1
|
Chen H, Xu S. Population genomics advances in frontier ethnic minorities in China. SCIENCE CHINA. LIFE SCIENCES 2025; 68:961-973. [PMID: 39643831 DOI: 10.1007/s11427-024-2659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/18/2024] [Indexed: 12/09/2024]
Abstract
China, with its large geographic span, possesses rich genetic diversity across vast frontier regions in addition to the Han Chinese majority. Importantly, demographic events and various natural and cultural environments in Chinese frontier regions have shaped the genomic diversity of ethnic minorities via local adaptations. Thus, insights into the genetic diversity and adaptive evolution of these under-represented ethnic groups are crucial for understanding evolutionary scenarios and biomedical implications in East Asian populations. Here, we focus on ethnic minorities in Chinese frontier regions and review research advances regarding genomic diversity, genetic structure, population history, genetic admixture, and local adaptation. We first provide an overview of the extensive genetic diversity across populations in different Chinese frontier regions. Next, we summarize research progress regarding genetic ancestry, demographic history, the adaptive process, and the archaic identification of multiple ethnic minorities in different Chinese frontier regions. Finally, we discuss the gaps and opportunities in genomic studies of Chinese populations and the need for a more comprehensive understanding of genomic diversity and the evolution of populations of East Asian ancestry in the post-genomic era.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuhua Xu
- Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
2
|
Golomb R, Dahan O, Dahary D, Pilpel Y. Cell-autonomous adaptation: an overlooked avenue of adaptation in human evolution. Trends Genet 2025; 41:12-22. [PMID: 39732540 DOI: 10.1016/j.tig.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 12/30/2024]
Abstract
Adaptation to environmental conditions occurs over diverse evolutionary timescales. In multi-cellular organisms, adaptive traits are often studied in tissues/organs relevant to the environmental challenge. We argue for the importance of an underappreciated layer of evolutionary adaptation manifesting at the cellular level. Cell-autonomous adaptations (CAAs) are inherited traits that boost organismal fitness by enhancing individual cell function. For instance, the cell-autonomous enhancement of mitochondrial oxygen utilization in hypoxic environments differs from an optimized erythropoiesis response, which involves multiple tissues. We explore the breadth of CAAs across challenges and highlight their counterparts in unicellular organisms. Applying these insights, we mine selection signals in Andean highlanders, revealing novel candidate CAAs. The conservation of CAAs across species may reveal valuable insights into multi-cellular evolution.
Collapse
Affiliation(s)
- Ruthie Golomb
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Orna Dahan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Dvir Dahary
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
3
|
Deal M, Kar A, Lee SHT, Alvarez M, Rajkumar S, Arasu UT, Kaminska D, Männistö V, Heinonen S, van der Kolk BW, Säiläkivi U, Saarinen T, Juuti A, Pihlajamäki J, Kaikkonen MU, Laakso M, Pietiläinen KH, Pajukanta P. An abdominal obesity missense variant in the adipocyte thermogenesis gene TBX15 is implicated in adaptation to cold in Finns. Am J Hum Genet 2024; 111:2542-2560. [PMID: 39515300 PMCID: PMC11568758 DOI: 10.1016/j.ajhg.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
Mechanisms of abdominal obesity GWAS variants have remained largely unknown. To elucidate these mechanisms, we leveraged subcutaneous adipose tissue (SAT) single nucleus RNA-sequencing and genomics data. After discovering that heritability of abdominal obesity is enriched in adipocytes, we focused on a SAT unique adipocyte marker gene, the transcription factor TBX15, and its abdominal obesity-associated deleterious missense variant, rs10494217. The allele frequency of rs10494217 revealed a north-to-south decreasing gradient, with consistent significant FST values observed for 25 different populations when compared to Finns, a population with a history of genetic isolation. Given the role of Tbx15 in mouse thermogenesis, the frequency may have increased as an adaptation to cold in Finns. Our selection analysis provided significant evidence of selection for the abdominal obesity risk allele T of rs10494217 in Finns, with a north-to-south decreasing trend in other populations, and demonstrated that latitude significantly predicts the allele frequency. We also discovered that the risk allele status significantly affects SAT adipocyte expression of multiple adipocyte marker genes in trans in two cohorts. Two of these trans genes have been connected to thermogenesis, supporting the thermogenic effect of the TBX15 missense variant as a possible cause of its selection. Adipose expression of one trans gene, a lncRNA, AC002066.1, was strongly associated with adipocyte size, implicating it in metabolically unhealthy adipocyte hypertrophy. In summary, the abdominal obesity variant rs10494217 was selected in Finns, and individuals with the risk allele have trans effects on adipocyte expression of genes relating to thermogenesis and adipocyte hypertrophy.
Collapse
Affiliation(s)
- Milena Deal
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Asha Kar
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA
| | - Seung Hyuk T Lee
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Marcus Alvarez
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sandhya Rajkumar
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Uma Thanigai Arasu
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Dorota Kaminska
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ville Männistö
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Sini Heinonen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Birgitta W van der Kolk
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ulla Säiläkivi
- Department of Abdominal Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tuure Saarinen
- Department of Abdominal Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Anne Juuti
- Department of Abdominal Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; HealthyWeightHub, Endocrinology, Abdominal Center, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Päivi Pajukanta
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA; Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Yang C, Wei C, Alam S, Chen X, McKemy DD. The neurotrophic factor artemin and its receptor GFRα3 mediate migraine-like pain via the ion channel TRPM8. Cephalalgia 2024; 44:3331024241297679. [PMID: 39552306 DOI: 10.1177/03331024241297679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
BACKGROUND Migraine has a strong genetic foundation, including both monogenic and polygenic types. The former are rare, with most migraine considered polygenic, supported by genome-wide association studies (GWAS) identifying numerous genetic variants linked with migraine risk. Surprisingly, some of the most common mutations are associated with transient receptor potential melastatin 8 (TRPM8), a non-selective cation channel that is the primary sensor of cold temperatures in cutaneous primary afferents of the somatosensory system. However, it is unlikely that the temperature sensitivity of TRPM8 is relevant in migraine-related tissues, such as the meninges, suggesting other activation mechanisms underly its role in migraine pathogenesis. Thus, to define the basis of the channel's involvement, we reasoned that cellular processes that increase cold sensitivity in the skin, such as the neurotrophic factor artemin, via its receptor glial cell-line derived neurotrophic factor family receptor alpha-3 (GFRα3), also mediate TRPM8-associated migraine-like pain in the meninges. METHODS To investigate the role of artemin and GFRα3 in preclinical rodent migraine models, we infused nitroglycerin acutely and chronically, and measured changes in periorbital and hind paw mechanical sensitivity in male and female mice lacking GFRα3, after neutralization of free artemin with specific monoclonal antibodies, or by systemic treatment with a TRPM8-specific antagonist. Further, in mice lacking GFRα3 we tested the effects of supradural infusions of a mix of inflammatory mediators, as well as tested if dura stimulation with artemin or a TRPM8-specific agonist induce migraine-related pain in mice. RESULTS We find that mechanical allodynia induced by systemic nitroglycerin, or supradural infusion of inflammatory mediators, involves GFRα3. In addition, neutralization of circulating artemin reduces the nitroglycerin phenotype, demonstrating the importance of this neurotrophic pathway in headaches. Further, we show TRPM8 expression in the meninges, and that direct supradural infusion of either a TRPM8-specific agonist or artemin itself produces mechanical allodynia, with the latter dependent on TRPM8 and ameliorated by concurrent treatment with sumatriptan. CONCLUSIONS These results indicate that neuroinflammatory events in the meninges can produce migraine-like pain in mice via artemin and GFRα3, likely acting upstream of TRPM8, providing a novel pathway that may contribute to headaches or migraine pathogenesis.
Collapse
Affiliation(s)
- Chenyu Yang
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Chao Wei
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Sanaa Alam
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Xunyang Chen
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - David D McKemy
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology Graduate Program, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Kendal E. A duty to enhance? Genetic engineering for the human Mars settlement. Monash Bioeth Rev 2024:10.1007/s40592-024-00221-2. [PMID: 39485589 DOI: 10.1007/s40592-024-00221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
Humans living off-world will face numerous physical, psychological and social challenges and are likely to suffer negative health effects due to their lack of evolutionary adaptation to space environments. While some of the necessary adaptations may develop naturally over many generations, genetic technologies could be used to speed this process along, potentially improving the wellbeing of early space settlers and their offspring. With broad support, such a program could lead to significant genetic modification of off-world communities, for example, to limit radiation damage on body systems or prevent bone and muscle loss in reduced gravity conditions. Given the extreme stressors of living off-world, and the need to have a healthy workforce to support a fledgling human settlement, those in favour of using genetic technologies to enhance settlers might even claim there is a moral imperative to protect their health in the face of the unique threats of space travel, especially for children born in settlements who did not take on these risks voluntarily. For some, this might simply be an extension of procreative beneficence. However, ethical concerns arise regarding the risks of embracing a eugenicist agenda and the potential impacts on the rights of future settlers to refuse such genetic enhancements for themselves or their children.
Collapse
Affiliation(s)
- Evie Kendal
- Swinburne University of Technology, John St, Hawthorn, VIC, 3122, Australia.
| |
Collapse
|
6
|
Yang C, Wei C, Alam S, Chen X, McKemy DD. The neurotrophic factor artemin and its receptor GFRα3 mediate migraine-like pain via the ion channel TRPM8. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611532. [PMID: 39314341 PMCID: PMC11419092 DOI: 10.1101/2024.09.09.611532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Background Migraine has a strong genetic foundation, including both monogenic and polygenic types. The former are rare, with most migraine considered polygenic, supported by genome-wide association studies (GWAS) identifying numerous genetic variants associated with migraine risk. Surprisingly, some of the most common mutations are associated with TRPM8, a non-selective cation channel that is the primary sensor of cold temperatures in primary afferent neurons of the somatosensory system. However, it is unlikely that the temperature sensitivity of TRPM8 underlies its role in migraine pathogenesis. To define the basis of the channel's involvement, we reasoned that cellular processes that increase cold sensitivity in the skin, such as the neurotrophic factor artemin, via its receptor GFRα3, also mediate TRPM8-associated migraine-like pain in the meninges. Methods To investigate the role of artemin and GFRα3 in preclinical rodent migraine models, we infused nitroglycerin acutely and chronically, and measured changes in periorbital and hind paw mechanical sensitivity in male and female mice lacking GFRα3, after neutralization of free artemin with specific monoclonal antibodies, or by systemic treatment with a TRPM8-specific antagonist. Further, in wildtypes and mice lacking either GFRα3 or TRPM8, we tested the effects of supradural infusions of a mix of inflammatory mediators, artemin, and a TRPM8-specific agonist on migraine-related pain in mice. Results We find that mechanical allodynia induced by systemic nitroglycerin, or supradural infusion of inflammatory mediators, involves GFRα3. In addition, neutralization of circulating artemin reduces the nitroglycerin phenotype, demonstrating the importance of this neurotrophic pathway. Further, we show TRPM8 expression in the meninges and that direct supradural infusion of either a TRPM8-specific agonist or artemin itself produces mechanical allodynia, the latter dependent on TRPM8 and ameliorated by concurrent treatment with sumatriptan. Conclusions These results indicate that neuroinflammatory events in the meninges can produce migraine-like pain in mice via artemin and GFRα3, likely acting upstream of TRPM8, providing a novel pathway that may contribute to migraine pathogenesis.
