1
|
Sraphet S, Javadi B. Prospective identification of extracellular triacylglycerol hydrolase with conserved amino acids in Amycolatopsis tolypomycina's high G+C genomic dataset. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2025; 45:e00869. [PMID: 39758972 PMCID: PMC11697127 DOI: 10.1016/j.btre.2024.e00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/03/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025]
Abstract
Extracellular triacylglycerol hydrolases (ETH) play a critical role for microorganisms, acting as essential tools for lipid breakdown and survival in challenging environments. The pursuit of more effective ETH genes and enzymes through evolution holds significant potential for enhancing living conditions. This study employs a proteogenomic approach to identify high G+C ETH in a notable Gram-positive bacterium, Amycolatopsis tolypomycina. Utilizing knowledge from genome and machine learning algorithms, prospective ETH genes/enzymes were identified. Notably, the ETH structural conserved accessibility to solvent clearly indicated the specific sixteen residues (GLY50, PRO93, GLY141, ASP148, GLY151, ASP172, ALA176, GLY195, TYR196, SER197, GLN198, GLY199, GLY200, GLY225, PRO327, ASP336) with no frequency. By pinpointing key residues and understanding their role, this study sets the stage for enhancing ETH performance through computational proteogenomic and contributes to the broader field of enzyme engineering, facilitating the development of more efficient and versatile ETH enzymes tailored to specific industrial or environmental contexts.
Collapse
Affiliation(s)
- Supajit Sraphet
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Bagher Javadi
- Department of Sciences, Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10300, Thailand
| |
Collapse
|
2
|
Abbondanzieri EA, Badrinarayanan AB, Barillà D, Bell SD, Blombach F, Bouet JY, Bulgheresi S, Cao QAD, Dame RT, Dekker C, Demuysere M, Espéli O, Fogg PCM, Freddolino PL, Ganji M, Gerson TM, Grainger DC, Hamoen LW, Harju J, Hocher A, Hustmyer CM, Kaljevic JK, Karney MK, Kleckner N, Laloux G, Landick R, Lioy VS, Liu WL, Liu CL, Mäkelä J, Meyer AS, Noy A, Pineau MP, Premrajka K, Racki LR, Rashid FZM, Schnetz K, Schwab S, Tišma M, van der Sijs AI, van Heesch T, van Raaphorst R, Vreede J, Walker AW, Walter JC, Weber SC, Wiggins PA, Wing HJ, Xiao J, Zhang Z. Future Directions of the Prokaryotic Chromosome Field. Mol Microbiol 2025; 123:89-100. [PMID: 39977301 DOI: 10.1111/mmi.15347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/22/2025]
Abstract
In September 2023, the Biology and Physics of Prokaryotic Chromosomes meeting ran at the Lorentz Center in Leiden, The Netherlands. As part of the workshop, those in attendance developed a series of discussion points centered around current challenges for the field, how these might be addressed, and how the field is likely to develop over the next 10 years. The Lorentz Center staff facilitated these discussions via tools aimed at optimizing productive interactions. This Perspective article is a summary of these discussions and reflects the state-of-the-art of the field. It is expected to be of help to colleagues in advancing their own research related to prokaryotic chromosomes and inspiring novel interdisciplinary collaborations. This forward-looking perspective highlights the open questions driving current research and builds on the impressive recent progress in these areas as represented by the accompanying reviews, perspectives, and research articles in this issue. These articles underline the multi-disciplinary nature of the field, the multiple length scales at which chromatin is studied in vitro and in and highlight the differences and similarities of bacterial and archaeal chromatin and chromatin-associated processes.
Collapse
Affiliation(s)
- E A Abbondanzieri
- Department of Biology, University of Rochester, Rochester, New York, USA
| | | | - D Barillà
- Department of Biology, University of York, York, UK
| | - S D Bell
- Indiana University, Bloomington, Indiana, USA
| | | | - J Y Bouet
- LMGM-CBI, CNRS, University of Toulouse Paul Sabatier, Toulouse, France
| | - S Bulgheresi
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria
| | - Q A D Cao
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - R T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - C Dekker
- Kavli Institute of Nanoscience Delft, Delft, the Netherlands
| | - M Demuysere
- Molecular Microbiology and Structural Biochemistry, CNRS/University of Lyon 1, Lyon, France
| | - O Espéli
- Collége de France, Paris, France
| | | | | | - M Ganji
- Indian Institute of Science, Bangalore, India
| | - T M Gerson
- University of Nevada-Las Vegas, Las Vegas, Nevada, USA
| | | | - L W Hamoen
- University of Amsterdam, Amsterdam, the Netherlands
| | - J Harju
- Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - A Hocher
- Medical Research Council London Institute of Medical Sciences, London, UK
| | - C M Hustmyer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - J K Kaljevic
- de Duve Institute, UCLouvain, Brussels, Brussels, Belgium
| | - M K Karney
- University of Nevada-Las Vegas, Las Vegas, Nevada, USA
| | - N Kleckner
- Harvard University, Cambridge, Massachusetts, USA
| | - G Laloux
- de Duve Institute, UCLouvain, Brussels, Brussels, Belgium
| | - R Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - V S Lioy
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, France
| | - W L Liu
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - C L Liu
- Chinese Academy of Sciences, China
| | - J Mäkelä
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - A S Meyer
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - A Noy
- University of York, York, UK
| | - M P Pineau
- Microbiology, Adaptation and Pathogenesis, UMR5240, INSA, Lyon, France
| | | | | | | | - K Schnetz
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - S Schwab
- Leiden University, Leiden, the Netherlands
| | - M Tišma
- Kavli Institute of Nanoscience Delft, Delft, the Netherlands
| | | | - T van Heesch
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | | | - J Vreede
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - A W Walker
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - J-C Walter
- Laboratory Charles Coulomb (L2C), CNRS & Montpellier Université, Montpellier, France
| | - S C Weber
- Department of Biology, McGill University, Montreal, Quebec, Canada
- Department of Physics, McGill University, Montreal, Quebec, Canada
| | - P A Wiggins
- University of Washington, Seattle, Washington, USA
| | - H J Wing
- University of Nevada-Las Vegas, Las Vegas, Nevada, USA
| | - J Xiao
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Z Zhang
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| |
Collapse
|
3
|
Uppal S, Waterworth SC, Nick A, Vogel H, Flórez LV, Kaltenpoth M, Kwan JC. Repeated horizontal acquisition of lagriamide-producing symbionts in Lagriinae beetles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576914. [PMID: 39026795 PMCID: PMC11257431 DOI: 10.1101/2024.01.23.576914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Microbial symbionts associate with multicellular organisms on a continuum from facultative associations to mutual codependency. In some of the oldest intracellular symbioses there is exclusive vertical symbiont transmission, and co-diversification of symbiotic partners over millions of years. Such symbionts often undergo genome reduction due to low effective population sizes, frequent population bottlenecks, and reduced purifying selection. Here, we describe multiple independent acquisition events of closely related defensive symbionts followed by genome erosion in a group of Lagriinae beetles. Previous work in Lagria villosa revealed the dominant genome-eroded symbiont of the genus Burkholderia produces the antifungal compound lagriamide and protects the beetle's eggs and larvae from antagonistic fungi. Here, we use metagenomics to assemble 11 additional genomes of lagriamide-producing symbionts from seven different host species within Lagriinae from five countries, to unravel the evolutionary history of this symbiotic relationship. In each host species, we detected one dominant genome-eroded Burkholderia symbiont encoding the lagriamide biosynthetic gene cluster (BGC). Surprisingly, however, we did not find evidence for host-symbiont co-diversification, or for a monophyly of the lagriamide-producing symbionts. Instead, our analyses support at least four independent acquisition events of lagriamide-encoding symbionts and subsequent genome erosion in each of these lineages. By contrast, a clade of plant-associated relatives retained large genomes but secondarily lost the lagriamide BGC. In conclusion, our results reveal a dynamic evolutionary history with multiple independent symbiont acquisitions characterized by high degree of specificity. They highlight the importance of the specialized metabolite lagriamide for the establishment and maintenance of this defensive symbiosis.
