secretory carriers, the two cargoes collapse in distinct ER-Exit Sites (ERES) in a sec31ts background. Trafficking via distinct cargo-specific carriers is further supported by showing that repression of proteins essential for conventional cargo secretion does not affect UapA trafficking, while blocking SynA secretion. Overall, this work establishes the existence of distinct, cargo-dependent, trafficking mechanisms, initiating at ERES and being differentially dependent on Golgi and SNARE interactions.
Collapse
Affiliation(s)
- Georgia Maria Sagia
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
| | - Xenia Georgiou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
| | - Georgios Chamilos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
- School of Medicine, University of Crete, Heraklion, Greece
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
| | - Sofia Dimou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
| |
Collapse
|
9
|
Fong JL, Ong Eng Yong V, Yeo C, Adamson C, Li L, Zhang D, Qiao Y. Biochemical Characterization of Recombinant Enterococcus faecalis EntV Peptide to Elucidate Its Antihyphal and Antifungal Mechanisms against Candida albicans. ACS Infect Dis 2024; 10:3408-3418. [PMID: 39137394 DOI: 10.1021/acsinfecdis.4c00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Candida albicans is a common opportunistic fungus in humans, whose morphological switch between yeast and hyphae forms represents a key virulence trait. Developing strategies to inhibit C. albicans hyphal growth may provide insights into designs of novel antivirulent therapeutics. Importantly, the gut commensal bacterium, Enterococcus faecalis, secretes a bacteriocin EntV which has potent antivirulent and antifungal effects against C. albicans in infection models; however, hampered by the challenges to access large quantities of bioactive EntV, the detailed understanding of its mechanisms on C. albicans has remained elusive. In this work, we biochemically reconstituted the proteolytic cleavage reaction to obtain recombinant EntV88-His6 on a large preparative scale, providing facile access to the C-terminal EntV construct. Under in vitro C. albicans hyphal assay with specific inducers, we demonstrated that EntV88-His6 exhibits potent bioactivity against GlcNAc-triggered hyphal growth. Moreover, with fluorescent FITC-EntV88-His6, we revealed that EntV88-His6 enters C. albicans via endocytosis and perturbs the proper localization of the polarisome scaffolding Spa2 protein. Our findings provide important clues on EntV's mechanism of action. Surprisingly, we showed that EntV88-His6 does not affect C. albicans yeast cell growth but potently exerts cytotoxicity against C. albicans under hyphal-inducing conditions in vitro. The combination of EntV88-His6 and GlcNAc displays rapid killing of C. albicans, rendering it a promising antivirulent and antifungal agent.
Collapse
Affiliation(s)
- Jia Li Fong
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), 21 Nanyang Link, Singapore 637371, Singapore
| | - Victor Ong Eng Yong
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore
| | - Claresta Yeo
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), 21 Nanyang Link, Singapore 637371, Singapore
| | - Christopher Adamson
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), 21 Nanyang Link, Singapore 637371, Singapore
| | - Lanxin Li
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), 21 Nanyang Link, Singapore 637371, Singapore
| | - Dan Zhang
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
10
|
Velle KB, Swafford AJM, Garner E, Fritz-Laylin LK. Actin network evolution as a key driver of eukaryotic diversification. J Cell Sci 2024; 137:jcs261660. [PMID: 39120594 PMCID: PMC12050087 DOI: 10.1242/jcs.261660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Eukaryotic cells have been evolving for billions of years, giving rise to wildly diverse cell forms and functions. Despite their variability, all eukaryotic cells share key hallmarks, including membrane-bound organelles, heavily regulated cytoskeletal networks and complex signaling cascades. Because the actin cytoskeleton interfaces with each of these features, understanding how it evolved and diversified across eukaryotic phyla is essential to understanding the evolution and diversification of eukaryotic cells themselves. Here, we discuss what we know about the origin and diversity of actin networks in terms of their compositions, structures and regulation, and how actin evolution contributes to the diversity of eukaryotic form and function.
Collapse
Affiliation(s)
- Katrina B. Velle
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | | | - Ethan Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
11
|
Kourkoulou A, Martzoukou O, Fischer R, Amillis S. A type II phosphatidylinositol-4-kinase coordinates sorting of cargo polarizing by endocytic recycling. Commun Biol 2024; 7:855. [PMID: 38997419 PMCID: PMC11245547 DOI: 10.1038/s42003-024-06553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Depending on their phosphorylation status, derivatives of phosphatidylinositol play important roles in vesicle identity, recognition and intracellular trafficking processes. In eukaryotic cells, phosphatidylinositol-4 phosphate pools generated by specific kinases are key determinants of the conventional secretion pathways. Earlier work in yeast has classified phosphatidylinositol-4 kinases in two types, Stt4p and Pik1p belonging to type III and Lsb6p to type II, with distinct cellular localizations and functions. Eurotiomycetes appear to lack Pik1p homologues. In Aspergillus nidulans, unlike homologues in other fungi, AnLsb6 is associated to late Golgi membranes and when heterologously overexpressed, it compensates for the thermosensitive phenotype in a Saccharomyces cerevisiae pik1 mutant, whereas its depletion leads to disorganization of Golgi-associated PHOSBP-labelled membranes, that tend to aggregate dependent on functional Rab5 GTPases. Evidence provided herein, indicates that the single type II phosphatidylinositol-4 kinase AnLsb6 is the main contributor for decorating secretory vesicles with relevant phosphatidylinositol-phosphate species, which navigate essential cargoes following the route of apical polarization via endocytic recycling.
Collapse
Affiliation(s)
- Anezia Kourkoulou
- National and Kapodistrian University of Athens, Department of Biology, Athens, Hellas, Greece
| | - Olga Martzoukou
- National and Kapodistrian University of Athens, Department of Biology, Athens, Hellas, Greece
| | - Reinhard Fischer
- Karlsruhe Institute of Technology - South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
| | - Sotiris Amillis
- National and Kapodistrian University of Athens, Department of Biology, Athens, Hellas, Greece.
- Karlsruhe Institute of Technology - South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany.
| |
Collapse
|
12
|
Dai M, Liu X, Goldman GH, Lu L, Zhang S. The EH domain-containing protein, EdeA, is involved in endocytosis, cell wall integrity, and pathogenicity in Aspergillus fumigatus. mSphere 2024; 9:e0005724. [PMID: 38687129 PMCID: PMC11237632 DOI: 10.1128/msphere.00057-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
Endocytosis has been extensively studied in yeasts, where it plays crucial roles in growth, signaling regulation, and cell-surface receptor internalization. However, the biological functions of endocytosis in pathogenic filamentous fungi remain largely unexplored. In this study, we aimed to functionally characterize the roles of EdeA, an ortholog of the Saccharomyces cerevisiae endocytic protein Ede1, in Aspergillus fumigatus. EdeA was observed to be distributed as patches on the plasma membrane and concentrated in the subapical collar of hyphae, a localization characteristic of endocytic proteins. Loss of edeA caused defective hyphal polarity, reduced conidial production, and fewer sites of endocytosis initiations than that of the parental wild type. Notably, the edeA null mutant exhibited increased sensitivity to cell wall-disrupting agents, indicating a role for EdeA in maintaining cell wall integrity in A. fumigatus. This observation was further supported by the evidence showing that the thickness of the cell wall in the ΔedeA mutant increased, accompanied by abnormal activation of MpkA, a key component in the cell wall integrity pathway. Additionally, the ΔedeA mutant displayed increased pathogenicity in the Galleria mellonella wax moth infection model, possibly due to alterations in cell wall morphology. Site-directed mutagenesis identified the conserved residue E348 within the third EH (Eps15 homology) domain of EdeA as crucial for its subcellular localization and functions. In conclusion, our results highlight the involvement of EdeA in endocytosis, hyphal polarity, cell wall integrity, and pathogenicity in A. fumigatus. IMPORTANCE Aspergillus fumigatus is a significant human pathogenic fungus known to cause invasive aspergillosis, a disease with a high mortality rate. Understanding the basic principles of A. fumigatus pathogenicity is crucial for developing effective strategies against this pathogen. Previous research has underscored the importance of endocytosis in the infection capacity of pathogenic yeasts; however, its biological function in pathogenic mold remains largely unexplored. Our characterization of EdeA in A. fumigatus sheds light on the role of endocytosis in the development, stress response, and pathogenicity of pathogenic molds. These findings suggest that the components of the endocytosis process may serve as potential targets for antifungal therapy.
