1
|
Kiouri DP, Chasapis CT, Mavromoustakos T, Spiliopoulou CA, Stefanidou ME. Zinc and its binding proteins: essential roles and therapeutic potential. Arch Toxicol 2025; 99:23-41. [PMID: 39508885 DOI: 10.1007/s00204-024-03891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
Zinc is an essential micronutrient that participates in a multitude of cellular and biochemical processes. It is indispensable for normal growth and the maintenance of physiological functions. As one of the most significant trace elements in the body, zinc fulfills three primary biological roles: catalytic, structural, and regulatory. It serves as a cofactor in over 300 enzymes, and more than 3000 proteins require zinc, underscoring its crucial role in numerous physiological processes such as cell division and growth, immune function, tissue maintenance, as well as synthesis protein and collagen synthesis. Zinc deficiency has been linked to increased oxidative stress and inflammation, which may contribute to the pathogenesis of a multitude of diseases, like neurological disorders and cancer. In addition, zinc is a key constituent of zinc-binding proteins, which play a pivotal role in maintaining cellular zinc homeostasis. This review aims to update and expand upon the understanding of zinc biology, highlighting the fundamental roles of zinc in biological processes and the health implications of zinc deficiency. This work also explores the diverse functions of zinc in immune regulation, cellular growth, and neurological health, emphasizing the need for further research to fully elucidate the therapeutic potential of zinc supplementation in disease prevention and management.
Collapse
Affiliation(s)
- Despoina P Kiouri
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece
- Department of Chemistry, Laboratory of Organic Chemistry, National and Kapodistrian University of Athens, 15772, Athens, Greece
| | - Christos T Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece.
| | - Thomas Mavromoustakos
- Department of Chemistry, Laboratory of Organic Chemistry, National and Kapodistrian University of Athens, 15772, Athens, Greece
| | - Chara A Spiliopoulou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Maria E Stefanidou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| |
Collapse
|
2
|
Taskozhina G, Batyrova G, Umarova G, Issanguzhina Z, Kereyeva N. The Manganese-Bone Connection: Investigating the Role of Manganese in Bone Health. J Clin Med 2024; 13:4679. [PMID: 39200820 PMCID: PMC11355939 DOI: 10.3390/jcm13164679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
The complex relationship between trace elements and skeletal health has received increasing attention in the scientific community. Among these minerals, manganese (Mn) has emerged as a key element affecting bone metabolism and integrity. This review examines the multifaceted role of Mn in bone health, including its effects on bone regeneration, mineralization, and overall skeletal strength. This review article is based on a synthesis of experimental models, epidemiologic studies, and clinical trials of the mechanisms of the effect of Mn on bone metabolism. Current research data show that Mn is actively involved in the processes of bone remodeling by modulating the activity of osteoblasts and osteoclasts, as well as the main cells that regulate bone formation and resorption. Mn ions have a profound effect on bone mineralization and density by intricately regulating signaling pathways and enzymatic reactions in these cells. Additionally, Mn superoxide dismutase (MnSOD), located in bone mitochondria, plays a crucial role in osteoclast differentiation and function, protecting osteoclasts from oxidative damage. Understanding the nuances of Mn's interaction with bone is essential for optimizing bone strategies, potentially preventing and managing skeletal diseases. Key findings include the stimulation of osteoblast proliferation and differentiation, the inhibition of osteoclastogenesis, and the preservation of bone mass through the RANK/RANKL/OPG pathway. These results underscore the importance of Mn in maintaining bone health and highlight the need for further research into its therapeutic potential.