Collapse
Affiliation(s)
- Siddharth Uppal
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, USA
| | - Samantha C. Waterworth
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, USA
- Current address: National Cancer Institute, Frederick, Maryland, USA
| | - Alina Nick
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Heiko Vogel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Laura V. Flórez
- Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Jason C. Kwan
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, USA
| |
Collapse
|
4
|
Kaushik R, Kumar N, Yadav P, Sircar S, Shete-Aich A, Singh A, Tomar S, Launey T, Malik YS. Comprehensive Genomics Investigation of Neboviruses Reveals Distinct Codon Usage Patterns and Host Specificity. Microorganisms 2024; 12:696. [PMID: 38674640 PMCID: PMC11052288 DOI: 10.3390/microorganisms12040696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Neboviruses (NeVs) from the Caliciviridae family have been linked to enteric diseases in bovines and have been detected worldwide. As viruses rely entirely on the cellular machinery of the host for replication, their ability to thrive in a specific host is greatly impacted by the specific codon usage preferences. Here, we systematically analyzed the codon usage bias in NeVs to explore the genetic and evolutionary patterns. Relative Synonymous Codon Usage and Effective Number of Codon analyses indicated a marginally lower codon usage bias in NeVs, predominantly influenced by the nucleotide compositional constraints. Nonetheless, NeVs showed a higher codon usage bias for codons containing G/C at the third codon position. The neutrality plot analysis revealed natural selection as the primary factor that shaped the codon usage bias in both the VP1 (82%) and VP2 (57%) genes of NeVs. Furthermore, the NeVs showed a highly comparable codon usage pattern to bovines, as reflected through Codon Adaptation Index and Relative Codon Deoptimization Index analyses. Notably, yak NeVs showed considerably different nucleotide compositional constraints and mutational pressure compared to bovine NeVs, which appear to be predominantly host-driven. This study sheds light on the genetic mechanism driving NeVs' adaptability, evolution, and fitness to their host species.
Collapse
Affiliation(s)
- Rahul Kaushik
- Biotechnology Research Center, Technology Innovation Institute, Masdar City, Abu Dhabi P.O. Box 9639, United Arab Emirates;
| | - Naveen Kumar
- Diagnostics and Vaccines Group, ICAR—National Institute of High Security Animal Diseases, Bhopal 462021, Madhya Pradesh, India;
| | - Pragya Yadav
- Maximum Containment Facility, ICMR—National Institute of Virology, Pune 411001, Maharashtra, India; (P.Y.); (A.S.-A.)
| | - Shubhankar Sircar
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA;
| | - Anita Shete-Aich
- Maximum Containment Facility, ICMR—National Institute of Virology, Pune 411001, Maharashtra, India; (P.Y.); (A.S.-A.)
| | - Ankur Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; (A.S.); (S.T.)
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; (A.S.); (S.T.)
| | - Thomas Launey
- Biotechnology Research Center, Technology Innovation Institute, Masdar City, Abu Dhabi P.O. Box 9639, United Arab Emirates;
| | - Yashpal Singh Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana 141004, Punjab, India
| |
Collapse
|
5
|
Dong X, Jia H, Yu Y, Xiang Y, Zhang Y. Genomic revisitation and reclassification of the genus Providencia. mSphere 2024; 9:e0073123. [PMID: 38412041 PMCID: PMC10964429 DOI: 10.1128/msphere.00731-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/07/2024] [Indexed: 02/29/2024] Open
Abstract
Members of Providencia, although typically opportunistic, can cause severe infections in immunocompromised hosts. Recent advances in genome sequencing provide an opportunity for more precise study of this genus. In this study, we first identified and characterized a novel species named Providencia zhijiangensis sp. nov. It has ≤88.23% average nucleotide identity (ANI) and ≤31.8% in silico DNA-DNA hybridization (dDDH) values with all known Providencia species, which fall significantly below the species-defining thresholds. Interestingly, we found that Providencia stuartii and Providencia thailandensis actually fall under the same species, evidenced by an ANI of 98.59% and a dDDH value of 90.4%. By fusing ANI with phylogeny, we have reclassified 545 genomes within this genus into 20 species, including seven unnamed taxa (provisionally titled Taxon 1-7), which can be further subdivided into 23 lineages. Pangenomic analysis identified 1,550 genus-core genes in Providencia, with coenzymes being the predominant category at 10.56%, suggesting significant intermediate metabolism activity. Resistance analysis revealed that most lineages of the genus (82.61%, 19/23) carry a high number of antibiotic-resistance genes (ARGs) and display diverse resistance profiles. Notably, the majority of ARGs are located on plasmids, underscoring the significant role of plasmids in the resistance evolution within this genus. Three species or lineages (P. stuartii, Taxon 3, and Providencia hangzhouensis L12) that possess the highest number of carbapenem-resistance genes suggest their potential influence on clinical treatment. These findings underscore the need for continued surveillance and study of this genus, particularly due to their role in harboring antibiotic-resistance genes. IMPORTANCE The Providencia genus, known to harbor opportunistic pathogens, has been a subject of interest due to its potential to cause severe infections, particularly in vulnerable individuals. Our research offers groundbreaking insights into this genus, unveiling a novel species, Providencia zhijiangensis sp. nov., and highlighting the need for a re-evaluation of existing classifications. Our comprehensive genomic assessment offers a detailed classification of 545 genomes into distinct species and lineages, revealing the rich biodiversity and intricate species diversity within the genus. The substantial presence of antibiotic-resistance genes in the Providencia genus underscores potential challenges for public health and clinical treatments. Our study highlights the pressing need for increased surveillance and research, enriching our understanding of antibiotic resistance in this realm.
Collapse
Affiliation(s)
- Xu Dong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Guangzhou, China
| | - Huiqiong Jia
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yuyun Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanghui Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Guangzhou, China
| |
Collapse
|
6
|
Burger NFV, Nicolis VF, Botha AM. Host-specific co-evolution likely driven by diet in Buchnera aphidicola. BMC Genomics 2024; 25:153. [PMID: 38326788 PMCID: PMC10851558 DOI: 10.1186/s12864-024-10045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Russian wheat aphid (Diuraphis noxia Kurd.) is a severe pest to wheat, and even though resistance varieties are available to curb this pest, they are becoming obsolete with the development of new virulent aphid populations. Unlike many other aphids, D noxia only harbours a single endosymbiont, Buchnera aphidicola. Considering the importance of Buchnera, this study aimed to elucidate commonalities and dissimilarities between various hosts, to better understand its distinctiveness within its symbiotic relationship with D. noxia. To do so, the genome of the D. noxia's Buchnera was assembled and compared to those of other aphid species that feed on diverse host species. RESULTS The overall importance of several features such as gene length and percentage GC content was found to be critical for the maintenance of Buchnera genes when compared to their closest free-living relative, Escherichia coli. Buchnera protein coding genes were found to have percentage GC contents that tended towards a mean of ~ 26% which had strong correlation to their identity to their E. coli homologs. Several SNPs were identified between different aphid populations and multiple isolates of Buchnera were confirmed in single aphids. CONCLUSIONS Establishing the strong correlation of percentage GC content of protein coding genes and gene identity will allow for identifying which genes will be lost in the continually shrinking Buchnera genome. This is also the first report of a parthenogenically reproducing aphid that hosts multiple Buchnera strains in a single aphid, raising questions regarding the benefits of maintaining multiple strains. We also found preliminary evidence for post-transcriptional regulation of Buchnera genes in the form of polyadenylation.