Collapse
Affiliation(s)
- Mengyao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xintian Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shizhu Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
13
|
Hill TW, Vance S, Loome JF, Haugen BJ, Loprete DM, Stoddard SV, Jackson-Hayes L. A member of the OSCA/TMEM63 family of mechanosensitive calcium channels participates in cell wall integrity maintenance in Aspergillus nidulans. Fungal Genet Biol 2023; 169:103842. [PMID: 37805121 DOI: 10.1016/j.fgb.2023.103842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/09/2023]
Abstract
The calF7 mutation in Aspergillus nidulans causes hypersensitivity to the cell wall compromising agents Calcofluor White (CFW) and Congo Red. In this research we demonstrate that the calF7 mutation resides in gene AN2880, encoding a predicted member of the OSCA/TMEM63 family of transmembrane glycoproteins. Those members of the family whose physiological functions have been investigated have been shown to act as mechanosensitive calcium transport channels. Deletion of AN2880 replicates the CFW hypersensitivity phenotype. Separately, we show that CFW hypersensitivity of calF deletion strains can be overcome by inclusion of elevated levels of extracellular calcium ions in the growth medium, and, correspondingly, wild type strains grown in media deficient in calcium ions are no longer resistant to CFW. These observations support a model in which accommodation to at least some forms of cell wall stress is mediated by a calcium ion signaling system in which the AN2880 gene product plays a role. The genetic lesion in calF7 is predicted to result in a glycine-to-arginine substitution at position 638 of the 945-residue CalF protein in a region of the RSN1_7TM domain that is highly conserved amongst filamentous fungi. Homology modeling predicts that the consequence of a G638R substitution is to structurally occlude the principal conductance pore in the protein. GFP-tagged wild type CalF localizes principally to the Spitzenkörper and the plasma membrane at growing tips and forming septa. However, both septation and hyphal morphology appear to be normal in calF7 and AN2880 deletion strains, indicating that any role played by CalF in normal hyphal growth and cytokinesis is dispensable.
Collapse
Affiliation(s)
- Terry W Hill
- Department of Biology, Rhodes College, Memphis, TN 38112, USA; Biochemistry and Molecular Biology Program, Rhodes College, Memphis, TN 38112, USA.
| | - Stanley Vance
- Department of Chemistry, Rhodes College, Memphis, TN 38112, USA
| | - Jennifer F Loome
- Biochemistry and Molecular Biology Program, Rhodes College, Memphis, TN 38112, USA
| | - Benard J Haugen
- Biochemistry and Molecular Biology Program, Rhodes College, Memphis, TN 38112, USA
| | - Darlene M Loprete
- Biochemistry and Molecular Biology Program, Rhodes College, Memphis, TN 38112, USA; Department of Chemistry, Rhodes College, Memphis, TN 38112, USA
| | - Shana V Stoddard
- Biochemistry and Molecular Biology Program, Rhodes College, Memphis, TN 38112, USA; Department of Chemistry, Rhodes College, Memphis, TN 38112, USA
| | - Loretta Jackson-Hayes
- Biochemistry and Molecular Biology Program, Rhodes College, Memphis, TN 38112, USA; Department of Chemistry, Rhodes College, Memphis, TN 38112, USA
| |
Collapse
|
14
|
Wernet V, Kriegler M, Kumpost V, Mikut R, Hilbert L, Fischer R. Synchronization of oscillatory growth prepares fungal hyphae for fusion. eLife 2023; 12:e83310. [PMID: 37602797 PMCID: PMC10522335 DOI: 10.7554/elife.83310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 08/19/2023] [Indexed: 08/22/2023] Open
Abstract
Communication is crucial for organismic interactions, from bacteria, to fungi, to humans. Humans may use the visual sense to monitor the environment before starting acoustic interactions. In comparison, fungi, lacking a visual system, rely on a cell-to-cell dialogue based on secreted signaling molecules to coordinate cell fusion and establish hyphal networks. Within this dialogue, hyphae alternate between sending and receiving signals. This pattern can be visualized via the putative signaling protein Soft (SofT), and the mitogen-activated protein kinase MAK-2 (MakB) which are recruited in an alternating oscillatory manner to the respective cytoplasmic membrane or nuclei of interacting hyphae. Here, we show that signal oscillations already occur in single hyphae of Arthrobotrys flagrans in the absence of potential fusion partners (cell monologue). They were in the same phase as growth oscillations. In contrast to the anti-phasic oscillations observed during the cell dialogue, SofT and MakB displayed synchronized oscillations in phase during the monologue. Once two fusion partners came into each other's vicinity, their oscillation frequencies slowed down (entrainment phase) and transit into anti-phasic synchronization of the two cells' oscillations with frequencies of 104±28 s and 117±19 s, respectively. Single-cell oscillations, transient entrainment, and anti-phasic oscillations were reproduced by a mathematical model where nearby hyphae can absorb and secrete a limited molecular signaling component into a shared extracellular space. We show that intracellular Ca2+ concentrations oscillate in two approaching hyphae, and depletion of Ca2+ from the medium affected vesicle-driven extension of the hyphal tip, abolished the cell monologue and the anti-phasic synchronization of two hyphae. Our results suggest that single hyphae engage in a 'monologue' that may be used for exploration of the environment and can dynamically shift their extracellular signaling systems into a 'dialogue' to initiate hyphal fusion.
Collapse
Affiliation(s)
- Valentin Wernet
- Karlsruhe Institute of Technology - South Campus Institute for Applied Biosciences Dept. of MicrobiologyKarlsruheGermany
| | - Marius Kriegler
- Karlsruhe Institute of Technology - South Campus Institute for Applied Biosciences Dept. of MicrobiologyKarlsruheGermany
| | - Vojtech Kumpost
- Karlsruhe Institute of Technology – North Campus Institute for Automation and Applied InformaticsEggenstein-LeopoldshafenGermany
- Karlsruhe Institute of Technology – North Campus Institute of Biological and Chemical Systems – Biological Information ProcessingEggenstein-LeopoldshafenGermany
| | - Ralf Mikut
- Karlsruhe Institute of Technology – North Campus Institute for Automation and Applied InformaticsEggenstein-LeopoldshafenGermany
| | - Lennart Hilbert
- Karlsruhe Institute of Technology – North Campus Institute of Biological and Chemical Systems – Biological Information ProcessingEggenstein-LeopoldshafenGermany
- Karlsruhe Institute of Technology – South Campus Zoological Institute Dept. of Systems Biology / BioinformaticsEggenstein-LeopoldshafenGermany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology - South Campus Institute for Applied Biosciences Dept. of MicrobiologyKarlsruheGermany
| |
Collapse
|
15
|
Vasselli JG, Kainer E, Shaw BD. Using fimbrin to quantify the endocytic subapical collar during polarized growth in three filamentous fungi. Mycologia 2023:1-14. [PMID: 37196171 DOI: 10.1080/00275514.2023.2202689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/09/2023] [Indexed: 05/19/2023]
Abstract
Filamentous fungi produce specialized cells called hyphae. These cells grow by polarized extension at their apex, which is maintained by the balance of endocytosis and exocytosis at the apex. Although endocytosis has been well characterized in other organisms, the details of endocytosis and its role in maintaining polarity during hyphal growth in filamentous fungi is comparatively sparsely studied. In recent years, a concentrated region of protein activity that trails the growing apex of hyphal cells has been discovered. This region, dubbed the "endocytic collar" (EC), is a dynamic 3-dimensional region of concentrated endocytic activity, the disruption of which results in the loss of hyphal polarity. Here, fluorescent protein-tagged fimbrin was used as a marker to map the collar during growth of hyphae in three fungi: Aspergillus nidulans, Colletotrichum graminicola, and Neurospora crassa. Advanced microscopy techniques and novel quantification strategies were then utilized to quantify the spatiotemporal localization and recovery rates of fimbrin in the EC during hyphal growth. Correlating these variables with hyphal growth rate revealed that the strongest observed relationship with hyphal growth is the distance by which the EC trails the apex, and that measured endocytic rate does not correlate strongly with hyphal growth rate. This supports the hypothesis that endocytic influence on hyphal growth rate is better explained by spatiotemporal regulation of the EC than by the raw rate of endocytosis.
Collapse
Affiliation(s)
- Joseph G Vasselli
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Ellen Kainer
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Brian D Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
16
|
Jin J, Iwama R, Horiuchi H. The N-terminal disordered region of ChsB regulates its efficient transport to the hyphal apical surface in Aspergillus nidulans. Curr Genet 2023; 69:175-188. [PMID: 37071151 PMCID: PMC10163080 DOI: 10.1007/s00294-023-01267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023]
Abstract
In fungi, the cell wall plays a crucial role in morphogenesis and response to stress from the external environment. Chitin is one of the main cell wall components in many filamentous fungi. In Aspergillus nidulans, a class III chitin synthase ChsB plays a pivotal role in hyphal extension and morphogenesis. However, little is known about post-translational modifications of ChsB and their functional impacts. In this study, we showed that ChsB is phosphorylated in vivo. We characterized strains that produce ChsB using stepwise truncations of its N-terminal disordered region or deletions of some residues in that region and demonstrated its involvement in ChsB abundance on the hyphal apical surface and in hyphal tip localization. Furthermore, we showed that some deletions in this region affected the phosphorylation states of ChsB, raising the possibility that these states are important for the localization of ChsB to the hyphal surface and the growth of A. nidulans. Our findings indicate that ChsB transport is regulated by its N-terminal disordered region.