Collapse
Affiliation(s)
- Chenyu Yang
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
- Molecular and Computational Biology Graduate Program, University of Southern California, Los Angeles, CA 90089
| | - Chao Wei
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215
| | - Sanaa Alam
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Xunyang Chen
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - David D. McKemy
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
- Molecular and Computational Biology Graduate Program, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
7
|
McNicholas OC, Jiménez-Jiménez D, Oliveira JFA, Ferguson L, Bellampalli R, McLaughlin C, Chowdhury FA, Martins Custodio H, Moloney P, Mavrogianni A, Diehl B, Sisodiya SM. The influence of temperature and genomic variation on intracranial EEG measures in people with epilepsy. Brain Commun 2024; 6:fcae269. [PMID: 39258258 PMCID: PMC11383581 DOI: 10.1093/braincomms/fcae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/26/2024] [Accepted: 08/11/2024] [Indexed: 09/12/2024] Open
Abstract
Heatwaves have serious impacts on human health and constitute a key health concern from anthropogenic climate change. People have different individual tolerance for heatwaves or unaccustomed temperatures. Those with epilepsy may be particularly affected by temperature as the electroclinical hallmarks of brain excitability in epilepsy (inter-ictal epileptiform discharges and seizures) are influenced by a range of physiological and non-physiological conditions. Heatwaves are becoming more common and may affect brain excitability. Leveraging spontaneous heatwaves during periods of intracranial EEG recording in participants with epilepsy in a non-air-conditioned telemetry unit at the National Hospital for Neurology and Neurosurgery in London from May to August 2015-22, we examined the impact of heatwaves on brain excitability. In London, a heatwave is defined as three or more consecutive days with daily maximum temperatures ≥28°C. For each participant, we counted inter-ictal epileptiform discharges using four 10-min segments within, and outside of, heatwaves during periods of intracranial EEG recording. Additionally, we counted all clinical and subclinical seizures within, and outside of, heatwaves. We searched for causal rare genetic variants and calculated the epilepsy PRS. Nine participants were included in the study (six men, three women), median age 30 years (range 24-39). During heatwaves, there was a significant increase in the number of inter-ictal epileptiform discharges in three participants. Five participants had more seizures during the heatwave period, and as a group, there were significantly more seizures during the heatwaves. Genetic data, available for eight participants, showed none had known rare, genetically-determined epilepsies, whilst all had high polygenic risk scores for epilepsy. For some people with epilepsy, and not just those with known, rare, temperature-sensitive epilepsies, there is an association between heatwaves and increased brain excitability. These preliminary data require further validation and exploration, as they raise concerns about the impact of heatwaves directly on brain health.
Collapse
Affiliation(s)
- Olivia C McNicholas
- Sir Jules Thorn Telemetry Unit, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Diego Jiménez-Jiménez
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Buckinghamshire SL9 0RJ, UK
| | - Joana F A Oliveira
- Sir Jules Thorn Telemetry Unit, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Lauren Ferguson
- Institute for Environmental Design and Engineering, The Bartlett School of Environment, Energy and Resources, University College London, London WC1H 0NN, UK
- Department for Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ravishankara Bellampalli
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Buckinghamshire SL9 0RJ, UK
| | - Charlotte McLaughlin
- Sir Jules Thorn Telemetry Unit, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Fahmida Amin Chowdhury
- Sir Jules Thorn Telemetry Unit, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Helena Martins Custodio
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Buckinghamshire SL9 0RJ, UK
| | - Patrick Moloney
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Buckinghamshire SL9 0RJ, UK
| | - Anna Mavrogianni
- Institute for Environmental Design and Engineering, The Bartlett School of Environment, Energy and Resources, University College London, London WC1H 0NN, UK
| | - Beate Diehl
- Sir Jules Thorn Telemetry Unit, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Buckinghamshire SL9 0RJ, UK
| |
Collapse
|
8
|
Romero-Hidalgo S, Sagaceta-Mejía J, Villalobos-Comparán M, Tejero ME, Domínguez-Pérez M, Jacobo-Albavera L, Posadas-Sánchez R, Vargas-Alarcón G, Posadas-Romero C, Macías-Kauffer L, Vadillo-Ortega F, Contreras-Sieck MA, Acuña-Alonzo V, Barquera R, Macín G, Binia A, Guevara-Chávez JG, Sebastián-Medina L, Menjívar M, Canizales-Quinteros S, Carnevale A, Villarreal-Molina T. Selection scan in Native Americans of Mexico identifies FADS2 rs174616: Evidence of gene-diet interactions affecting lipid levels and Delta-6-desaturase activity. Heliyon 2024; 10:e35477. [PMID: 39166092 PMCID: PMC11334880 DOI: 10.1016/j.heliyon.2024.e35477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
Searching for positive selection signals across genomes has identified functional genetic variants responding to environmental change. In Native Americans of Mexico, we used the fixation index (Fst) and population branch statistic (PBS) to identify SNPs suggesting positive selection. The 103 most differentiated SNPs were tested for associations with metabolic traits, the most significant association was FADS2/rs174616 with body mass index (BMI). This variant lies within a linkage disequilibrium (LD) block independent of previously reported FADS selection signals and has not been clearly associated with metabolic phenotypes. We tested this variant in two independent cohorts with cardiometabolic data. In the Genetics of Atherosclerotic Disease (GEA) cohort, the derived allele (T) was associated with increased BMI, lower LDL-C levels and a decreased risk of subclinical atherosclerosis in women. Significant gene-diet interactions affected lipid, apolipoprotein and adiponectin levels with differences according to sex, involving mainly total and complex dietary carbohydrate%. In the Genotype-related Effects of PUFA trial, the derived allele was associated with lower Δ-6 desaturase activity and erythrocyte membrane dihomo-gamma-linolenic acid (DGLA) levels, and with increased Δ-5 desaturase activity and eicosapentaenoic acid levels. This variant interacted with dietary carbohydrate% affecting Δ-6 desaturase activity. Notably, the relationship of DGLA and other erythrocyte membrane LC-PUFA indices with HOMA-IR differed according to rs174616 genotype, which has implications regarding how these indices should be interpreted. In conclusion, this observational study identified rs174616 as a signal suggesting selection in an independent linkage disequilibrium block, was associated with cardiometabolic and erythrocyte measurements of LC-PUFA in two independent Mexican cohorts and showed significant gene-diet interactions.
Collapse
Affiliation(s)
- Sandra Romero-Hidalgo
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Janine Sagaceta-Mejía
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | | - María Elizabeth Tejero
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Mayra Domínguez-Pérez
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Leonor Jacobo-Albavera
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Rosalinda Posadas-Sánchez
- Departamento de Endocrinología, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| | - Gilberto Vargas-Alarcón
- Departmento de Biología Molecular y Dirección de Investigación, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Carlos Posadas-Romero
- Departamento de Endocrinología, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| | - Luis Macías-Kauffer
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química UNAM e Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Felipe Vadillo-Ortega
- Unidad de Vinculación de la Facultad de Medicina UNAM en el Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | | - Víctor Acuña-Alonzo
- Laboratorio de Genética Molecular, Escuela Nacional de Antropología e Historia, Mexico City, Mexico
| | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology (MPI-EVA), Leipzig, Germany
- Anthropology (MPI-EVA), Leipzig, Germany
| | - Gastón Macín
- Escuela Nacional de Antropología e Historia, Mexico City, Mexico
| | - Aristea Binia
- Nestlé Institute of Health Sciences, Innovation Park, EPFL, Lausanne, Switzerland
| | - Jose Guadalupe Guevara-Chávez
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Leticia Sebastián-Medina
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Martha Menjívar
- Departamento de Biología, Facultad de Química UNAM, Mexico City and Unidad Académica de Ciencias y Tecnología, UNAM-Yucatán, Mérida, Mexico
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química UNAM e Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alessandra Carnevale
- Laboratorio de Enfermedades Mendelianas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Teresa Villarreal-Molina
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
9
|
Pan LH, Ling Y, Lai K, Wang Y, Hsiao F, Chen S, Liu H, Chen W, Wang S. The normative values of pain thresholds in healthy Taiwanese. Brain Behav 2024; 14:e3485. [PMID: 38648375 PMCID: PMC11034865 DOI: 10.1002/brb3.3485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/25/2024] Open
Abstract
OBJECTIVE Quantitative sensory testing is widely used in clinical and research settings to assess the sensory functions of healthy subjects and patients. It is of importance to establish normative values in a healthy population to provide reference for studies involving patients. Given the absence of normative values for pain thresholds in Taiwan, the aim of this study was to report the normative values for future reference in the Taiwanese population and compare the differences between male and female participants. METHODS Healthy adults without any chronic or acute pain condition were recruited. The pain thresholds were assessed over the cephalic (supraorbital area and masseter muscle) and extracephalic (medio-volar forearm and thenar eminence) areas. The heat, cold, mechanical punctate, and pressure pain thresholds were measured with a standardized protocol. Comparisons between male and female participants were performed. RESULTS One hundred and thirty healthy participants (55 males: 30.4 ± 7.4 years; 75 females: 30.5 ± 8.1 years) finished the assessments. Male participants were less sensitive to mechanical stimuli, including pressure over masseter muscle (male vs. female: 178.5 ± 56.7 vs. 156.6 ± 58.4 kPa, p = .034) and punctate over medio-volar forearm (male vs. female: 116.4 ± 45.2 vs. 98.7 ± 65.4 g, p = .011), compared to female participants. However, female participants were less sensitive to cold stimuli, indicated by lower cold pain thresholds over the supraorbital area (male vs. female: 18.6 ± 8.4 vs. 13.6 ± 9.3°C, p = .004), compared to male participants. No significant differences were found between sexes in other pain threshold parameters. CONCLUSIONS We provided the normative values of healthy male and female adults in Taiwan. This information is crucial for comparison in future pain-related studies to identify potential hypoalgesia or hyperalgesia of tested subjects.
Collapse
Affiliation(s)
- Li‐Ling Hope Pan
- Brain Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yu‐Hsiang Ling
- College of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Department of NeurologyNeurological InstituteTaipei Veterans General HospitalTaipeiTaiwan
| | - Kuan‐Lin Lai
- College of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Department of NeurologyNeurological InstituteTaipei Veterans General HospitalTaipeiTaiwan
| | - Yen‐Feng Wang
- College of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Department of NeurologyNeurological InstituteTaipei Veterans General HospitalTaipeiTaiwan
| | - Fu‐Jung Hsiao
- Brain Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Shih‐Pin Chen
- Brain Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- College of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Department of NeurologyNeurological InstituteTaipei Veterans General HospitalTaipeiTaiwan
- Institute of Clinical MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Department of Medical ResearchTaipei Veterans General HospitalTaipeiTaiwan
| | - Hung‐Yu Liu
- College of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Department of NeurologyNeurological InstituteTaipei Veterans General HospitalTaipeiTaiwan
| | - Wei‐Ta Chen
- Brain Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- College of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Department of NeurologyNeurological InstituteTaipei Veterans General HospitalTaipeiTaiwan
- Department of NeurologyKeelung Hospital, Ministry of Health and WelfareKeelungTaiwan
| | - Shuu‐Jiun Wang
- Brain Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- College of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Department of NeurologyNeurological InstituteTaipei Veterans General HospitalTaipeiTaiwan
| |
Collapse
|
10
|
Ráčková L, Pompa T, Zlámal F, Barták M, Nývlt D, Bienertová-Vašků J. Physiological evidence of stress reduction during a summer Antarctic expedition with a significant influence of previous experience and vigor. Sci Rep 2024; 14:3981. [PMID: 38368474 PMCID: PMC10874375 DOI: 10.1038/s41598-024-54203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/09/2024] [Indexed: 02/19/2024] Open
Abstract
Antarctica provides a unique environment for studying human adaptability, characterized by controlled conditions, limited sensory stimulation, and significant challenges in logistics and communication. This longitudinal study investigates the relationship between stress indicators, with a specific focus on mean sleep heart rate, during a COVID-19 quarantine and subsequent 83 days long summer Antarctic expedition at the J. G. Mendel Czech Antarctic Station. Our novel approach includes daily recordings of sleep heart rate and weekly assessments of emotions, stress, and sleep quality. Associations between variables were analyzed using the generalized least squares method, providing unique insights into nuances of adaptation. The results support previous findings by providing empirical evidence on the stress reducing effect of Antarctic summer expedition and highlight the importance of previous experience and positive emotions, with the novel contribution of utilizing physiological data in addition to psychological measures. High-frequency sampling and combination of psychological and physiological data addresses a crucial gap in the research of stress. This study contributes valuable knowledge to the field of psychophysiology and has implications for expedition planners, research organizations, teams in action settings, pandemic prevention protocols, global crises, and long-duration spaceflight missions. Comprehensive insights promote the well-being and success of individuals in extreme conditions.