Collapse
Affiliation(s)
- N Francois V Burger
- Department of Genetics, University of Stellenbosch, Stellenbosch, 7601, South Africa
| | - Vittorio F Nicolis
- Department of Genetics, University of Stellenbosch, Stellenbosch, 7601, South Africa
| | - Anna-Maria Botha
- Department of Genetics, University of Stellenbosch, Stellenbosch, 7601, South Africa.
| |
Collapse
|
7
|
Uppal S, Waterworth SC, Nick A, Vogel H, Flórez LV, Kaltenpoth M, Kwan JC. Repeated horizontal acquisition of lagriamide-producing symbionts in Lagriinae beetles. THE ISME JOURNAL 2024; 18:wrae211. [PMID: 39441990 PMCID: PMC11542224 DOI: 10.1093/ismejo/wrae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
Microbial symbionts associate with multicellular organisms on a continuum from facultative associations to mutual codependency. In the oldest intracellular symbioses there is exclusive vertical symbiont transmission, and co-diversification of symbiotic partners over millions of years. Such symbionts often undergo genome reduction due to low effective population sizes, frequent population bottlenecks, and reduced purifying selection. Here, we describe multiple independent acquisition events of closely related defensive symbionts followed by genome erosion in a group of Lagriinae beetles. Previous work in Lagria villosa revealed the dominant genome-eroded symbiont of the genus Burkholderia produces the antifungal compound lagriamide, protecting the beetle's eggs and larvae from antagonistic fungi. Here, we use metagenomics to assemble 11 additional genomes of lagriamide-producing symbionts from 7 different host species within Lagriinae from 5 countries, to unravel the evolutionary history of this symbiotic relationship. In each host, we detected one dominant genome-eroded Burkholderia symbiont encoding the lagriamide biosynthetic gene cluster. However, we did not find evidence for host-symbiont co-diversification or for monophyly of the lagriamide-producing symbionts. Instead, our analyses support a single ancestral acquisition of the gene cluster followed by at least four independent symbiont acquisitions and subsequent genome erosion in each lineage. By contrast, a clade of plant-associated relatives retained large genomes but secondarily lost the lagriamide gene cluster. Our results, therefore, reveal a dynamic evolutionary history with multiple independent symbiont acquisitions characterized by a high degree of specificity and highlight the importance of the specialized metabolite lagriamide for the establishment and maintenance of this defensive symbiosis.
Collapse
Affiliation(s)
- Siddharth Uppal
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Samantha C Waterworth
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Alina Nick
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Heiko Vogel
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Laura V Flórez
- Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Copenhagen, Denmark
| | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Jason C Kwan
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| |
Collapse
|
8
|
Moggioli G, Panossian B, Sun Y, Thiel D, Martín-Zamora FM, Tran M, Clifford AM, Goffredi SK, Rimskaya-Korsakova N, Jékely G, Tresguerres M, Qian PY, Qiu JW, Rouse GW, Henry LM, Martín-Durán JM. Distinct genomic routes underlie transitions to specialised symbiotic lifestyles in deep-sea annelid worms. Nat Commun 2023; 14:2814. [PMID: 37198188 PMCID: PMC10192322 DOI: 10.1038/s41467-023-38521-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
Bacterial symbioses allow annelids to colonise extreme ecological niches, such as hydrothermal vents and whale falls. Yet, the genetic principles sustaining these symbioses remain unclear. Here, we show that different genomic adaptations underpin the symbioses of phylogenetically related annelids with distinct nutritional strategies. Genome compaction and extensive gene losses distinguish the heterotrophic symbiosis of the bone-eating worm Osedax frankpressi from the chemoautotrophic symbiosis of deep-sea Vestimentifera. Osedax's endosymbionts complement many of the host's metabolic deficiencies, including the loss of pathways to recycle nitrogen and synthesise some amino acids. Osedax's endosymbionts possess the glyoxylate cycle, which could allow more efficient catabolism of bone-derived nutrients and the production of carbohydrates from fatty acids. Unlike in most Vestimentifera, innate immunity genes are reduced in O. frankpressi, which, however, has an expansion of matrix metalloproteases to digest collagen. Our study supports that distinct nutritional interactions influence host genome evolution differently in highly specialised symbioses.
Collapse
Affiliation(s)
- Giacomo Moggioli
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Balig Panossian
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Yanan Sun
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Daniel Thiel
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Francisco M Martín-Zamora
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Martin Tran
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Alexander M Clifford
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Nadezhda Rimskaya-Korsakova
- Friedrich Schiller University Jena, Faculty of Biological Sciences, Institute of Zoology and Evolutionary Research, Erbertstr. 1, 07743, Jena, Germany
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Pei-Yuan Qian
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Greg W Rouse
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Lee M Henry
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK.
| | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK.
| |
Collapse
|
9
|
Sharma A, Gupta S, Paul K. Codon usage behavior distinguishes pathogenic Clostridium species from the non-pathogenic species. Gene 2023; 873:147394. [PMID: 37137382 DOI: 10.1016/j.gene.2023.147394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 05/05/2023]
Abstract
Genus Clostridium is of the largest genus in class Clostridia. It is comprised of spore-forming, anaerobic, gram-positive organisms. The members of this genus include human pathogens to free-living nitrogen fixing bacteria. In the present study, we have performed a comparison of the choice of preferred codons, codon usage patterns, dinucleotide and amino acid usage pattern of 76 species of Genus Clostridium. We found the pathogenic clostridium species to have smaller AT-rich genomes as compared to opportunistic and non-pathogenic clostridium species. The choice of preferred and optimal codons was also influenced by genomic GC/AT content of the respective clostridium species. The pathogenic clostridium species displayed a strict bias in the codon usage, employing 35 of the 61 codons encoding for 20 amino acids. Comparison of amino acid usage revealed an increased usage of amino acids with lower biosynthetic cost by pathogenic clostridium species as compared to opportunistic and non-pathogenic clostridium species. Smaller genome, strict codon usage bias and amino acid usage lead to lower protein energetic cost for the clostridial pathogens. Overall, we found the pathogenic members of genus Clostridium to prefer small, AT-rich codons to reduce biosynthetic costs and match the cellular environment of its AT-rich human host.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Biochemistry, DAV University, Jalandhar, Punjab 144012, India
| | - Shelly Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - Karan Paul
- Department of Biochemistry, DAV University, Jalandhar, Punjab 144012, India.
| |
Collapse
|
10
|
Kiefer JST, Bauer E, Okude G, Fukatsu T, Kaltenpoth M, Engl T. Cuticle supplementation and nitrogen recycling by a dual bacterial symbiosis in a family of xylophagous beetles. THE ISME JOURNAL 2023:10.1038/s41396-023-01415-y. [PMID: 37085551 DOI: 10.1038/s41396-023-01415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/23/2023]
Abstract
Many insects engage in stable nutritional symbioses with bacteria that supplement limiting essential nutrients to their host. While several plant sap-feeding Hemipteran lineages are known to be simultaneously associated with two or more endosymbionts with complementary biosynthetic pathways to synthesize amino acids or vitamins, such co-obligate symbioses have not been functionally characterized in other insect orders. Here, we report on the characterization of a dual co-obligate, bacteriome-localized symbiosis in a family of xylophagous beetles using comparative genomics, fluorescence microscopy, and phylogenetic analyses. Across the beetle family Bostrichidae, most investigated species harbored the Bacteroidota symbiont Shikimatogenerans bostrichidophilus that encodes the shikimate pathway to produce tyrosine precursors in its severely reduced genome, likely supplementing the beetles' cuticle biosynthesis, sclerotisation, and melanisation. One clade of Bostrichid beetles additionally housed the co-obligate symbiont Bostrichicola ureolyticus that is inferred to complement the function of Shikimatogenerans by recycling urea and provisioning the essential amino acid lysine, thereby providing additional benefits on nitrogen-poor diets. Both symbionts represent ancient associations within the Bostrichidae that have subsequently experienced genome erosion and co-speciation with their hosts. While Bostrichicola was repeatedly lost, Shikimatogenerans has been retained throughout the family and exhibits a perfect pattern of co-speciation. Our results reveal that co-obligate symbioses with complementary metabolic capabilities occur beyond the well-known sap-feeding Hemiptera and highlight the importance of symbiont-mediated cuticle supplementation and nitrogen recycling for herbivorous beetles.
Collapse
Affiliation(s)
- Julian Simon Thilo Kiefer
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, Mainz, Germany
| | - Eugen Bauer
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, Mainz, Germany
| | - Genta Okude
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, Mainz, Germany
- Department of Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Tobias Engl
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, Mainz, Germany.