Collapse
Affiliation(s)
- Jingyun Jin
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, 261325, China
| | - Ryo Iwama
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
17
|
Cell wall dynamics stabilize tip growth in a filamentous fungus. PLoS Biol 2023; 21:e3001981. [PMID: 36649360 PMCID: PMC9882835 DOI: 10.1371/journal.pbio.3001981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/27/2023] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Hyphal tip growth allows filamentous fungi to colonize space, reproduce, or infect. It features remarkable morphogenetic plasticity including unusually fast elongation rates, tip turning, branching, or bulging. These shape changes are all driven from the expansion of a protective cell wall (CW) secreted from apical pools of exocytic vesicles. How CW secretion, remodeling, and deformation are modulated in concert to support rapid tip growth and morphogenesis while ensuring surface integrity remains poorly understood. We implemented subresolution imaging to map the dynamics of CW thickness and secretory vesicles in Aspergillus nidulans. We found that tip growth is associated with balanced rates of CW secretion and expansion, which limit temporal fluctuations in CW thickness, elongation speed, and vesicle amount, to less than 10% to 20%. Affecting this balance through modulations of growth or trafficking yield to near-immediate changes in CW thickness, mechanics, and shape. We developed a model with mechanical feedback that accounts for steady states of hyphal growth as well as rapid adaptation of CW mechanics and vesicle recruitment to different perturbations. These data provide unprecedented details on how CW dynamics emerges from material secretion and expansion, to stabilize fungal tip growth as well as promote its morphogenetic plasticity.
Collapse
|
18
|
Brauer VS, Pessoni AM, Freitas MS, Cavalcanti-Neto MP, Ries LNA, Almeida F. Chitin Biosynthesis in Aspergillus Species. J Fungi (Basel) 2023; 9:jof9010089. [PMID: 36675910 PMCID: PMC9865612 DOI: 10.3390/jof9010089] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 01/11/2023] Open
Abstract
The fungal cell wall (FCW) is a dynamic structure responsible for the maintenance of cellular homeostasis, and is essential for modulating the interaction of the fungus with its environment. It is composed of proteins, lipids, pigments and polysaccharides, including chitin. Chitin synthesis is catalyzed by chitin synthases (CS), and up to eight CS-encoding genes can be found in Aspergillus species. This review discusses in detail the chitin synthesis and regulation in Aspergillus species, and how manipulation of chitin synthesis pathways can modulate fungal growth, enzyme production, virulence and susceptibility to antifungal agents. More specifically, the metabolic steps involved in chitin biosynthesis are described with an emphasis on how the initiation of chitin biosynthesis remains unknown. A description of the classification, localization and transport of CS was also made. Chitin biosynthesis is shown to underlie a complex regulatory network, with extensive cross-talks existing between the different signaling pathways. Furthermore, pathways and recently identified regulators of chitin biosynthesis during the caspofungin paradoxical effect (CPE) are described. The effect of a chitin on the mammalian immune system is also discussed. Lastly, interference with chitin biosynthesis may also be beneficial for biotechnological applications. Even after more than 30 years of research, chitin biosynthesis remains a topic of current interest in mycology.
Collapse
Affiliation(s)
- Veronica S. Brauer
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
| | - André M. Pessoni
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
| | - Mateus S. Freitas
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
| | - Marinaldo P. Cavalcanti-Neto
- Integrated Laboratory of Morphofunctional Sciences, Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Rio de Janeiro 27965-045, Brazil
| | - Laure N. A. Ries
- MRC Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, UK
- Correspondence: (L.N.A.R.); (F.A.)
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
- Correspondence: (L.N.A.R.); (F.A.)
| |
Collapse
|
19
|
Basante-Bedoya MA, Bogliolo S, Garcia-Rodas R, Zaragoza O, Arkowitz RA, Bassilana M. Two distinct lipid transporters together regulate invasive filamentous growth in the human fungal pathogen Candida albicans. PLoS Genet 2022; 18:e1010549. [PMID: 36516161 PMCID: PMC9797089 DOI: 10.1371/journal.pgen.1010549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/28/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Flippases transport lipids across the membrane bilayer to generate and maintain asymmetry. The human fungal pathogen Candida albicans has 5 flippases, including Drs2, which is critical for filamentous growth and phosphatidylserine (PS) distribution. Furthermore, a drs2 deletion mutant is hypersensitive to the antifungal drug fluconazole and copper ions. We show here that such a flippase mutant also has an altered distribution of phosphatidylinositol 4-phosphate [PI(4)P] and ergosterol. Analyses of additional lipid transporters, i.e. the flippases Dnf1-3, and all the oxysterol binding protein (Osh) family lipid transfer proteins, i.e. Osh2-4 and Osh7, indicate that they are not critical for filamentous growth. However, deletion of Osh4 alone, which exchanges PI(4)P for sterol, in a drs2 mutant can bypass the requirement for this flippase in invasive filamentous growth. In addition, deletion of the lipid phosphatase Sac1, which dephosphorylates PI(4)P, in a drs2 mutant results in a synthetic growth defect, suggesting that Drs2 and Sac1 function in parallel pathways. Together, our results indicate that a balance between the activities of two putative lipid transporters regulates invasive filamentous growth, via PI(4)P. In contrast, deletion of OSH4 in drs2 does not restore growth on fluconazole, nor on papuamide A, a toxin that binds PS in the outer leaflet of the plasma membrane, suggesting that Drs2 has additional role(s) in plasma membrane organization, independent of Osh4. As we show that C. albicans Drs2 localizes to different structures, including the Spitzenkörper, we investigated if a specific localization of Drs2 is critical for different functions, using a synthetic physical interaction approach to restrict/stabilize Drs2 at the Spitzenkörper. Our results suggest that the localization of Drs2 at the plasma membrane is critical for C. albicans growth on fluconazole and papuamide A, but not for invasive filamentous growth.
Collapse
Affiliation(s)
| | | | - Rocio Garcia-Rodas
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, FRANCE
- Mycology Reference Laboratory, National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Health Institute Carlos III, Madrid, Spain
| | | | - Martine Bassilana
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, FRANCE
- * E-mail:
| |
Collapse
|
20
|
Sun F, Zhang R, Li T, Zhang L, Chen X, Liang Y, Chen L, Zou S, Dong H. Fusarium graminearum GGA protein is critical for fungal development, virulence and ascospore discharge through its involvement in vesicular trafficking. Environ Microbiol 2022; 24:6290-6306. [PMID: 36335568 DOI: 10.1111/1462-2920.16279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/03/2022] [Indexed: 11/08/2022]
Abstract
Vesicular trafficking is a conserved material transport process in eukaryotic cells. The GGA family proteins are clathrin adaptors that are involved in eukaryotic vesicle transport, but their functions in phytopathogenic filamentous fungi remain unexplored. Here, we examined the only GGA family protein in Fusarium graminearum, FgGga1, which localizes to both the late Golgi and endosomes. In the absence of FgGga1, the fungal mutant exhibited defects in vegetative growth, DON biosynthesis, ascospore discharge and virulence. Fluorescence microscopy analysis revealed that FgGga1 is associated with trans-Golgi network (TGN)-to-plasma membrane, endosome-to-TGN and endosome-to-vacuole transport. Mutational analysis on the five domains of FgGga1 showed that the VHS domain was required for endosome-to-TGN transport while the GAT167-248 and the hinge domains were required for both endosome-to-TGN and endosome-to-vacuole transport. Importantly, the deletion of the FgGga1 domains that are required in vesicular trafficking also inhibited vegetative growth and virulence of F. graminearum. In addition, FgGga1 interacted with the ascospore discharge regulator Ca2+ ATPase FgNeo1, whose transport to the vacuole is dependent on FgGga1-mediated endosome-to-vacuole transport. Our results suggest that FgGga1 is required for fungal development and virulence via FgGga1-mediated vesicular trafficking, and FgGga1-mediated endosome-to-vacuole transport facilitates ascospore discharge in F. graminearum.
Collapse
Affiliation(s)
- Fengjiang Sun
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Ruotong Zhang
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Tiantian Li
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Liyuan Zhang
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Xiaochen Chen
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Yuancun Liang
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Lei Chen
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Shenshen Zou
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Hansong Dong
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
21
|
Chitin Synthesis in Yeast: A Matter of Trafficking. Int J Mol Sci 2022; 23:ijms232012251. [PMID: 36293107 PMCID: PMC9603707 DOI: 10.3390/ijms232012251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023] Open
Abstract
Chitin synthesis has attracted scientific interest for decades as an essential part of fungal biology and for its potential as a target for antifungal therapies. While this interest remains, three decades ago, pioneering molecular studies on chitin synthesis regulation identified the major chitin synthase in yeast, Chs3, as an authentic paradigm in the field of the intracellular trafficking of integral membrane proteins. Over the years, researchers have shown how the intracellular trafficking of Chs3 recapitulates all the steps in the intracellular trafficking of integral membrane proteins, from their synthesis in the endoplasmic reticulum to their degradation in the vacuole. This trafficking includes specific mechanisms for sorting in the trans-Golgi network, regulated endocytosis, and endosomal recycling at different levels. This review summarizes the work carried out on chitin synthesis regulation, mostly focusing on Chs3 as a molecular model to study the mechanisms involved in the control of the intracellular trafficking of proteins.