Collapse
Affiliation(s)
- Gulaim Taskozhina
- Department of Laboratory Diagnostics, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan
| | - Gulnara Batyrova
- Department of Laboratory Diagnostics, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan
| | - Gulmira Umarova
- Department of Evidence-Based Medicine and Scientific Management, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan;
| | - Zhamilya Issanguzhina
- Department of Children Disease No. 2, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan;
| | - Nurgul Kereyeva
- Department of Oncology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan;
| |
Collapse
|
3
|
Liu H, Li L, Lu R. ZIP transporters-regulated Zn 2+ homeostasis: A novel determinant of human diseases. J Cell Physiol 2024; 239:e31223. [PMID: 38530191 DOI: 10.1002/jcp.31223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 03/27/2024]
Abstract
As an essential trace element for organisms, zinc participates in various physiological processes, such as RNA transcription, DNA replication, cell proliferation, and cell differentiation. The destruction of zinc homeostasis is associated with various diseases. Zinc homeostasis is controlled by the cooperative action of zinc transporter proteins that are responsible for the influx and efflux of zinc. Zinc transporter proteins are mainly categorized into two families: Zrt/Irt-like protein (SLC39A/ZIP) family and zinc transporter (SLC30A/ZNT) family. ZIP transporters contain 14 members, namely ZIP1-14, which can be further divided into four subfamilies. Currently, ZIP transporters-regulated zinc homeostasis is one of the research hotspots. Cumulative evidence suggests that ZIP transporters-regulated zinc homeostasis may cause physiological dysfunction and contribute to the onset and progression of diverse diseases, such as cancers, neurological diseases, and cardiovascular diseases. In this review, we initially discuss the structure and distribution of ZIP transporters. Furthermore, we comprehensively review the latest research progress of ZIP transporters-regulated zinc homeostasis in diseases, providing a new perspective into new therapeutic targets for treating related diseases.
Collapse
Affiliation(s)
- Huimei Liu
- Department of Pharmacology, Hengyang Medical School, University of South China, Hengyang, China
| | - Lanfang Li
- Department of Pharmacology, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruirui Lu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
4
|
BALTACI SB, GÜMÜŞ H, ÜNAL Ö, ACAR G, BAYIROĞLU AF. Zinc Supplementation Improves ZIP14 (SLC39A14) Levels in Cerebral Cortex Suppressed by icv-STZ Injection. Noro Psikiyatr Ars 2024; 61:11-14. [PMID: 38496222 PMCID: PMC10943940 DOI: 10.29399/npa.28426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2024] Open
Abstract
Introduction Metabolic dysfunctions are critical in the pathology of Alzheimer's disease. Impaired zinc homeostasis, in particular, is a significant issue in this disease that has yet to be explained. Gene expression of ZIP14 in brain tissue has been previously reported. But to date, only one study has reported reduced ZIP14 levels in aged brain tissue. We investigated how dietary zinc deprivation and supplementation impact ZIP14 levels in the cerebral cortex in rats with sporadic Alzheimer's disease (sAH) produced by intracerebroventricular streptozotocin (icv-STZ). Impaired zinc homeostasis, in particular, is a significant issue with this condition that has yet to be elucidated. Methods Animals were divided into 5 groups in equal numbers (n=8): Sham 1 group: icv received artificial cerebrospinal fluid (aCSF); Sham 2 group: retrieved icv aCSF and intraperitoneal (ip) saline, STZ group: received 3 mg/kg icv-STZ; STZ-Zn-Deficient group: received 3 mg/kg icv-STZ and fed a zinc-deprived diet; STZ-Zn-Supplemented: It received 3 mg/kg icv-STZ and ip zinc sulfate (5 mg/kg/day ZIP 14 levels (ng/L) in cortex tissue samples taken from animals sacrificed under general anesthesia were determined by ELISA at the final stage of the experimental applications. Results Decreased ZIP14 levels in the sporadic Alzheimer's group were severely by zinc deficiency. Zinc supplementation treated the reduction in ZIP14 levels. Conclusion The results of the current study show that ZIP14 levels in cerebral cortex tissue, which are suppressed in the experimental rat Alzheimer model and are even more critically reduced in zinc deficiency, can be restored by zinc supplementation.
