1
|
Brueggeman L, Pottschmidt N, Koomar T, Thomas T, Michaelson JJ. Genomic dissection of sleep archetypes in a large autism cohort. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.04.25325272. [PMID: 40236407 PMCID: PMC11998819 DOI: 10.1101/2025.04.04.25325272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Poor sleep is a major concern among individuals with autism and their caregivers. To better characterize the genetic and phenotypic heterogeneity of poor sleep in autism, we recruited 5,686 families from SPARK, a nationwide genetic study of autism, who described their sleep experiences using the Children's Sleep Health Questionnaire (CSHQ) and other self-report items. The collective experiences from this large sample allowed us to discover eight distinct archetypes of sleep in autism. Membership in some of these archetypes showed significant SNP-heritability (0.50 - 0.65, 95% confidence interval = 0.08 - 1), and polygenic estimates of educational attainment, BMI, and ADHD risk contributed extensively to the genetic signatures of these sleep archetypes. Surprisingly, polygenic estimates of general population sleep phenotypes showed sparser and more modest associations, perhaps suggesting that the genetic drivers of disordered sleep in autism may be distinct from those encountered in the general population. GWAS on archetype membership yielded no genome-wide significant loci, however, the most significant gene for the most severe archetype was the nitric oxide (NO) signaling gene NOS1AP, which was previously linked to sleep disruption in schizophrenia. Finally, the eight sleep archetypes showed specific signatures of treatment response across five major categories of sleep aid, pointing to the potential of treatment plans that are tailored to the nature of the sleep problem. These findings provide critical new insight into the comorbidities, subtypes, and genetic risk factors associated with disordered sleep in autism.
Collapse
Affiliation(s)
- Leo Brueggeman
- Department of Psychiatry, University of Iowa, Iowa City, USA
| | | | - Tanner Koomar
- Department of Psychiatry, University of Iowa, Iowa City, USA
| | - Taylor Thomas
- Department of Psychiatry, University of Iowa, Iowa City, USA
| | | |
Collapse
|
2
|
Zhao Y, Jiang Y, Wang Y, Zhang H, Zhu J, Jiang X, Shen B, Chen Y, Li D, Pan Y, Han F, Zhang L. Novel susceptibility genes and biomarkers for obstructive sleep apnea: insights from genetic and inflammatory proteins. Sleep 2025; 48:zsae169. [PMID: 39087877 PMCID: PMC11808066 DOI: 10.1093/sleep/zsae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
STUDY OBJECTIVES Numerous observational studies link obstructive sleep apnea (OSA) to inflammatory proteins, yet the directionality of these associations remains ambiguous. Therefore, we aimed to clarify the potential associations of gene-predicted inflammatory proteins with OSA. METHODS Based on genome-wide association study data, we applied Mendelian randomization (MR) to explore potential connections between circulating inflammatory proteins and OSA, primarily using the inverse-variance weighting method for robustness. Cochran's Q test, MR‒Egger intercept test, MR-PRESSO, and leave-one-out method were used to perform sensitivity tests for pleiotropy and heterogeneity. Replication analyses and meta-analyses were performed using other independent data. Steiger tests and multivariate MR assessed the independent effects of exposure factors, and the functional mapping and annotation (FUMA) platform was used to identify key genes to enhance the understanding of genetics. RESULTS Our investigation revealed 21 circulating inflammatory proteins significantly associated with OSA-related phenotypes. Notably, IL-10RA, IL-18R1, TNFSF14, CCL23, ADA, and SLAMF1 had significant effects on multiple phenotypes. After FDR correction, IL-18R1, SLAMF1, IL-10RA, and IL-17C were identified as important candidates for OSA, and multivariate MR analysis strengthened the independent heritability of 20 inflammatory factors. The FUMA platform revealed seven overlapping genes: ROBO1, PRIM1, NACA, SHBG, HSD17B6, RBMS2, and WWOX. All reverse MR analyses and sensitivity analyses confirmed the robustness of these associations. CONCLUSIONS Our results underscore crucial associations between inflammatory proteins and OSA pathogenesis, revealing new correlates and susceptibility genes. These findings advance biomarker identification for OSA risk and highlight the importance of genetic and inflammatory profiles in OSA management.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Geriatric Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yinyin Jiang
- Department of Geriatric Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yaxi Wang
- Department of Geriatric Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Haiying Zhang
- Department of Geriatric Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Jun Zhu
- Department of Geriatric Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xu Jiang
- Department of Geriatric Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Bo Shen
- Department of Geriatric Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yaning Chen
- Department of Geriatric Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Dongfeng Li
- Department of Geriatric Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yang Pan
- Department of Geriatric Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Feng Han
- School of Pharmacy, Nanjing Medical University, Nanjing, China
- Institute of Brain Science, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Li Zhang
- Department of Geriatric Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
- Institute of Neuropsychiatric Diseases, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Wang A, Li B, Su W, Zhang H, Hu R, Zhang Y, Zhao J, Ren R, Mu Y, Cheng Y, Lyu Z. Exosomes derived from diabetic microenvironment-preconditioned mesenchymal stem cells ameliorate nonalcoholic fatty liver disease and inhibit pyroptosis of hepatocytes. Exp Cell Res 2024; 443:114325. [PMID: 39521106 DOI: 10.1016/j.yexcr.2024.114325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
AIM Pyroptosis, a type of programmed cell death, is a key mechanism underlying non-alcoholic fatty liver disease (NAFLD). Mesenchymal stem cell (MSC)-derived exosomes (MSC-Exos) have the potential to ameliorate NAFLD, an effect that is enhanced by curcumin preconditioning. We previously reported that diabetic microenvironment preconditioning enhances the secretion capacity and anti-inflammatory activity of MSCs. Therefore, we hypothesized that MSC-Exos would inhibit hepatocyte pyroptosis and thereby ameliorate NAFLD, and that diabetic microenvironment preconditioning would enhance these effects. METHODS MSCs were preconditioned in a diabetic microenvironment (pMSCs). MSC-Exos and pMSC-Exos collected from MSCs or pMSCs were applied to methionine- and choline-deficient (MCD)-induced NAFLD mice and in vitro models involving induction with lipopolysaccharide or palmitic acid to mimic hepatic steatosis and injury. MCC950 treatment was used as a positive control. We analyzed the characteristics of NAFLD and pyroptosis markers. Protein profiles of MSC-Exos and pMSC-Exos were evaluated by label-free quantitative proteomics. RESULTS In vivo, MSC-Exos partially attenuated inflammation and fibrosis, but not lipid deposition and NAFLD progression in the livers of NAFLD mice. pMSC-Exos significantly improved lipid metabolism, hepatic steatosis, inflammation, and fibrosis but also retarded the progression of NAFLD. Pyroptosis was upregulated in the liver of NAFLD mice. MSC-Exos and pMSC-Exos inhibited pyroptosis, and the effect of the latter was greater than that of the former. In vitro, MSC-Exos and pMSC-Exos ameliorated hepatocyte steatosis, lipid metabolism disorder, and inflammation, and pMSC-Exos exerted a greater inhibitory effect on hepatocyte pyroptosis than MSC-Exos did, which were remitted after inhibition of peroxiredoxin-1 (PRDX-1). CONCLUSION MSC-Exos ameliorated NAFLD and inhibited hepatocyte pyroptosis by downregulating the NLRP3/Caspase-1/GSDMD pathway, effects enhanced by pMSC-Exos, partly due to PRDX-1 upregulation.
Collapse
Affiliation(s)
- Anning Wang
- Medical School of Chinese PLA, Beijing, China
| | - Bing Li
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wanlu Su
- School of Medicine, Nankai University, Tianjin, China
| | | | - Ruofan Hu
- Medical School of Chinese PLA, Beijing, China
| | - Yue Zhang
- Medical School of Chinese PLA, Beijing, China
| | - Jian Zhao
- Medical School of Chinese PLA, Beijing, China
| | - Rui Ren
- Medical School of Chinese PLA, Beijing, China
| | - Yiming Mu
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yu Cheng
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhaohui Lyu
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
4
|
Cohen O, Kundel V, Barbé F, Peker Y, McEvoy D, Sánchez-de-la-Torre M, Gottlieb DJ, Bradley TD, Suárez-Fariñas M, Zinchuk A, Azarbarzin A, Malhotra A, Schotland H, Gozal D, Jelic S, Ramos AR, Martin JL, Pamidi S, Johnson DA, Mehra R, Somers VK, Hoyos CM, Jackson CL, Alcantara C, Billings ME, Bhatt DL, Patel SR, Redline S, Yaggi HK, Shah NA. The Great Controversy of Obstructive Sleep Apnea Treatment for Cardiovascular Risk Benefit: Advancing the Science Through Expert Consensus. An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2024; 22:1-22. [PMID: 39513996 PMCID: PMC11708754 DOI: 10.1513/annalsats.202409-981st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
The prevalence of obstructive sleep apnea (OSA) is on the rise, driven by various factors including more sensitive diagnostic criteria, increased awareness, enhanced technology through at-home testing enabling easy and cost-effective diagnosis, and a growing incidence of comorbid conditions such as obesity. Treating symptomatic patients with OSA syndrome to enhance quality of life remains a cornerstone approach. However, there is a lack of consensus regarding treatment to improve cardiovascular disease (CVD) outcomes, particularly in light of overall negative results from several randomized controlled trials (RCT) indicating no benefit of positive airway pressure (PAP) therapy on primary and secondary CVD events. These RCTs were limited by suboptimal PAP adherence, use of composite CVD outcomes, and limited diversity and generalizability to Sleep Clinic patients. As such, this workshop assembled clinical experts, as well as researchers in basic and translational science, epidemiology, clinical trials, and population health to discuss the current state, and future research directions to guide personalized therapeutic strategies and future research directions in OSA. There was overall consensus among workshop participants that OSA represents a heterogeneous disease with variable endotypes and phenotypes, and heterogeneous responses to treatment. Future research should prioritize employing multi-modal therapeutic approaches within innovative and adaptive trial designs, focusing on specific subgroups of OSA patients hypothesized to benefit from a CVD perspective. Future work should also be inclusive of diverse populations and consider the life-course of OSA to better comprehend treatment strategies that can address the disproportionate impact of OSA on racially minoritized groups. Further, a more holistic approach to sleep must be adopted to include broader assessments of symptoms, sleep duration, and comorbid sleep and circadian disorders. Finally, it is imperative to establish a sleep research consortium dedicated to collecting raw data and biospecimens categorized by OSA subtypes. This will facilitate mechanistic determinations, foster collaborative research, and help bolster the pipeline of early-career researchers.