Collapse
|
22
|
Pinar M, Alonso A, de los Ríos V, Bravo-Plaza I, de la Gandara Á, Galindo A, Arias-Palomo E, Peñalva MÁ. The type V myosin-containing complex HUM is a RAB11 effector powering movement of secretory vesicles. iScience 2022; 25:104514. [PMID: 35754728 PMCID: PMC9213775 DOI: 10.1016/j.isci.2022.104514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 05/26/2022] [Indexed: 01/01/2023] Open
Abstract
In the apex-directed RAB11 exocytic pathway of Aspergillus nidulans, kinesin-1/KinA conveys secretory vesicles (SVs) to the hyphal tip, where they are transferred to the type V myosin MyoE. MyoE concentrates SVs at an apical store located underneath the PM resembling the presynaptic active zone. A rod-shaped RAB11 effector, UDS1, and the intrinsically disordered and coiled-coil HMSV associate with MyoE in a stable HUM (HMSV-UDS1-MyoE) complex recruited by RAB11 to SVs through an interaction network involving RAB11 and HUM components, with the MyoE globular tail domain (GTD) binding both HMSV and RAB11-GTP and RAB11-GTP binding both the MyoE-GTD and UDS1. UDS1 bridges RAB11-GTP to HMSV, an avid interactor of the MyoE-GTD. The interaction between the UDS1-HMSV sub-complex and RAB11-GTP can be reconstituted in vitro. Ablating UDS1 or HMSV impairs actomyosin-mediated transport of SVs to the apex, resulting in spreading of RAB11 SVs across the apical dome as KinA/microtubule-dependent transport gains prominence.
Collapse
Affiliation(s)
- Mario Pinar
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Alonso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Vivian de los Ríos
- Proteomics Facility, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ignacio Bravo-Plaza
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Álvaro de la Gandara
- Department of Chemical and Structural Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Antonio Galindo
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, CB2 0QH Cambridge, UK
| | - Ernesto Arias-Palomo
- Department of Chemical and Structural Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Miguel Á. Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Corresponding author
| |
Collapse
|
23
|
Dimou S, Dionysopoulou M, Sagia GM, Diallinas G. Golgi-Bypass Is a Major Unconventional Route for Translocation to the Plasma Membrane of Non-Apical Membrane Cargoes in Aspergillus nidulans. Front Cell Dev Biol 2022; 10:852028. [PMID: 35465316 PMCID: PMC9021693 DOI: 10.3389/fcell.2022.852028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Nutrient transporters have been shown to translocate to the plasma membrane (PM) of the filamentous fungus Aspergillus nidulans via an unconventional trafficking route that bypasses the Golgi. This finding strongly suggests the existence of distinct COPII vesicle subpopulations, one following Golgi-dependent conventional secretion and the other directed towards the PM. Here, we address whether Golgi-bypass concerns cargoes other than nutrient transporters and whether Golgi-bypass is related to cargo structure, size, abundance, physiological function, or polar vs. non-polar distribution in the PM. To address these questions, we followed the dynamic subcellular localization of two selected membrane cargoes differing in several of the aforementioned aspects. These are the proton-pump ATPase PmaA and the PalI pH signaling component. Our results show that neosynthesized PmaA and PalI are translocated to the PM via Golgi-bypass, similar to nutrient transporters. In addition, we showed that the COPII-dependent exit of PmaA from the ER requires the alternative COPII coat subunit LstA, rather than Sec24, whereas PalI requires the ER cargo adaptor Erv14. These findings strengthen the evidence of distinct cargo-specific COPII subpopulations and extend the concept of Golgi-independent biogenesis to essential transmembrane proteins, other than nutrient transporters. Overall, our findings point to the idea that Golgi-bypass might not constitute a fungal-specific peculiarity, but rather a novel major and cargo-specific sorting route in eukaryotic cells that has been largely ignored.
Collapse
Affiliation(s)
- Sofia Dimou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
| | - Mariangela Dionysopoulou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
| | - Georgia Maria Sagia
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
- *Correspondence: George Diallinas,
| |
Collapse
|
24
|
Faoro F, Faccio A, Balestrini R. Contributions of Ultrastructural Studies to the Knowledge of Filamentous Fungi Biology and Fungi-Plant Interactions. FRONTIERS IN FUNGAL BIOLOGY 2022; 2:805739. [PMID: 37744126 PMCID: PMC10512230 DOI: 10.3389/ffunb.2021.805739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/14/2021] [Indexed: 09/26/2023]
Abstract
Since the first experiments in 1950s, transmission electron microscopy (TEM) observations of filamentous fungi have contributed extensively to understand their structure and to reveal the mechanisms of apical growth. Additionally, also in combination with the use of affinity techniques (such as the gold complexes), several aspects of plant-fungal interactions were elucidated. Nowadays, after the huge of information obtained from -omics techniques, TEM studies and ultrastructural observations offer the possibility to support these data, considering that the full comprehension of the mechanisms at the basis of fungal morphogenesis and the interaction with other organisms is closely related to a detailed knowledge of the structural features. Here, the contribution of these approaches on fungal biology is illustrated, focusing both on hyphae cell ultrastructure and infection structures of pathogenic and mycorrhizal fungi. Moreover, a concise appendix of methods conventionally used for the study of fungal ultrastructure is provided.
Collapse
Affiliation(s)
- Franco Faoro
- Dipartimento di Scienze Agrarie e Ambientali, Università di Milano, Milan, Italy
| | - Antonella Faccio
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Raffaella Balestrini
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| |
Collapse
|
25
|
Mazheika IS, Kamzolkina OV. Does macrovesicular endocytosis occur in fungal hyphae? FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Abstract
In a number of elongated cells, such as fungal hyphae, a vesicle cluster is observed at the growing tip. This cluster, called a Spitzenkörper, has been suggested to act as a vesicle supply center, yet analysis of its function is challenging, as a majority of components identified thus far are essential for growth. Here, we probe the function of the Spitzenkörper in the human fungal pathogen Candida albicans, using genetics and synthetic physical interactions (SPI). We show that the C. albicans Spitzenkörper is comprised principally of secretory vesicles. Mutant strains lacking the Spitzenkörper component myosin light chain 1 (Mlc1) or having a SPI between Mlc1 and either another Spitzenkörper component, the Rab GTPase Sec4, or prenylated green fluorescent protein (GFP), are viable and still exhibit a Spitzenkörper during filamentous growth. Strikingly, all of these mutants formed filaments with increased diameters and extension rates, indicating that Mlc1 negatively regulates myosin V, Myo2, activity. The results of our quantitative studies reveal a strong correlation between filament diameter and extension rate, which is consistent with the vesicle supply center model for fungal tip growth. Together, our results indicate that the Spitzenkörper protein Mlc1 is important for growth robustness and reveal a critical link between filament morphology and extension rate. IMPORTANCE Hyphal tip growth is critical in a range of fungal pathogens, in particular for invasion into animal and plant tissues. In Candida albicans, as in many filamentous fungi, a cluster of vesicles, called a Spitzenkörper, is observed at the tip of growing hyphae that is thought to function as a vesicle supply center. A central prediction of the vesicle supply center model is that the filament diameter is proportional to the extension rate. Here, we show that mutants lacking the Spitzenkörper component myosin light chain 1 (Mlc1) or having synthetic physical interactions between Mlc1 and either another Spitzenkörper component or prenylated GFP, are defective in filamentous growth regulation, exhibiting a range of growth rates and sizes, with a strong correlation between diameter and extension rate. These results suggest that the Spitzenkörper is important for growth robustness and reveal a critical link between filament morphology and extension rate.
Collapse
|
27
|
Jin J, Iwama R, Takagi K, Horiuchi H. AP-2 complex contributes to hyphal-tip-localization of a chitin synthase in the filamentous fungus Aspergillus nidulans. Fungal Biol 2021; 125:806-814. [PMID: 34537176 DOI: 10.1016/j.funbio.2021.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 10/20/2022]
Abstract
Filamentous fungi maintain hyphal growth to continually internalize membrane proteins related to cell wall synthesis, transporting them to the hyphal tips. Endocytosis mediates protein internalization via target recognition by the adaptor protein 2 complex (AP-2 complex). The AP-2 complex specifically promotes the internalization of proteins important for hyphal growth, and loss of AP-2 complex function results in abnormal hyphal growth. In this study, deletion mutants of the genes encoding the subunits of the AP-2 complex (α, β2, μ2, or σ2) in the filamentous fungus Aspergillus nidulans resulted in the formation of conidiophores with abnormal morphology, fewer conidia, and activated the cell wall integrity pathway. We also investigated the localization of ChsB, which plays pivotal roles in hyphal growth in A. nidulans, in the Δμ2 strain. Quantitative analysis suggested that the AP-2 complex is involved in ChsB internalization at subapical collar regions. The absence of the AP-2 complex reduced ChsB localization at the hyphal tips. Our findings suggest that the AP-2 complex contributes to cell wall integrity by properly localizing ChsB to the hyphal tips.