Collapse
Affiliation(s)
- Lucie Ráčková
- RECETOX, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Tomáš Pompa
- Department of Physical Activities and Health Sciences - Faculty of Sports Studies, Masaryk University, Brno, Czech Republic
| | - Filip Zlámal
- Department of Physical Activities and Health Sciences - Faculty of Sports Studies, Masaryk University, Brno, Czech Republic
| | - Miloš Barták
- Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Daniel Nývlt
- Polar-Geo-Lab, Department of Geography, Masaryk University, Brno, Czech Republic
| | - Julie Bienertová-Vašků
- RECETOX, Faculty of Sciences, Masaryk University, Brno, Czech Republic.
- Department of Physical Activities and Health Sciences - Faculty of Sports Studies, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
11
|
Wu X, Yoshino T, Maeda-Minami A, Ishida S, Tanaka M, Nishi A, Tahara Y, Inami R, Sugiyama A, Horiba Y, Watanabe K, Mimura M. Exploratory study of cold hypersensitivity in Japanese women: genetic associations and somatic symptom burden. Sci Rep 2024; 14:1918. [PMID: 38253633 PMCID: PMC11231259 DOI: 10.1038/s41598-024-52119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Temperature perception is essential for humans to discern the environment and maintain homeostasis. However, some individuals experience cold hypersensitivity, characterized by a subjective feeling of coldness despite ambient environmental temperatures being normal, the underlying mechanisms of which are unknown. In this study, we aimed to investigate the relationship between subjective cold symptoms and somatic burden or single nucleotide polymorphisms to understand the causes of cold hypersensitivity. We conducted an online questionnaire survey [comprising 30 questions, including past medical history, subjective symptoms of cold hypersensitivity, and the Somatic Symptom Scale-8 (SSS-8)]. Respondents were 1200 Japanese adult female volunteers (age: 20-59 years), recruited between April 21 and May 25, 2022, who were customers of MYCODE, a personal genome service in Japan. Among the 1111 participants, 599 (54%) reported cold hypersensitivity. Higher cold hypersensitivity severity was positively associated with the SSS-8 scores. Additionally, a genome-wide association study for cold hypersensitivity was conducted using array-based genomic data obtained from genetic testing. We identified 11 lead variants showing suggestive associations (P < 1 × 10-5) with cold hypersensitivity, some of which showed a reasonable change in expression in specific tissues in the Genotype-Tissue Expression database. The study findings shed light on the underlying causes of cold hypersensitivity.
Collapse
Affiliation(s)
- Xuefeng Wu
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Tetsuhiro Yoshino
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan.
- Holistic Kampo Diagnosis Laboratory, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| | - Ayako Maeda-Minami
- Holistic Kampo Diagnosis Laboratory, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, 278-0022, Japan
| | | | | | - Akinori Nishi
- TSUMURA Advanced Technology Research Laboratories, TSUMURA & CO., Ibaraki, 300-1192, Japan
| | - Yoshio Tahara
- TSUMURA Advanced Technology Research Laboratories, TSUMURA & CO., Ibaraki, 300-1192, Japan
| | - Ryohei Inami
- TSUMURA Advanced Technology Research Laboratories, TSUMURA & CO., Ibaraki, 300-1192, Japan
| | - Aiko Sugiyama
- TSUMURA Advanced Technology Research Laboratories, TSUMURA & CO., Ibaraki, 300-1192, Japan
| | - Yuko Horiba
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kenji Watanabe
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Masaru Mimura
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, 160-8582, Japan
| |
Collapse
|
12
|
Agata A, Nomura T. Thermal Adaptations in Animals: Genes, Development, and Evolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:253-265. [PMID: 39289287 DOI: 10.1007/978-981-97-4584-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Thermal adaptation to environmental temperature is a driving force in animal evolution. This chapter presents thermal adaptation in ectotherms and endotherms from the perspective of developmental biology. In ectotherms, there are known examples of temperature influencing morphological characteristics, such as seasonal color change, melanization, and sex determination. Furthermore, the timing of embryonic development also varies with environmental temperature. This review will introduce the cellular and molecular mechanisms underlying temperature-dependent embryogenesis. The evolution of thermal adaptation in endotherms is also important for survival in cold climates. Recent genome-wide studies have revealed adaptive mutations in the genomes of extant humans as well as extinct species such as woolly mammoths and Neanderthals. These studies have shown that single-nucleotide polymorphisms in physiologically related genes (e.g., CPT1A, LRP5, THATA, PRKG1, and FADS1-3) allow humans to live in cold climates. At the end of this chapter, we present the remaining questions in terms of genetic assimilation, heat shock protein Hsp90, and embryonic development.
Collapse
Affiliation(s)
- Ako Agata
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
- Applied Biology, Kyoto Institute of Technology, Kyoto, Japan.
| |
Collapse
|
13
|
Gutiérrez-Guerrero YT, Phifer-Rixey M, Nachman MW. Across two continents: the genomic basis of environmental adaptation in house mice ( Mus musculus domesticus) from the Americas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564674. [PMID: 37961195 PMCID: PMC10634997 DOI: 10.1101/2023.10.30.564674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Parallel clines across environmental gradients can be strong evidence of adaptation. House mice (Mus musculus domesticus) were introduced to the Americas by European colonizers and are now widely distributed from Tierra del Fuego to Alaska. Multiple aspects of climate, such as temperature, vary predictably across latitude in the Americas. Past studies of North American populations across latitudinal gradients provided evidence of environmental adaptation in traits related to body size, metabolism, and behavior and identified candidate genes using selection scans. Here, we investigate genomic signals of environmental adaptation on a second continent, South America, and ask whether there is evidence of parallel adaptation across multiple latitudinal transects in the Americas. We first identified loci across the genome showing signatures of selection related to climatic variation in mice sampled across a latitudinal transect in South America, accounting for neutral population structure. Consistent with previous results, most candidate SNPs were in regulatory regions. Genes containing the most extreme outliers relate to traits such as body weight or size, metabolism, immunity, fat, and development or function of the eye as well as traits associated with the cardiovascular and renal systems. We then combined these results with published results from two transects in North America. While most candidate genes were unique to individual transects, we found significant overlap among candidate genes identified independently in the three transects, providing strong evidence of parallel adaptation and identifying genes that likely underlie recent environmental adaptation in house mice across North and South America.
Collapse
Affiliation(s)
- Yocelyn T. Gutiérrez-Guerrero
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, United States of America
| | - Megan Phifer-Rixey
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, United States of America
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Michael W. Nachman
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, United States of America
| |
Collapse
|
14
|
Zhang YH, Zhao L, Zhang MY, Cao RD, Hou GM, Teng HJ, Zhang JX. Fatty acid metabolism decreased while sexual selection increased in brown rats spreading south. iScience 2023; 26:107742. [PMID: 37731619 PMCID: PMC10507208 DOI: 10.1016/j.isci.2023.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/27/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
For mammals that originate in the cold north, adapting to warmer environments is crucial for southwards invasion. The brown rat (Rattus norvegicus) originated in Northeast China and has become a global pest. R. n. humiliatus (RNH) spread from the northeast, where R. n. caraco (RNC) lives, to North China and diverged to form a subspecies. Genomic analyses revealed that subspecies differentiation was promoted by temperature but impeded by gene flow and that genes related to fatty acid metabolism were under the strongest selection. Transcriptome analyses revealed downregulated hepatic genes related to fatty acid metabolism and upregulated those related to pheromones in RNH vs. RNC. Similar patterns were observed in relation to cold/warm acclimation. RNH preferred mates with stronger pheromone signals intra-populationally and more genetic divergence inter-populationally. We concluded that RNH experienced reduced fat utilization and increased pheromone-mediated sexual selection during its invasion from the cold north to warm south.
Collapse
Affiliation(s)
- Yao-Hua Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
| | - Lei Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Yu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui-Dong Cao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guan-Mei Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua-Jing Teng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jian-Xu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
L Rocha J, Silva P, Santos N, Nakamura M, Afonso S, Qninba A, Boratynski Z, Sudmant PH, Brito JC, Nielsen R, Godinho R. North African fox genomes show signatures of repeated introgression and adaptation to life in deserts. Nat Ecol Evol 2023; 7:1267-1286. [PMID: 37308700 PMCID: PMC10527534 DOI: 10.1038/s41559-023-02094-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/26/2023] [Indexed: 06/14/2023]
Abstract
Elucidating the evolutionary process of animal adaptation to deserts is key to understanding adaptive responses to climate change. Here we generated 82 individual whole genomes of four fox species (genus Vulpes) inhabiting the Sahara Desert at different evolutionary times. We show that adaptation of new colonizing species to a hot arid environment has probably been facilitated by introgression and trans-species polymorphisms shared with older desert resident species, including a putatively adaptive 25 Mb genomic region. Scans for signatures of selection implicated genes affecting temperature perception, non-renal water loss and heat production in the recent adaptation of North African red foxes (Vulpes vulpes), after divergence from Eurasian populations approximately 78 thousand years ago. In the extreme desert specialists, Rueppell's fox (V. rueppellii) and fennec (V. zerda), we identified repeated signatures of selection in genes affecting renal water homeostasis supported by gene expression and physiological differences. Our study provides insights into the mechanisms and genetic underpinnings of a natural experiment of repeated adaptation to extreme conditions.
Collapse
Affiliation(s)
- Joana L Rocha
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal.
- Department of Integrative Biology and Department of Statistics, University of California Berkeley, Berkeley, CA, USA.
| | - Pedro Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Nuno Santos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Mónia Nakamura
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Abdeljebbar Qninba
- Laboratory of Geophysics and Natural Hazards, Geophysics, Natural Patrimony and Green Chemistry Research Center (GEOPAC), Institut Scientifique, Mohammed V University of Rabat, Rabat, Morocco
| | - Zbyszek Boratynski
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Peter H Sudmant
- Department of Integrative Biology and Department of Statistics, University of California Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, CA, USA
| | - José C Brito
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Rasmus Nielsen
- Department of Integrative Biology and Department of Statistics, University of California Berkeley, Berkeley, CA, USA.
- Center for Computational Biology, University of California, Berkeley, CA, USA.
- Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Raquel Godinho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal.
- Department of Zoology, University of Johannesburg, Auckland Park, South Africa.
| |
Collapse
|
16
|
Iwasaki RL, Satta Y. Spatial and temporal diversity of positive selection on shared haplotypes at the PSCA locus among worldwide human populations. Heredity (Edinb) 2023; 131:156-169. [PMID: 37353592 PMCID: PMC10382566 DOI: 10.1038/s41437-023-00631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/25/2023] Open
Abstract
Selection on standing genetic variation is important for rapid local genetic adaptation when the environment changes. We report that, for the prostate stem cell antigen (PSCA) gene, different populations have different target haplotypes, even though haplotypes are shared among populations. The C-C-A haplotype, whereby the first C is located at rs2294008 of PSCA and is a low risk allele for gastric cancer, has become a target of positive selection in Asia. Conversely, the C-A-G haplotype carrying the same C allele has become a selection target mainly in Africa. However, Asian and African share both haplotypes, consistent with the haplotype divergence time (170 kya) prior to the out-of-Africa dispersal. The frequency of C-C-A/C-A-G is 0.344/0.278 in Asia and 0.209/0.416 in Africa. Two-dimensional site frequency spectrum analysis revealed that the extent of intra-allelic variability of the target haplotype is extremely small in each local population, suggesting that C-C-A or C-A-G is under ongoing hard sweeps in local populations. From the time to the most recent common ancestor (TMRCA) of selected haplotypes, the onset times of positive selection were recent (3-55 kya), concurrently with population subdivision from a common ancestor. Additionally, estimated selection coefficients from ABC analysis were up to ~3%, similar to those at other loci under recent positive selection. Phylogeny of local populations and TMRCA of selected haplotypes revealed that spatial and temporal switching of positive selection targets is a unique and novel feature of ongoing selection at PSCA. This switching may reflect the potential of rapid adaptability to distinct environments.
Collapse
Affiliation(s)
- Risa L Iwasaki
- Department of Evolutionary Studies of Biosystems, School of Advanced Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, 240-0193, Japan
- Research Center for Integrative Evolutionary Science, SOKENDAI, Hayama, Kanagawa, 240-0193, Japan
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, School of Advanced Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, 240-0193, Japan.