Collapse
Affiliation(s)
- Oren Cohen
- Icahn School of Medicine at Mount Sinai, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, New York, New York, United States
| | - Vaishnavi Kundel
- Icahn School of Medicine at Mount Sinai, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, New York, New York, United States
| | - Ferran Barbé
- University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Translational Research in Respiratory Medicine, Lleida, Spain
- Carlos III Health Institute, CIBER of Respiratory Diseases (CIBERES), Madrid, Comunidad de Madrid, Spain
| | - Yüksel Peker
- Koc University School of Medicine, Department of Pulmonary Medicine, Istanbul, Turkey
| | - Doug McEvoy
- Flinders University, Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, Adelaide, Australia
| | - Manuel Sánchez-de-la-Torre
- Hospital Nacional de Parapléjicos de Toledo, Group of Precision Medicine in Chronic Diseases, Toledo, Castilla-La Mancha, Spain
- CIBERES, Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Comunidad de Madrid, Spain
- University of Castilla-La Mancha, Department of Nursing, Physiotherapy and Occupational Therapy, Faculty of Physiotherapy and Nursing, Toledo, Spain
| | - Daniel J Gottlieb
- VA Boston Healthcare System, Department of Medicine, Boston, Massachusetts, United States
- Brigham and Women's Hospital, Division of Sleep and Circadian Disorders, Boston, Massachusetts, United States
| | - T Douglas Bradley
- University Health Network Toronto Rehabilitation Institute (KITE), Toronto, Ontario, Canada
- Toronto General Hospital, Department of Medicine, Toronto, Ontario, Canada
| | - Mayte Suárez-Fariñas
- Icahn School of Medicine at Mount Sinai, Center for Biostatistics, Department of Population Health Science and Policy, New York, New York, United States
| | - Andrey Zinchuk
- Yale School of Medicine, Department of Internal Medicine, New Haven, Connecticut, United States
| | - Ali Azarbarzin
- Brigham and Women's Hospital, Division of Sleep and Circadian Disorders, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Atul Malhotra
- University of California San Diego, Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, La Jolla, California, United States
| | - Helena Schotland
- Icahn School of Medicine at Mount Sinai, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, New York, New York, United States
| | - David Gozal
- Marshall University Joan C Edwards School of Medicine, Office of the Dean, Huntington, West Virginia, United States
| | - Sanja Jelic
- Columbia University Medical Center, Division of Pulmonary, Allergy and Critical Care Medicine, New York, New York, United States
| | - Alberto R Ramos
- University of Miami Miller School of Medicine, Sleep Disorders Program, Department of Neurology, Miami, Florida, United States
| | - Jennifer L Martin
- VA Greater Los Angeles Healthcare System, Geriatric Research, Education, and Clinical Center, Los Angeles, California, United States
- University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California, United States
| | - Sushmita Pamidi
- McGill University, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Dayna A Johnson
- Emory University, Department of Epidemiology, Rollins School of Public Health, Atlanta, Georgia, United States
| | - Reena Mehra
- University of Washington, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Seattle, Washington, United States
| | - Virend K Somers
- Mayo Clinic, Department of Cardiovascular Medicine, Rochester, Minnesota, United States
| | - Camilla M Hoyos
- Macquarie University Faculty of Medicine Health and Human Sciences, Department of Health Science, Sydney, New South Wales, Australia
- Woolcock Institute of Medical Research, Centre for Sleep and Chronobiology, Glebe, New South Wales, Australia
- Macquarie University, NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep), Sydney, New South Wales, Australia
| | - Chandra L Jackson
- National Institutes of Health, Earl Stadtman Investigator, Epidemiology Branch, Social and Environmental Determinants of Health Equity, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Carmela Alcantara
- Columbia University, School of Social Work, New York, New York, United States
| | - Martha E Billings
- University of Washington, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Seattle, Washington, United States
| | - Deepak L Bhatt
- Icahn School of Medicine at Mount Sinai, Mount Sinai Fuster Heart Hospital, New York, New York, United States
| | - Sanjay R Patel
- University of Pittsburgh, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Pittsburgh, Pennsylvania, United States
| | - Susan Redline
- Brigham and Women's Hospital, Division of Sleep and Circadian Disorders, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
- Harvard T H Chan School of Public Health, Boston, Massachusetts, United States
| | - Henry K Yaggi
- Yale School of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, New Haven, Connecticut, United States
- Connecticut Department of Veterans' Affairs, Clinical Epidemiology Research Center, West Haven, Connecticut, United States
| | - Neomi A Shah
- Icahn School of Medicine at Mount Sinai, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, New York, New York, United States;
| |
Collapse
|
5
|
Wang X, Hu Y, Li X, Huang L, Yang Y, Liu C, Deng Q, Yang P, Li Y, Zhou Y, Xiao L, Wu H, He L. Mycoplasma genitalium membrane lipoprotein induces GAPDH malonylation in urethral epithelial cells to regulate cytokine response. Microb Pathog 2024; 195:106872. [PMID: 39173852 DOI: 10.1016/j.micpath.2024.106872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Membrane lipoproteins serve as primary pro-inflammatory virulence factors in Mycoplasma genitalium. Membrane lipoproteins primarily induce inflammatory responses by activating Toll-like Receptor 2 (TLR2); however, the role of the metabolic status of urethral epithelial cells in inflammatory response remains unclear. In this study, we found that treatment of uroepithelial cell lines with M. genitalium membrane lipoprotein induced metabolic reprogramming, characterized by increased aerobic glycolysis, decreased oxidative phosphorylation, and increased production of the metabolic intermediates acetyl-CoA and malonyl-CoA. The metabolic shift induced by membrane lipoproteins is reversible upon blocking MyD88 and TRAM. Malonyl-CoA induces malonylation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and malonylated GAPDH could dissociate from the 3' untranslated region of TNF-α and IFN-γ mRNA. This dissociation greatly reduces the inhibitory effect on the translation of TNF-α and IFN-γ mRNA, thus achieving fine-tuning control over cytokine secretion. These findings suggest that GAPDH malonylation following M. genitalium infection is an important inflammatory signal that plays a crucial role in urogenital inflammatory diseases.
Collapse
Affiliation(s)
- Xiaoliu Wang
- Department of Dermatology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Yi Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Xinru Li
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Liubin Huang
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Yan Yang
- Department of Clinical Laboratory, Shanghai Putuo People's Hospital, Tongji University, Shanghai, China
| | - Chang Liu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Qing Deng
- Department of Dermatology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Pei Yang
- Department of Dermatology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Yilin Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Yiwen Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Lihua Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Haiying Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Lu He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China.
| |
Collapse
|
6
|
Huang T, Goodman M, Wang H, Sofer T, Tworoger SS, Stampfer MJ, Saxena R, Redline S. Genetic Predisposition to Elevated C-Reactive Protein and Risk of Obstructive Sleep Apnea. Am J Respir Crit Care Med 2024; 209:329-331. [PMID: 37883203 PMCID: PMC10840766 DOI: 10.1164/rccm.202307-1159le] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/26/2023] [Indexed: 10/27/2023] Open
Affiliation(s)
- Tianyi Huang
- Channing Division of Network Medicine and
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts
| | - Matthew Goodman
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts
| | - Shelley S. Tworoger
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Meir J. Stampfer
- Channing Division of Network Medicine and
- Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Richa Saxena
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| |
Collapse
|
7
|
Gao X, Wei T, Xu S, Sun W, Zhang B, Li C, Sui R, Fei N, Li Y, Xu W, Han D. Sleep disorders causally affect the brain cortical structure: A Mendelian randomization study. Sleep Med 2023; 110:243-253. [PMID: 37657176 DOI: 10.1016/j.sleep.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/14/2023] [Accepted: 08/13/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND s: Previous studies have reported that patients with sleep disorders have altered brain cortical structures. However, the causality has not been determined. We performed a two-sample Mendelian randomization (MR) to reveal the causal effect of sleep disorders on brain cortical structure. METHODS We included as exposures 11 phenotypes of sleep disorders including subjective and objective sleep duration, insomnia symptom and poor sleep efficiency, daytime sleepiness (narcolepsy)/napping, morning/evening preference, and four sleep breathing related traits from nine European-descent genome-wide association studies (GWASs). Further, outcome variables were provided by ENIGMA Consortium GWAS for full brain and 34 region-specific cortical thickness (TH) and surface area (SA) of grey matter. Inverse-variance weighted (IVW) was used as the primary estimate whereas alternative MR methods were implemented as sensitivity analysis approaches to ensure results robustness. RESULTS At the global level, both self-reported or accelerometer-measured shorter sleep duration decreases the thickness of full brain both derived from self-reported data (βIVW = 0.03 mm, standard error (SE) = 0.02, P = 0.038; βIVW = 0.02 mm, SE = 0.01, P = 0.010). At the functional level, there were 66 associations of suggestive evidence of causality. Notably, one robust evidence after multiple testing correction (1518 tests) suggests the without global weighted SA of superior parietal lobule was influenced significantly by sleep efficiency (βIVW = -285.28 mm2, SE = 68.59, P = 3.2 × 10-5). CONCLUSIONS We found significant evidence that shorter sleep duration, as estimated by self-reported interview and accelerometer measurements, was causally associated with atrophy in the entire human brain.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Tao Wei
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, People's Republic of China
| | - Shenglong Xu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Wei Sun
- Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, People's Republic of China
| | - Bowen Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Cancan Li
- Department of Epidemiology and Health Statistics, School of Public Halth, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Rongcui Sui
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Nanxi Fei
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Yanru Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China.
| | - Wen Xu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Demin Han
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China.