Collapse
Affiliation(s)
- Jingyun Jin
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ryo Iwama
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Keiko Takagi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
28
|
Higuchi Y. Membrane traffic related to endosome dynamics and protein secretion in filamentous fungi. Biosci Biotechnol Biochem 2021; 85:1038-1045. [PMID: 33686391 DOI: 10.1093/bbb/zbab004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022]
Abstract
In eukaryotic cells, membrane-surrounded organelles are orchestrally organized spatiotemporally under environmental situations. Among such organelles, vesicular transports and membrane contacts occur to communicate each other, so-called membrane traffic. Filamentous fungal cells are highly polarized and thus membrane traffic is developed to have versatile functions. Early endosome (EE) is an endocytic organelle that dynamically exhibits constant long-range motility through the hyphal cell, which is proven to have physiological roles, such as other organelle distribution and signal transduction. Since filamentous fungal cells are also considered as cell factories, to produce valuable proteins extracellularly, molecular mechanisms of secretory pathway including protein glycosylation have been well investigated. In this review, molecular and physiological aspects of membrane traffic especially related to EE dynamics and protein secretion in filamentous fungi are summarized, and perspectives for application are also described.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
29
|
Higuchi Y. Membrane Traffic in Aspergillus oryzae and Related Filamentous Fungi. J Fungi (Basel) 2021; 7:jof7070534. [PMID: 34356913 PMCID: PMC8303533 DOI: 10.3390/jof7070534] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
The industrially important filamentous fungus Aspergillus oryzae, known as the yellow Koji mold and also designated the Japanese National fungus, has been investigated for understanding the intracellular membrane trafficking machinery due to the great ability of valuable enzyme production. The underlying molecular mechanisms of the secretory pathway delineate the main secretion route from the hyphal tip via the vesicle cluster Spitzenkörper, but also there is a growing body of evidence that septum-directed and unconventional secretion occurs in A. oryzae hyphal cells. Moreover, not only the secretory pathway but also the endocytic pathway is crucial for protein secretion, especially having a role in apical endocytic recycling. As a hallmark of multicellular filamentous fungal cells, endocytic organelles early endosome and vacuole are quite dynamic: the former exhibits constant long-range motility through the hyphal cells and the latter displays pleiomorphic structures in each hyphal region. These characteristics are thought to have physiological roles, such as supporting protein secretion and transporting nutrients. This review summarizes molecular and physiological mechanisms of membrane traffic, i.e., secretory and endocytic pathways, in A. oryzae and related filamentous fungi and describes the further potential for industrial applications.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
30
|
Duan X, Chen X, Wang K, Chen L, Glomb O, Johnsson N, Feng L, Zhou XQ, Bi E. Essential role of the endocytic site-associated protein Ecm25 in stress-induced cell elongation. Cell Rep 2021; 35:109122. [PMID: 34010635 PMCID: PMC8202958 DOI: 10.1016/j.celrep.2021.109122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 02/16/2021] [Accepted: 04/22/2021] [Indexed: 11/27/2022] Open
Abstract
How cells adopt a different morphology to cope with stress is not well understood. Here, we show that budding yeast Ecm25 associates with polarized endocytic sites and interacts with the polarity regulator Cdc42 and several late-stage endocytic proteins via distinct regions, including an actin filament-binding motif. Deletion of ECM25 does not affect Cdc42 activity or cause any strong defects in fluid-phase and clathrin-mediated endocytosis but completely abolishes hydroxyurea-induced cell elongation. This phenotype is accompanied by depolarization of the spatiotemporally coupled exo-endocytosis in the bud cortex while maintaining the overall mother-bud polarity. These data suggest that Ecm25 provides an essential link between the polarization signal and the endocytic machinery to enable adaptive morphogenesis under stress conditions. How cells adopt a different morphology to cope with stress is not well understood. Duan et al. report that the budding yeast protein Ecm25 plays an essential role in stress-induced cell elongation by linking the polarity regulator Cdc42 to the late-stage endocytic machinery.
Collapse
Affiliation(s)
- Xudong Duan
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xi Chen
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Kangji Wang
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Li Chen
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Oliver Glomb
- Institut für Molekulare Genetik und Zellbiologie, Universität Ulm, 89081 Ulm, Germany
| | - Nils Johnsson
- Institut für Molekulare Genetik und Zellbiologie, Universität Ulm, 89081 Ulm, Germany
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China.
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
31
|
Lingo DE, Shukla N, Osmani AH, Osmani SA. Aspergillus nidulans biofilm formation modifies cellular architecture and enables light-activated autophagy. Mol Biol Cell 2021; 32:1181-1192. [PMID: 33826367 PMCID: PMC8351559 DOI: 10.1091/mbc.e20-11-0734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
After growing on surfaces, including those of medical and industrial importance, fungal biofilms self-generate internal microenvironments. We previously reported that gaseous microenvironments around founder Aspergillus nidulans cells change during biofilm formation causing microtubules to disassemble under control of the hypoxic transcription factor SrbA. Here we investigate if biofilm formation might also promote changes to structures involved in exocytosis and endocytosis. During biofilm formation, the endoplasmic reticulum (ER) remained intact but ER exit sites and the Golgi apparatus were modified as were endocytic actin patches. The biofilm-driven changes required the SrbA hypoxic transcription factor and could be triggered by nitric oxide, further implicating gaseous regulation of biofilm cellular architecture. By tracking green fluorescent protein (GFP)-Atg8 dynamics, biofilm founder cells were also observed to undergo autophagy. Most notably, biofilm cells that had undergone autophagy were triggered into further autophagy by spinning disk confocal light. Our findings indicate that fungal biofilm formation modifies the secretory and endocytic apparatus and show that biofilm cells can also undergo autophagy that is reactivated by light. The findings provide new insights into the changes occurring in fungal biofilm cell biology that potentially impact their unique characteristics, including antifungal drug resistance.
Collapse
Affiliation(s)
- Dale E Lingo
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Nandini Shukla
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
| | - Aysha H Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Stephen A Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
32
|
Pinar M, Peñalva MA. The fungal RABOME: RAB GTPases acting in the endocytic and exocytic pathways of Aspergillus nidulans (with excursions to other filamentous fungi). Mol Microbiol 2021; 116:53-70. [PMID: 33724562 DOI: 10.1111/mmi.14716] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
RAB GTPases are major determinants of membrane identity that have been exploited as highly specific reporters to study intracellular traffic in vivo. A score of fungal papers have considered individual RABs, but systematic, integrated studies on the localization and physiological role of these regulators and their effectors have been performed only with Aspergillus nidulans. These studies have influenced the intracellular trafficking field beyond fungal specialists, leading to findings such as the maturation of trans-Golgi (TGN) cisternae into post-Golgi RAB11 secretory vesicles, the concept that these RAB11 secretory carriers are loaded with three molecular nanomotors, the understanding of the role of endocytic recycling mediated by RAB6 and RAB11 in determining the hyphal mode of life, the discovery that early endosome maturation and the ESCRT pathway are essential, the identification of specific adaptors of dynein-dynactin to RAB5 endosomes, the exquisite dependence that autophagy displays on RAB1 activity, the role of TRAPPII as a GEF for RAB11, or the conclusion that the RAB1-to-RAB11 transition is not mediated by TRAPP maturation. A remarkable finding was that the A. nidulans Spitzenkörper contains four RABs: RAB11, Sec4, RAB6, and RAB1. How these RABs cooperate during exocytosis represents an as yet outstanding question.
Collapse
Affiliation(s)
- Mario Pinar
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| |
Collapse
|
33
|
Endocytosis of nutrient transporters in fungi: The ART of connecting signaling and trafficking. Comput Struct Biotechnol J 2021; 19:1713-1737. [PMID: 33897977 PMCID: PMC8050425 DOI: 10.1016/j.csbj.2021.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/14/2021] [Accepted: 03/14/2021] [Indexed: 12/11/2022] Open
Abstract
Plasma membrane transporters play pivotal roles in the import of nutrients, including sugars, amino acids, nucleobases, carboxylic acids, and metal ions, that surround fungal cells. The selective removal of these transporters by endocytosis is one of the most important regulatory mechanisms that ensures a rapid adaptation of cells to the changing environment (e.g., nutrient fluctuations or different stresses). At the heart of this mechanism lies a network of proteins that includes the arrestin‐related trafficking adaptors (ARTs) which link the ubiquitin ligase Rsp5 to nutrient transporters and endocytic factors. Transporter conformational changes, as well as dynamic interactions between its cytosolic termini/loops and with lipids of the plasma membrane, are also critical during the endocytic process. Here, we review the current knowledge and recent findings on the molecular mechanisms involved in nutrient transporter endocytosis, both in the budding yeast Saccharomyces cerevisiae and in some species of the filamentous fungus Aspergillus. We elaborate on the physiological importance of tightly regulated endocytosis for cellular fitness under dynamic conditions found in nature and highlight how further understanding and engineering of this process is essential to maximize titer, rate and yield (TRY)-values of engineered cell factories in industrial biotechnological processes.