- Department of Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
11
|
Abstract
Invertebrates, particularly sponges, have been a dominant source of new marine natural products. For example, lasonolide A (LSA) is a potential anticancer molecule isolated from the marine sponge Forcepia sp., with nanomolar growth inhibitory activity and a unique cytotoxicity profile against the National Cancer Institute 60-cell-line screen. Here, we identified the putative biosynthetic pathway for LSA. Genomic binning of the Forcepia sponge metagenome revealed a Gram-negative bacterium belonging to the phylum Verrucomicrobia as the candidate producer of LSA. Phylogenetic analysis showed that this bacterium, here named "Candidatus Thermopylae lasonolidus," only has 88.78% 16S rRNA identity with the closest relative, Pedosphaera parvula Ellin514, indicating that it represents a new genus. The lasonolide A (las) biosynthetic gene cluster (BGC) was identified as a trans-acyltransferase (AT) polyketide synthase (PKS) pathway. Compared with its host genome, the las BGC exhibits a significantly different GC content and pentanucleotide frequency, suggesting a potential horizontal acquisition of the gene cluster. Furthermore, three copies of the putative las pathway were identified in the candidate producer genome. Differences between the three las repeats were observed, including the presence of three insertions, two single-nucleotide polymorphisms, and the absence of a stand-alone acyl carrier protein in one of the repeats. Even though the verrucomicrobial producer shows signs of genome reduction, its genome size is still fairly large (about 5 Mbp), and, compared to its closest free-living relative, it contains most of the primary metabolic pathways, suggesting that it is in the early stages of reduction. IMPORTANCE While sponges are valuable sources of bioactive natural products, a majority of these compounds are produced in small quantities by uncultured symbionts, hampering the study and clinical development of these unique compounds. Lasonolide A (LSA), isolated from marine sponge Forcepia sp., is a cytotoxic molecule active at nanomolar concentrations, which causes premature chromosome condensation, blebbing, cell contraction, and loss of cell adhesion, indicating a novel mechanism of action and making it a potential anticancer drug lead. However, its limited supply hampers progression to clinical trials. We investigated the microbiome of Forcepia sp. using culture-independent DNA sequencing, identified genes likely responsible for LSA synthesis in an uncultured bacterium, and assembled the symbiont's genome. These insights provide future opportunities for heterologous expression and cultivation efforts that may minimize LSA's supply problem.
Collapse
|
12
|
Scholz SA, Lindeboom CD, Freddolino L. Genetic context effects can override canonical cis regulatory elements in Escherichia coli. Nucleic Acids Res 2022; 50:10360-10375. [PMID: 36134716 PMCID: PMC9561378 DOI: 10.1093/nar/gkac787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 11/12/2022] Open
Abstract
Recent experiments have shown that in addition to control by cis regulatory elements, the local chromosomal context of a gene also has a profound impact on its transcription. Although this chromosome-position dependent expression variation has been empirically mapped at high-resolution, the underlying causes of the variation have not been elucidated. Here, we demonstrate that 1 kb of flanking, non-coding synthetic sequences with a low frequency of guanosine and cytosine (GC) can dramatically reduce reporter expression compared to neutral and high GC-content flanks in Escherichia coli. Natural and artificial genetic context can have a similarly strong effect on reporter expression, regardless of cell growth phase or medium. Despite the strong reduction in the maximal expression level from the fully-induced reporter, low GC synthetic flanks do not affect the time required to reach the maximal expression level after induction. Overall, we demonstrate key determinants of transcriptional propensity that appear to act as tunable modulators of transcription, independent of regulatory sequences such as the promoter. These findings provide insight into the regulation of naturally occurring genes and an independent control for optimizing expression of synthetic biology constructs.
Collapse
Affiliation(s)
- Scott A Scholz
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chase D Lindeboom
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lydia Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Beyond the ABCs—Discovery of Three New Plasmid Types in Rhodobacterales (RepQ, RepY, RepW). Microorganisms 2022; 10:microorganisms10040738. [PMID: 35456790 PMCID: PMC9025767 DOI: 10.3390/microorganisms10040738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Copiotrophic marine bacteria of the Roseobacter group (Rhodobacterales, Alphaproteobacteria) are characterized by a multipartite genome organization. We sequenced the genomes of Sulfitobacter indolifex DSM 14862T and four related plasmid-rich isolates in order to investigate the composition, distribution, and evolution of their extrachromosomal replicons (ECRs). A combination of long-read PacBio and short-read Illumina sequencing was required to establish complete closed genomes that comprised up to twelve ECRs. The ECRs were differentiated in stably evolving chromids and genuine plasmids. Among the chromids, a diagnostic RepABC-8 replicon was detected in four Sulfitobacter species that likely reflects an evolutionary innovation that originated in their common ancestor. Classification of the ECRs showed that the most abundant plasmid system is RepABC, followed by RepA, DnaA-like, and RepB. However, the strains also contained three novel plasmid types that were designated RepQ, RepY, and RepW. We confirmed the functionality of their replicases, investigated the genetic inventory of the mostly cryptic plasmids, and retraced their evolutionary origin. Remarkably, the RepY plasmid of S. pontiacus DSM 110277 is the first high copy-number plasmid discovered in Rhodobacterales.
Collapse
|
14
|
The zinc-finger bearing xenogeneic silencer MucR in α-proteobacteria balances adaptation and regulatory integrity. THE ISME JOURNAL 2022; 16:738-749. [PMID: 34584215 PMCID: PMC8857273 DOI: 10.1038/s41396-021-01118-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 02/08/2023]
Abstract
Foreign AT-rich genes drive bacterial adaptation to new niches while challenging the existing regulation network. Here we report that MucR, a conserved regulator in α-proteobacteria, balances adaptation and regulatory integrity in Sinorhizobium fredii, a facultative microsymbiont of legumes. Chromatin immunoprecipitation sequencing coupled with transcriptomic data reveal that average transcription levels of both target and non-target genes, under free-living and symbiotic conditions, increase with their conservation levels. Targets involved in environmental adaptation and symbiosis belong to genus or species core and can be repressed or activated by MucR in a condition-dependent manner, implying regulatory integrations. However, most targets are enriched in strain-specific genes of lower expression levels and higher AT%. Within each conservation levels, targets have higher AT% and average transcription levels than non-target genes and can be further up-regulated in the mucR mutant. This is consistent with higher AT% of spacers between -35 and -10 elements of promoters for target genes, which enhances transcription. The MucR recruitment level linearly increases with AT% and the number of a flexible pattern (with periodic repeats of Ts) of target sequences. Collectively, MucR directly represses AT-rich foreign genes with predisposed high transcription potential while progressive erosions of its target sites facilitate regulatory integrations of foreign genes.
Collapse
|
15
|
Hu EZ, Lan XR, Liu ZL, Gao J, Niu DK. A positive correlation between GC content and growth temperature in prokaryotes. BMC Genomics 2022; 23:110. [PMID: 35139824 PMCID: PMC8827189 DOI: 10.1186/s12864-022-08353-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND GC pairs are generally more stable than AT pairs; GC-rich genomes were proposed to be more adapted to high temperatures than AT-rich genomes. Previous studies consistently showed positive correlations between growth temperature and the GC contents of structural RNA genes. However, for the whole genome sequences and the silent sites of the codons in protein-coding genes, the relationship between GC content and growth temperature is in a long-lasting debate. RESULTS With a dataset much larger than previous studies (681 bacteria and 155 archaea with completely assembled genomes), our phylogenetic comparative analyses showed positive correlations between optimal growth temperature (Topt) and GC content both in bacterial and archaeal structural RNA genes and in bacterial whole genome sequences, chromosomal sequences, plasmid sequences, core genes, and accessory genes. However, in the 155 archaea, we did not observe a significant positive correlation of Topt with whole-genome GC content (GCw) or GC content at four-fold degenerate sites. We randomly drew 155 samples from the 681 bacteria for 1000 rounds. In most cases (> 95%), the positive correlations between Topt and genomic GC contents became statistically nonsignificant (P > 0.05). This result suggested that the small sample sizes might account for the lack of positive correlations between growth temperature and genomic GC content in the 155 archaea and the bacterial samples of previous studies. Comparing the GC content among four categories (psychrophiles/psychrotrophiles, mesophiles, thermophiles, and hyperthermophiles) also revealed a positive correlation between GCw and growth temperature in bacteria. By including the GCw of incompletely assembled genomes, we expanded the sample size of archaea to 303. Positive correlations between GCw and Topt appear especially after excluding the halophilic archaea whose GC contents might be strongly shaped by intense UV radiation. CONCLUSIONS This study explains the previous contradictory observations and ends a long debate. Prokaryotes growing in high temperatures have higher GC contents. Thermal adaptation is one possible explanation for the positive association. Meanwhile, we propose that the elevated efficiency of DNA repair in response to heat mutagenesis might have the by-product of increasing GC content like that happens in intracellular symbionts and marine bacterioplankton.