| |
Collapse
|
8
|
Chang JL, Goldberg AN, Alt JA, Alzoubaidi M, Ashbrook L, Auckley D, Ayappa I, Bakhtiar H, Barrera JE, Bartley BL, Billings ME, Boon MS, Bosschieter P, Braverman I, Brodie K, Cabrera-Muffly C, Caesar R, Cahali MB, Cai Y, Cao M, Capasso R, Caples SM, Chahine LM, Chang CP, Chang KW, Chaudhary N, Cheong CSJ, Chowdhuri S, Cistulli PA, Claman D, Collen J, Coughlin KC, Creamer J, Davis EM, Dupuy-McCauley KL, Durr ML, Dutt M, Ali ME, Elkassabany NM, Epstein LJ, Fiala JA, Freedman N, Gill K, Boyd Gillespie M, Golisch L, Gooneratne N, Gottlieb DJ, Green KK, Gulati A, Gurubhagavatula I, Hayward N, Hoff PT, Hoffmann OM, Holfinger SJ, Hsia J, Huntley C, Huoh KC, Huyett P, Inala S, Ishman SL, Jella TK, Jobanputra AM, Johnson AP, Junna MR, Kado JT, Kaffenberger TM, Kapur VK, Kezirian EJ, Khan M, Kirsch DB, Kominsky A, Kryger M, Krystal AD, Kushida CA, Kuzniar TJ, Lam DJ, Lettieri CJ, Lim DC, Lin HC, Liu SY, MacKay SG, Magalang UJ, Malhotra A, Mansukhani MP, Maurer JT, May AM, Mitchell RB, Mokhlesi B, Mullins AE, Nada EM, Naik S, Nokes B, Olson MD, Pack AI, Pang EB, Pang KP, Patil SP, Van de Perck E, Piccirillo JF, Pien GW, et alChang JL, Goldberg AN, Alt JA, Alzoubaidi M, Ashbrook L, Auckley D, Ayappa I, Bakhtiar H, Barrera JE, Bartley BL, Billings ME, Boon MS, Bosschieter P, Braverman I, Brodie K, Cabrera-Muffly C, Caesar R, Cahali MB, Cai Y, Cao M, Capasso R, Caples SM, Chahine LM, Chang CP, Chang KW, Chaudhary N, Cheong CSJ, Chowdhuri S, Cistulli PA, Claman D, Collen J, Coughlin KC, Creamer J, Davis EM, Dupuy-McCauley KL, Durr ML, Dutt M, Ali ME, Elkassabany NM, Epstein LJ, Fiala JA, Freedman N, Gill K, Boyd Gillespie M, Golisch L, Gooneratne N, Gottlieb DJ, Green KK, Gulati A, Gurubhagavatula I, Hayward N, Hoff PT, Hoffmann OM, Holfinger SJ, Hsia J, Huntley C, Huoh KC, Huyett P, Inala S, Ishman SL, Jella TK, Jobanputra AM, Johnson AP, Junna MR, Kado JT, Kaffenberger TM, Kapur VK, Kezirian EJ, Khan M, Kirsch DB, Kominsky A, Kryger M, Krystal AD, Kushida CA, Kuzniar TJ, Lam DJ, Lettieri CJ, Lim DC, Lin HC, Liu SY, MacKay SG, Magalang UJ, Malhotra A, Mansukhani MP, Maurer JT, May AM, Mitchell RB, Mokhlesi B, Mullins AE, Nada EM, Naik S, Nokes B, Olson MD, Pack AI, Pang EB, Pang KP, Patil SP, Van de Perck E, Piccirillo JF, Pien GW, Piper AJ, Plawecki A, Quigg M, Ravesloot MJ, Redline S, Rotenberg BW, Ryden A, Sarmiento KF, Sbeih F, Schell AE, Schmickl CN, Schotland HM, Schwab RJ, Seo J, Shah N, Shelgikar AV, Shochat I, Soose RJ, Steele TO, Stephens E, Stepnowsky C, Strohl KP, Sutherland K, Suurna MV, Thaler E, Thapa S, Vanderveken OM, de Vries N, Weaver EM, Weir ID, Wolfe LF, Tucker Woodson B, Won CH, Xu J, Yalamanchi P, Yaremchuk K, Yeghiazarians Y, Yu JL, Zeidler M, Rosen IM. International Consensus Statement on Obstructive Sleep Apnea. Int Forum Allergy Rhinol 2023; 13:1061-1482. [PMID: 36068685 PMCID: PMC10359192 DOI: 10.1002/alr.23079] [Show More Authors] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Evaluation and interpretation of the literature on obstructive sleep apnea (OSA) allows for consolidation and determination of the key factors important for clinical management of the adult OSA patient. Toward this goal, an international collaborative of multidisciplinary experts in sleep apnea evaluation and treatment have produced the International Consensus statement on Obstructive Sleep Apnea (ICS:OSA). METHODS Using previously defined methodology, focal topics in OSA were assigned as literature review (LR), evidence-based review (EBR), or evidence-based review with recommendations (EBR-R) formats. Each topic incorporated the available and relevant evidence which was summarized and graded on study quality. Each topic and section underwent iterative review and the ICS:OSA was created and reviewed by all authors for consensus. RESULTS The ICS:OSA addresses OSA syndrome definitions, pathophysiology, epidemiology, risk factors for disease, screening methods, diagnostic testing types, multiple treatment modalities, and effects of OSA treatment on multiple OSA-associated comorbidities. Specific focus on outcomes with positive airway pressure (PAP) and surgical treatments were evaluated. CONCLUSION This review of the literature consolidates the available knowledge and identifies the limitations of the current evidence on OSA. This effort aims to create a resource for OSA evidence-based practice and identify future research needs. Knowledge gaps and research opportunities include improving the metrics of OSA disease, determining the optimal OSA screening paradigms, developing strategies for PAP adherence and longitudinal care, enhancing selection of PAP alternatives and surgery, understanding health risk outcomes, and translating evidence into individualized approaches to therapy.
Collapse
Affiliation(s)
- Jolie L. Chang
- University of California, San Francisco, California, USA
| | | | | | | | - Liza Ashbrook
- University of California, San Francisco, California, USA
| | | | - Indu Ayappa
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | | | - Maurits S. Boon
- Sidney Kimmel Medical Center at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Pien Bosschieter
- Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
| | - Itzhak Braverman
- Hillel Yaffe Medical Center, Hadera Technion, Faculty of Medicine, Hadera, Israel
| | - Kara Brodie
- University of California, San Francisco, California, USA
| | | | - Ray Caesar
- Stone Oak Orthodontics, San Antonio, Texas, USA
| | | | - Yi Cai
- University of California, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | - Susmita Chowdhuri
- Wayne State University and John D. Dingell VA Medical Center, Detroit, Michigan, USA
| | - Peter A. Cistulli
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - David Claman
- University of California, San Francisco, California, USA
| | - Jacob Collen
- Uniformed Services University, Bethesda, Maryland, USA
| | | | | | - Eric M. Davis
- University of Virginia, Charlottesville, Virginia, USA
| | | | | | - Mohan Dutt
- University of Michigan, Ann Arbor, Michigan, USA
| | - Mazen El Ali
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | - Kirat Gill
- Stanford University, Palo Alto, California, USA
| | | | - Lea Golisch
- University Hospital Mannheim, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | | | | | | | - Arushi Gulati
- University of California, San Francisco, California, USA
| | | | | | - Paul T. Hoff
- University of Michigan, Ann Arbor, Michigan, USA
| | - Oliver M.G. Hoffmann
- University Hospital Mannheim, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | | | - Jennifer Hsia
- University of Minnesota, Minneapolis, Minnesota, USA
| | - Colin Huntley
- Sidney Kimmel Medical Center at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | - Sanjana Inala
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | - Meena Khan
- Ohio State University, Columbus, Ohio, USA
| | | | - Alan Kominsky
- Cleveland Clinic Head and Neck Institute, Cleveland, Ohio, USA
| | - Meir Kryger
- Yale School of Medicine, New Haven, Connecticut, USA
| | | | | | | | - Derek J. Lam
- Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | | | | | | - Atul Malhotra
- University of California, San Diego, California, USA
| | | | - Joachim T. Maurer
- University Hospital Mannheim, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Anna M. May
- Case Western Reserve University, Cleveland, Ohio, USA
| | - Ron B. Mitchell
- University of Texas, Southwestern and Children’s Medical Center Dallas, Texas, USA
| | | | | | | | | | - Brandon Nokes
- University of California, San Diego, California, USA
| | | | - Allan I. Pack
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | - Mark Quigg
- University of Virginia, Charlottesville, Virginia, USA
| | | | - Susan Redline
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Armand Ryden
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | | | - Firas Sbeih
- Cleveland Clinic Head and Neck Institute, Cleveland, Ohio, USA
| | | | | | | | | | - Jiyeon Seo
- University of California, Los Angeles, California, USA
| | - Neomi Shah
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Ryan J. Soose
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Erika Stephens
- University of California, San Francisco, California, USA
| | | | | | | | | | - Erica Thaler
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sritika Thapa
- Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Nico de Vries
- Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
| | | | - Ian D. Weir
- Yale School of Medicine, New Haven, Connecticut, USA
| | | | | | | | - Josie Xu
- University of Toronto, Ontario, Canada
| | | | | | | | | | | | - Ilene M. Rosen
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Sofer T, Kurniansyah N, Murray M, Ho YL, Abner E, Esko T, Huffman JE, Cho K, Wilson PWF, Gottlieb DJ. Genome-wide association study of obstructive sleep apnoea in the Million Veteran Program uncovers genetic heterogeneity by sex. EBioMedicine 2023; 90:104536. [PMID: 36989840 PMCID: PMC10065974 DOI: 10.1016/j.ebiom.2023.104536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) for obstructive sleep apnoea (OSA) are limited due to the underdiagnosis of OSA, leading to misclassification of OSA, which consequently reduces statistical power. We performed a GWAS of OSA in the Million Veteran Program (MVP) of the U.S. Department of Veterans Affairs (VA) healthcare system, where OSA prevalence is close to its true population prevalence. METHODS We performed GWAS of 568,576 MVP participants, stratified by biological sex and by harmonized race/ethnicity and genetic ancestry (HARE) groups of White, Black, Hispanic, and Asian individuals. We considered both BMI adjusted (BMI-adj) and unadjusted (BMI-unadj) models. We replicated associations in independent datasets, and analysed the heterogeneity of OSA genetic associations across HARE and sex groups. We finally performed a larger meta-analysis GWAS of MVP, FinnGen, and the MGB Biobank, totalling 916,696 individuals. FINDINGS MVP participants are 91% male. OSA prevalence is 21%. In MVP there were 18 and 6 genome-wide significant loci in BMI-unadj and BMI-adj analyses, respectively, corresponding to 21 association regions. Of these, 17 were not previously reported in association with OSA, and 13 replicated in FinnGen (False Discovery Rate p-value < 0.05). There were widespread significant differences in genetic effects between men and women, but less so across HARE groups. Meta-analysis of MVP, FinnGen, and MGB biobank revealed 17 additional, previously unreported, genome-wide significant regions. INTERPRETATION Sex differences in genetic associations with OSA are widespread, likely associated with multiple OSA risk factors. OSA shares genetic underpinnings with several sleep phenotypes, suggesting shared aetiology and causal pathways. FUNDING Described in acknowledgements.