Collapse
Affiliation(s)
- Saltuk Buğra BALTACI
- İstanbul Medipol University, Medical Faculty, Department of Physiology, İstanbul, Turkey
| | - Haluk GÜMÜŞ
- Selçuk University Medical Faculty, Departments of Neurology and Physiology, Konya, Turkey
| | - Ömer ÜNAL
- Kırıkkale University Medical Faculty, Department of Physiology, Kırıkkale, Turkey
| | - Gözde ACAR
- Selçuk University Medical Faculty, Departments of Neurology and Physiology, Konya, Turkey
| | | |
Collapse
|
5
|
Hendrickx G, Boudin E, Mateiu L, Yorgan TA, Steenackers E, Kneissel M, Kramer I, Mortier G, Schinke T, Van Hul W. An Additional Lrp4 High Bone Mass Mutation Mitigates the Sost-Knockout Phenotype in Mice by Increasing Bone Remodeling. Calcif Tissue Int 2024; 114:171-181. [PMID: 38051321 DOI: 10.1007/s00223-023-01158-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023]
Abstract
Pathogenic variants disrupting the binding between sclerostin (encoded by SOST) and its receptor LRP4 have previously been described to cause sclerosteosis, a rare high bone mass disorder. The sclerostin-LRP4 complex inhibits canonical WNT signaling, a key pathway regulating osteoblastic bone formation and a promising therapeutic target for common bone disorders, such as osteoporosis. In the current study, we crossed mice deficient for Sost (Sost-/-) with our p.Arg1170Gln Lrp4 knock-in (Lrp4KI/KI) mouse model to create double mutant Sost-/-;Lrp4KI/KI mice. We compared the phenotype of Sost-/- mice with that of Sost-/-;Lrp4KI/KI mice, to investigate a possible synergistic effect of the disease-causing p.Arg1170Trp variant in Lrp4 on Sost deficiency. Interestingly, presence of Lrp4KI alleles partially mitigated the Sost-/- phenotype. Cellular and dynamic histomorphometry did not reveal mechanistic insights into the observed phenotypic differences. We therefore determined the molecular effect of the Lrp4KI allele by performing bulk RNA sequencing on Lrp4KI/KI primary osteoblasts. Unexpectedly, mostly genes related to bone resorption or remodeling (Acp5, Rankl, Mmp9) were upregulated in Lrp4KI/KI primary osteoblasts. Verification of these markers in Lrp4KI/KI, Sost-/- and Sost-/-;Lrp4KI/KI mice revealed that sclerostin deficiency counteracts this Lrp4KI/KI effect in Sost-/-;Lrp4KI/KI mice. We therefore hypothesize that models with two inactivating Lrp4KI alleles rather activate bone remodeling, with a net gain in bone mass, whereas sclerostin deficiency has more robust anabolic effects on bone formation. Moreover, these effects of sclerostin and Lrp4 are stronger in female mice, contributing to a more severe phenotype than in males and more detectable phenotypic differences among different genotypes.
Collapse
Affiliation(s)
- Gretl Hendrickx
- Centre for Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
- Department of Human Genetics, KU Leuven, Louvain, Belgium
| | - Eveline Boudin
- Centre for Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | - Ligia Mateiu
- Centre for Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | - Timur A Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ellen Steenackers
- Centre for Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | - Michaela Kneissel
- Diseases of Aging and Regenerative Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ina Kramer
- Diseases of Aging and Regenerative Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Geert Mortier
- Centre for Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
- Department of Human Genetics, KU Leuven, Louvain, Belgium
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wim Van Hul
- Centre for Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium.
| |
Collapse
|
6
|
Pasquadibisceglie A, Bonaccorsi di Patti MC, Musci G, Polticelli F. Membrane Transporters Involved in Iron Trafficking: Physiological and Pathological Aspects. Biomolecules 2023; 13:1172. [PMID: 37627237 PMCID: PMC10452680 DOI: 10.3390/biom13081172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Iron is an essential transition metal for its involvement in several crucial biological functions, the most notable being oxygen storage and transport. Due to its high reactivity and potential toxicity, intracellular and extracellular iron levels must be tightly regulated. This is achieved through transport systems that mediate cellular uptake and efflux both at the level of the plasma membrane and on the membranes of lysosomes, endosomes and mitochondria. Among these transport systems, the key players are ferroportin, the only known transporter mediating iron efflux from cells; DMT1, ZIP8 and ZIP14, which on the contrary, mediate iron influx into the cytoplasm, acting on the plasma membrane and on the membranes of lysosomes and endosomes; and mitoferrin, involved in iron transport into the mitochondria for heme synthesis and Fe-S cluster assembly. The focus of this review is to provide an updated view of the physiological role of these membrane proteins and of the pathologies that arise from defects of these transport systems.