Collapse
Key Words
- AAs, amino acids
- ACT, amino Acid/Choline Transporter
- AP, adaptor protein
- APC, amino acid-polyamine-organocation
- Arg, arginine
- Arrestins
- Arts, arrestin‐related trafficking adaptors
- Asp, aspartic acid
- Aspergilli
- Biotechnology
- C, carbon
- C-terminus, carboxyl-terminus
- Cell factories
- Conformational changes
- Cu, copper
- DUBs, deubiquitinating enzymes
- EMCs, eisosome membrane compartments
- ER, endoplasmic reticulum
- ESCRT, endosomal sorting complex required for transport
- Endocytic signals
- Endocytosis
- Fe, iron
- Fungi
- GAAC, general amino acid control
- Glu, glutamic acid
- H+, proton
- IF, inward-facing
- LAT, L-type Amino acid Transporter
- LID, loop Interaction Domain
- Lys, lysine
- MCCs, membrane compartments containing the arginine permease Can1
- MCCs/eisosomes
- MCPs, membrane compartments of Pma1
- MFS, major facilitator superfamily
- MVB, multi vesicular bodies
- Met, methionine
- Metabolism
- Mn, manganese
- N, nitrogen
- N-terminus, amino-terminus
- NAT, nucleobase Ascorbate Transporter
- NCS1, nucleobase/Cation Symporter 1
- NCS2, nucleobase cation symporter family 2
- NH4+, ammonium
- Nutrient transporters
- OF, outward-facing
- PEST, proline (P), glutamic acid (E), serine (S), and threonine (T)
- PM, plasma membrane
- PVE, prevacuolar endosome
- Saccharomyces cerevisiae
- Signaling pathways
- Structure-function
- TGN, trans-Golgi network
- TMSs, transmembrane segments
- TORC1, target of rapamycin complex 1
- TRY, titer, rate and yield
- Trp, tryptophan
- Tyr, tyrosine
- Ub, ubiquitin
- Ubiquitylation
- VPS, vacuolar protein sorting
- W/V, weight per volume
- YAT, yeast Amino acid Transporter
- Zn, Zinc
- fAATs, fungal AA transporters
Collapse
|
34
|
Deuterium-labeled Raman tracking of glucose accumulation and protein metabolic dynamics in Aspergillus nidulans hyphal tips. Sci Rep 2021; 11:1279. [PMID: 33446770 PMCID: PMC7809412 DOI: 10.1038/s41598-020-80270-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
Filamentous fungi grow exclusively at their tips, where many growth-related fungal processes, such as enzyme secretion and invasion into host cells, take place. Hyphal tips are also a site of active metabolism. Understanding metabolic dynamics within the tip region is therefore important for biotechnology and medicine as well as for microbiology and ecology. However, methods that can track metabolic dynamics with sufficient spatial resolution and in a nondestructive manner are highly limited. Here we present time-lapse Raman imaging using a deuterium (D) tracer to study spatiotemporally varying metabolic activity within the hyphal tip of Aspergillus nidulans. By analyzing the carbon-deuterium (C-D) stretching Raman band with spectral deconvolution, we visualize glucose accumulation along the inner edge of the hyphal tip and synthesis of new proteins from the taken-up D-labeled glucose specifically at the central part of the apical region. Our results show that deuterium-labeled Raman imaging offers a broadly applicable platform for the study of metabolic dynamics in filamentous fungi and other relevant microorganisms in vivo.
Collapse
|
35
|
Xiang X, Qiu R. Cargo-Mediated Activation of Cytoplasmic Dynein in vivo. Front Cell Dev Biol 2020; 8:598952. [PMID: 33195284 PMCID: PMC7649786 DOI: 10.3389/fcell.2020.598952] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Cytoplasmic dynein-1 is a minus-end-directed microtubule motor that transports a variety of cargoes including early endosomes, late endosomes and other organelles. In many cell types, dynein accumulates at the microtubule plus end, where it interacts with its cargo to be moved toward the minus end. Dynein binds to its various cargoes via the dynactin complex and specific cargo adapters. Dynactin and some of the coiled-coil-domain-containing cargo adapters not only link dynein to cargo but also activate dynein motility, which implies that dynein is activated by its cellular cargo. Structural studies indicate that a dynein dimer switches between the autoinhibited phi state and an open state; and the binding of dynactin and a cargo adapter to the dynein tails causes the dynein motor domains to have a parallel configuration, allowing dynein to walk processively along a microtubule. Recently, the dynein regulator LIS1 has been shown to be required for dynein activation in vivo, and its mechanism of action involves preventing dynein from switching back to the autoinhibited state. In this review, we will discuss our current understanding of dynein activation and point out the gaps of knowledge on the spatial regulation of dynein in live cells. In addition, we will emphasize the importance of studying a complete set of dynein regulators for a better understanding of dynein regulation in vivo.
Collapse
Affiliation(s)
- Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, United States
| | | |
Collapse
|
36
|
Peñalva MA, Moscoso‐Romero E, Hernández‐González M. Tracking exocytosis of aGPI‐anchored protein inAspergillus nidulans. Traffic 2020; 21:675-688. [DOI: 10.1111/tra.12761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Miguel A. Peñalva
- Department of Cellular and Molecular Biology Centro de Investigaciones Biológicas CSIC Madrid Spain
| | - Esteban Moscoso‐Romero
- Department of Cellular and Molecular Biology Centro de Investigaciones Biológicas CSIC Madrid Spain
- Morphogenesis and Cell Polarity Unit Instituto de Biología Funcional y Genómica CSIC‐Universidad de Salamanca Salamanca Spain
| | - Miguel Hernández‐González
- Department of Cellular and Molecular Biology Centro de Investigaciones Biológicas CSIC Madrid Spain
- The Francis Crick Institute London UK
| |
Collapse
|
37
|
Dimou S, Diallinas G. Life and Death of Fungal Transporters under the Challenge of Polarity. Int J Mol Sci 2020; 21:ijms21155376. [PMID: 32751072 PMCID: PMC7432044 DOI: 10.3390/ijms21155376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic plasma membrane (PM) transporters face critical challenges that are not widely present in prokaryotes. The two most important issues are proper subcellular traffic and targeting to the PM, and regulated endocytosis in response to physiological, developmental, or stress signals. Sorting of transporters from their site of synthesis, the endoplasmic reticulum (ER), to the PM has been long thought, but not formally shown, to occur via the conventional Golgi-dependent vesicular secretory pathway. Endocytosis of specific eukaryotic transporters has been studied more systematically and shown to involve ubiquitination, internalization, and sorting to early endosomes, followed by turnover in the multivesicular bodies (MVB)/lysosomes/vacuole system. In specific cases, internalized transporters have been shown to recycle back to the PM. However, the mechanisms of transporter forward trafficking and turnover have been overturned recently through systematic work in the model fungus Aspergillus nidulans. In this review, we present evidence that shows that transporter traffic to the PM takes place through Golgi bypass and transporter endocytosis operates via a mechanism that is distinct from that of recycling membrane cargoes essential for fungal growth. We discuss these findings in relation to adaptation to challenges imposed by cell polarity in fungi as well as in other eukaryotes and provide a rationale of why transporters and possibly other housekeeping membrane proteins ‘avoid’ routes of polar trafficking.
Collapse
|
38
|
Athanasopoulos A, André B, Sophianopoulou V, Gournas C. Fungal plasma membrane domains. FEMS Microbiol Rev 2020; 43:642-673. [PMID: 31504467 DOI: 10.1093/femsre/fuz022] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/25/2019] [Indexed: 12/11/2022] Open
Abstract
The plasma membrane (PM) performs a plethora of physiological processes, the coordination of which requires spatial and temporal organization into specialized domains of different sizes, stability, protein/lipid composition and overall architecture. Compartmentalization of the PM has been particularly well studied in the yeast Saccharomyces cerevisiae, where five non-overlapping domains have been described: The Membrane Compartments containing the arginine permease Can1 (MCC), the H+-ATPase Pma1 (MCP), the TORC2 kinase (MCT), the sterol transporters Ltc3/4 (MCL), and the cell wall stress mechanosensor Wsc1 (MCW). Additional cortical foci at the fungal PM are the sites where clathrin-dependent endocytosis occurs, the sites where the external pH sensing complex PAL/Rim localizes, and sterol-rich domains found in apically grown regions of fungal membranes. In this review, we summarize knowledge from several fungal species regarding the organization of the lateral PM segregation. We discuss the mechanisms of formation of these domains, and the mechanisms of partitioning of proteins there. Finally, we discuss the physiological roles of the best-known membrane compartments, including the regulation of membrane and cell wall homeostasis, apical growth of fungal cells and the newly emerging role of MCCs as starvation-protective membrane domains.
Collapse
Affiliation(s)
- Alexandros Athanasopoulos
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| | - Bruno André
- Molecular Physiology of the Cell laboratory, Université Libre de Bruxelles (ULB), Institut de Biologie et de Médecine Moléculaires, rue des Pr Jeener et Brachet 12, 6041, Gosselies, Belgium
| | - Vicky Sophianopoulou
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| | - Christos Gournas
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| |
Collapse
|
39
|
Pinar M, Peñalva MA. En bloc TGN recruitment of Aspergillus TRAPPII reveals TRAPP maturation as unlikely to drive RAB1-to-RAB11 transition. J Cell Sci 2020; 133:jcs241141. [PMID: 32327558 DOI: 10.1242/jcs.241141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/06/2020] [Indexed: 08/31/2023] Open
Abstract
Transport protein particle (TRAPP) complexes regulate membrane traffic. TRAPPII and TRAPPIII share a core hetero-heptamer, also denoted TRAPPI. In fungi TRAPPIII and TRAPPII mediate GDP exchange on RAB1 and RAB11, respectively, regulating traffic across the Golgi, with TRAPPIII also activating RAB1 in autophagosomes. Our finding that Aspergillus nidulans TRAPPII can be assembled by addition of a TRAPPII-specific subcomplex onto core TRAPP prompted us to investigate the possibility that TRAPPI and/or TRAPPIII already residing in the Golgi matures into TRAPPII to determine a RAB1-to-RAB11 conversion as Golgi cisternae progress from early Golgi to TGN identity. By time-resolved microscopy, we determine that the TRAPPII reporter Trs120 (the homolog of metazoan TRAPPC9) is recruited to existing trans-Golgi network (TGN) cisternae slightly before RAB11 arrives, and resides for ∼45 s on them before cisternae tear off into RAB11 secretory carriers. Notably, the core TRAPP reporter Bet3 (the homolog of metazoan TRAPPC3) was not detectable in early Golgi cisternae, being instead recruited to TGN cisternae simultaneously with Trs120, indicating en bloc recruitment of TRAPPII to the Golgi and arguing strongly against the TRAPP maturation model.