- Research Center for Integrative Evolutionary Science, SOKENDAI, Hayama, Kanagawa, 240-0193, Japan.
| |
Collapse
|
17
|
Bhuiyan SA, Xu M, Yang L, Semizoglou E, Bhatia P, Pantaleo KI, Tochitsky I, Jain A, Erdogan B, Blair S, Cat V, Mwirigi JM, Sankaranarayanan I, Tavares-Ferreira D, Green U, McIlvried LA, Copits BA, Bertels Z, Del Rosario JS, Widman AJ, Slivicki RA, Yi J, Woolf CJ, Lennerz JK, Whited JL, Price TJ, Gereau RW, Renthal W. Harmonized cross-species cell atlases of trigeminal and dorsal root ganglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547740. [PMID: 37461736 PMCID: PMC10350076 DOI: 10.1101/2023.07.04.547740] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Peripheral sensory neurons in the dorsal root ganglion (DRG) and trigeminal ganglion (TG) are specialized to detect and transduce diverse environmental stimuli including touch, temperature, and pain to the central nervous system. Recent advances in single-cell RNA-sequencing (scRNA-seq) have provided new insights into the diversity of sensory ganglia cell types in rodents, non-human primates, and humans, but it remains difficult to compare transcriptomically defined cell types across studies and species. Here, we built cross-species harmonized atlases of DRG and TG cell types that describe 18 neuronal and 11 non-neuronal cell types across 6 species and 19 studies. We then demonstrate the utility of this harmonized reference atlas by using it to annotate newly profiled DRG nuclei/cells from both human and the highly regenerative axolotl. We observe that the transcriptomic profiles of sensory neuron subtypes are broadly similar across vertebrates, but the expression of functionally important neuropeptides and channels can vary notably. The new resources and data presented here can guide future studies in comparative transcriptomics, simplify cell type nomenclature differences across studies, and help prioritize targets for future pain therapy development.
Collapse
Affiliation(s)
- Shamsuddin A Bhuiyan
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mengyi Xu
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Alan Edwards Center for Research on Pain and Department of Physiology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Lite Yang
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Evangelia Semizoglou
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Parth Bhatia
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Katerina I Pantaleo
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ivan Tochitsky
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children's Hospital and Harvard Medical School, 3 Blackfan Cir. Boston, MA 02115
| | - Aakanksha Jain
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children's Hospital and Harvard Medical School, 3 Blackfan Cir. Boston, MA 02115
| | - Burcu Erdogan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Steven Blair
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Victor Cat
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Juliet M Mwirigi
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080
| | - Ursula Green
- Department of Pathology, Center for Integrated Diagnostics, Massachussetts General Hospital and Havard Medical School, Boston, MA 02114
| | - Lisa A McIlvried
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Bryan A Copits
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Zachariah Bertels
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - John S Del Rosario
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Allie J Widman
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Richard A Slivicki
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Jiwon Yi
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center and Department of Neurobiology, Boston Children's Hospital and Harvard Medical School, 3 Blackfan Cir. Boston, MA 02115
| | - Jochen K Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachussetts General Hospital and Havard Medical School, Boston, MA 02114
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080
| | - Robert W Gereau
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - William Renthal
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Han DG. Evolutionary game model of migraine based on the human brain hypersensitivity. Front Neurol 2023; 14:1123978. [PMID: 37064196 PMCID: PMC10090412 DOI: 10.3389/fneur.2023.1123978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Based on all studies published up to 2020, the prevalence of migraine worldwide is approximately 14%, although it varies regionally. Despite being one of the most disabling diseases, migraine still exists through natural selection and is prevalent today. This raises the question of what evolutionary advantages have led to the survival of migraine. The ultimate answer to this question should be found in evolution; however, there is no clear explanation yet. Notably, all the genes that cause migraine make the sensory organs and cortex of the migraine sufferer hypersensitive. In a state of hypersensitivity, the brain could recognize external threats easily. Game theory is a useful tool for explaining evolution in terms of genes. Just as the Hawk–Dove game, which has two strategies (aggressive and passive) and four fitness values, an evolutionary game between a migraineur and a non-migraineur, which shows two phenotypes (more sensitive and less sensitive) and four fitness values, can be played if a migraineur quickly recognizes a predator and informs a non-migraineur of its appearance and the non-migraineur later helps the migraineur escape from danger. This study aimed to explore the evolutionary mechanics of migraine that can be modeled. Furthermore, it tried to define why the human brain's hypersensitivity is a prerequisite for developing this evolutionary game model.
Collapse
|
19
|
Cabañero D, Villalba-Riquelme E, Fernández-Ballester G, Fernández-Carvajal A, Ferrer-Montiel A. ThermoTRP channels in pain sexual dimorphism: new insights for drug intervention. Pharmacol Ther 2022; 240:108297. [PMID: 36202261 DOI: 10.1016/j.pharmthera.2022.108297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022]
Abstract
Chronic pain is a major burden for the society and remains more prevalent and severe in females. The presence of chronic pain is linked to persistent alterations in the peripheral and the central nervous system. One of the main types of peripheral pain transducers are the transient receptor potential channels (TRP), also known as thermoTRP channels, which intervene in the perception of hot and cold external stimuli. These channels, and especially TRPV1, TRPA1 and TRPM8, have been subjected to profound investigation because of their role as thermosensors and also because of their implication in acute and chronic pain. Surprisingly, their sensitivity to endogenous signaling has been far less studied. Cumulative evidence suggests that the function of these channels may be differently modulated in males and females, in part through sexual hormones, and this could constitute a significant contributor to the sex differences in chronic pain. Here, we review the exciting advances in thermoTRP pharmacology for males and females in two paradigmatic types of chronic pain with a strong peripheral component: chronic migraine and chemotherapy-induced peripheral neuropathy (CIPN). The possibilities of peripheral druggability offered by these channels and the differential exploitation for men and women represent a development opportunity that will lead to a significant increment of the armamentarium of analgesic medicines for personalized chronic pain treatment.
Collapse
Affiliation(s)
- David Cabañero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Eva Villalba-Riquelme
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Gregorio Fernández-Ballester
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Asia Fernández-Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Antonio Ferrer-Montiel
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain.
| |
Collapse
|
20
|
Wei C, Kim B, McKemy DD. Transient receptor potential melastatin 8 is required for nitroglycerin- and calcitonin gene-related peptide-induced migraine-like pain behaviors in mice. Pain 2022; 163:2380-2389. [PMID: 35353773 PMCID: PMC9519811 DOI: 10.1097/j.pain.0000000000002635] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/10/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Migraine is a complex neurovascular disorder that is one of the leading causes of disability and a reduced quality of life. Even with such a high societal impact, our understanding of the cellular and molecular mechanisms that contribute to migraine headaches is limited. To address this complex disorder, several groups have performed genome-wide association studies to elucidate migraine susceptibility genes, with many identifying transient receptor potential melastatin 8 (TRPM8), a cold-sensitive cation channel expressed in peripheral afferents innervating the trigeminovascular system, and the principal mediator of cold and cold pain associated with injury and disease. Interestingly, these migraine-associated single-nucleotide polymorphisms reside in noncoding regions of TRPM8, with those correlated with reduced migraine risk exhibiting lower TRPM8 expression and decreased cold sensitivity. Nonetheless, as a role for TRPM8 in migraine has yet to be defined, we sought to address this gap in our knowledge using mouse genetics and TRPM8 antagonism to determine whether TRPM8 channels or neurons are required for migraine-like pain (mechanical allodynia and facial grimace) in inducible migraine models. Our results show that both evoked and spontaneous pain behaviors are dependent on both TRPM8 channels and neurons, as well as required in both acute and chronic migraine models. Moreover, inhibition of TRPM8 channels prevented acute but not established chronic migraine-like pain. These results are consistent with its association with migraine in genetic analyses and establish that TRPM8 channels are a component of the underlying mechanisms of migraine.
Collapse
Affiliation(s)
- Chao Wei
- Neuroscience Graduate Program; University of Southern California, 3641 Watt Way / HNB 201, Los Angeles, CA 90089 U.S.A
| | - Brian Kim
- Neurobiology Section; Department of Biological Sciences, University of Southern California, 3641 Watt Way / HNB 201, Los Angeles, CA 90089 U.S.A
| | - David D. McKemy
- Neuroscience Graduate Program; University of Southern California, 3641 Watt Way / HNB 201, Los Angeles, CA 90089 U.S.A
- Neurobiology Section; Department of Biological Sciences, University of Southern California, 3641 Watt Way / HNB 201, Los Angeles, CA 90089 U.S.A
| |
Collapse
|
21
|
Marathon Performance and Pacing in the Doha 2019 Women's IAAF World Championships: Extreme Heat, Suboptimal Pacing, and High Failure Rates. Int J Sports Physiol Perform 2022; 17:1119-1125. [PMID: 35580843 DOI: 10.1123/ijspp.2022-0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE The Doha 2019 women's World Championship marathon took place in extreme hot (32 °C), humid conditions (74% relative humidity) culminating in unprecedented (41%) failure rates. We explored whether extreme heat or suboptimal pacing was responsible for diminished performance against a temperate "control" (London 2017: 19 °C, 59% relative humidity) and whether physical characteristics (eg, body surface area, estimated maximal oxygen uptake, habitual heat exposure) explained performance. METHOD Five-kilometer-pace (km·h-1) data underwent repeated-measures analyses of hot (Doha, n = 40) versus temperate pacing and performance (London, n = 78) within and between marathon pacing (finisher quartiles normalized against personal best; n = 10 per group) and within hot marathon finishers versus nonfinishers (up to 10 km; normalized data). Possible predictors (multiple regression) of hot marathon pacing were explored. Tests to .05 alpha level, partial eta squared (ηp2) indicates effect size. RESULTS Mean (SD) of Doha (14.82 [0.96] km·h-1) pace was slower (London: 15.74 [0.96] km·h-1; P = .00; ηp2=.500). In hot conditions, athletes finishing in positions 1 to 10 (group 1) started more conservatively (93.7% [2.1%] of personal best) than slower runners (groups 3 and 4; 96.6% [2.8%] of personal best; P < .05, ηp2=.303). Groups were not different at 15 km and then slowed immediately (groups 3 and 4) or after 20 km (group 2). Finishers and nonfinishers adopted similar pace up to 10 km (P > .05, ηp2=.003). World ranking predicted (P = .00; r2 = .248) average pace in Doha. CONCLUSION Extreme hot conditions reduced performance. Top 10 athletes adopted a conservative initial pace, whereas lower-placing athletes adopted a faster, aggressive start. Pacing alone does not explain high failure rates in nonfinishers. Athletes competing in the heat should initially pace conservatively to optimize performance.
Collapse
|
22
|
Kobus M, Żądzińska E, Sitek A, Pełka J, Rożniecki JJ, Antoszewski B. Risk of Migraine in Europeans with Low Melanin Levels—A Population Based Case-Control Study. Brain Sci 2022; 12:brainsci12050620. [PMID: 35625007 PMCID: PMC9139100 DOI: 10.3390/brainsci12050620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/04/2023] Open
Abstract
Populations with a relatively low concentration of melanin, e.g., inhabitants of Europe, North America, and Australia, are the most vulnerable to the harmful effects of UV radiation. Individuals with fair phototype are at greatest risk of developing skin cancer. Several neurological studies present that light skin may modify the risk of Alzheimer’s and Parkinson’s diseases. However, the relationship between migraine and skin pigmentation has not been investigated yet. The objective of this study is to provide evidence of the relationship between skin pigmentation and migraine prevalence in adults. We examined a group of 148 adults (33 men, 115 women) with migraine and a control group of 107 adults (43 men, 64 women). Parameters of skin pigmentation (melanin index, erythema index, CIElab, and RGB scales) were measured using a DSM II Cortex Technology dermospectrophotometer. Risk of migraine in lightly pigmented adults was elevated. Individuals with a low melanin index had over 3-fold increased risk of migraine (women: OR 3.53, men: OR 3.73). Fair phototype, which results from lightly pigmented skin, was associated with migraine prevalence. Migraineurs should take extra care to protect their skin from the negative effects of solar radiation.
Collapse
Affiliation(s)
- Magdalena Kobus
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (E.Ż.); (A.S.)
- Correspondence:
| | - Elżbieta Żądzińska
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (E.Ż.); (A.S.)