Collapse
Affiliation(s)
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| | - Fabio Polticelli
- Department of Sciences, University Roma Tre, 00146 Rome, Italy;
- National Institute of Nuclear Physics, Roma Tre Section, 00146 Rome, Italy
| |
Collapse
|
7
|
Srinivasan W, Thorell W, McCumber TL, Vilburn M, Snow EL. Hyperostosis cranialis interna and an ectopic ossification on the endosteal dura deep to the trigeminal ganglion: Case analysis and clinical implications. TRANSLATIONAL RESEARCH IN ANATOMY 2023. [DOI: 10.1016/j.tria.2023.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
8
|
Jimenez-Rondan FR, Ruggiero CH, McKinley KL, Koh J, Roberts JF, Triplett EW, Cousins RJ. Enterocyte-specific deletion of metal transporter Zip14 (Slc39a14) alters intestinal homeostasis through epigenetic mechanisms. Am J Physiol Gastrointest Liver Physiol 2023; 324:G159-G176. [PMID: 36537699 PMCID: PMC9925170 DOI: 10.1152/ajpgi.00244.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 01/31/2023]
Abstract
Zinc has anti-inflammatory properties using mechanisms that are unclear. Zip14 (Slc39a14) is a zinc transporter induced by proinflammatory stimuli and is highly expressed at the basolateral membrane of intestinal epithelial cells (IECs). Enterocyte-specific Zip14 ablation (Zip14ΔIEC) in mice was developed to study the functions of this transporter in enterocytes. This gene deletion led to increased intestinal permeability, increased IL-6 and IFNγ expression, mild endotoxemia, and intestinal dysbiosis. RNA sequencing was used for transcriptome profiling. These analyses revealed differential expression of specific intestinal proinflammatory and tight junction (TJ) genes. Binding of transcription factors, including NF-κβ, STAT3, and CDX2, to appropriate promoter sites of these genes supports the differential expression shown with chromatin immunoprecipitation assays. Total histone deacetylase (HDAC), and specifically HDAC3, activities were markedly reduced with Zip14 ablation. Intestinal organoids derived from ΔIEC mice display TJ and cytokine gene dysregulation compared with control mice. Differential expression of specific genes was reversed with zinc supplementation of the organoids. We conclude that zinc-dependent HDAC enzymes acquire zinc ions via Zip14-mediated transport and that intestinal integrity is controlled in part through epigenetic modifications.NEW & NOTEWORTHY We show that enterocyte-specific ablation of zinc transporter Zip14 (Slc39a14) results in selective dysbiosis and differential expression of tight junction proteins, claudin 1 and 2, and specific cytokines associated with intestinal inflammation. HDAC activity and zinc uptake are reduced with Zip14 ablation. Using intestinal organoids, the expression defects of claudin 1 and 2 are resolved through zinc supplementation. These novel results suggest that zinc, an essential micronutrient, influences gene expression through epigenetic mechanisms.