Collapse
Affiliation(s)
- Tamar Sofer
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Nuzulul Kurniansyah
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael Murray
- Massachusetts Veterans Epidemiology Research and Information Center, VA Healthcare System, Boston, MA, USA
| | - Yuk-Lam Ho
- Massachusetts Veterans Epidemiology Research and Information Center, VA Healthcare System, Boston, MA, USA
| | - Erik Abner
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jennifer E Huffman
- Massachusetts Veterans Epidemiology Research and Information Center, VA Healthcare System, Boston, MA, USA; VA Palo Alto Health Care System, Palo Alto, CA, USA; Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center, VA Healthcare System, Boston, MA, USA; Division of Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Daniel J Gottlieb
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Massachusetts Veterans Epidemiology Research and Information Center, VA Healthcare System, Boston, MA, USA
| |
Collapse
|
10
|
Campos AI, Ingold N, Huang Y, Mitchell BL, Kho PF, Han X, García-Marín LM, Ong JS, Law MH, Yokoyama JS, Martin NG, Dong X, Cuellar-Partida G, MacGregor S, Aslibekyan S, Rentería ME. Discovery of genomic loci associated with sleep apnea risk through multi-trait GWAS analysis with snoring. Sleep 2023; 46:6918774. [PMID: 36525587 PMCID: PMC9995783 DOI: 10.1093/sleep/zsac308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
STUDY OBJECTIVES Despite its association with severe health conditions, the etiology of sleep apnea (SA) remains understudied. This study sought to identify genetic variants robustly associated with SA risk. METHODS We performed a genome-wide association study (GWAS) meta-analysis of SA across five cohorts (NTotal = 523 366), followed by a multi-trait analysis of GWAS (multi-trait analysis of genome-wide association summary statistics [MTAG]) to boost power, leveraging the high genetic correlation between SA and snoring. We then adjusted our results for the genetic effects of body mass index (BMI) using multi-trait-based conditional and joint analysis (mtCOJO) and sought replication of lead hits in a large cohort of participants from 23andMe, Inc (NTotal = 1 477 352; Ncases = 175 522). We also explored genetic correlations with other complex traits and performed a phenome-wide screen for causally associated phenotypes using the latent causal variable method. RESULTS Our SA meta-analysis identified five independent variants with evidence of association beyond genome-wide significance. After adjustment for BMI, only one genome-wide significant variant was identified. MTAG analyses uncovered 49 significant independent loci associated with SA risk. Twenty-nine variants were replicated in the 23andMe GWAS adjusting for BMI. We observed genetic correlations with several complex traits, including multisite chronic pain, diabetes, eye disorders, high blood pressure, osteoarthritis, chronic obstructive pulmonary disease, and BMI-associated conditions. CONCLUSION Our study uncovered multiple genetic loci associated with SA risk, thus increasing our understanding of the etiology of this condition and its relationship with other complex traits.
Collapse
Affiliation(s)
- Adrian I Campos
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Nathan Ingold
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | | | - Brittany L Mitchell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Pik-Fang Kho
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Xikun Han
- Program in Genetic Epidemiology and Statistical Genetics, Harvard University T.H. Chan School of Public Health, Boston, MA, USA
| | - Luis M García-Marín
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Jue-Sheng Ong
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Matthew H Law
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jennifer S Yokoyama
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA.,Weill Institute of Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Xianjun Dong
- Genomics and Bioinformatics Hub, Brigham and Women's Hospital, Boston, MA, USA.,Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Miguel E Rentería
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Chen Y, Yang C, Zou M, Wang D, Sheng R, Zhan M, Chen Q, Yang W, Liu X, Xu S. Inhibiting mitochondrial inflammation through Drp1/HK1/NLRP3 pathway: A mechanism of alpinetin attenuated aging-associated cognitive impairment. Phytother Res 2023. [PMID: 36772986 DOI: 10.1002/ptr.7767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/20/2022] [Accepted: 01/29/2023] [Indexed: 02/12/2023]
Abstract
Mitochondrial inflammation triggered by abnormal mitochondrial division and regulated by the Drp1/HK1/NLRP3 pathway is correlated with the progression of aging-associated cognitive impairment (AACI). Alpinetin is a novel flavonoid derived from Zingiberaceae that has many bioactivities such as antiinflammation and anti-oxidation. However, whether alpinetin alleviates AACI by suppressing Drp1/HK1/NLRP3 pathway-inhibited mitochondrial inflammation is still unknown. In the present study, D-galactose (D-gal)-induced aging mice and BV-2 cells were used, and the effects of alpinetin on learning and memory function, neuroprotection and activation of the Drp1/HK1/NLRP3 pathway were investigated. Our data indicated that alpinetin significantly alleviated cognitive dysfunction and neuronal damage in the CA1 and CA3 regions of D-gal-treated mice. Moreover, D-gal-induced microglial activation was markedly reduced by alpinetin by inhibiting the Drp1/HK1/NLRP3 pathway-suppressed mitochondrial inflammation, down-regulating the levels of p-Drp1 (s616), VDAC, NLRP3, ASC, Cleaved-caspase 1, IL-18, and IL-1β, and up-regulating the expression of HK1. Furthermore, after Drp1 inhibition by Mdivi-1 in vitro, the inhibitory effect of alpinetin on Drp1/HK1/NLRP3 pathway was more evident. In summary, the current results implied that alpinetin attenuated aging-related cognitive deficits by inhibiting the Drp1/HK1/NLRP3 pathway and suppressing mitochondrial inflammation, suggesting that the inhibition of the Drp1/HK1/NLRP3 pathway is one of the mechanisms by which alpinetin attenuates AACI.
Collapse
Affiliation(s)
- Yuanyuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mi Zou
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Wang
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruilin Sheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meng Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenqin Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shijun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Lane JM, Qian J, Mignot E, Redline S, Scheer FAJL, Saxena R. Genetics of circadian rhythms and sleep in human health and disease. Nat Rev Genet 2023; 24:4-20. [PMID: 36028773 PMCID: PMC10947799 DOI: 10.1038/s41576-022-00519-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 12/13/2022]
Abstract
Circadian rhythms and sleep are fundamental biological processes integral to human health. Their disruption is associated with detrimental physiological consequences, including cognitive, metabolic, cardiovascular and immunological dysfunctions. Yet many of the molecular underpinnings of sleep regulation in health and disease have remained elusive. Given the moderate heritability of circadian and sleep traits, genetics offers an opportunity that complements insights from model organism studies to advance our fundamental molecular understanding of human circadian and sleep physiology and linked chronic disease biology. Here, we review recent discoveries of the genetics of circadian and sleep physiology and disorders with a focus on those that reveal causal contributions to complex diseases.
Collapse
Affiliation(s)
- Jacqueline M Lane
- Center for Genomic Medicine and Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Jingyi Qian
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Emmanuel Mignot
- Center for Narcolepsy, Stanford University, Palo Alto, California, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Frank A J L Scheer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
| | - Richa Saxena
- Center for Genomic Medicine and Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
13
|
Chun S, Akle S, Teodosiadis A, Cade BE, Wang H, Sofer T, Evans DS, Stone KL, Gharib SA, Mukherjee S, Palmer LJ, Hillman D, Rotter JI, Hanis CL, Stamatoyannopoulos JA, Redline S, Cotsapas C, Sunyaev SR. Leveraging pleiotropy to discover and interpret GWAS results for sleep-associated traits. PLoS Genet 2022; 18:e1010557. [PMID: 36574455 PMCID: PMC9829185 DOI: 10.1371/journal.pgen.1010557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/09/2023] [Accepted: 12/06/2022] [Indexed: 12/28/2022] Open
Abstract
Genetic association studies of many heritable traits resulting from physiological testing often have modest sample sizes due to the cost and burden of the required phenotyping. This reduces statistical power and limits discovery of multiple genetic associations. We present a strategy to leverage pleiotropy between traits to both discover new loci and to provide mechanistic hypotheses of the underlying pathophysiology. Specifically, we combine a colocalization test with a locus-level test of pleiotropy. In simulations, we show that this approach is highly selective for identifying true pleiotropy driven by the same causative variant, thereby improves the chance to replicate the associations in underpowered validation cohorts and leads to higher interpretability. Here, as an exemplar, we use Obstructive Sleep Apnea (OSA), a common disorder diagnosed using overnight multi-channel physiological testing. We leverage pleiotropy with relevant cellular and cardio-metabolic phenotypes and gene expression traits to map new risk loci in an underpowered OSA GWAS. We identify several pleiotropic loci harboring suggestive associations to OSA and genome-wide significant associations to other traits, and show that their OSA association replicates in independent cohorts of diverse ancestries. By investigating pleiotropic loci, our strategy allows proposing new hypotheses about OSA pathobiology across many physiological layers. For example, we identify and replicate the pleiotropy across the plateletcrit, OSA and an eQTL of DNA primase subunit 1 (PRIM1) in immune cells. We find suggestive links between OSA, a measure of lung function (FEV1/FVC), and an eQTL of matrix metallopeptidase 15 (MMP15) in lung tissue. We also link a previously known genome-wide significant peak for OSA in the hexokinase 1 (HK1) locus to hematocrit and other red blood cell related traits. Thus, the analysis of pleiotropic associations has the potential to assemble diverse phenotypes into a chain of mechanistic hypotheses that provide insight into the pathogenesis of complex human diseases.