Collapse
Affiliation(s)
- Mario Pinar
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
40
|
Bieger BD, Rogers AM, Bates S, Egan MJ. Long-distance early endosome motility in Aspergillus fumigatus promotes normal hyphal growth behaviors in controlled microenvironments but is dispensable for virulence. Traffic 2020; 21:479-487. [PMID: 32378777 DOI: 10.1111/tra.12735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
In filamentous fungi, early endosomes are continuously trafficked to, and from, the growing hyphal tip by microtubule-based motor proteins, serving as platforms for the long-distance transport of diverse cargos including mRNA, signaling molecules, and other organelles which hitchhike on them. While the cellular machinery for early endosome motility in filamentous fungi is fairly well characterized, the broader physiological significance of this process remains less well understood. We set out to determine the importance of long-distance early endosome trafficking in Aspergillus fumigatus, an opportunistic human pathogenic fungus that can cause devastating pulmonary infections in immunocompromised individuals. We first characterized normal early endosome motile behavior in A. fumigatus, then generated a mutant in which early endosome motility is severely perturbed through targeted deletion of the gene encoding for FtsA, one of a complex of proteins that links early endosomes to their motor proteins. Using a microfluidics-based approach we show that contact-induced hyphal branching behaviors are impaired in ΔftsA mutants, but that FtsA-mediated early endosome motility is dispensable for virulence in an invertebrate infection model. Overall, our study provides new insight into early endosome motility in an important human pathogenic fungus.
Collapse
Affiliation(s)
- Baronger Dowell Bieger
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, Arkansas, USA.,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Audra Mae Rogers
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, Arkansas, USA
| | - Steven Bates
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, UK
| | - Martin John Egan
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, Arkansas, USA.,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
41
|
Commer B, Schultzhaus Z, Shaw BD. Localization of NPFxD motif-containing proteins in Aspergillus nidulans. Fungal Genet Biol 2020; 141:103412. [PMID: 32445863 DOI: 10.1016/j.fgb.2020.103412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 12/28/2022]
Abstract
During growth, filamentous fungi produce polarized cells called hyphae. It is generally presumed that polarization of hyphae is dependent upon secretion through the Spitzenkörper, as well as a mechanism called apical recycling, which maintains a balance between the tightly coupled processes of endocytosis and exocytosis. Endocytosis predominates in an annular domain called the sub-apical endocytic collar, which is located in the region of plasma membrane 1-5 μm distal to the Spitzenkörper. It has previously been proposed that one function of the sub-apical endocytic collar is to maintain the apical localization of polarization proteins. These proteins mark areas of polarization at the apices of hyphae. However, as hyphae grow, these proteins are displaced along the membrane and some must then be removed at the sub-apical endocytic collar in order to maintain the hyphoid shape. While endocytosis is fairly well characterized in yeast, comparatively little is known about the process in filamentous fungi. Here, a bioinformatics approach was utilized to identify 39 Aspergillus nidulans proteins that are predicted to be cargo of endocytosis based on the presence of an NPFxD peptide motif. This motif is a necessary endocytic signal sequence first established in Saccharomyces cerevisiae, where it marks proteins for endocytosis through an interaction with the adapter protein Sla1p. It is hypothesized that some proteins that contain this NPFxD peptide sequence in A. nidulans will be potential targets for endocytosis, and therefore will localize either to the endocytic collar or to more proximal polarized regions of the cell, e.g. the apical dome or the Spitzenkörper. To test this, a subset of the motif-containing proteins in A. nidulans was tagged with GFP and the dynamic localization was evaluated. The documented localization patterns support the hypothesis that the motif marks proteins for localization to the polarized cell apex in growing hyphae.
Collapse
Affiliation(s)
- Blake Commer
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843, USA.
| | - Zachary Schultzhaus
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843, USA.
| | - Brian D Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
42
|
Abstract
Filamentous fungi grow by adding cell wall and membrane exclusively at the apex of tubular structures called hyphae. Growth was previously believed to occur only through exocytosis at the Spitzenkörper, an organised body of secretory macro- and microvesicles found only in growing hyphae. More recent work has indicated that an area deemed the sub-apical collar is enriched for endocytosis and is also required for hyphal growth. It is now generally believed that polarity of filamentous fungi is achieved through the balancing of the processes of endocytosis and exocytosis at these two areas. This review is an update on the current progress and understanding surrounding the occurrence of endocytosis and its spatial regulation as they pertain to growth and pathogenicity in filamentous fungi.
Collapse
Affiliation(s)
- Blake Commer
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Brian D Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
43
|
Fujii S, Kurokawa K, Inaba R, Hiramatsu N, Tago T, Nakamura Y, Nakano A, Satoh T, Satoh AK. Recycling endosomes attach to the trans-side of Golgi stacks in Drosophila and mammalian cells. J Cell Sci 2020; 133:jcs236935. [PMID: 31974113 DOI: 10.1242/jcs.236935] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/13/2020] [Indexed: 08/31/2023] Open
Abstract
Historically, the trans-Golgi network (TGN) has been recognized as a sorting center of newly synthesized proteins, whereas the recycling endosome (RE) is a compartment where endocytosed materials transit before being recycled to the plasma membrane. However, recent findings revealed that both the TGN and RE connect endocytosis and exocytosis and, thus, are functionally overlapping. Here we report, in both Drosophila and microtubule-disrupted HeLa cells, that REs are interconvertible between two distinct states, namely Golgi-associated REs and free REs. Detachment and reattachment of REs and Golgi stacks are often observed, and newly synthesized glycosylphosphatidylinositol-anchored cargo protein but not vesicular stomatitis virus G protein is transported through these two types of RE. In plants, there are two types of TGN - Golgi-associated TGN and Golgi-independent TGN. We show that dynamics of REs in both Drosophila and mammalian cells are very similar compared with those of plant TGNs. And, together with the similarity on the molecular level, our results indicate that fly and mammalian REs are organelles that are equivalent to TGNs in plants. This suggests that the identities and functional relationships between REs and TGNs should be reconsidered.
Collapse
Affiliation(s)
- Syara Fujii
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ryota Inaba
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Naoki Hiramatsu
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Tatsuya Tago
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Yuri Nakamura
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takunori Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Akiko K Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| |
Collapse
|
44
|
López-Fuentes ADJ, Meizoso-Huesca A, Peraza-Reyes L. An endoplasmic reticulum domain is associated with the polarized growing cells of Podospora anserina hyphae. Fungal Genet Biol 2020; 137:103338. [PMID: 32035225 DOI: 10.1016/j.fgb.2020.103338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/28/2019] [Accepted: 01/20/2020] [Indexed: 11/26/2022]
Abstract
The endoplasmic reticulum (ER) is composed of distinct structural domains that perform diverse essential functions, including the synthesis of membrane lipids and proteins of the cell endomembrane system. The polarized growth of fungal hyphal cells depends on a polarized secretory system, which delivers vesicles to the hyphal apex for localized cell expansion, and that involves a polarized distribution of the secretory compartments, including the ER. Here we show that, additionally, the ER of the ascomycete Podospora anserina possesses a peripheral ER domain consisting of highly dynamic pleomorphic ER sub-compartments, which are specifically associated with the polarized growing apical hyphal cells.
Collapse
Affiliation(s)
- Antonio de Jesús López-Fuentes
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Aldo Meizoso-Huesca
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Leonardo Peraza-Reyes
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| |
Collapse
|
45
|
Mamun MAA, Katayama T, Cao W, Nakamura S, Maruyama JI. A novel Pezizomycotina-specific protein with gelsolin domains regulates contractile actin ring assembly and constriction in perforated septum formation. Mol Microbiol 2020; 113:964-982. [PMID: 31965663 DOI: 10.1111/mmi.14463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/29/2022]
Abstract
Septum formation in fungi is equivalent to cytokinesis. It differs mechanistically in filamentous ascomycetes (Pezizomycotina) from that of ascomycete yeasts by the retention of a central septal pore in the former group. However, septum formation in both groups is accomplished by contractile actin ring (CAR) assembly and constriction. The specific components regulating septal pore organization during septum formation are poorly understood. In this study, a novel Pezizomycotina-specific actin regulatory protein GlpA containing gelsolin domains was identified using bioinformatics. A glpA deletion mutant exhibited increased distances between septa, abnormal septum morphology and defective regulation of septal pore closure. In glpA deletion mutant hyphae, overaccumulation of actin filament (F-actin) was observed, and the CAR was abnormal with improper assembly and failure in constriction. In wild-type cells, GlpA was found at the septum formation site similarly to the CAR. The N-terminal 329 residues of GlpA are required for its localization to the septum formation site and essential for proper septum formation, while its C-terminal gelsolin domains are required for the regular CAR dynamics during septum formation. Finally, in this study we elucidated a novel Pezizomycotina-specific actin modulating component, which participates in septum formation by regulating the CAR dynamics.