Collapse
Affiliation(s)
- Felix R Jimenez-Rondan
- Center for Nutritional Sciences and Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida
| | - Courtney H Ruggiero
- Center for Nutritional Sciences and Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida
| | - Kelley Lobean McKinley
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida
| | - Jin Koh
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida
| | - John F Roberts
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Eric W Triplett
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida
| | - Robert J Cousins
- Center for Nutritional Sciences and Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida
| |
Collapse
|
9
|
Bergen DJM, Maurizi A, Formosa MM, McDonald GLK, El-Gazzar A, Hassan N, Brandi ML, Riancho JA, Rivadeneira F, Ntzani E, Duncan EL, Gregson CL, Kiel DP, Zillikens MC, Sangiorgi L, Högler W, Duran I, Mäkitie O, Van Hul W, Hendrickx G. High Bone Mass Disorders: New Insights From Connecting the Clinic and the Bench. J Bone Miner Res 2023; 38:229-247. [PMID: 36161343 PMCID: PMC10092806 DOI: 10.1002/jbmr.4715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/05/2022] [Accepted: 09/22/2022] [Indexed: 02/04/2023]
Abstract
Monogenic high bone mass (HBM) disorders are characterized by an increased amount of bone in general, or at specific sites in the skeleton. Here, we describe 59 HBM disorders with 50 known disease-causing genes from the literature, and we provide an overview of the signaling pathways and mechanisms involved in the pathogenesis of these disorders. Based on this, we classify the known HBM genes into HBM (sub)groups according to uniform Gene Ontology (GO) terminology. This classification system may aid in hypothesis generation, for both wet lab experimental design and clinical genetic screening strategies. We discuss how functional genomics can shape discovery of novel HBM genes and/or mechanisms in the future, through implementation of omics assessments in existing and future model systems. Finally, we address strategies to improve gene identification in unsolved HBM cases and highlight the importance for cross-laboratory collaborations encompassing multidisciplinary efforts to transfer knowledge generated at the bench to the clinic. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Dylan J M Bergen
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK.,Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Antonio Maurizi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Melissa M Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta.,Center for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Georgina L K McDonald
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Ahmed El-Gazzar
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Neelam Hassan
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | | | - José A Riancho
- Department of Internal Medicine, Hospital U M Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Evangelia Ntzani
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, Ioannina, Greece.,Center for Evidence Synthesis in Health, Policy and Practice, Center for Research Synthesis in Health, School of Public Health, Brown University, Providence, RI, USA.,Institute of Biosciences, University Research Center of loannina, University of Ioannina, Ioannina, Greece
| | - Emma L Duncan
- Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Department of Endocrinology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Celia L Gregson
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Douglas P Kiel
- Marcus Institute for Aging Research, Hebrew SeniorLife and Department of Medicine Beth Israel Deaconess Medical Center and Harvard Medical School, Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Luca Sangiorgi
- Department of Rare Skeletal Diseases, IRCCS Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | | | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Centre, Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
10
|
Jimenez-Rondan FR, Ruggiero CH, Cousins RJ. Long Noncoding RNA, MicroRNA, Zn Transporter Zip14 (Slc39a14) and Inflammation in Mice. Nutrients 2022; 14:nu14235114. [PMID: 36501144 PMCID: PMC9740689 DOI: 10.3390/nu14235114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Integration of non-coding RNAs and miRNAs with physiological processes in animals, including nutrient metabolism, is an important new focus. Twenty-three transporter proteins control cellular zinc homeostasis. The transporter Zip14 (Slc39a14) responds to proinflammatory stimuli. Using enterocyte-specific Zip14 knockout mice and RNA-sequencing and quantitative polymerase chain reaction (qPCR), we conducted transcriptome profiling of proximal small intestine, where Zip14 is highly expressed, using RNA from whole intestine tissue, isolated intestinal epithelial cells (IECs) and intestinal organoids. H19, U90926, Meg3, Bvht, Pvt1, Neat1 and miR-7027 were among the most highly expressed genes. Enterocyte-specific deletion of Zip14 demonstrated tissue specific expression, as such these changes were not observed with skeletal muscle. Chromatin immunoprecipitation (ChIP) assays of chromatin from isolated intestinal epithelial cells showed that enterocyte-specific Zip14 deletion enhanced binding of proinflammatory transcription factors (TFs) signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa beta (NF-ĸβ) to promoters of H19, Meg3 and U90926. We conclude enterocyte-specific ablation of Zip14 restricts changes in those RNAs to the intestine. Binding of proinflammatory TFs, NF-ĸβ and STAT3 to the H19, Meg3 and U90926 promoters is consistent with a model where Zip14 ablation, leads to increased TF occupancy, allowing epigenetic regulation of specific lncRNA genes.