- Biological Anthropology and Comparative Anatomy Research Unit, School of Medicine, University of Adelaide, Adelaide 5005, SA, Australia
| | - Aneta Sitek
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (E.Ż.); (A.S.)
| | - Jacek Pełka
- Department of Neurology, Norbert Barlicki Memory University Teaching Hospital, 90-153 Lodz, Poland;
| | - Jacek J. Rożniecki
- Department of Neurology, Stroke and Neurorehabilitation, Medical University of Lodz, 90-153 Lodz, Poland;
| | - Bogusław Antoszewski
- Department of Plastic, Reconstructive and Aesthetic Surgery, Institute of Surgery, Medical University of Lodz, 90-153 Lodz, Poland;
| |
Collapse
|
23
|
Mörseburg A, Pagani L, Malyarchuk B, Derenko M, Kivisild T. Response to Wyckelsma et al.: Loss of α-actinin-3 during human evolution provides superior cold resilience and muscle heat generation. Am J Hum Genet 2022; 109:967-972. [PMID: 35523147 PMCID: PMC9118108 DOI: 10.1016/j.ajhg.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/18/2022] [Indexed: 11/19/2022] Open
Abstract
The common loss-of-function mutation R577X in the structural muscle protein ACTN3 emerged as a potential target of positive selection from early studies and has been the focus of insightful physiological work suggesting a significant impact on muscle metabolism. Adaptation to cold climates has been proposed as a key adaptive mechanism explaining its global allele frequency patterns. Here, we re-examine this hypothesis analyzing modern (n = 3,626) and ancient (n = 1,651) genomic data by using allele-frequency as well as haplotype homozygosity-based methods. The presented results are more consistent with genetic drift rather than selection in cold climates as the main driver of the ACTN3 R577X frequency distribution in human populations across the world. This Matters Arising paper is in response to Wyckelsma et al. (2021),1 published in The American Journal of Human Genetics. See also the response by Wyckelsma et al. (2022),2 published in this issue.
Collapse
Affiliation(s)
- Alexander Mörseburg
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, Tartu 51010, Estonia; Department of Biology, University of Padova, 35131 Padova, Italy
| | - Boris Malyarchuk
- Genetics Laboratory, Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya str. 18, Magadan 685000, Russia
| | - Miroslava Derenko
- Genetics Laboratory, Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya str. 18, Magadan 685000, Russia
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, Tartu 51010, Estonia; Department of Human Genetics, KU Leuven, Leuven, Herestraat 3000, Belgium.
| |
Collapse
|
24
|
Abrams MB, Brem RB. Temperature-dependent genetics of thermotolerance between yeast species. Front Ecol Evol 2022; 10:859904. [PMID: 36911365 PMCID: PMC10004143 DOI: 10.3389/fevo.2022.859904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many traits of industrial and basic biological interest arose long ago, and manifest now as fixed differences between a focal species and its reproductively isolated relatives. In these systems, extant individuals can hold clues to the mechanisms by which phenotypes evolved in their ancestors. We harnessed yeast thermotolerance as a test case for such molecular-genetic inferences. In viability experiments, we showed that extant Saccharomyces cerevisiae survived at temperatures where cultures of its sister species S. paradoxus died out. Then, focusing on loci that contribute to this difference, we found that the genetic mechanisms of high-temperature growth changed with temperature. We also uncovered an enrichment of low-frequency variants at thermotolerance loci in S. cerevisiae population sequences, suggestive of a history of non-neutral selective forces acting at these genes. We interpret these results in light of models of the evolutionary mechanisms by which the thermotolerance trait arose in the S. cerevisiae lineage. Together, our results and interpretation underscore the power of genetic approaches to explore how an ancient trait came to be.
Collapse
Affiliation(s)
- Melanie B. Abrams
- UC Berkeley, Department of Plant and Microbial Biology, Berkeley, CA, USA
| | - Rachel B. Brem
- UC Berkeley, Department of Plant and Microbial Biology, Berkeley, CA, USA
| |
Collapse
|
25
|
Crosby S, Butcher A, McDonald K, Berger N, Bekker PJ, Best R. Menthol Mouth Rinsing Maintains Relative Power Production during Three-Minute Maximal Cycling Performance in the Heat Compared to Cold Water and Placebo Rinsing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063527. [PMID: 35329209 PMCID: PMC8949398 DOI: 10.3390/ijerph19063527] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 11/16/2022]
Abstract
Previous menthol studies have demonstrated ergogenic effects in endurance-based activity. However, there is a need for research in sports whose physiological requirements exceed maximal aerobic capacity. This study assessed the effects of 0.1% menthol mouth-rinsing upon a modified three-minute maximal test in the heat (33.0 ± 3.0 °C; RH 46.0 ± 5.0%). In a randomised crossover single blind placebo-controlled study, 11 participants completed three modified maximal tests, where each trial included a different mouth rinse: either menthol (MEN), cold water (WAT) or placebo (PLA). Participants were asked to rate their thermal comfort (TC), thermal sensation (TS) and rating of perceived exertion (RPE) throughout the test. Heart rate, core temperature, oxygen uptake (VO2), ventilation (VE) and respiratory exchange ratio (RER) were monitored continuously throughout the test, alongside cycling power variables (W; W/kg). A blood lactate (BLa) level was taken pre- and post- test. Small to moderate effects (Cohen's d and accompanying 90% confidence intervals) between solutions MEN, WAT and PLA were observed towards the end of the test in relation to relative power. Specifically, from 75-105 s between solutions MEN and WAT (ES: 0.795; 90% CI: 0.204 to 1.352) and MEN and PLA (ES: 1.059; 90% CI: 0.412 to 1.666), this continued between MEN and WAT (ES: 0.729; 90% CI: 0.152 to 1.276) and MEN and PLA (ES: 0.791; 90% CI: 0.202 to 1.348) from 105-135 s. Between 135-165 s there was a moderate difference between solutions MEN and WAT (ES: 1.058; 90% CI: 0.411 to 1.665). This indicates participants produced higher relative power for longer durations with the addition of the menthol mouth rinse, compared to cold water or placebo. The use of menthol (0.1%) as a mouth rinse showed small performance benefits for short duration high intensity exercise in the heat.
Collapse
Affiliation(s)
- Seana Crosby
- Centre for Sport Science & Human Performance, Waikato Institute of Technology, Hamilton 3200, New Zealand; (S.C.); (A.B.); (K.M.); (P.J.B.)
| | - Anna Butcher
- Centre for Sport Science & Human Performance, Waikato Institute of Technology, Hamilton 3200, New Zealand; (S.C.); (A.B.); (K.M.); (P.J.B.)
| | - Kerin McDonald
- Centre for Sport Science & Human Performance, Waikato Institute of Technology, Hamilton 3200, New Zealand; (S.C.); (A.B.); (K.M.); (P.J.B.)
| | - Nicolas Berger
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK;
| | - Petrus J. Bekker
- Centre for Sport Science & Human Performance, Waikato Institute of Technology, Hamilton 3200, New Zealand; (S.C.); (A.B.); (K.M.); (P.J.B.)
| | - Russ Best
- Centre for Sport Science & Human Performance, Waikato Institute of Technology, Hamilton 3200, New Zealand; (S.C.); (A.B.); (K.M.); (P.J.B.)
- Correspondence:
| |
Collapse
|
26
|
Roca-Umbert A, Caro-Consuegra R, Londono-Correa D, Rodriguez-Lozano GF, Vicente R, Bosch E. Understanding signatures of positive natural selection in human zinc transporter genes. Sci Rep 2022; 12:4320. [PMID: 35279701 PMCID: PMC8918337 DOI: 10.1038/s41598-022-08439-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
Zinc is an essential micronutrient with a tightly regulated systemic and cellular homeostasis. In humans, some zinc transporter genes (ZTGs) have been previously reported as candidates for strong geographically restricted selective sweeps. However, since zinc homeostasis is maintained by the joint action of 24 ZTGs, other more subtle modes of selection could have also facilitated human adaptation to zinc availability. Here, we studied whether the complete set of ZTGs are enriched for signals of positive selection in worldwide populations and population groups from South Asia. ZTGs showed higher levels of genetic differentiation between African and non-African populations than would be randomly expected, as well as other signals of polygenic selection outside Africa. Moreover, in several South Asian population groups, ZTGs were significantly enriched for SNPs with unusually extended haplotypes and displayed SNP genotype-environmental correlations when considering zinc deficiency levels in soil in that geographical area. Our study replicated some well-characterized targets for positive selection in East Asia and sub-Saharan Africa, and proposes new candidates for follow-up in South Asia (SLC39A5) and Africa (SLC39A7). Finally, we identified candidate variants for adaptation in ZTGs that could contribute to different disease susceptibilities and zinc-related human health traits.
Collapse
Affiliation(s)
- Ana Roca-Umbert
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Rocio Caro-Consuegra
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Diego Londono-Correa
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Gabriel Felipe Rodriguez-Lozano
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Ruben Vicente
- Laboratory of Molecular Physiology, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Elena Bosch
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 43206, Reus, Spain.
| |
Collapse
|
27
|
A pilot analysis of headache disorders in breast cancer patients. Neurol Sci 2021; 43:3313-3320. [PMID: 34817729 DOI: 10.1007/s10072-021-05698-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/24/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The interaction between breast cancer and migraine is complex and not fully elucidated. Large epidemiological studies point towards a beneficial effect of migraines on breast cancer (BC). We aimed to investigate the BC-migraine relationship, with strict data checks and clinical evaluations of both BC and common headache forms. METHODS Consecutive BC patients were evaluated with the International Classification of Headache Disorders. Clinical data on the BC subtypes and treatments were collected. Parametric and nonparametric statistics were used according to data distributions. RESULTS Fifty patients were recruited. The mean age was 53.5 ± 12.5 years; 42% were postmenopausal, 52% were premenopausal, and 6% were peri-menopausal. Eleven patients were diagnosed as luminal A, nine as luminal B, 24 as HER2-positive (HER2 +), six as triple-negative BC. Thirty-eight (76%) patients had hormone receptor-positive disease. Ninety-two percent received chemotherapy, 66% received endocrine therapy, and 52% received radiotherapy. Nine out of 50 reported a worsening of headache after systemic treatment. Migraine was diagnosed in 29 patients (18 with menstrual migraine), tension-type headache (TTH) in nine, and no headache in 12. Patients with migraine were younger (48.4 ± 10.7 vs. 60.5 ± 12; p < 0.01). Patients with migraine and TTH had a higher chance of having a HER2 + BC (p < 0.05). Active migraine was associated with a higher expression of estrogen receptors (p = 0.04). CONCLUSIONS Patients with active migraine had higher estrogen receptor expression, while migraine and TTH patients mainly had HER2 + BC. This association was not known earlier and could be helpful to understand deeper the relationship between BC and headache.
Collapse
|
28
|
Yasukochi Y, Shin S, Wakabayashi H, Maeda T. Upregulation of cathepsin L gene under mild cold conditions in young Japanese male adults. J Physiol Anthropol 2021; 40:16. [PMID: 34686211 PMCID: PMC8533667 DOI: 10.1186/s40101-021-00267-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/09/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Physiological thermoregulatory systems in humans have been a key factor for adaptation to local environments after their exodus from Africa, particularly, to cold environments outside Africa. Recent studies using high-throughput sequencing have identified various genes responsible for cold adaptation. However, the molecular mechanisms underlying initial thermoregulation in response to acute cold exposure remain unclear. Therefore, we investigated transcriptional profiles of six young Japanese male adults exposed to acute cold stress. METHODS In a climatic chamber, the air temperature was maintained at 28°C for 65 min and was then gradually decreased to 19°C for 70 min. Saliva samples were obtained from the subjects at 28°C before and after 19°C cold exposure and were used for RNA sequencing. RESULTS In the cold exposure experiment, expression levels of 14 genes were significantly changed [false discovery rate (FDR) < 0.05] although the degree of transcriptional changes was not high due to experimental conditions or blunted transcriptional reaction in saliva to cold stress. As a result, differential gene expression analyses detected the cathepsin L (CTSL) gene to be significantly upregulated, with FDR < 0.05 and log2 fold change value > 1; thus, this gene was identified as a differentially expressed gene. Given that the cathepsin L protein is related to invasion of the novel coronavirus (SARS-CoV-2), mild cold stress might alter the susceptibility to coronavirus disease-19 in humans. The gene ontology enrichment analysis for 14 genes with FDR < 0.05 suggested that immune-related molecules could be activated by mild cold stress. CONCLUSIONS The results obtained from this study indicate that CTSL expression levels can be altered by acute mild cold stress.