Collapse
Affiliation(s)
| | - Takuya Katayama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Wei Cao
- Faculty of Information Networking for Innovation and Design, Department of Information Networking for Innovation and Design, Toyo University, Tokyo, Japan
| | - Shugo Nakamura
- Faculty of Information Networking for Innovation and Design, Department of Information Networking for Innovation and Design, Toyo University, Tokyo, Japan
| | - Jun-Ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
46
|
External signal-mediated polarized growth in fungi. Curr Opin Cell Biol 2019; 62:150-158. [PMID: 31875532 DOI: 10.1016/j.ceb.2019.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
As the majority of fungi are nonmotile, polarized growth in response to an external signal enables them to search for nutrients and mating partners, and hence is crucial for survival and proliferation. Although the mechanisms underlying polarization in response to external signals has commonalities with polarization during mitotic division, during budding, and fission growth, the importance of diverse feedback loops regulating external signal-mediated polarized growth is likely to be distinct and uniquely adapted to a dynamic environment. Here, we highlight recent advances in our understanding of the mechanisms that are crucial for polarity in response to external signals in fungi, with particular focus on the roles of membrane traffic, small GTPases, and lipids, as well as the interplay between cell shape and cell growth.
Collapse
|
47
|
Pinar M, Arias-Palomo E, de los Ríos V, Arst HN, Peñalva MA. Characterization of Aspergillus nidulans TRAPPs uncovers unprecedented similarities between fungi and metazoans and reveals the modular assembly of TRAPPII. PLoS Genet 2019; 15:e1008557. [PMID: 31869332 PMCID: PMC6946167 DOI: 10.1371/journal.pgen.1008557] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/07/2020] [Accepted: 12/06/2019] [Indexed: 12/22/2022] Open
Abstract
TRAnsport Protein Particle complexes (TRAPPs) are ubiquitous regulators of membrane traffic mediating nucleotide exchange on the Golgi regulatory GTPases RAB1 and RAB11. In S. cerevisiae and metazoans TRAPPs consist of two large oligomeric complexes: RAB11-activating TRAPPII and RAB1-activating TRAPPIII. These share a common core TRAPPI hetero-heptamer, absent in metazoans but detected in minor proportions in yeast, likely originating from in vitro-destabilized TRAPPII/III. Despite overall TRAPP conservation, the budding yeast genome has undergone extensive loss of genes, and lacks homologues of some metazoan TRAPP subunits. With nearly twice the total number of genes of S. cerevisiae, another ascomycete Aspergillus nidulans has also been used for studies on TRAPPs. We combined size-fractionation chromatography with single-step purification coupled to mass-spectrometry and negative-stain electron microscopy to establish the relative abundance, composition and architecture of Aspergillus TRAPPs, which consist of TRAPPII and TRAPPIII in a 2:1 proportion, plus a minor amount of TRAPPI. We show that Aspergillus TRAPPIII contains homologues of metazoan TRAPPC11, TRAPPC12 and TRAPPC13 subunits, absent in S. cerevisiae, and establish that these subunits are recruited to the complex by Tca17/TRAPPC2L, which itself binds to the ‘Trs33 side’ of the complex. Thus Aspergillus TRAPPs compositionally resemble mammalian TRAPPs to a greater extent than those in budding yeast. Exploiting the ability of constitutively-active (GEF-independent, due to accelerated GDP release) RAB1* and RAB11* alleles to rescue viability of null mutants lacking essential TRAPP subunits, we establish that the only essential role of TRAPPs is activating RAB1 and RAB11, and genetically classify each essential subunit according to their role(s) in TRAPPII (TRAPPII-specific subunits) or TRAPPII and TRAPPIII (core TRAPP subunits). Constitutively-active RAB mutant combinations allowed examination of TRAPP composition in mutants lacking essential subunits, which led to the discovery of a stable Trs120/Trs130/Trs65/Tca17 TRAPPII-specific subcomplex whose Trs20- and Trs33-dependent assembly onto core TRAPP generates TRAPPII. TRAPPs govern intracellular traffic across eukaryotes, activating the Golgi GTPases RAB1 and RAB11. Other genetically tractable fungi are emerging as alternatives to baker’s yeast for cell-biological studies. We exploit Aspergillus nidulans, a filamentous ascomycete that has a lifestyle highly demanding for exocytosis and, that unlike baker’s yeast, has not undergone extensive gene loss. We show that fungal and metazoan TRAPPs are more similar than previously thought, after identifying three A. nidulans subunits previously believed exclusive to metazoans and demonstrating that TRAPPI is very minor, if it exists at all. Also importantly we classified, using a novel genetic approach, essential TRAPP subunits according to their role in activating RAB1 and/or RAB11, which demonstrated that the only indispensable role for TRAPPs is mediating nucleotide exchange on these GTPases and led to the discovery of a stable four-subunit subcomplex that assembles onto the also stable seven-subunit core to form the TRAPPII holocomplex.
Collapse
Affiliation(s)
- Mario Pinar
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Madrid, Spain
| | - Ernesto Arias-Palomo
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas CSIC, Madrid, Spain
| | - Vivian de los Ríos
- Proteomics Facility, Centro de Investigaciones Biológicas CSIC, Madrid, Spain
| | - Herbert N. Arst
- Section of Microbiology, Imperial College London, London, United Kingdom
| | - Miguel A. Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Madrid, Spain
- * E-mail:
| |
Collapse
|
48
|
Schuster M, Guiu-Aragones C, Steinberg G. Class V chitin synthase and β(1,3)-glucan synthase co-travel in the same vesicle in Zymoseptoria tritici. Fungal Genet Biol 2019; 135:103286. [PMID: 31672687 PMCID: PMC7967022 DOI: 10.1016/j.fgb.2019.103286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/03/2022]
Abstract
Native chitin (Chs5) and glucan synthase (Gsc1) visualised in the pathogen Zymoseptoria tritici. Chs5 and Gsc1 are transported along microtubules. Chs5 and Gsc1 do localise to the apical plasma membrane, but not the Spitzenkörper. Light and electron microscopy how co-travel of Chs5 and Gsc1 in the same secretory vesicle. Enzyme delivery in Z. tritici is different from Neurospora crassa, but similar to Ustilago maydis.
The fungal cell wall consists of proteins and polysaccharides, formed by the co-ordinated activity of enzymes, such as chitin or glucan synthases. These enzymes are delivered via secretory vesicles to the hyphal tip. In the ascomycete Neurospora crassa, chitin synthases and β(1,3)-glucan synthase are transported in different vesicles, whereas they co-travel along microtubules in the basidiomycete Ustilago maydis. This suggests fundamental differences in wall synthesis between taxa. Here, we visualize the class V chitin synthase ZtChs5 and the β(1,3)-glucan synthase ZtGcs1 in the ascomycete Zymoseptoria tritici. Live cell imaging demonstrate that both enzymes co-locate to the apical plasma membrane, but are not concentrated in the Spitzenkörper. Delivery involves co-transport along microtubules of the chitin and glucan synthase. Live cell imaging and electron microscopy suggest that both cell wall synthases locate in the same vesicle. Thus, microtubule-dependent co-delivery of cell wall synthases in the same vesicle is found in asco- and basidiomycetes.
Collapse
Affiliation(s)
- Martin Schuster
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | | | - Gero Steinberg
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
49
|
Diallinas G, Martzoukou O. Transporter membrane traffic and function: lessons from a mould. FEBS J 2019; 286:4861-4875. [DOI: 10.1111/febs.15078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/26/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022]
Affiliation(s)
- George Diallinas
- Department of Biology National and Kapodistrian University of Athens Greece
| | - Olga Martzoukou
- Department of Biology National and Kapodistrian University of Athens Greece
| |
Collapse
|
50
|
Orr RG, Cheng X, Vidali L, Bezanilla M. Orchestrating cell morphology from the inside out - using polarized cell expansion in plants as a model. Curr Opin Cell Biol 2019; 62:46-53. [PMID: 31546159 DOI: 10.1016/j.ceb.2019.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 12/16/2022]
Abstract
Intracellular organization forms the basis of changes in the extracellular matrix. In walled cells, these changes are essential for morphogenesis and growth. The highly polarized cells of mosses and liverworts together with root hairs and pollen tubes are geometrically simple cells that develop in the absence of complex tissue-scale signaling, providing an excellent model to study cell polarity. Recent advances present a unifying theme where the cytoskeleton and its associated motors work in coordination with vesicle trafficking. This coordination results in a recycling system near the cell tip, where endocytosed molecules are sorted and combined with exocytic cargo driving growth. Interestingly, functional similarities between filamentous fungi and plants promise to advance our understanding of cell polarization and growth across kingdoms.
Collapse
Affiliation(s)
- Robert G Orr
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester MA, 01609, United States
| | - Xiaohang Cheng
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, United States
| | - Luis Vidali
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester MA, 01609, United States
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, United States.
| |
Collapse
|