Collapse
Affiliation(s)
- Sung Chun
- Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Division of Pulmonary Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Altius Institute for Biomedical Sciences, Seattle, Washington, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sebastian Akle
- Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Altius Institute for Biomedical Sciences, Seattle, Washington, United States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | | | - Brian E. Cade
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, California, United States of America
| | - Katie L. Stone
- California Pacific Medical Center Research Institute, San Francisco, California, United States of America
| | - Sina A. Gharib
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Washington, United States of America
- Computational Medicine Core at Center for Lung Biology, University of Washington, Seattle, Washington, United States of America
| | - Sutapa Mukherjee
- Respiratory and Sleep Services, Southern Adelaide Local Health Network, Adelaide, South Australia, Australia
- Adelaide Institute for Sleep Health, Flinders University, Adelaide, South Australia, Australia
| | - Lyle J. Palmer
- School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
| | - David Hillman
- Centre for Sleep Science, University of Western Australia, Perth, Australia
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Craig L. Hanis
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - John A. Stamatoyannopoulos
- Altius Institute for Biomedical Sciences, Seattle, Washington, United States of America
- Departments of Medicine and Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Chris Cotsapas
- Altius Institute for Biomedical Sciences, Seattle, Washington, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Shamil R. Sunyaev
- Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Altius Institute for Biomedical Sciences, Seattle, Washington, United States of America
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
14
|
Liang J, Wang H, Cade BE, Kurniansyah N, He KY, Lee J, Sands SA, A. Brody J, Chen H, Gottlieb DJ, Evans DS, Guo X, Gharib SA, Hale L, Hillman DR, Lutsey PL, Mukherjee S, Ochs-Balcom HM, Palmer LJ, Purcell S, Saxena R, Patel SR, Stone KL, Tranah GJ, Boerwinkle E, Lin X, Liu Y, Psaty BM, Vasan RS, Manichaikul A, Rich SS, Rotter JI, Sofer T, Redline S, Zhu X. Targeted Genome Sequencing Identifies Multiple Rare Variants in Caveolin-1 Associated with Obstructive Sleep Apnea. Am J Respir Crit Care Med 2022; 206:1271-1280. [PMID: 35822943 PMCID: PMC9746833 DOI: 10.1164/rccm.202203-0618oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/06/2022] [Indexed: 01/04/2023] Open
Abstract
Rationale: Obstructive sleep apnea (OSA) is a common disorder associated with increased risk for cardiovascular disease, diabetes, and premature mortality. There is strong clinical and epidemiologic evidence supporting the importance of genetic factors influencing OSA but limited data implicating specific genes. Objectives: To search for rare variants contributing to OSA severity. Methods: Leveraging high-depth genomic sequencing data from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program and imputed genotype data from multiple population-based studies, we performed linkage analysis in the CFS (Cleveland Family Study), followed by multistage gene-based association analyses in independent cohorts for apnea-hypopnea index (AHI) in a total of 7,708 individuals of European ancestry. Measurements and Main Results: Linkage analysis in the CFS identified a suggestive linkage peak on chromosome 7q31 (LOD = 2.31). Gene-based analysis identified 21 noncoding rare variants in CAV1 (Caveolin-1) associated with lower AHI after accounting for multiple comparisons (P = 7.4 × 10-8). These noncoding variants together significantly contributed to the linkage evidence (P < 10-3). Follow-up analysis revealed significant associations between these variants and increased CAV1 expression, and increased CAV1 expression in peripheral monocytes was associated with lower AHI (P = 0.024) and higher minimum overnight oxygen saturation (P = 0.007). Conclusions: Rare variants in CAV1, a membrane-scaffolding protein essential in multiple cellular and metabolic functions, are associated with higher CAV1 gene expression and lower OSA severity, suggesting a novel target for modulating OSA severity.
Collapse
Affiliation(s)
- Jingjing Liang
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, and
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Brian E. Cade
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, and
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Nuzulul Kurniansyah
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Karen Y. He
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jiwon Lee
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Scott A. Sands
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, and
| | | | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, and
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Daniel J. Gottlieb
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, and
- VA Boston Healthcare System, Boston, Massachusetts
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences and
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Sina A. Gharib
- Computational Medicine Core, Center for Lung Biology, University of Washington Medicine Sleep Center, Department of Medicine
| | - Lauren Hale
- Family, Population, and Preventive Medicine, Program in Public Health, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - David R. Hillman
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Pamela L. Lutsey
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Sutapa Mukherjee
- Sleep Health Service, Respiratory and Sleep Service, Southern Adelaide Local Health Network, Adelaide, South Australia, Australia
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, College Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Heather M. Ochs-Balcom
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| | - Lyle J. Palmer
- School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Shaun Purcell
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, and
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Richa Saxena
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, and
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
- Center for Genomic Medicine and
- Department of Anesthesia, Pain and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Sanjay R. Patel
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Katie L. Stone
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Gregory J. Tranah
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Eric Boerwinkle
- Cardiovascular Health Research Unit, Department of Medicine
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Xihong Lin
- Department of Biostatistics, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Yongmei Liu
- Department of Medicine, Division of Cardiology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine
- Department of Epidemiology, and
- Department of Health Services and Population Health, University of Washington, Seattle, Washington
| | - Ramachandran S. Vasan
- Framingham Heart Study, Framingham, Massachusetts
- Section of Preventive Medicine and Epidemiology and
- Section of Cardiology, Department of Medicine, School of Medicine, and
- Department of Epidemiology, School of Public Health, Boston University, Boston, Massachusetts; and
| | - Ani Manichaikul
- Center for Public Health Genomics and
- Biostatistics Section, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | | | - Jerome I. Rotter
- California Pacific Medical Center Research Institute, San Francisco, California
- Institute for Translational Genomics and Population Sciences and
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, and
- Department of Biostatistics, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, and
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - TOPMed Sleep Working Group
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, and
- Department of Biostatistics, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
- Cardiovascular Health Research Unit, Department of Medicine
- Computational Medicine Core, Center for Lung Biology, University of Washington Medicine Sleep Center, Department of Medicine
- Department of Epidemiology, and
- Department of Health Services and Population Health, University of Washington, Seattle, Washington
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, and
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas
- VA Boston Healthcare System, Boston, Massachusetts
- California Pacific Medical Center Research Institute, San Francisco, California
- Institute for Translational Genomics and Population Sciences and
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
- Family, Population, and Preventive Medicine, Program in Public Health, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
- Sleep Health Service, Respiratory and Sleep Service, Southern Adelaide Local Health Network, Adelaide, South Australia, Australia
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, College Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
- School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
- Center for Genomic Medicine and
- Department of Anesthesia, Pain and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Division of Cardiology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina
- Framingham Heart Study, Framingham, Massachusetts
- Section of Preventive Medicine and Epidemiology and
- Section of Cardiology, Department of Medicine, School of Medicine, and
- Department of Epidemiology, School of Public Health, Boston University, Boston, Massachusetts; and
- Center for Public Health Genomics and
- Biostatistics Section, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
15
|
Zielinski MR, Gibbons AJ. Neuroinflammation, Sleep, and Circadian Rhythms. Front Cell Infect Microbiol 2022; 12:853096. [PMID: 35392608 PMCID: PMC8981587 DOI: 10.3389/fcimb.2022.853096] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
Molecules involved in innate immunity affect sleep and circadian oscillators and vice versa. Sleep-inducing inflammatory molecules are activated by increased waking activity and pathogens. Pathologies that alter inflammatory molecules, such as traumatic brain injury, cancer, cardiovascular disease, and stroke often are associated with disturbed sleep and electroencephalogram power spectra. Moreover, sleep disorders, such as insomnia and sleep disordered breathing, are associated with increased dysregulation of inflammatory processes. Inflammatory molecules in both the central nervous system and periphery can alter sleep. Inflammation can also modulate cerebral vascular hemodynamics which is associated with alterations in electroencephalogram power spectra. However, further research is needed to determine the interactions of sleep regulatory inflammatory molecules and circadian clocks. The purpose of this review is to: 1) describe the role of the inflammatory cytokines interleukin-1 beta and tumor necrosis factor-alpha and nucleotide-binding domain and leucine-rich repeat protein-3 inflammasomes in sleep regulation, 2) to discuss the relationship between the vagus nerve in translating inflammatory signals between the periphery and central nervous system to alter sleep, and 3) to present information about the relationship between cerebral vascular hemodynamics and the electroencephalogram during sleep.