Collapse
Affiliation(s)
- Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Organization for the Promotion of Regional Innovation, Mie University, 1577 Kurima-machiya, Tsu, Mie, 514-8507, Japan.
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan.
| | - Sora Shin
- Department of Human Science, Graduate School of Design, Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka, 815-8540, Japan
| | - Hitoshi Wakabayashi
- Faculty of Engineering, Hokkaido University, N13 W8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Takafumi Maeda
- Department of Human Science, Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka, 815-8540, Japan
- Physiological Anthropology Research Center, Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka, 815-8540, Japan
| |
Collapse
|
29
|
Dilution Method of Menthol Solutions Affects Subsequent Perceptual Thermal Responses during Passive Heat Exposure in Non-Heat Acclimated Participants. BEVERAGES 2021. [DOI: 10.3390/beverages7030062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Due to its volatility, the qualitative experience of menthol may be modulated by its preparation and combination with other compounds. One such method of preparation is dilution, with two dilution methods existing within the sport and exercise science literature, where menthol is used to impart feelings of oral cooling and improve thermal comfort and sensation during heat exposure. This study compared these two dilution methods; one using a solvent the other using temperature, via a randomized counterbalanced repeated measures design (n = 12; Height: 174.0 ± 8.5 cm Mass: 73.4 ± 13.3 kg Age: 28.7 ± 8.4 y; two exposures to each solution) to assess the effect of solution and heat exposure, upon thermal comfort, thermal sensation and associated physiological parameters in non-heat acclimated participants. Thermal comfort was significantly affected by solution (p = 0.041; η2 = 0.017) and time (p < 0.001; η2 = 0.228), whereas thermal sensation was significantly affected by time only (p = 0.012; η2 = 0.133), as was tympanic temperature (p < 0.001; η2 = 0.277). Small to moderate clear differences between solutions at matched time points were also observed. These trends and effects suggest that, depending upon the dilution method employed, the resultant perceptual effects are likely impacted; this also likely depends upon the timing of menthol administration within a heat exposure session.
Collapse
|
30
|
Evidence for opposing selective forces operating on human-specific duplicated TCAF genes in Neanderthals and humans. Nat Commun 2021; 12:5118. [PMID: 34433829 PMCID: PMC8387397 DOI: 10.1038/s41467-021-25435-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 08/04/2021] [Indexed: 11/30/2022] Open
Abstract
TRP channel-associated factor 1/2 (TCAF1/TCAF2) proteins antagonistically regulate the cold-sensor protein TRPM8 in multiple human tissues. Understanding their significance has been complicated given the locus spans a gap-ridden region with complex segmental duplications in GRCh38. Using long-read sequencing, we sequence-resolve the locus, annotate full-length TCAF models in primate genomes, and show substantial human-specific TCAF copy number variation. We identify two human super haplogroups, H4 and H5, and establish that TCAF duplications originated ~1.7 million years ago but diversified only in Homo sapiens by recurrent structural mutations. Conversely, in all archaic-hominin samples the fixation for a specific H4 haplotype without duplication is likely due to positive selection. Here, our results of TCAF copy number expansion, selection signals in hominins, and differential TCAF2 expression between haplogroups and high TCAF2 and TRPM8 expression in liver and prostate in modern-day humans imply TCAF diversification among hominins potentially in response to cold or dietary adaptations. Duplications of gene segments can allow novel physiological adaptations to evolve. A detailed analysis of the TCAF gene family in primates and archaic humans suggest rapid duplication and diversification in this gene family is associated with cold or dietary adaptations.
Collapse
|
31
|
Nunes K, Maia MHT, Dos Santos EJM, Dos Santos SEB, Guerreiro JF, Petzl-Erler ML, Bedoya G, Gallo C, Poletti G, Llop E, Tsuneto L, Bortolini MC, Rothhammer F, Single R, Ruiz-Linares A, Rocha J, Meyer D. How natural selection shapes genetic differentiation in the MHC region: A case study with Native Americans. Hum Immunol 2021; 82:523-531. [PMID: 33812704 PMCID: PMC8217218 DOI: 10.1016/j.humimm.2021.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 02/15/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022]
Abstract
The Human Leukocyte Antigen (HLA) loci are extremely well documented targets of balancing selection, yet few studies have explored how selection affects population differentiation at these loci. In the present study we investigate genetic differentiation at HLA genes by comparing differentiation at microsatellites distributed genomewide to those in the MHC region. Our study uses a sample of 494 individuals from 30 human populations, 28 of which are Native Americans, all of whom were typed for genomewide and MHC region microsatellites. We find greater differentiation in the MHC than in the remainder of the genome (FST-MHC = 0.130 and FST-Genomic = 0.087), and use a permutation approach to show that this difference is statistically significant, and not accounted for by confounding factors. This finding lies in the opposite direction to the expectation that balancing selection reduces population differentiation. We interpret our findings as evidence that selection favors different sets of alleles in distinct localities, leading to increased differentiation. Thus, balancing selection at HLA genes simultaneously increases intra-population polymorphism and inter-population differentiation in Native Americans.
Collapse
Affiliation(s)
- Kelly Nunes
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | - Gabriel Bedoya
- Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Giovanni Poletti
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Elena Llop
- Instituto de Ciencias Biomédicas, Faculdad de Medicina, Universidade de Chile, Santiago, Chile
| | - Luiza Tsuneto
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, Brazil
| | - Maria Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Richard Single
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT, USA
| | - Andrés Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200433, China; D Aix-Marseille University, CNRS, EFS, ADES, Marseille 13007, France
| | - Jorge Rocha
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal; CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Porto, Portugal.
| | - Diogo Meyer
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
32
|
Life History Is a Major Source of Adaptive Individual and Species Differences: a Critical Commentary on Zietsch and Sidari (2020). EVOLUTIONARY PSYCHOLOGICAL SCIENCE 2021. [DOI: 10.1007/s40806-021-00280-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Ferris KG, Chavez AS, Suzuki TA, Beckman EJ, Phifer-Rixey M, Bi K, Nachman MW. The genomics of rapid climatic adaptation and parallel evolution in North American house mice. PLoS Genet 2021; 17:e1009495. [PMID: 33914747 PMCID: PMC8084166 DOI: 10.1371/journal.pgen.1009495] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 03/17/2021] [Indexed: 12/23/2022] Open
Abstract
Parallel changes in genotype and phenotype in response to similar selection pressures in different populations provide compelling evidence of adaptation. House mice (Mus musculus domesticus) have recently colonized North America and are found in a wide range of environments. Here we measure phenotypic and genotypic differentiation among house mice from five populations sampled across 21° of latitude in western North America, and we compare our results to a parallel latitudinal cline in eastern North America. First, we show that mice are genetically differentiated between transects, indicating that they have independently colonized similar environments in eastern and western North America. Next, we find genetically-based differences in body weight and nest building behavior between mice from the ends of the western transect which mirror differences seen in the eastern transect, demonstrating parallel phenotypic change. We then conduct genome-wide scans for selection and a genome-wide association study to identify targets of selection and candidate genes for body weight. We find some genomic signatures that are unique to each transect, indicating population-specific responses to selection. However, there is significant overlap between genes under selection in eastern and western house mouse transects, providing evidence of parallel genetic evolution in response to similar selection pressures across North America.
Collapse
Affiliation(s)
- Kathleen G. Ferris
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Andreas S. Chavez
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Taichi A. Suzuki
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Elizabeth J. Beckman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Megan Phifer-Rixey
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Ke Bi
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Michael W. Nachman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| |
Collapse
|
34
|
Naumov DE, Kotova OO, Gassan DA, Sugaylo IY, Afanas’eva EY, Sheludko EG, Perelman JM. Effect of TRPM8 and TRPA1 Polymorphisms on COPD Predisposition and Lung Function in COPD Patients. J Pers Med 2021; 11:108. [PMID: 33567636 PMCID: PMC7915134 DOI: 10.3390/jpm11020108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 01/13/2023] Open
Abstract
Certain transient receptor potential (TRP) channels including TRPM8 and TRPA1 are widely expressed in the respiratory tract and have been shown to be the receptors of cigarette smoke and particulate matter-the main causative factors of chronic obstructive pulmonary disease (COPD). The aim of the study was to investigate the effect of TRPM8 and TRPA1 polymorphisms on COPD predisposition and lung function in COPD patients. The study enrolled 143 COPD patients and 104 smokers with post-bronchodilator forced expiratory volume in one second (FEV1)/forced vital capacity (FVC) > 70%. Lung function was measured by spirometry. TRPM8 and TRPA1 polymorphisms were genotyped by LATE-PCR. None of the polymorphisms significantly influenced COPD predisposition after correction for covariates and multiple testing. Among COPD patients, the TT genotype of TRPA1 rs7819749 was significantly associated with higher degree of bronchial obstruction. In addition, we established that carriers of the C allele of TRPM8 rs11562975 more commonly had post-bronchodilator FEV1 < 60% (OR 3.2, 95%CI (1.14-8.94), p = 0.03) and revealed the effect of TRPA1 rs959976 and TRPM8 rs17865682 on bronchodilator response in COPD. Thus, the obtained results suggest possible involvement of TRPM8 and TRPA1 in COPD pathogenesis, indicating the necessity to further investigate their functional role in this pathology.
Collapse
Affiliation(s)
- Denis E. Naumov
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Laboratory of Molecular and Translational Research, 675000 Blagoveshchensk, Russia; (O.O.K.); (D.A.G.); (I.Y.S.); (E.Y.A.); (E.G.S.)
| | - Olesya O. Kotova
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Laboratory of Molecular and Translational Research, 675000 Blagoveshchensk, Russia; (O.O.K.); (D.A.G.); (I.Y.S.); (E.Y.A.); (E.G.S.)
| | - Dina A. Gassan
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Laboratory of Molecular and Translational Research, 675000 Blagoveshchensk, Russia; (O.O.K.); (D.A.G.); (I.Y.S.); (E.Y.A.); (E.G.S.)
| | - Ivana Y. Sugaylo
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Laboratory of Molecular and Translational Research, 675000 Blagoveshchensk, Russia; (O.O.K.); (D.A.G.); (I.Y.S.); (E.Y.A.); (E.G.S.)
| | - Evgeniya Y. Afanas’eva
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Laboratory of Molecular and Translational Research, 675000 Blagoveshchensk, Russia; (O.O.K.); (D.A.G.); (I.Y.S.); (E.Y.A.); (E.G.S.)
| | - Elizaveta G. Sheludko
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Laboratory of Molecular and Translational Research, 675000 Blagoveshchensk, Russia; (O.O.K.); (D.A.G.); (I.Y.S.); (E.Y.A.); (E.G.S.)
| | - Juliy M. Perelman
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Laboratory of Functional Research of the Respiratory System, 675000 Blagoveshchensk, Russia;
| |
Collapse
|
35
|
Perceptual and Physiological Responses to Carbohydrate and Menthol Mouth-Swilling Solutions: A Repeated Measures Cross-Over Preliminary Trial. BEVERAGES 2021. [DOI: 10.3390/beverages7010009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Carbohydrate and menthol mouth-swilling have been used to enhance exercise performance in the heat. However, these strategies differ in mechanism and subjective experience. Participants (n = 12) sat for 60 min in hot conditions (35 °C; 15 ± 2%) following a 15 min control period, during which the participants undertook three 15 min testing blocks. A randomised swill (carbohydrate; menthol; water) was administered per testing block (one swill every three minutes within each block). Heart rate, tympanic temperature, thermal comfort, thermal sensation and thirst were recorded every three minutes. Data were analysed by ANOVA, with carbohydrate intake controlled for via ANCOVA. Small elevations in heart rate were observed after carbohydrate (ES: 0.22 ± 90% CI: −0.09–0.52) and water swilling (0.26; −0.04–0.54). Menthol showed small improvements in thermal comfort relative to carbohydrate (−0.33; −0.63–0.03) and water (−0.40; from −0.70 to −0.10), and induced moderate reductions in thermal sensation (−0.71; from −1.01 to −0.40 and −0.66; from −0.97 to −0.35, respectively). Menthol reduced thirst by a small to moderate extent. These effects persisted when controlling for dietary carbohydrate intake. Carbohydrate and water may elevate heart rate, whereas menthol elicits small improvements in thermal comfort, moderately improves thermal sensation and may mitigate thirst; these effects persist when dietary carbohydrate intake is controlled for.