Collapse
|
11
|
Wang H, Zhang L, Xia Z, Cui JY. Effect of Chronic Cadmium Exposure on Brain and Liver Transporters and Drug-Metabolizing Enzymes in Male and Female Mice Genetically Predisposed to Alzheimer's Disease. Drug Metab Dispos 2022; 50:1414-1428. [PMID: 35878927 PMCID: PMC9513859 DOI: 10.1124/dmd.121.000453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Cadmium (Cd) exposure is associated with increased Alzheimer's disease (AD) risks. The human Apolipoprotein E (ApoE) gene encodes a lipid-transporting protein that is critical for brain functions. Compared with ApoE2 and E3, ApoE4 is associated with increased AD risk. Xenobiotic biotransformation-related genes have been implicated in the pathogenesis of AD. However, little is known about the effects of Cd, ApoE, and sex on drug-processing genes. We investigated the Cd-ApoE interaction on the transcriptomic changes in the brains and livers of ApoE3/ApoE4 transgenic mice. Cd disrupts the transcriptomes of transporter and drug-processing genes in brain and liver in a sex- and ApoE-genotype-specific manner. Proinflammation related genes were enriched in livers of Cd-exposed ApoE4 males, whereas circadian rhythm and lipid metabolism related genes were enriched in livers of Cd-exposed ApoE3 females. In brains, Cd up-regulated the arachidonic acid-metabolizing Cyp2j isoforms only in the brains of ApoE3 mice, whereas the dysregulation of cation transporters was male-specific. In livers, several direct target genes of the major xenobiotic-sensing nuclear receptor pregnane X receptor were uniquely upregulated in Cd-exposed ApoE4 males. There was a female-specific hepatic upregulation of the steroid hormone-metabolizing Cyp2 isoforms and the bile acid synthetic enzyme Cyp7a1 by Cd exposure. The dysregulated liver transporters were mostly involved in intermediary metabolism, with the most significant response observed in ApoE3 females. In conclusion, Cd dysregulated the brain and liver drug-processing genes in a sex- and ApoE-genotype specific manner, and this may serve as a contributing factor for the variance in the susceptibility to Cd neurotoxicity. SIGNIFICANCE STATEMENT: Xenobiotic biotransformation plays an important role in modulating the toxicity of environmental pollutants. The human ApoE4 allele is the strongest genetic risk factor for AD, and cadmium (Cd) is increasingly recognized as an environmental factor of AD. Very little is known regarding the interactions between Cd exposure, sex, and the genes involved in xenobiotic biotransformation in brain and liver. The present study has addressed this critical knowledge gap.
Collapse
Affiliation(s)
- Hao Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Liang Zhang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Zhengui Xia
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
12
|
Carlos-Escalante JA, Paz-López ÁA, Cacho-Díaz B, Pacheco-Cuellar G, Reyes-Soto G, Wegman-Ostrosky T. Primary Benign Tumors of the Spinal Canal. World Neurosurg 2022; 164:178-198. [PMID: 35552036 DOI: 10.1016/j.wneu.2022.04.135] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/23/2022]
Abstract
Benign tumors that grow in the spinal canal are heterogeneous neoplasms with low incidence; from these, meningiomas and nerve sheath tumors (neurofibromas and schwannomas) account for 60%-70% of all primary spinal tumors. Benign spinal canal tumors provoke nonspecific clinical manifestations, mostly related to the affected level of the spinal cord. These tumors present a challenge for the patient and healthcare professionals, for they are often difficult to diagnose and the high frequency of posttreatment complications. In this review, we describe the epidemiology, risk factors, clinical features, diagnosis, histopathology, molecular biology, and treatment of extramedullary benign meningiomas, osteoid osteomas, osteoblastomas, aneurysmal bone cysts, osteochondromas, neurofibromas, giant cell tumors of the bone, eosinophilic granulomas, hemangiomas, lipomas, and schwannomas located in the spine, as well as possible future targets that could lead to an improvement in their management.