Collapse
Affiliation(s)
- Mark R. Zielinski
- Veterans Affairs (VA) Boston Healthcare System, West Roxbury, MA, United States,Harvard Medical School, West Roxbury, MA, United States,*Correspondence: Mark R. Zielinski,
| | - Allison J. Gibbons
- Veterans Affairs (VA) Boston Healthcare System, West Roxbury, MA, United States
| |
Collapse
|
16
|
Wang H, Kurniansyah N, Cade BE, Goodman MO, Chen H, Gottlieb DJ, Gharib SA, Purcell SM, Lin X, Saxena R, Zhu X, Durda P, Tracy R, Liu Y, Taylor KD, Johnson WC, Gabriel S, Smith JD, Aguet F, Ardlie K, Blackwell T, Reiner AP, Rotter JI, Rich SS, Redline S, Sofer T. Upregulated heme biosynthesis increases obstructive sleep apnea severity: a pathway-based Mendelian randomization study. Sci Rep 2022; 12:1472. [PMID: 35087136 PMCID: PMC8795126 DOI: 10.1038/s41598-022-05415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a common disorder associated with increased risk of cardiovascular disease and mortality. Iron and heme metabolism, implicated in ventilatory control and OSA comorbidities, was associated with OSA phenotypes in recent admixture mapping and gene enrichment analyses. However, its causal contribution was unclear. In this study, we performed pathway-level transcriptional Mendelian randomization (MR) analysis to investigate the causal relationships between iron and heme related pathways and OSA. In primary analysis, we examined the expression level of four iron/heme Reactome pathways as exposures and four OSA traits as outcomes using cross-tissue cis-eQTLs from the Genotype-Tissue Expression portal and published genome-wide summary statistics of OSA. We identify a significant putative causal association between up-regulated heme biosynthesis pathway with higher sleep time percentage of hypoxemia (p = 6.14 × 10-3). This association is supported by consistency of point estimates in one-sample MR in the Multi-Ethnic Study of Atherosclerosis using high coverage DNA and RNA sequencing data generated by the Trans-Omics for Precision Medicine project. Secondary analysis for 37 additional iron/heme Gene Ontology pathways did not reveal any significant causal associations. This study suggests a causal association between increased heme biosynthesis and OSA severity.
Collapse
Affiliation(s)
- Heming Wang
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave BLI 252, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Nuzulul Kurniansyah
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave BLI 252, Boston, MA, 02115, USA
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave BLI 252, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Matthew O Goodman
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave BLI 252, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Han Chen
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- School of Biomedical Informatics, Center for Precision Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Daniel J Gottlieb
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave BLI 252, Boston, MA, 02115, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Sina A Gharib
- Department of Medicine, Computational Medicine Core, Center for Lung Biology, UW Medicine Sleep Center, University of Washington, Seattle, WA, USA
| | - Shaun M Purcell
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave BLI 252, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xihong Lin
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Statistics, Harvard University, Cambridge, MA, USA
| | - Richa Saxena
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave BLI 252, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Peter Durda
- Department of Pathology and Laboratory Medicine, The Robert Larner, M.D. College of Medicine at the University of Vermont, Burlington, VT, 05446, USA
| | - Russel Tracy
- Department of Pathology and Laboratory Medicine, The Robert Larner, M.D. College of Medicine at the University of Vermont, Burlington, VT, 05446, USA
| | - Yongmei Liu
- Divisions of Cardiology and Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Kent D Taylor
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - W Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
| | - Stacey Gabriel
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Joshua D Smith
- Northwest Genomic Center, University of Washington, Seattle, WA, USA
| | - François Aguet
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kirstin Ardlie
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Tom Blackwell
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jerome I Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave BLI 252, Boston, MA, 02115, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave BLI 252, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
17
|
Cade BE, Hassan SM, Dashti HS, Kiernan M, Pavlova MK, Redline S, Karlson EW. Sleep apnea phenotyping and relationship to disease in a large clinical biobank. JAMIA Open 2022; 5:ooab117. [PMID: 35156000 PMCID: PMC8826997 DOI: 10.1093/jamiaopen/ooab117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/08/2021] [Accepted: 12/28/2021] [Indexed: 11/14/2022] Open
Abstract
Objective Sleep apnea is associated with a broad range of pathophysiology. While electronic health record (EHR) information has the potential for revealing relationships between sleep apnea and associated risk factors and outcomes, practical challenges hinder its use. Our objectives were to develop a sleep apnea phenotyping algorithm that improves the precision of EHR case/control information using natural language processing (NLP); identify novel associations between sleep apnea and comorbidities in a large clinical biobank; and investigate the relationship between polysomnography statistics and comorbid disease using NLP phenotyping. Materials and Methods We performed clinical chart reviews on 300 participants putatively diagnosed with sleep apnea and applied International Classification of Sleep Disorders criteria to classify true cases and noncases. We evaluated 2 NLP and diagnosis code-only methods for their abilities to maximize phenotyping precision. The lead algorithm was used to identify incident and cross-sectional associations between sleep apnea and common comorbidities using 4876 NLP-defined sleep apnea cases and 3× matched controls. Results The optimal NLP phenotyping strategy had improved model precision (≥0.943) compared to the use of one diagnosis code (≤0.733). Of the tested diseases, 170 disorders had significant incidence odds ratios (ORs) between cases and controls, 8 of which were confirmed using polysomnography (n = 4544), and 281 disorders had significant prevalence OR between sleep apnea cases versus controls, 41 of which were confirmed using polysomnography data. Discussion and Conclusion An NLP-informed algorithm can improve the accuracy of case-control sleep apnea ascertainment and thus improve the performance of phenome-wide, genetic, and other EHR analyses of a highly prevalent disorder. Sleep apnea is a common disease in which breathing partially or completely pauses during sleep, leading to less oxygen in the blood, repeated awakenings, and increased risk of developing multiple diseases. Current studies of sleep apnea often have relatively few participants due to the challenge of performing overnight sleep recordings. Electronic health record (EHR) billing code diagnoses of sleep apnea could be repurposed to increase the size of research studies, but the accuracy of the diagnoses is reduced. We developed a reusable algorithm that improves the accuracy of EHR sleep apnea diagnoses using natural language processing to extract information from clinical notes. As a proof of concept, we used the algorithm to identify hundreds of diseases that are increased among participants with sleep apnea compared to similar patients without sleep apnea. Many of these disease relationships with sleep apnea have not been previously recognized. This improved algorithm will help to accelerate future large-scale investigations of the causes and consequences of sleep apnea.
Collapse
Affiliation(s)
- Brian E Cade
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Syed Moin Hassan
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Burlington, Vermont, USA
| | - Hassan S Dashti
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesia, Pain, and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Melissa Kiernan
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- NeuroCare Center for Sleep, Newton, Massachusetts, USA
| | - Milena K Pavlova
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Elizabeth W Karlson
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Yi M, Tan Y, Pi Y, Zhou Y, Fei Q, Zhao W, Zhang Y. Variants of candidate genes associated with the risk of obstructive sleep apnea. Eur J Clin Invest 2022; 52:e13673. [PMID: 34435353 DOI: 10.1111/eci.13673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND The researches on the associations between different candidate genes and obstructive sleep apnea (OSA) are inconsistent. Here, we performed a comprehensive qualitative and quantitative analysis to estimate the contribution of variants from candidate genes to the risk of OSA. METHODS Qualitative analysis was conducted to find the relationships for all included genes. Then, quantitative analysis of both allele models and genotype models was applied to evaluate the risk variants for OSA. Furthermore, a similar analysis was performed in different ethnic groups. RESULTS We included 152 publications containing 75 genes for qualitative analysis. Among them, we included 93 articles containing 28 variants from 16 genes for quantitative analysis. Through allele models, we found 10 risk variants for OSA (rs1801133 of MTHFR, ɛ4 of ApoE, -1438G/A of 5-HT2A, -308G/A of TNF-α, Pro1019Pro of LEPR, rs1130864 and rs2794521 of CRP, D/I of ACE, LPR and VNTR of 5-HTT) with the ORs of 1.21-2.07 in global population. We found that the variant of ɛ2 of ApoE could uniquely decrease the risk of OSA in the East Asian subgroup, while the other 6 variants, including ɛ4 in ApoE, -308G/A in TNF-α, Pro1019Pro in LEPR, D/I in ACE, LPR and VNTR in 5-HTT, could increase the risk of OSA. As for the European subpopulation, we only found that -308G/A in TNF-α could increase the risk for OSA. CONCLUSIONS Eleven variants from the candidate genes are associated with the risk of OSA, which also show ethnicity differences in East Asian and European subgroups.
Collapse
Affiliation(s)
- Minhan Yi
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China.,School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Tan
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China.,School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuze Pi
- School of Life Sciences, Central South University, Changsha, China
| | - Yicen Zhou
- School of Life Sciences, Central South University, Changsha, China
| | - Quanming Fei
- Xiangya Medical School, Central South University, Changsha, China
| | - Wangcheng Zhao
- Xiangya Medical School, Central South University, Changsha, China
| | - Yuan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Cade BE, Lee J, Sofer T, Wang H, Zhang M, Chen H, Gharib SA, Gottlieb DJ, Guo X, Lane JM, Liang J, Lin X, Mei H, Patel SR, Purcell SM, Saxena R, Shah NA, Evans DS, Hanis CL, Hillman DR, Mukherjee S, Palmer LJ, Stone KL, Tranah GJ, Abecasis GR, Boerwinkle EA, Correa A, Cupples LA, Kaplan RC, Nickerson DA, North KE, Psaty BM, Rotter JI, Rich SS, Tracy RP, Vasan RS, Wilson JG, Zhu X, Redline S. Whole-genome association analyses of sleep-disordered breathing phenotypes in the NHLBI TOPMed program. Genome Med 2021; 13:136. [PMID: 34446064 PMCID: PMC8394596 DOI: 10.1186/s13073-021-00917-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Sleep-disordered breathing is a common disorder associated with significant morbidity. The genetic architecture of sleep-disordered breathing remains poorly understood. Through the NHLBI Trans-Omics for Precision Medicine (TOPMed) program, we performed the first whole-genome sequence analysis of sleep-disordered breathing. METHODS The study sample was comprised of 7988 individuals of diverse ancestry. Common-variant and pathway analyses included an additional 13,257 individuals. We examined five complementary traits describing different aspects of sleep-disordered breathing: the apnea-hypopnea index, average oxyhemoglobin desaturation per event, average and minimum oxyhemoglobin saturation across the sleep episode, and the percentage of sleep with oxyhemoglobin saturation < 90%. We adjusted for age, sex, BMI, study, and family structure using MMSKAT and EMMAX mixed linear model approaches. Additional bioinformatics analyses were performed with MetaXcan, GIGSEA, and ReMap. RESULTS We identified a multi-ethnic set-based rare-variant association (p = 3.48 × 10-8) on chromosome X with ARMCX3. Additional rare-variant associations include ARMCX3-AS1, MRPS33, and C16orf90. Novel common-variant loci were identified in the NRG1 and SLC45A2 regions, and previously associated loci in the IL18RAP and ATP2B4 regions were associated with novel phenotypes. Transcription factor binding site enrichment identified associations with genes implicated with respiratory and craniofacial traits. Additional analyses identified significantly associated pathways. CONCLUSIONS We have identified the first gene-based rare-variant associations with objectively measured sleep-disordered breathing traits. Our results increase the understanding of the genetic architecture of sleep-disordered breathing and highlight associations in genes that modulate lung development, inflammation, respiratory rhythmogenesis, and HIF1A-mediated hypoxic response.