Collapse
|
36
|
Saravanan K, Panigrahi M, Kumar H, Bhushan B, Dutt T, Mishra B. Genome-wide analysis of genetic diversity and selection signatures in three Indian sheep breeds. Livest Sci 2021. [DOI: 10.1016/j.livsci.2020.104367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Biddanda A, Rice DP, Novembre J. A variant-centric perspective on geographic patterns of human allele frequency variation. eLife 2020; 9:60107. [PMID: 33350384 PMCID: PMC7755386 DOI: 10.7554/elife.60107] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022] Open
Abstract
A key challenge in human genetics is to understand the geographic distribution of human genetic variation. Often genetic variation is described by showing relationships among populations or individuals, drawing inferences over many variants. Here, we introduce an alternative representation of genetic variation that reveals the relative abundance of different allele frequency patterns. This approach allows viewers to easily see several features of human genetic structure: (1) most variants are rare and geographically localized, (2) variants that are common in a single geographic region are more likely to be shared across the globe than to be private to that region, and (3) where two individuals differ, it is most often due to variants that are found globally, regardless of whether the individuals are from the same region or different regions. Our variant-centric visualization clarifies the geographic patterns of human variation and can help address misconceptions about genetic differentiation among populations.
Collapse
Affiliation(s)
- Arjun Biddanda
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Daniel P Rice
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - John Novembre
- Department of Human Genetics, University of Chicago, Chicago, United States
| |
Collapse
|
38
|
Abstract
As human populations spread across the world, they adapted genetically to local conditions. So too did the resident microorganism communities that everyone carries with them. However, the collective influence of the diverse and dynamic community of resident microbes on host evolution is poorly understood. The taxonomic composition of the microbiota varies among individuals and displays a range of sometimes redundant functions that modify the physicochemical environment of the host and may alter selection pressures. Here we review known human traits and genes for which the microbiota may have contributed or responded to changes in host diet, climate, or pathogen exposure. Integrating host–microbiota interactions in human adaptation could offer new approaches to improve our understanding of human health and evolution.
Collapse
Affiliation(s)
- Taichi A. Suzuki
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ruth E. Ley
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
39
|
Giuliani C, Franceschi C, Luiselli D, Garagnani P, Ulijaszek S. Ecological Sensing Through Taste and Chemosensation Mediates Inflammation: A Biological Anthropological Approach. Adv Nutr 2020; 11:1671-1685. [PMID: 32647890 PMCID: PMC7666896 DOI: 10.1093/advances/nmaa078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/24/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Ecological sensing and inflammation have evolved to ensure optima between organism survival and reproductive success in different and changing environments. At the molecular level, ecological sensing consists of many types of receptors located in different tissues that orchestrate integrated responses (immune, neuroendocrine systems) to external and internal stimuli. This review describes emerging data on taste and chemosensory receptors, proposing them as broad ecological sensors and providing evidence that taste perception is shaped not only according to sense epitopes from nutrients but also in response to highly diverse external and internal stimuli. We apply a biological anthropological approach to examine how ecological sensing has been shaped by these stimuli through human evolution for complex interkingdom communication between a host and pathological and symbiotic bacteria, focusing on population-specific genetic diversity. We then focus on how these sensory receptors play a major role in inflammatory processes that form the basis of many modern common metabolic diseases such as obesity, type 2 diabetes, and aging. The impacts of human niche construction and cultural evolution in shaping environments are described with emphasis on consequent biological responsiveness.
Collapse
Affiliation(s)
- Cristina Giuliani
- Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology and Centre for Genome Biology, University of Bologna, Bologna, Italy
- School of Anthropology and Museum Ethnography, University of Oxford, Oxford, United Kingdom
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Donata Luiselli
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
- Department of Cultural Heritage (DBC), Laboratory of Ancient DNA (aDNALab), Campus of Ravenna, University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | - Stanley Ulijaszek
- School of Anthropology and Museum Ethnography, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
40
|
Kalyakulina A, Iannuzzi V, Sazzini M, Garagnani P, Jalan S, Franceschi C, Ivanchenko M, Giuliani C. Investigating Mitonuclear Genetic Interactions Through Machine Learning: A Case Study on Cold Adaptation Genes in Human Populations From Different European Climate Regions. Front Physiol 2020; 11:575968. [PMID: 33262703 PMCID: PMC7686538 DOI: 10.3389/fphys.2020.575968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/14/2020] [Indexed: 01/18/2023] Open
Abstract
Cold climates represent one of the major environmental challenges that anatomically modern humans faced during their dispersal out of Africa. The related adaptive traits have been achieved by modulation of thermogenesis and thermoregulation processes where nuclear (nuc) and mitochondrial (mt) genes play a major role. In human populations, mitonuclear genetic interactions are the result of both the peculiar genetic history of each human group and the different environments they have long occupied. This study aims to investigate mitonuclear genetic interactions by considering all the mitochondrial genes and 28 nuclear genes involved in brown adipose tissue metabolism, which have been previously hypothesized to be crucial for cold adaptation. For this purpose, we focused on three human populations (i.e., Finnish, British, and Central Italian people) of European ancestry from different biogeographical and climatic areas, and we used a machine learning approach to identify relevant nucDNA–mtDNA interactions that characterized each population. The obtained results are twofold: (i) at the methodological level, we demonstrated that a machine learning approach is able to detect patterns of genetic structure among human groups from different latitudes both at single genes and by considering combinations of mtDNA and nucDNA loci; (ii) at the biological level, the analysis identified population-specific nuclear genes and variants that likely play a relevant biological role in association with a mitochondrial gene (such as the “obesity gene” FTO in Finnish people). Further studies are needed to fully elucidate the evolutionary dynamics (e.g., migration, admixture, and/or local adaptation) that shaped these nucDNA–mtDNA interactions and their functional role.
Collapse
Affiliation(s)
- Alena Kalyakulina
- Department of Applied Mathematics, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Vincenzo Iannuzzi
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy.,Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marco Sazzini
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Sarika Jalan
- Complex Systems Laboratory, Discipline of Physics, Indian Institute of Technology Indore, Indore, India.,Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Mikhail Ivanchenko
- Department of Applied Mathematics, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Laboratory of Systems Medicine of Healthy Aging, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.,School of Anthropology and Museum Ethnography, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
41
|
Oh EH, Shin JH, Cho JW, Choi SY, Choi KD, Choi JH. TRPM7 as a Candidate Gene for Vestibular Migraine. Front Neurol 2020; 11:595042. [PMID: 33193064 PMCID: PMC7649787 DOI: 10.3389/fneur.2020.595042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
Objectives: Vestibular migraine (VM) is a common vestibular disorder, and familial aggregation of VM with autosomal-dominant inheritance has been described, which supports a genetic background. This study aimed to describe the clinical phenotype of a family with VM, and identify a candidate gene for VM. Methods: We recruited six individuals (four affected and two unaffected) from three consecutive generations of a Korean family with VM, and performed whole-exome sequencing to search for candidate genes. Results: All affected individuals presented with recurrent vertigo, headache, and nausea/vomiting that fulfilled the diagnostic criteria of VM. Two individuals also experienced transient hemiparesis or dysarthria during the episodes. The symptoms were triggered by physical or emotional stress. Interictal examinations showed uni- or bi-directional horizontal gaze-evoked nystagmus in three of the individuals. They had no causative mutations in genes causing familial hemiplegic migraine or episodic ataxia. Through whole-exome sequencing from three affected individuals, we identified a nonsense mutation c.3526C>T in TRPM7 that encodes a cation channel selective to Ca2+ and Mg2+. Conclusions: Alterations in intracellular Ca2+ and Mg2+ homeostasis by TRPM7 mutation may contribute to the development of the VM phenotype. Our result suggest that TRPM7 is a novel candidate gene for VM.
Collapse
Affiliation(s)
- Eun Hye Oh
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Jin-Hong Shin
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Jae Wook Cho
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Seo-Young Choi
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, South Korea
| | - Kwang-Dong Choi
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, South Korea
| | - Jae-Hwan Choi
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| |
Collapse
|
42
|
Barwood MJ, Gibson OR, Gillis DJ, Jeffries O, Morris NB, Pearce J, Ross ML, Stevens C, Rinaldi K, Kounalakis SN, Riera F, Mündel T, Waldron M, Best R. Menthol as an Ergogenic Aid for the Tokyo 2021 Olympic Games: An Expert-Led Consensus Statement Using the Modified Delphi Method. Sports Med 2020; 50:1709-1727. [PMID: 32623642 PMCID: PMC7497433 DOI: 10.1007/s40279-020-01313-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Menthol topical application and mouth rinsing are ergogenic in hot environments, improving performance and perception, with differing effects on body temperature regulation. Consequently, athletes and federations are beginning to explore the possible benefits to elite sport performance for the Tokyo 2021 Olympics, which will take place in hot (~ 31 °C), humid (70% RH) conditions. There is no clear consensus on safe and effective menthol use for athletes, practitioners, or researchers. The present study addressed this shortfall by producing expert-led consensus recommendations. METHOD Fourteen contributors were recruited following ethical approval. A three-step modified Delphi method was used for voting on 96 statements generated following literature consultation; 192 statements total (96/96 topical application/mouth rinsing). Round 1 contributors voted to "agree" or "disagree" with statements; 80% agreement was required to accept statements. In round 2, contributors voted to "support" or "change" their round 1 unaccepted statements, with knowledge of the extant voting from round 1. Round 3 contributors met to discuss voting against key remaining statements. RESULTS Forty-seven statements reached consensus in round 1 (30/17 topical application/rinsing); 14 proved redundant. Six statements reached consensus in round 2 (2/4 topical application/rinsing); 116 statements proved redundant. Nine further statements were agreed in round 3 (6/3 topical application/rinsing) with caveats. DISCUSSION Consensus was reached on 62 statements in total (38/24 topical application/rinsing), enabling the development of guidance on safe menthol administration, with a view to enhancing performance and perception in the heat without impairing body temperature regulation.
Collapse
Affiliation(s)
- M J Barwood
- Department of Sport, Health and Nutrition, Leeds Trinity University, Brownberrie Lane, Horsforth, Leeds, LS18 5HD, UK.
| | - O R Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Department Life Sciences, Division of Sport, Health and Exercise Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - D J Gillis
- Human Performance Laboratory, Department of Sport and Movement Science, Salem State University, Salem, MA, 01970, USA
| | - O Jeffries
- School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Catherine Cookson Building, Newcastle Upon Tyne, NE2 4HH, UK
| | - N B Morris
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100, Copenhagen, Denmark
| | - J Pearce
- Performance Nutrition Technical Lead, High Performance Sport New Zealand, Auckland, New Zealand
| | - M L Ross
- Australian Institute of Sport, Bruce, 2617, Australia
- Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, 3000, Australia
| | - C Stevens
- School of Health and Human Sciences, Southern Cross University, Hogbin Dr, Coffs Harbour, NSW, 2450, Australia
| | - K Rinaldi
- Laboratoire ACTES (EA3596), Université des Antilles et de la Guyane, BP 250, 97157, Pointe-à-Pitre, France
- Arkea Samsic Pro Cycling Team, 35170, Bruz, France
| | - S N Kounalakis
- Faculty of Physical and Cultural Education, Evelpidon Hellenic Army Academy, Vari, Greece
| | - F Riera
- UPRES EA 35-96, UFR-STAPS, Université des Antilles et de la Guyane, BP 250, 97157, Pointe à Pitre Cedex, France
- Laboratoire Performance Santé Altitude, Université de Perpignan Via Domitia, UFR Sciences et Techniques des Activités Physiques et Sportives, 7 avenue Pierre de Coubertin, 66120, Font-Romeu, France
| | - T Mündel
- School of Sport Exercise and Nutrition, Massey University, Palmerston, New Zealand
| | - M Waldron
- College of Engineering, Applied Sports Science Technology and Medicine Research Centre (A-STEM), Swansea University Bay Campus, Swansea, Wales, UK
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - R Best
- Centre for Sport Science and Human Performance, Waikato Institute of Technology, Hamilton, 3200, New Zealand
- School of Health and Social Care, Teesside University, Middlesbrough, Tees Valley, TS1 3BX, UK
| |
Collapse
|
43
|
Can the aging influence cold environment mediated cancer risk in the USA female population? J Therm Biol 2020; 92:102676. [PMID: 32888573 DOI: 10.1016/j.jtherbio.2020.102676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/31/2022]
Abstract
Cancer is one of the most debilitating diseases worldwide. Cancer incidence and/or death depends on several intrinsic and extrinsic factors (e.g., dietary habits, socio-behavioral activities, physical inactivity, smoking, alcohol consumption, gender, races/ethnicities and age). Various studies have found that an inverse relationship subsists between environmental temperature and cancer risk. Furthermore, this negative relationship was found to be more consistent in the USA female population. This research mainly focuses on influence of aging on cold environment mediated cancer risk for overall and various anatomical site-specific cancers. Age-specific county-wise data of cancer incidence rate (CIR) in the USA female population was selected in this study. Statistical analysis found a negative correlation between the average annual temperature (AAT) and CIR in all anatomical sites (AAS; overall) as well as different anatomical site-specific cancers (e.g., breast, melanoma, leukaemia, pancreas, bladder, uterus, thyroid and non-Hodgkin's lymphoma (NHL), except for cervical cancer) in different age groups (e.g., less than 50 years, 50 plus years, less than 65 years and 65 plus years). In addition, an inverse relationship between the AAT and CIR was found in case of paediatric cancer. However, all the results obtained from the linear model based statistical analysis proposed that the older age-group of females particularly above 65 years seems to be more prone to cold temperature linked cancer risk. For example, age-specific cold linked cancer incidence appears to be more inclined in case of breast cancer in the age-group of 65 plus years. This study, for first time, proposes that aging may have a positive influence on the relationship between cancer incidence and environment temperature.