Collapse
Affiliation(s)
- En-Ze Hu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xin-Ran Lan
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zhi-Ling Liu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jie Gao
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
16
|
Hall JPJ, Wright RCT, Harrison E, Muddiman KJ, Wood AJ, Paterson S, Brockhurst MA. Plasmid fitness costs are caused by specific genetic conflicts enabling resolution by compensatory mutation. PLoS Biol 2021; 19:e3001225. [PMID: 34644303 PMCID: PMC8544851 DOI: 10.1371/journal.pbio.3001225] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/25/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
Plasmids play an important role in bacterial genome evolution by transferring genes between lineages. Fitness costs associated with plasmid carriage are expected to be a barrier to gene exchange, but the causes of plasmid fitness costs are poorly understood. Single compensatory mutations are often sufficient to completely ameliorate plasmid fitness costs, suggesting that such costs are caused by specific genetic conflicts rather than generic properties of plasmids, such as their size, metabolic burden, or gene expression level. By combining the results of experimental evolution with genetics and transcriptomics, we show here that fitness costs of 2 divergent large plasmids in Pseudomonas fluorescens are caused by inducing maladaptive expression of a chromosomal tailocin toxin operon. Mutations in single genes unrelated to the toxin operon, and located on either the chromosome or the plasmid, ameliorated the disruption associated with plasmid carriage. We identify one of these compensatory loci, the chromosomal gene PFLU4242, as the key mediator of the fitness costs of both plasmids, with the other compensatory loci either reducing expression of this gene or mitigating its deleterious effects by up-regulating a putative plasmid-borne ParAB operon. The chromosomal mobile genetic element Tn6291, which uses plasmids for transmission, remained up-regulated even in compensated strains, suggesting that mobile genetic elements communicate through pathways independent of general physiological disruption. Plasmid fitness costs caused by specific genetic conflicts are unlikely to act as a long-term barrier to horizontal gene transfer (HGT) due to their propensity for amelioration by single compensatory mutations, helping to explain why plasmids are so common in bacterial genomes.
Collapse
Affiliation(s)
- James P. J. Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Rosanna C. T. Wright
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Katie J. Muddiman
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - A. Jamie Wood
- Department of Biology, University of York, York, United Kingdom
- Department of Mathematics, University of York, York, United Kingdom
| | - Steve Paterson
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Michael A. Brockhurst
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
17
|
Matlock W, Chau KK, AbuOun M, Stubberfield E, Barker L, Kavanagh J, Pickford H, Gilson D, Smith RP, Gweon HS, Hoosdally SJ, Swann J, Sebra R, Bailey MJ, Peto TEA, Crook DW, Anjum MF, Read DS, Walker AS, Stoesser N, Shaw LP. Genomic network analysis of environmental and livestock F-type plasmid populations. THE ISME JOURNAL 2021; 15:2322-2335. [PMID: 33649550 PMCID: PMC8319146 DOI: 10.1038/s41396-021-00926-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/08/2021] [Accepted: 02/03/2021] [Indexed: 12/02/2022]
Abstract
F-type plasmids are diverse and of great clinical significance, often carrying genes conferring antimicrobial resistance (AMR) such as extended-spectrum β-lactamases, particularly in Enterobacterales. Organising this plasmid diversity is challenging, and current knowledge is largely based on plasmids from clinical settings. Here, we present a network community analysis of a large survey of F-type plasmids from environmental (influent, effluent and upstream/downstream waterways surrounding wastewater treatment works) and livestock settings. We use a tractable and scalable methodology to examine the relationship between plasmid metadata and network communities. This reveals how niche (sampling compartment and host genera) partition and shape plasmid diversity. We also perform pangenome-style analyses on network communities. We show that such communities define unique combinations of core genes, with limited overlap. Building plasmid phylogenies based on alignments of these core genes, we demonstrate that plasmid accessory function is closely linked to core gene content. Taken together, our results suggest that stable F-type plasmid backbone structures can persist in environmental settings while allowing dramatic variation in accessory gene content that may be linked to niche adaptation. The association of F-type plasmids with AMR may reflect their suitability for rapid niche adaptation.
Collapse
Affiliation(s)
- William Matlock
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Kevin K Chau
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Manal AbuOun
- Animal and Plant Health Agency, Weybridge, Addlestone, UK
| | | | - Leanne Barker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James Kavanagh
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Hayleah Pickford
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel Gilson
- Animal and Plant Health Agency, Weybridge, Addlestone, UK
| | | | - H Soon Gweon
- UK Centre for Ecology & Hydrology, Wallingford, UK
- University of Reading, Reading, UK
| | | | - Jeremy Swann
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Robert Sebra
- Icahn Institute of Data Science and Genomic Technology, Mt Sinai, NY, USA
| | | | - Timothy E A Peto
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR HPRU in Healthcare-Associated Infection and Antimicrobial Resistance, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Derrick W Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR HPRU in Healthcare-Associated Infection and Antimicrobial Resistance, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Muna F Anjum
- Animal and Plant Health Agency, Weybridge, Addlestone, UK
| | | | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR HPRU in Healthcare-Associated Infection and Antimicrobial Resistance, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Nicole Stoesser
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- NIHR HPRU in Healthcare-Associated Infection and Antimicrobial Resistance, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| | - Liam P Shaw
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Hussain S, Rasool ST, Pottathil S. The Evolution of Severe Acute Respiratory Syndrome Coronavirus-2 during Pandemic and Adaptation to the Host. J Mol Evol 2021; 89:341-356. [PMID: 33993372 PMCID: PMC8123100 DOI: 10.1007/s00239-021-10008-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/25/2021] [Indexed: 12/02/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 is a zoonotic virus with a possible origin in bats and potential transmission to humans through an intermediate host. When zoonotic viruses jump to a new host, they undergo both mutational and natural selective pressures that result in non-synonymous and synonymous adaptive changes, necessary for efficient replication and rapid spread of diseases in new host species. The nucleotide composition and codon usage pattern of SARS-CoV-2 indicate the presence of a highly conserved, gene-specific codon usage bias. The codon usage pattern of SARS-CoV-2 is mostly antagonistic to human and bat codon usage. SARS-CoV-2 codon usage bias is mainly shaped by the natural selection, while mutational pressure plays a minor role. The time-series analysis of SARS-CoV-2 genome indicates that the virus is slowly evolving. Virus isolates from later stages of the outbreak have more biased codon usage and nucleotide composition than virus isolates from early stages of the outbreak.
Collapse
Affiliation(s)
- Snawar Hussain
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, P.O Box. 400, Al-Ahsa, 31982, Kingdom of Saudi Arabia.
| | - Sahibzada Tasleem Rasool
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, P.O Box. 400, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Shinu Pottathil
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, P.O Box. 400, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| |
Collapse
|
19
|
Incipient genome erosion and metabolic streamlining for antibiotic production in a defensive symbiont. Proc Natl Acad Sci U S A 2021; 118:2023047118. [PMID: 33883280 PMCID: PMC8092579 DOI: 10.1073/pnas.2023047118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genome reduction is commonly observed in bacteria of several phyla engaging in obligate nutritional symbioses with insects. In Actinobacteria, however, little is known about the process of genome evolution, despite their importance as prolific producers of antibiotics and their increasingly recognized role as defensive partners of insects and other organisms. Here, we show that “Streptomyces philanthi,” a defensive symbiont of digger wasps, has a G+C-enriched genome in the early stages of erosion, with inactivating mutations in a large proportion of genes, causing dependency on its hosts for certain nutrients, which was validated in axenic symbiont cultures. Additionally, overexpressed catabolic and biosynthetic pathways of the bacteria inside the host indicate host–symbiont metabolic integration for streamlining and control of antibiotic production. Genome erosion is a frequently observed result of relaxed selection in insect nutritional symbionts, but it has rarely been studied in defensive mutualisms. Solitary beewolf wasps harbor an actinobacterial symbiont of the genus Streptomyces that provides protection to the developing offspring against pathogenic microorganisms. Here, we characterized the genomic architecture and functional gene content of this culturable symbiont using genomics, transcriptomics, and proteomics in combination with in vitro assays. Despite retaining a large linear chromosome (7.3 Mb), the wasp symbiont accumulated frameshift mutations in more than a third of its protein-coding genes, indicative of incipient genome erosion. Although many of the frameshifted genes were still expressed, the encoded proteins were not detected, indicating post-transcriptional regulation. Most pseudogenization events affected accessory genes, regulators, and transporters, but “Streptomyces philanthi” also experienced mutations in central metabolic pathways, resulting in auxotrophies for biotin, proline, and arginine that were confirmed experimentally in axenic culture. In contrast to the strong A+T bias in the genomes of most obligate symbionts, we observed a significant G+C enrichment in regions likely experiencing reduced selection. Differential expression analyses revealed that—compared to in vitro symbiont cultures—“S. philanthi” in beewolf antennae showed overexpression of genes for antibiotic biosynthesis, the uptake of host-provided nutrients and the metabolism of building blocks required for antibiotic production. Our results show unusual traits in the early stage of genome erosion in a defensive symbiont and suggest tight integration of host–symbiont metabolic pathways that effectively grants the host control over the antimicrobial activity of its bacterial partner.