Collapse
Affiliation(s)
- Brian E. Cade
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA
| | - Jiwon Lee
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA
| | - Tamar Sofer
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA
| | - Heming Wang
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA
| | - Man Zhang
- grid.411024.20000 0001 2175 4264Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Han Chen
- grid.267308.80000 0000 9206 2401Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA ,grid.267308.80000 0000 9206 2401Center for Precision Health, School of Public Health and School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Sina A. Gharib
- grid.34477.330000000122986657Computational Medicine Core, Center for Lung Biology, UW Medicine Sleep Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA 98195 USA
| | - Daniel J. Gottlieb
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA ,grid.410370.10000 0004 4657 1992VA Boston Healthcare System, Boston, MA 02132 USA
| | - Xiuqing Guo
- grid.239844.00000 0001 0157 6501The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502 USA
| | - Jacqueline M. Lane
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA ,grid.32224.350000 0004 0386 9924Center for Genomic Medicine and Department of Anesthesia, Pain, and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Jingjing Liang
- grid.67105.350000 0001 2164 3847Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Xihong Lin
- grid.38142.3c000000041936754XDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| | - Hao Mei
- grid.410721.10000 0004 1937 0407Department of Data Science, University of Mississippi Medical Center, Jackson, MS 29216 USA
| | - Sanjay R. Patel
- grid.21925.3d0000 0004 1936 9000Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Shaun M. Purcell
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA
| | - Richa Saxena
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA ,grid.32224.350000 0004 0386 9924Center for Genomic Medicine and Department of Anesthesia, Pain, and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Neomi A. Shah
- grid.59734.3c0000 0001 0670 2351Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Daniel S. Evans
- grid.17866.3e0000000098234542California Pacific Medical Center Research Institute, San Francisco, CA 94107 USA
| | - Craig L. Hanis
- grid.267308.80000 0000 9206 2401Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - David R. Hillman
- grid.3521.50000 0004 0437 5942Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia 6009 Australia
| | - Sutapa Mukherjee
- Sleep Health Service, Respiratory and Sleep Services, Southern Adelaide Local Health Network, Adelaide, South Australia Australia ,grid.1014.40000 0004 0367 2697Adelaide Institute for Sleep Health, Flinders University, Adelaide, South Australia Australia
| | - Lyle J. Palmer
- grid.1010.00000 0004 1936 7304School of Public Health, University of Adelaide, Adelaide, South Australia 5000 Australia
| | - Katie L. Stone
- grid.17866.3e0000000098234542California Pacific Medical Center Research Institute, San Francisco, CA 94107 USA
| | - Gregory J. Tranah
- grid.17866.3e0000000098234542California Pacific Medical Center Research Institute, San Francisco, CA 94107 USA
| | | | - Gonçalo R. Abecasis
- grid.214458.e0000000086837370Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109 USA
| | - Eric A. Boerwinkle
- grid.267308.80000 0000 9206 2401Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XHuman Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
| | - Adolfo Correa
- grid.410721.10000 0004 1937 0407Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216 USA ,Jackson Heart Study, Jackson, MS 39216 USA
| | - L. Adrienne Cupples
- grid.189504.10000 0004 1936 7558Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118 USA ,grid.510954.c0000 0004 0444 3861Framingham Heart Study, Framingham, MA 01702 USA
| | - Robert C. Kaplan
- grid.251993.50000000121791997Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, 10461 USA
| | - Deborah A. Nickerson
- grid.34477.330000000122986657Department of Genome Sciences, University of Washington, Seattle, WA 98195 USA ,grid.34477.330000000122986657Northwest Genomics Center, Seattle, WA 98105 USA
| | - Kari E. North
- grid.410711.20000 0001 1034 1720Department of Epidemiology and Carolina Center of Genome Sciences, University of North Carolina, Chapel Hill, NC 27514 USA
| | - Bruce M. Psaty
- grid.34477.330000000122986657Cardiovascular Health Study, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA 98101 USA ,grid.488833.c0000 0004 0615 7519Kaiser Permanente Washington Health Research Institute, Seattle, WA 98101 USA
| | - Jerome I. Rotter
- grid.239844.00000 0001 0157 6501The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502 USA
| | - Stephen S. Rich
- grid.27755.320000 0000 9136 933XCenter for Public Health Genomics, University of Virginia, Charlottesville, VA 22908 USA
| | - Russell P. Tracy
- grid.59062.380000 0004 1936 7689Department of Pathology, University of Vermont, Colchester, VT 05405 USA
| | - Ramachandran S. Vasan
- grid.510954.c0000 0004 0444 3861Framingham Heart Study, Framingham, MA 01702 USA ,grid.189504.10000 0004 1936 7558Sections of Preventive Medicine and Epidemiology and Cardiology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118 USA ,grid.189504.10000 0004 1936 7558Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118 USA
| | - James G. Wilson
- grid.410721.10000 0004 1937 0407Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216 USA
| | - Xiaofeng Zhu
- grid.67105.350000 0001 2164 3847Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Susan Redline
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA ,grid.239395.70000 0000 9011 8547Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215 USA
| | | |
Collapse
|
20
|
Sleep Disordered Breathing and Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 78:608-624. [PMID: 34353537 DOI: 10.1016/j.jacc.2021.05.048] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/23/2022]
Abstract
Sleep disordered breathing causes repetitive episodes of nocturnal hypoxemia, sympathetic nervous activation, and cortical arousal, often associated with excessive daytime sleepiness. Sleep disordered breathing is common in people with, or at risk of, cardiovascular (CV) disease including those who are obese or have hypertension, coronary disease, heart failure, or atrial fibrillation. Current therapy of obstructive sleep apnea includes weight loss (if obese), exercise, and positive airway pressure (PAP) therapy. This improves daytime sleepiness. Obstructive sleep apnea is associated with increased CV risk, but treatment with PAP in randomized trials has not been shown to improve CV outcome. Central sleep apnea (CSA) is not usually associated with daytime sleepiness in heart failure or atrial fibrillation and is a marker of increased CV risk, but PAP has been shown to be harmful in 1 randomized trial. The benefits of better phenotyping, targeting of higher-risk patients, and a more personalized approach to therapy are being explored in ongoing trials.
Collapse
|
21
|
Association of TNF-α (-308G/A) Gene Polymorphism with Circulating TNF-α Levels and Excessive Daytime Sleepiness in Adults with Coronary Artery Disease and Concomitant Obstructive Sleep Apnea. J Clin Med 2021; 10:jcm10153413. [PMID: 34362196 PMCID: PMC8348542 DOI: 10.3390/jcm10153413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/24/2021] [Accepted: 07/30/2021] [Indexed: 12/02/2022] Open
Abstract
Obstructive sleep apnea (OSA) is common in patients with coronary artery disease (CAD), in which inflammatory activity has a crucial role. The manifestation of OSA varies significantly between individuals in clinical cohorts; not all adults with OSA demonstrate the same set of symptoms; i.e., excessive daytime sleepiness (EDS) and/or increased levels of inflammatory biomarkers. The further exploration of the molecular basis of these differences is therefore essential for a better understanding of the OSA phenotypes in cardiac patients. In this current secondary analysis of the Randomized Intervention with Continuous Positive Airway Pressure in CAD and OSA (RICCADSA) trial (Trial Registry: ClinicalTrials.gov; No: NCT 00519597), we aimed to address the association of tumor necrosis factor alpha (TNF-α)-308G/A gene polymorphism with circulating TNF-α levels and EDS among 326 participants. CAD patients with OSA (apnea–hypopnea-index (AHI) ≥ 15 events/h; n = 256) were categorized as having EDS (n = 100) or no-EDS (n = 156) based on the Epworth Sleepiness Scale score with a cut-off of 10. CAD patients with no-OSA (AHI < 5 events/h; n = 70) were included as a control group. The results demonstrated no significant differences regarding the distribution of the TNF-α alleles and genotypes between CAD patients with vs. without OSA. In a multivariate analysis, the oxygen desaturation index and TNF-α genotypes from GG to GA and GA to AA as well as the TNF-α-308A allele carriage were significantly associated with the circulating TNF-α levels. Moreover, the TNF-α-308A allele was associated with a decreased risk for EDS (odds ratio 0.64, 95% confidence interval 0.41–0.99; p = 0.043) independent of age, sex, obesity, OSA severity and the circulating TNF-α levels. We conclude that the TNF-α-308A allele appears to modulate circulatory TNF-α levels and mitigate EDS in adults with CAD and concomitant OSA.