Collapse
|
44
|
Fogarty L, Kandler A. The fundamentals of cultural adaptation: implications for human adaptation. Sci Rep 2020; 10:14318. [PMID: 32868809 PMCID: PMC7459347 DOI: 10.1038/s41598-020-70475-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/11/2020] [Indexed: 11/08/2022] Open
Abstract
The process of human adaptation to novel environments is a uniquely complex interplay between cultural and genetic changes. However, mechanistically, we understand little about these processes. To begin to untangle these threads of human adaptation we use mathematical models to describe and investigate cultural selective sweeps. We show that cultural sweeps differ in important ways from the genetic equivalents. The models show that the dynamics of cultural selective sweeps and, consequently, their differences from genetic sweeps depend critically on cultural transmission mechanisms. Further, we consider the effect of processes unique to culture such as foresight and innovations in response to an environmental change on adaptation. Finally we show that a 'cultural evolutionary rescue', or the survival of an endangered population by means of cultural adaptation, is possible. We suggest that culture might make a true, genetic, evolutionary rescue plausible for human populations.
Collapse
Affiliation(s)
- Laurel Fogarty
- Theory in Cultural Evolution Lab, Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anne Kandler
- Theory in Cultural Evolution Lab, Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
45
|
Liu Y, Mikrani R, He Y, Faran Ashraf Baig MM, Abbas M, Naveed M, Tang M, Zhang Q, Li C, Zhou X. TRPM8 channels: A review of distribution and clinical role. Eur J Pharmacol 2020; 882:173312. [PMID: 32610057 DOI: 10.1016/j.ejphar.2020.173312] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
Ion channels are important therapeutic targets due to their plethoric involvement in physiological and pathological consequences. The transient receptor potential cation channel subfamily M member 8 (TRPM8) is a nonselective cation channel that controls Ca2+ homeostasis. It has been proposed to be the predominant thermoreceptor for cellular and behavioral responses to cold stimuli in the transient receptor potential (TRP) channel subfamilies and exploited so far to reach the clinical-stage of drug development. TRPM8 channels can be found in multiple organs and tissues, regulating several important processes such as cell proliferation, migration and apoptosis, inflammatory reactions, immunomodulatory effects, pain, and vascular muscle tension. The related disorders have been expanded to new fields ranging from cancer and migraine to dry eye disease, pruritus, irritable bowel syndrome (IBS), and chronic cough. This review is aimed to summarize the distribution of TRPM8 and disorders related to it from a clinical perspective, so as to broaden the scope of knowledge of researchers to conduct more studies on this subject.
Collapse
Affiliation(s)
- Yuqian Liu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Reyaj Mikrani
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Yanjun He
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Muhammad Abbas
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Muhammad Naveed
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Meng Tang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Qin Zhang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Cuican Li
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Xiaohui Zhou
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China; Department of Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province, 210017, PR China; Department of Surgery, Nanjing Shuiximen Hospital, Jiangsu Province, 210017, PR China.
| |
Collapse
|
46
|
Rees JS, Castellano S, Andrés AM. The Genomics of Human Local Adaptation. Trends Genet 2020; 36:415-428. [DOI: 10.1016/j.tig.2020.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 01/23/2023]
|
47
|
Abstract
Taste is a homeostatic function that conveys valuable information, such as energy density, readiness to eat, or toxicity of foodstuffs. Taste is not limited to the oral cavity but affects multiple physiological systems. In this review, we outline the ergogenic potential of substances that impart bitter, sweet, hot and cold tastes administered prior to and during exercise performance and whether the ergogenic benefits of taste are attributable to the placebo effect. Carbohydrate mouth rinsing seemingly improves endurance performance, along with a potentially ergogenic effect of oral exposure to both bitter tastants and caffeine although subsequent ingestion of bitter mouth rinses is likely required to enhance performance. Hot and cold tastes may prove beneficial in circumstances where athletes' thermal state may be challenged. Efficacy is not limited to taste, but extends to the stimulation of targeted receptors in the oral cavity and throughout the digestive tract, relaying signals pertaining to energy availability and temperature to appropriate neural centres. Dose, frequency and timing of tastant application likely require personalisation to be most effective, and can be enhanced or confounded by factors that relate to the placebo effect, highlighting taste as a critical factor in designing and administering applied sports science interventions.
Collapse
|
48
|
Bandyopadhayaya S, Ford B, Mandal CC. Cold-hearted: A case for cold stress in cancer risk. J Therm Biol 2020; 91:102608. [PMID: 32716858 DOI: 10.1016/j.jtherbio.2020.102608] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
A negative correlation exists between environmental temperature and cancer risk based on both epidemiological and statistical analyses. Previously, cold stress was reported to be an effective cause of tumorigenesis. Several studies have demonstrated that cold temperature serves as a potential risk factor in cancer development. Most recently, a link was demonstrated between the effects of extreme cold climate on cancer incidence, pinpointing its impact on tumour suppressor genes by causing mutation. The underlying mechanism behind cold stress and its association with tumorigenesis is not well understood. Hence, this review intends to shed light on the role of associated factors, genetic and/or non-genetic, which are modulated by cold temperature, and eventually influence tumorigenic potential. While scrutinizing the effect of cold exposure on the body, the expression of certain genes, e.g. uncoupled proteins and heat-shock proteins, were elevated. Biological chemicals such as norepinephrine, thyroxine, and cholesterol were also elevated. Brown adipose tissue, which plays an essential role in thermogenesis, displayed enhanced activity upon cold exposure. Adaptive measures are utilized by the body to tolerate the cold, and in doing so, invites both epigenetic and genetic changes. Unknowingly, these adaptive strategies give rise to a lethal outcome i.e., genesis of cancer. Concisely, this review attempts to draw a link between cold stress, genetic and epigenetic changes, and tumorigenesis and aspires to ascertain the mechanism behind cold temperature-mediated cancer risk.
Collapse
Affiliation(s)
| | - Bridget Ford
- Department of Biology, University of the Incarnate Word, San Antonio, TX, 78209, USA
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, 305817, India.
| |
Collapse
|
49
|
Zhang L, Wang Z, Wang X, Chen Z, Shao L, Tian Y, Zheng C, Li S, Zhu M, Gao R. Prevalence of overweight and obesity in China: Results from a cross-sectional study of 441 thousand adults, 2012-2015. Obes Res Clin Pract 2020; 14:119-126. [PMID: 32139330 DOI: 10.1016/j.orcp.2020.02.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/16/2020] [Accepted: 02/20/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Obesity has become a global health public problem. The study aims to examine the latest prevalence of overweight and obesity in China. METHODS Data came from the China Hypertension Survey (CHS), a nationally representative cross-sectional study among residents aged ≥18 years from October 2012 to December 2015. Overweight and obesity were defined as 25≤BMI<30kg/m2 and BMI≥30kg/m2 according to the WHO classifications, respectively. RESULTS The data of 441 306 participants were analyzed. The prevalence of overweight and obesity was 28.1% and 5.2% respectively. The prevalence of overweight and obesity varied considerably across provinces. The prevalence of overweight was the highest in Beijing, which was 2.8 fold of the lowest in Guangxi (40.9% vs. 14.6%). The prevalence of obesity was the highest in Tianjin, which was 9.4 fold of the lowest in Hainan (12.2% vs. 1.3%). There was a striking north-south gradient with the prevalence higher in Northeast and Northwest China and lower in Southeast China. Multivariate logistic regression analysis indicated that sex, age, education, smoking, marital status and family history of cardiovascular disease were significantly associated with overweight and obesity. CONCLUSIONS Overweight and obesity are highly prevalent among Chinese adults, and their prevalence varies greatly among different population subgroups and provinces. National and provincial obesity control and prevention strategies should be public health priorities in China.
Collapse
Affiliation(s)
- Linfeng Zhang
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 15 (Lin), Fengcunxili,Mentougou District, Beijing 102308, China.
| | - Zengwu Wang
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 15 (Lin), Fengcunxili,Mentougou District, Beijing 102308, China.
| | - Xin Wang
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 15 (Lin), Fengcunxili,Mentougou District, Beijing 102308, China.
| | - Zuo Chen
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 15 (Lin), Fengcunxili,Mentougou District, Beijing 102308, China.
| | - Lan Shao
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 15 (Lin), Fengcunxili,Mentougou District, Beijing 102308, China.
| | - Ye Tian
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 15 (Lin), Fengcunxili,Mentougou District, Beijing 102308, China.
| | - Congyi Zheng
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 15 (Lin), Fengcunxili,Mentougou District, Beijing 102308, China.
| | - Suning Li
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 15 (Lin), Fengcunxili,Mentougou District, Beijing 102308, China.
| | - Manlu Zhu
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 15 (Lin), Fengcunxili,Mentougou District, Beijing 102308, China.
| | - Runlin Gao
- Department of Cardiology, National Center for Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 167, Beilishilu, Xicheng District, Beijing, China.
| | | |
Collapse
|
50
|
Dux M, Rosta J, Messlinger K. TRP Channels in the Focus of Trigeminal Nociceptor Sensitization Contributing to Primary Headaches. Int J Mol Sci 2020; 21:ijms21010342. [PMID: 31948011 PMCID: PMC6981722 DOI: 10.3390/ijms21010342] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022] Open
Abstract
Pain in trigeminal areas is driven by nociceptive trigeminal afferents. Transduction molecules, among them the nonspecific cation channels transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1), which are activated by endogenous and exogenous ligands, are expressed by a significant population of trigeminal nociceptors innervating meningeal tissues. Many of these nociceptors also contain vasoactive neuropeptides such as calcitonin gene-related peptide (CGRP) and substance P. Release of neuropeptides and other functional properties are frequently examined using the cell bodies of trigeminal neurons as models of their sensory endings. Pathophysiological conditions cause phosphorylation, increased expression and trafficking of transient receptor potential (TRP) channels, neuropeptides and other mediators, which accelerate activation of nociceptive pathways. Since nociceptor activation may be a significant pathophysiological mechanism involved in both peripheral and central sensitization of the trigeminal nociceptive pathway, its contribution to the pathophysiology of primary headaches is more than likely. Metabolic disorders and medication-induced painful states are frequently associated with TRP receptor activation and may increase the risk for primary headaches.
Collapse
Affiliation(s)
- Mária Dux
- Department of Physiology, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary;
- Correspondence: ; Tel.: +36-62-545-374; Fax: +36-62-545-842
| | - Judit Rosta
- Department of Physiology, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary;
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstr. 17, D-91054 Erlangen, Germany;
| |
Collapse
|