Collapse
Affiliation(s)
| | | | | | | | - Gervith Reyes-Soto
- Neuro-oncology Unit, Instituto Nacional de Cancerología, México City, Mexico
| | - Talia Wegman-Ostrosky
- Subdirection of basic research, Instituto Nacional de Cancerología, México City, Mexico.
| |
Collapse
|
13
|
Effects of Extracellular Osteoanabolic Agents on the Endogenous Response of Osteoblastic Cells. Cells 2021; 10:cells10092383. [PMID: 34572032 PMCID: PMC8471159 DOI: 10.3390/cells10092383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
The complex multidimensional skeletal organization can adapt its structure in accordance with external contexts, demonstrating excellent self-renewal capacity. Thus, optimal extracellular environmental properties are critical for bone regeneration and inextricably linked to the mechanical and biological states of bone. It is interesting to note that the microstructure of bone depends not only on genetic determinants (which control the bone remodeling loop through autocrine and paracrine signals) but also, more importantly, on the continuous response of cells to external mechanical cues. In particular, bone cells sense mechanical signals such as shear, tensile, loading and vibration, and once activated, they react by regulating bone anabolism. Although several specific surrounding conditions needed for osteoblast cells to specifically augment bone formation have been empirically discovered, most of the underlying biomechanical cellular processes underneath remain largely unknown. Nevertheless, exogenous stimuli of endogenous osteogenesis can be applied to promote the mineral apposition rate, bone formation, bone mass and bone strength, as well as expediting fracture repair and bone regeneration. The following review summarizes the latest studies related to the proliferation and differentiation of osteoblastic cells, enhanced by mechanical forces or supplemental signaling factors (such as trace metals, nutraceuticals, vitamins and exosomes), providing a thorough overview of the exogenous osteogenic agents which can be exploited to modulate and influence the mechanically induced anabolism of bone. Furthermore, this review aims to discuss the emerging role of extracellular stimuli in skeletal metabolism as well as their potential roles and provide new perspectives for the treatment of bone disorders.
Collapse
|
14
|
Earley BJ, Mendoza AD, Tan CH, Kornfeld K. Zinc homeostasis and signaling in the roundworm C. elegans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118882. [PMID: 33017595 DOI: 10.1016/j.bbamcr.2020.118882] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/11/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022]
Abstract
C. elegans is a powerful model for studies of zinc biology. Here we review recent discoveries and emphasize the advantages of this model organism. Methods for manipulating and measuring zinc levels have been developed in or adapted to the worm. The C. elegans genome encodes highly conserved zinc transporters, and their expression and function are beginning to be characterized. Homeostatic mechanisms have evolved to respond to high and low zinc conditions. The pathway for high zinc homeostasis has been recently elucidated based on the discovery of the master regulator of high zinc homeostasis, HIZR-1. A parallel pathway for low zinc homeostasis is beginning to emerge based on the discovery of the Low Zinc Activation promoter element. Zinc has been established to play a role in two cell fate determination events, and accumulating evidence suggests zinc may function as a second messenger signaling molecule during vulval cell development and sperm activation.
Collapse
Affiliation(s)
- Brian J Earley
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, United States of America
| | - Adelita D Mendoza
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, United States of America
| | - Chieh-Hsiang Tan
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, United States of America
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, United States of America.