Collapse
|
20
|
Malik YS, Ansari MI, Kattoor JJ, Kaushik R, Sircar S, Subbaiyan A, Tiwari R, Dhama K, Ghosh S, Tomar S, Zhang KYJ. Evolutionary and codon usage preference insights into spike glycoprotein of SARS-CoV-2. Brief Bioinform 2021; 22:1006-1022. [PMID: 33377145 PMCID: PMC7953982 DOI: 10.1093/bib/bbaa383] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/31/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Interaction of SARS-CoV-2 spike glycoprotein with the ACE2 cell receptor is very crucial for virus attachment to human cells. Selected mutations in SARS-CoV-2 S-protein are reported to strengthen its binding affinity to mammalian ACE2. The N501T mutation in SARS-CoV-2-CTD furnishes better support to hotspot 353 in comparison with SARS-CoV and shows higher affinity for receptor binding. Recombination analysis exhibited higher recombination events in SARS-CoV-2 strains, irrespective of their geographical origin or hosts. Investigation further supports a common origin among SARS-CoV-2 and its predecessors, SARS-CoV and bat-SARS-like-CoV. The recombination events suggest a constant exchange of genetic material among the co-infecting viruses in possible reservoirs and human hosts before SARS-CoV-2 emerged. Furthermore, a comprehensive analysis of codon usage bias (CUB) in SARS-CoV-2 revealed significant CUB among the S-genes of different beta-coronaviruses governed majorly by natural selection and mutation pressure. Various indices of codon usage of S-genes helped in quantifying its adaptability in other animal hosts. These findings might help in identifying potential experimental animal models for investigating pathogenicity for drugs and vaccine development experiments.
Collapse
Affiliation(s)
| | | | | | - Rahul Kaushik
- Laboratory for Structural Bioinformatics, RIKEN Center for Biosystems Dynamics Research, Japan
| | | | | | - Ruchi Tiwari
- Department of Vet erinary Microbiology, DUVASU, Mathura, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Souvik Ghosh
- Health Center for Zoonoses and Tropical Veterinary Medicine, Basseterre, St. Kitts, West Indies
| | | | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Japan
| |
Collapse
|
21
|
Murray GGR, Charlesworth J, Miller EL, Casey MJ, Lloyd CT, Gottschalk M, Tucker AW(D, Welch JJ, Weinert LA. Genome Reduction Is Associated with Bacterial Pathogenicity across Different Scales of Temporal and Ecological Divergence. Mol Biol Evol 2021; 38:1570-1579. [PMID: 33313861 PMCID: PMC8042751 DOI: 10.1093/molbev/msaa323] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Emerging bacterial pathogens threaten global health and food security, and so it is important to ask whether these transitions to pathogenicity have any common features. We present a systematic study of the claim that pathogenicity is associated with genome reduction and gene loss. We compare broad-scale patterns across all bacteria, with detailed analyses of Streptococcus suis, an emerging zoonotic pathogen of pigs, which has undergone multiple transitions between disease and carriage forms. We find that pathogenicity is consistently associated with reduced genome size across three scales of divergence (between species within genera, and between and within genetic clusters of S. suis). Although genome reduction is also found in mutualist and commensal bacterial endosymbionts, genome reduction in pathogens cannot be solely attributed to the features of their ecology that they share with these species, that is, host restriction or intracellularity. Moreover, other typical correlates of genome reduction in endosymbionts (reduced metabolic capacity, reduced GC content, and the transient expansion of nonfunctional elements) are not consistently observed in pathogens. Together, our results indicate that genome reduction is a consistent correlate of pathogenicity in bacteria.
Collapse
Affiliation(s)
- Gemma G R Murray
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jane Charlesworth
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Eric L Miller
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- Haverford College, Haverford, PA, USA
| | - Michael J Casey
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- School of Mathematical Sciences, University of Southampton, Southampton, United Kingdom
| | - Catrin T Lloyd
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Marcelo Gottschalk
- Département de Pathologie et Microbiologie, Université de Montréal, Montréal, QC, Canada
| | | | - John J Welch
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
22
|
McGinn J, Lamason RL. The enigmatic biology of rickettsiae: recent advances, open questions and outlook. Pathog Dis 2021; 79:ftab019. [PMID: 33784388 PMCID: PMC8035066 DOI: 10.1093/femspd/ftab019] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 02/05/2023] Open
Abstract
Rickettsiae are obligate intracellular bacteria that can cause life-threatening illnesses and are among the oldest known vector-borne pathogens. Members of this genus are extraordinarily diverse and exhibit a broad host range. To establish intracellular infection, Rickettsia species undergo complex, multistep life cycles that are encoded by heavily streamlined genomes. As a result of reductive genome evolution, rickettsiae are exquisitely tailored to their host cell environment but cannot survive extracellularly. This host-cell dependence makes for a compelling system to uncover novel host-pathogen biology, but it has also hindered experimental progress. Consequently, the molecular details of rickettsial biology and pathogenesis remain poorly understood. With recent advances in molecular biology and genetics, the field is poised to start unraveling the molecular mechanisms of these host-pathogen interactions. Here, we review recent discoveries that have shed light on key aspects of rickettsial biology. These studies have revealed that rickettsiae subvert host cells using mechanisms that are distinct from other better-studied pathogens, underscoring the great potential of the Rickettsia genus for revealing novel biology. We also highlight several open questions as promising areas for future study and discuss the path toward solving the fundamental mysteries of this neglected and emerging human pathogen.
Collapse
Affiliation(s)
- Jon McGinn
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Rebecca L Lamason
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| |
Collapse
|
23
|
Shaw LP, Chau KK, Kavanagh J, AbuOun M, Stubberfield E, Gweon HS, Barker L, Rodger G, Bowes MJ, Hubbard ATM, Pickford H, Swann J, Gilson D, Smith RP, Hoosdally SJ, Sebra R, Brett H, Peto TEA, Bailey MJ, Crook DW, Read DS, Anjum MF, Walker AS, Stoesser N. Niche and local geography shape the pangenome of wastewater- and livestock-associated Enterobacteriaceae. SCIENCE ADVANCES 2021; 7:eabe3868. [PMID: 33837077 PMCID: PMC8034854 DOI: 10.1126/sciadv.abe3868] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/22/2021] [Indexed: 05/07/2023]
Abstract
Escherichia coli and other Enterobacteriaceae are diverse species with "open" pangenomes, where genes move intra- and interspecies via horizontal gene transfer. However, most analyses focus on clinical isolates. The pangenome dynamics of natural populations remain understudied, despite their suggested role as reservoirs for antimicrobial resistance (AMR) genes. Here, we analyze near-complete genomes for 827 Enterobacteriaceae (553 Escherichia and 274 non-Escherichia spp.) with 2292 circularized plasmids in total, collected from 19 locations (livestock farms and wastewater treatment works in the United Kingdom) within a 30-km radius at three time points over a year. We find different dynamics for chromosomal and plasmid-borne genes. Plasmids have a higher burden of AMR genes and insertion sequences, and AMR-gene-carrying plasmids show evidence of being under stronger selective pressure. Environmental niche and local geography both play a role in shaping plasmid dynamics. Our results highlight the importance of local strategies for controlling the spread of AMR.