Collapse
|
22
|
Wang H, Goodman MO, Sofer T, Redline S. Cutting the fat: advances and challenges in sleep apnoea genetics. Eur Respir J 2021; 57:57/5/2004644. [PMID: 33958377 DOI: 10.1183/13993003.04644-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/10/2021] [Indexed: 01/25/2023]
Affiliation(s)
- Heming Wang
- Division of Sleep and Circadian Disorders, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Matthew O Goodman
- Division of Sleep and Circadian Disorders, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
23
|
Ambati A, Ju YE, Lin L, Olesen AN, Koch H, Hedou JJ, Leary EB, Sempere VP, Mignot E, Taheri S. Proteomic biomarkers of sleep apnea. Sleep 2021; 43:5830732. [PMID: 32369590 DOI: 10.1093/sleep/zsaa086] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/09/2020] [Indexed: 12/25/2022] Open
Abstract
STUDY OBJECTIVES Obstructive sleep apnea (OSA) is characterized by recurrent partial to complete upper airway obstructions during sleep, leading to repetitive arousals and oxygen desaturations. Although many OSA biomarkers have been reported individually, only a small subset have been validated through both cross-sectional and intervention studies. We sought to profile serum protein biomarkers in OSA in unbiased high throughput assay. METHODS A highly multiplexed aptamer array (SomaScan) was used to profile 1300 proteins in serum samples from 713 individuals in the Stanford Sleep Cohort, a patient-based registry. Outcome measures derived from overnight polysomnography included Obstructive Apnea Hypopnea Index (OAHI), Central Apnea Index (CAI), 2% Oxygen Desaturation index, mean and minimum oxygen saturation indices during sleep. Additionally, a separate intervention-based cohort of 16 individuals was used to assess proteomic profiles pre- and post-intervention with positive airway pressure. RESULTS OAHI was associated with 65 proteins, predominantly pathways of complement, coagulation, cytokine signaling, and hemostasis which were upregulated. CAI was associated with two proteins including Roundabout homolog 3 (ROBO3), a protein involved in bilateral synchronization of the pre-Bötzinger complex and cystatin F. Analysis of pre- and post intervention samples revealed IGFBP-3 protein to be increased while LEAP1 (Hepicidin) to be decreased with intervention. An OAHI machine learning classifier (OAHI >=15 vs OAHI<15) trained on SomaScan protein measures alone performed robustly, achieving 76% accuracy in a validation dataset. CONCLUSIONS Multiplex protein assays offer diagnostic potential and provide new insights into the biological basis of sleep disordered breathing.
Collapse
Affiliation(s)
- Aditya Ambati
- Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Palo Alto, CA
| | - Yo-El Ju
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Ling Lin
- Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Palo Alto, CA
| | - Alexander N Olesen
- Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Palo Alto, CA
| | - Henriette Koch
- Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Palo Alto, CA
| | - Julien Jacques Hedou
- Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Palo Alto, CA
| | - Eileen B Leary
- Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Palo Alto, CA
| | - Vicente Peris Sempere
- Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Palo Alto, CA
| | - Emmanuel Mignot
- Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Palo Alto, CA
| | - Shahrad Taheri
- Department of Medicine and Clinical Research Core, Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, Doha, Qatar
| |
Collapse
|
24
|
Huang T, Goodman M, Li X, Sands SA, Li J, Stampfer MJ, Saxena R, Tworoger SS, Redline S. C-reactive Protein and Risk of OSA in Four US Cohorts. Chest 2021; 159:2439-2448. [PMID: 33529772 DOI: 10.1016/j.chest.2021.01.060] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/11/2020] [Accepted: 01/16/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Individuals with OSA have elevated levels of inflammatory markers, but no prospective study has examined the role of inflammation in the development of OSA. RESEARCH QUESTION Is C-reactive protein (CRP) prospectively associated with risk of developing OSA? STUDY DESIGN AND METHODS We followed 1,882 women from the Nurses' Health Study (NHS) (2002-2012), 3,854 women from Nurses' Health Study II (NHSII) (1995-2013), 3,075 men from the Health Professionals Follow-up Study (HPFS) (1996-2012), and 1,919 women and men from the Multi-Ethnic Study of Atherosclerosis (MESA) (2000-2012) who did not have diagnosed OSA at baseline and for whom CRP levels were available. In NHS/NHSII/HPFS, physician-diagnosed OSA was self-reported. In MESA, at-home polysomnography was performed and OSA was identified as an apnea-hypopnea index ≥ 30. Logistic regression was used to estimate the OR for OSA risk according to baseline CRP level, adjusted for multiple inflammation-related factors. RESULTS After multivariable adjustment not including BMI, the pooled OR for OSA risk per doubling of baseline CRP level was 1.24 (95% CI, 1.18-1.30). Additional adjustment for BMI substantially attenuated the association (pooled OR, 1.07; 95% CI, 1.01-1.12). The fully adjusted association was consistently stronger in individuals < 55 vs ≥ 55 years of age (P interaction = .01), in individuals with BMI < 25 vs ≥ 25 kg/m2 (P interaction = .02), and in pre- vs postmenopausal women (P interaction = .002). CRP was more strongly associated with risk of OSA associated with excessive daytime sleepiness, high airway collapsibility, and low arousal threshold (P heterogeneity < .05). INTERPRETATION Higher CRP was prospectively associated with increased OSA risk, particularly among younger individuals, underweight/normal-weight individuals, or premenopausal women. The differential associations by OSA phenotype/endotype suggest possible mechanisms through which inflammation operates to modulate OSA risk. Given our reliance on a single CRP level measured a decade before OSA assessment, future studies with repeated CRP measurements are warranted to confirm these prospective associations.
Collapse
Affiliation(s)
- Tianyi Huang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Division of Sleep Medicine, Harvard Medical School, Boston, MA.
| | - Matthew Goodman
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Xiaoyu Li
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Scott A Sands
- Division of Sleep Medicine, Harvard Medical School, Boston, MA; Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Jun Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Meir J Stampfer
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Richa Saxena
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Shelley S Tworoger
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA; Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Susan Redline
- Division of Sleep Medicine, Harvard Medical School, Boston, MA; Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
25
|
Campos AI, García-Marín LM, Byrne EM, Martin NG, Cuéllar-Partida G, Rentería ME. Insights into the aetiology of snoring from observational and genetic investigations in the UK Biobank. Nat Commun 2020; 11:817. [PMID: 32060260 PMCID: PMC7021827 DOI: 10.1038/s41467-020-14625-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022] Open
Abstract
Although snoring is common in the general population, its aetiology has been largely understudied. Here we report a genetic study on snoring (n ~ 408,000; snorers ~ 152,000) using data from the UK Biobank. We identify 42 genome-wide significant loci, with an SNP-based heritability estimate of ~10% on the liability scale. Genetic correlations with body mass index, alcohol intake, smoking, schizophrenia, anorexia nervosa and neuroticism are observed. Gene-based associations identify 173 genes, including DLEU7, MSRB3 and POC5, highlighting genes expressed in the brain, cerebellum, lungs, blood and oesophagus. We use polygenic scores (PGS) to predict recent snoring and probable obstructive sleep apnoea (OSA) in an independent Australian sample (n ~ 8000). Mendelian randomization analyses suggest a potential causal relationship between high BMI and snoring. Altogether, our results uncover insights into the aetiology of snoring as a complex sleep-related trait and its role in health and disease beyond it being a cardinal symptom of OSA. Snoring is common in the population and tends to be more prevalent in older and/or male individuals. Here, the authors perform GWAS for habitual snoring, identify 41 genomic loci and explore potential causal relationships with anthropometric and cardiometabolic disease traits.
Collapse
Affiliation(s)
- Adrián I Campos
- Genetic Epidemiology Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Luis M García-Marín
- Genetic Epidemiology Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Zapopan, Jalisco, México
| | - Enda M Byrne
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nicholas G Martin
- Genetic Epidemiology Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Gabriel Cuéllar-Partida
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia. .,University of Queensland Diamantina Institute, Brisbane, QLD, Australia.
| | - Miguel E Rentería
- Genetic Epidemiology Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. .,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
26
|
Edwards BA, Redline S, Sands SA, Owens RL. More Than the Sum of the Respiratory Events: Personalized Medicine Approaches for Obstructive Sleep Apnea. Am J Respir Crit Care Med 2019; 200:691-703. [PMID: 31022356 PMCID: PMC6775874 DOI: 10.1164/rccm.201901-0014tr] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/22/2019] [Indexed: 11/16/2022] Open
Abstract
Traditionally, the presence and severity of obstructive sleep apnea (OSA) have been defined by the apnea-hypopnea index (AHI). Continuous positive airway pressure is generally first-line therapy despite low adherence, because it reliably reduces the AHI when used, and the response to other therapies is variable. However, there is growing appreciation that the underlying etiology (i.e., endotype) and clinical manifestation (i.e., phenotype) of OSA in an individual are not well described by the AHI. We define and review the important progress made in understanding and measuring physiological mechanisms (or endotypes) that help define subtypes of OSA and identify the potential use of genetics to further refine disease classification. This more detailed understanding of OSA pathogenesis should influence clinical treatment decisions as well as help inform research priorities and clinical study design. In short, treatments could be individualized on the basis of the underlying cause of OSA; patients could better understand which symptoms and outcomes will respond to OSA treatment and by how much; and researchers could select populations most likely to benefit from specific treatment approaches for OSA.
Collapse
Affiliation(s)
- Bradley A. Edwards
- Sleep and Circadian Medicine Laboratory, Department of Physiology, and
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
- Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Scott A. Sands
- Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Robert L. Owens
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
27
|
Zielinski MR, Systrom DM, Rose NR. Fatigue, Sleep, and Autoimmune and Related Disorders. Front Immunol 2019; 10:1827. [PMID: 31447842 PMCID: PMC6691096 DOI: 10.3389/fimmu.2019.01827] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Profound and debilitating fatigue is the most common complaint reported among individuals with autoimmune disease, such as systemic lupus erythematosus, multiple sclerosis, type 1 diabetes, celiac disease, chronic fatigue syndrome, and rheumatoid arthritis. Fatigue is multi-faceted and broadly defined, which makes understanding the cause of its manifestations especially difficult in conditions with diverse pathology including autoimmune diseases. In general, fatigue is defined by debilitating periods of exhaustion that interfere with normal activities. The severity and duration of fatigue episodes vary, but fatigue can cause difficulty for even simple tasks like climbing stairs or crossing the room. The exact mechanisms of fatigue are not well-understood, perhaps due to its broad definition. Nevertheless, physiological processes known to play a role in fatigue include oxygen/nutrient supply, metabolism, mood, motivation, and sleepiness-all which are affected by inflammation. Additionally, an important contributing element to fatigue is the central nervous system-a region impacted either directly or indirectly in numerous autoimmune and related disorders. This review describes how inflammation and the central nervous system contribute to fatigue and suggests potential mechanisms involved in fatigue that are likely exhibited in autoimmune and related diseases.
Collapse
Affiliation(s)
- Mark R Zielinski
- Veterans Affairs Boston Healthcare System, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - David M Systrom
- Department of Medicine, Harvard Medical School, Boston, MA, United States.,Department of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Noel R Rose
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|