| |
Collapse
|
15
|
Zinc Homeostasis in Bone: Zinc Transporters and Bone Diseases. Int J Mol Sci 2020; 21:ijms21041236. [PMID: 32059605 PMCID: PMC7072862 DOI: 10.3390/ijms21041236] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
Zinc is an essential micronutrient that plays critical roles in numerous physiological processes, including bone homeostasis. The majority of zinc in the human body is stored in bone. Zinc is not only a component of bone but also an essential cofactor of many proteins involved in microstructural stability and bone remodeling. There are two types of membrane zinc transporter proteins identified in mammals: the Zrt- and Irt-like protein (ZIP) family and the zinc transporter (ZnT) family. They regulate the influx and efflux of zinc, accounting for the transport of zinc through cellular and intracellular membranes to maintain zinc homeostasis in the cytoplasm and in intracellular compartments, respectively. Abnormal function of certain zinc transporters is associated with an imbalance of bone homeostasis, which may contribute to human bone diseases. Here, we summarize the regulatory roles of zinc transporters in different cell types and the mechanisms underlying related pathological changes involved in bone diseases. We also present perspectives for further studies on bone homeostasis-regulating zinc transporters.
Collapse
|
16
|
Zheng W, Li X, Liu D, Li J, Yang S, Gao Z, Wang Z, Yokota H, Zhang P. Mechanical loading mitigates osteoarthritis symptoms by regulating endoplasmic reticulum stress and autophagy. FASEB J 2019; 33:4077-4088. [PMID: 30485126 PMCID: PMC6404578 DOI: 10.1096/fj.201801851r] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/05/2018] [Indexed: 12/30/2022]
Abstract
Osteoarthritis (OA) is a disease characterized by cartilage damage and abnormal remodeling of subchondral bone. Our previous study showed that in the early stage of OA, knee loading exerts protective effects by suppressing osteoclastogenesis through Wnt signaling, but little is known about loading effects at the late OA stage. Endoplasmic reticulum (ER) stress and autophagy are known to be involved in the late OA stage. We determined the effects of mechanical loading on ER stress and autophagy in OA mice. One hundred seventy-four mice were used for a surgery-induced OA model. In the first set of experiments, 60 mice were devoted to evaluation of the role of ER stress and autophagy in the development of OA. In the second set, 114 mice were used to assess the effect of knee loading on OA. Histologic, cellular, microcomputed tomography, and electron microscopic analyses were performed to evaluate morphologic changes, ER stress, and autophagy. Mechanical loading increased phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) and regulated expressions of autophagy markers LC3II/I and p62. Osteoarthritic mice also exhibited an elevated ratio of calcified cartilage to total articular cartilage (CC/TAC), and synovial hyperplasia with increased lining cells was found. At the early disease stage, subchondral bone plate thinning and reduced subchondral bone volume fraction (B.Ar/T.Ar) were observed. At the late disease stages, subchondral bone plate thickened concomitant with increased B.Ar/T.Ar. Mice subjected to mechanical loading exhibited resilience to cartilage destruction and a correspondingly reduced Osteoarthritis Research Society International score at 4 and 8 wk, as well as a decrease in synovitis and CC/TAC. While chondrocyte numbers in the OA group was notably decreased, mechanical loading restored chondrogenic differentiation. These results demonstrate that mechanical loading can retard the pathologic progression of OA at its early and late stages. The observed effects of loading are associated with the regulations of ER stress and autophagy.-Zheng, W., Li, X., Liu, D., Li, J., Yang, S., Gao, Z., Wang, Z., Yokota, H., Zhang, P. Mechanical loading mitigates osteoarthritis symptoms by regulating endoplasmic reticulum stress and autophagy.
Collapse
Affiliation(s)
- Weiwei Zheng
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Tianjin Economic-Technological Development Area, International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Key Laboratory of Hormones and Development, Ministry of Health, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Tianjin Economic-Technological Development Area, International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Key Laboratory of Hormones and Development, Ministry of Health, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Tianjin Economic-Technological Development Area, International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shuang Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Tianjin Economic-Technological Development Area, International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhe Gao
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhaonan Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University–Purdue University Indianapolis, Indiana, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Tianjin Economic-Technological Development Area, International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Key Laboratory of Hormones and Development, Ministry of Health, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
- Department of Biomedical Engineering, Indiana University–Purdue University Indianapolis, Indiana, USA
| |
Collapse
|