Collapse
Affiliation(s)
- Liam P Shaw
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Kevin K Chau
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - James Kavanagh
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Emma Stubberfield
- Department of Bacteriology, Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - H Soon Gweon
- UK Centre for Ecology & Hydrology (UKCEH), Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
- School of Biological Sciences, University of Reading, Reading RG6 6AS, UK
| | - Leanne Barker
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Gillian Rodger
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Mike J Bowes
- UK Centre for Ecology & Hydrology (UKCEH), Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - Alasdair T M Hubbard
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Hayleah Pickford
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Jeremy Swann
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford OX4 9DU, UK
| | - Daniel Gilson
- Department of Epidemiological Sciences, The Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Richard P Smith
- Department of Epidemiological Sciences, The Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Sarah J Hoosdally
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Sema4, a Mount Sinai venture, 333 Ludlow Street, North Tower, 8th floor, Stamford, CT 06902, USA
| | - Howard Brett
- Thames Water Utilities, Clearwater Court, Vastern Road, Reading RG1 8DB, UK
| | - Tim E A Peto
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford OX4 9DU, UK
| | - Mark J Bailey
- UK Centre for Ecology & Hydrology (UKCEH), Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - Derrick W Crook
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford OX4 9DU, UK
| | - Daniel S Read
- UK Centre for Ecology & Hydrology (UKCEH), Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - A Sarah Walker
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford OX4 9DU, UK
| | - Nicole Stoesser
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
24
|
Abstract
Species belonging to the family Lactobacillaceae are found in highly diverse environments and play an important role in fermented foods and probiotic products. Many of these species have been individually reported to harbour plasmids that encode important genes. In this study, we performed comparative genomic analysis of publicly available data for 512 plasmids from 282 strains represented by 51 species of this family and correlated the genomic features of plasmids with the ecological niches in which these species are found. Two-thirds of the species had at least one plasmid-harbouring strain. Plasmid abundance and GC content were significantly lower in vertebrate-adapted species as compared to nomadic and free-living species. Hierarchical clustering highlighted the distinct nature of plasmids from the nomadic and free-living species than those from the vertebrate-adapted species. EggNOG-assisted functional annotation revealed that genes associated with transposition, conjugation, DNA repair and recombination, exopolysaccharide production, metal ion transport, toxin–antitoxin system, and stress tolerance were significantly enriched on the plasmids of the nomadic and in some cases nomadic and free-living species. On the other hand, genes related to anaerobic metabolism, ABC transporters and the major facilitator superfamily were overrepresented on the plasmids of the vertebrate-adapted species. These genomic signatures correlate with the comparatively nutrient-depleted, stressful and dynamic environments of nomadic and free-living species and nutrient-rich and anaerobic environments of vertebrate-adapted species. Thus, these results indicate the contribution of the plasmids in the adaptation of lactobacilli to their respective habitats. This study also underlines the potential application of these plasmids in improving the technological and probiotic properties of lactic acid bacteria.
Collapse
Affiliation(s)
- Dimple Davray
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| | - Dipti Deo
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| | - Ram Kulkarni
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| |
Collapse
|
25
|
Larson MA, Abdalhamid B, Puniya BL, Helikar T, Kelley DW, Iwen PC. Differences in Blood-derived Francisella tularensis Type B Strains from Clinical Cases of Tularemia. Microorganisms 2020; 8:microorganisms8101515. [PMID: 33019689 PMCID: PMC7600085 DOI: 10.3390/microorganisms8101515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/26/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022] Open
Abstract
Francisella tularensis can cause the zoonotic disease tularemia and is partitioned into subspecies due to differences in chromosomal organization and virulence. The subspecies holarctica (type B) is generally considered more clonal than the other subpopulations with moderate virulence compared to the hypervirulent A.I clade. We performed whole genome sequencing (WGS) on six type B strains isolated from the blood of patients with tularemia within a one-year period from the same United States region, to better understand the associated pathogenicity. The WGS data were compared to the prototype strain for this subspecies, specifically FSC200, which was isolated from a patient with tularemia in Europe. These findings revealed 520–528 single nucleotide polymorphisms (SNPs) between the six United States type B strains compared to FSC200, with slightly higher A+T content in the latter strain. In contrast, comparisons between the six type B isolates showed that five of the six type B isolates had only 4–22 SNPs, while one of the strains had 47–53 SNPs. Analysis of SNPs in the core genome for the six United States type B isolates and the FSC200 strain gave similar results, suggesting that some of these mutations may have been nonsynonymous, resulting in altered protein function and pathogenicity.
Collapse
Affiliation(s)
- Marilynn A. Larson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.A.); (D.W.K.); (P.C.I.)
- Correspondence: ; Tel.: +1-402-559-9115
| | - Baha Abdalhamid
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.A.); (D.W.K.); (P.C.I.)
| | - Bhanwar Lal Puniya
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (B.L.P.); (T.H.)
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (B.L.P.); (T.H.)
| | - David W. Kelley
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.A.); (D.W.K.); (P.C.I.)
| | - Peter C. Iwen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.A.); (D.W.K.); (P.C.I.)
- Nebraska Public Health Laboratory, Omaha, NE 68198, USA
| |
Collapse
|
26
|
Nguyen DT, Wu B, Xiao S, Hao W. Evolution of a Record-Setting AT-Rich Genome: Indel Mutation, Recombination, and Substitution Bias. Genome Biol Evol 2020; 12:2344-2354. [PMID: 32986811 PMCID: PMC7846184 DOI: 10.1093/gbe/evaa202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2020] [Indexed: 12/16/2022] Open
Abstract
Genome-wide nucleotide composition varies widely among species. Despite extensive research, the source of genome-wide nucleotide composition diversity remains elusive. Yeast mitochondrial genomes (mitogenomes) are highly A + T rich, and they provide a unique opportunity to study the evolution of AT-biased landscape. In this study, we sequenced ten complete mitogenomes of the Saccharomycodes ludwigii yeast with 8% G + C content, the lowest genome-wide %(G + C) in all published genomes to date. The S. ludwigii mitogenomes have high densities of short tandem repeats but severely underrepresented mononucleotide repeats. Comparative population genomics of these record-setting A + T-rich genomes shows dynamic indel mutations and strong mutation bias toward A/T. Indel mutations play a greater role in genomic variation among very closely related strains than nucleotide substitutions. Indels have resulted in presence–absence polymorphism of tRNAArg (ACG) among S. ludwigii mitogenomes. Interestingly, these mitogenomes have undergone recombination, a genetic process that can increase G + C content by GC-biased gene conversion. Finally, the expected equilibrium G + C content under mutation pressure alone is higher than observed G + C content, suggesting existence of mechanisms other than AT-biased mutation operating to increase A/T. Together, our findings shed new lights on mechanisms driving extremely AT-rich genomes.
Collapse
Affiliation(s)
- Duong T Nguyen
- Department of Biological Sciences, Wayne State University
| | - Baojun Wu
- Department of Biological Sciences, Wayne State University
| | - Shujie Xiao
- Department of Biological Sciences, Wayne State University
| | - Weilong Hao
- Department of Biological Sciences, Wayne State University
| |
Collapse
|
27
|
Zhou R, Zhu Z, Zhang S, Zhao ZK. The complete mitochondrial genome of the lipid-producing yeast Rhodotorula toruloides. FEMS Yeast Res 2020; 20:5892098. [PMID: 32789504 DOI: 10.1093/femsyr/foaa048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are semi-autonomous organelles with their own genome and crucial to cellular material and energy metabolism. Here, we report the complete mitochondrial genome of a lipid-producing basidiomycetous yeast Rhodotorula toruloides NP11. The mitochondrial genome of R. toruloides NP11 was assembled into a circular DNA molecule of 125937bp, encoding 15 proteins, 28 transfer RNAs, 2 ribosomal RNA subunits and 10 open reading frames with unknown function. The G + C content (41%) of the mitochondrial genome is substantially lower than that of the nuclear genome (62%) of R. toruloides NP11. Further reanalysis of the transcriptome data confirmed the transcription of four mitochondrial genes. The comparison of the mitochondrial genomes of R. toruloides NP11 and NBRC0880 revealed a significant genetic divergence. These data can complement our understanding of the genetic background of R. toruloides and provide fundamental information for further genetic engineering of this strain.
Collapse
Affiliation(s)
- Renhui Zhou
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Zhiwei Zhu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Sufang Zhang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
| | - Zongbao Kent Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
| |
Collapse
|
28
|
Kashkouli M, Castelli M, Floriano AM, Bandi C, Epis S, Fathipour Y, Mehrabadi M, Sassera D. Characterization of a novel Pantoea symbiont allows inference of a pattern of convergent genome reduction in bacteria associated with Pentatomidae. Environ Microbiol 2020; 23:36-50. [PMID: 32686279 DOI: 10.1111/1462-2920.15169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/15/2020] [Indexed: 11/29/2022]
Abstract
Phytophagous stink bugs typically harbor nutritional symbiotic bacteria in their midgut, to integrate their unbalanced diet. In the Pentatomidae, most symbionts are affiliated to the genus Pantoea, and are polyphyletic. This suggests a scenario of an ancestral establishment of symbiosis, followed by multiple symbiont replacement events by akin environmental bacteria in different host lineages. In this study, a novel Pantoeaspecies ('CandidatusPantoea persica') was characterized from the gut of the pentatomid Acrosternum arabicum, and shown to be highly abundant in a specific portion of the gut and necessary for the host development. The genome of the symbiont (2.9 Mb), while presenting putative host-supportive metabolic pathways, including those for amino acids and vitamin synthesis, showed a high level of pseudogenization, indicating ongoing genome reduction. Comparative analyses with other free-living and symbiotic Pantoea highlighted a convergent pattern of genome reduction in symbionts of pentatomids, putatively following the typical phases modelized in obligate nutritional symbionts of insects. Additionally, this system has distinctive traits, as hosts are closely related, and symbionts originated multiple independent times from closely related free-living bacteria, displaying convergent and independent conspicuous genome reduction. Due to such peculiarities, this may become an ideal model to study genome evolutionary processes in insect symbionts.
Collapse
Affiliation(s)
- Marzieh Kashkouli
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14115-336, Iran
| | - Michele Castelli
- Department of Biosciences and Pediatric Clinical Research Center, University of Milan, Milan, 20133, Italy.,Department of Biology and Biotechnology, University of Pavia, 27100, Italy
| | - Anna M Floriano
- Department of Biology and Biotechnology, University of Pavia, 27100, Italy
| | - Claudio Bandi
- Department of Biosciences and Pediatric Clinical Research Center, University of Milan, Milan, 20133, Italy
| | - Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center, University of Milan, Milan, 20133, Italy
| | - Yaghoub Fathipour
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14115-336, Iran
| | - Mohammad Mehrabadi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14115-336, Iran
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, 27100, Italy
| |
Collapse
|
29
|
Tokuda M, Suzuki H, Yanagiya K, Yuki M, Inoue K, Ohkuma M, Kimbara K, Shintani M. Determination of Plasmid pSN1216-29 Host Range and the Similarity in Oligonucleotide Composition Between Plasmid and Host Chromosomes. Front Microbiol 2020; 11:1187. [PMID: 32582111 PMCID: PMC7296055 DOI: 10.3389/fmicb.2020.01187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022] Open
Abstract
Plasmids are extrachromosomal DNA that can be horizontally transferred between different bacterial cells by conjugation. Horizontal gene transfer of plasmids can promote rapid evolution and adaptation of bacteria by imparting various traits involved in antibiotic resistance, virulence, and metabolism to their hosts. The host range of plasmids is an important feature for understanding how they spread in environmental microbial communities. Earlier bioinformatics studies have demonstrated that plasmids are likely to have similar oligonucleotide (k-mer) compositions to their host chromosomes and that evolutionary host ranges of plasmids could be predicted from this similarity. However, there are no complementary studies to assess the consistency between the predicted evolutionary host range and experimentally determined replication/transfer host range of a plasmid. In the present study, the replication/transfer host range of a model plasmid, pSN1216-29, exogenously isolated from cow manure as a newly discovered self-transmissible plasmid, was experimentally determined within microbial communities extracted from soil and cow manure. In silico prediction of evolutionary host range was performed with the pSN1216-29 using its oligonucleotide compositions independently. The results showed that oligonucleotide compositions of the plasmid pSN1216-29 had more similarities to those of hosts (transconjugants genera) than those of non-hosts (other genera). These findings can contribute to the understanding of how plasmids behave in microbial communities, and aid in the designing of appropriate plasmid vectors for different bacteria.
Collapse
Affiliation(s)
- Maho Tokuda
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Haruo Suzuki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Kosuke Yanagiya
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Masahiro Yuki
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Kengo Inoue
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Kazuhide Kimbara
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Masaki Shintani
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan.,Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Japan.,Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
30
|
Pavlovic Djuranovic S, Erath J, Andrews RJ, Bayguinov PO, Chung JJ, Chalker DL, Fitzpatrick JAJ, Moss WN, Szczesny P, Djuranovic S. Plasmodium falciparum translational machinery condones polyadenosine repeats. eLife 2020; 9:e57799. [PMID: 32469313 PMCID: PMC7295572 DOI: 10.7554/elife.57799] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/28/2020] [Indexed: 01/04/2023] Open
Abstract
Plasmodium falciparum is a causative agent of human malaria. Sixty percent of mRNAs from its extremely AT-rich (81%) genome harbor long polyadenosine (polyA) runs within their ORFs, distinguishing the parasite from its hosts and other sequenced organisms. Recent studies indicate polyA runs cause ribosome stalling and frameshifting, triggering mRNA surveillance pathways and attenuating protein synthesis. Here, we show that P. falciparum is an exception to this rule. We demonstrate that both endogenous genes and reporter sequences containing long polyA runs are efficiently and accurately translated in P. falciparum cells. We show that polyA runs do not elicit any response from No Go Decay (NGD) or result in the production of frameshifted proteins. This is in stark contrast to what we observe in human cells or T. thermophila, an organism with similar AT-content. Finally, using stalling reporters we show that Plasmodium cells evolved not to have a fully functional NGD pathway.
Collapse
Affiliation(s)
| | - Jessey Erath
- Department of Cell Biology and Physiology, Washington University School of MedicineSt. LouisUnited States
| | - Ryan J Andrews
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniversityAmesUnited States
| | - Peter O Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of MedicineSt. LouisUnited States
| | - Joyce J Chung
- Department of Biology, Washington UniversitySt LouisUnited States
| | | | - James AJ Fitzpatrick
- Department of Cell Biology and Physiology, Washington University School of MedicineSt. LouisUnited States
- Washington University Center for Cellular Imaging, Washington University School of MedicineSt. LouisUnited States
- Department of Neuroscience, Washington University School of MedicineSt. LouisUnited States
- Department of Biomedical Engineering, Washington UniversitySt LouisUnited States
| | - Walter N Moss
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniversityAmesUnited States
| | - Pawel Szczesny
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Department of BioinformaticsWarsawPoland
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
31
|
Hussain S, Shinu P, Islam MM, Chohan MS, Rasool ST. Analysis of Codon Usage and Nucleotide Bias in Middle East Respiratory Syndrome Coronavirus Genes. Evol Bioinform Online 2020; 16:1176934320918861. [PMID: 32425493 PMCID: PMC7218340 DOI: 10.1177/1176934320918861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/23/2020] [Indexed: 12/31/2022] Open
Abstract
The Middle East Respiratory Syndrome (MERS) is an emerging disease caused by a recently identified human coronavirus (CoV). Over 2494 laboratory-confirmed cases and 858 MERS-related deaths have been reported from 27 countries. MERS-CoV has been associated with a high case fatality rate, especially in patients with pre-existing conditions. Despite the fatal nature of MERS-CoV infection, a comprehensive study to explore its evolution and adaptation in different hosts is lacking. We performed codon usage analyses on 4751 MERS-CoV genes and determined underlying forces that affect the codon usage bias in the MERS-CoV genome. The current analyses revealed a low but highly conserved, gene-specific codon usage bias in the MERS-CoV genome. The codon usage bias is mainly shaped by natural selection, while mutational pressure emerged as a minor factor affecting codon usage in some genes. Other contributory factors included CpG dinucleotide bias, physical and chemical properties of encoded proteins and gene length. Results reported in this study provide considerable insights into the molecular evaluation of MERS-CoV and could serve as a theoretical basis for optimizing MERS-CoV gene expression to study the functional relevance of various MERS-CoV proteins. Alternatively, an attenuated vaccine strain containing hundreds of silent mutations could be engineered. Codon de-optimization will not affect the amino acid sequence or antigenicity of a vaccine strain, but the sheer number of mutations would make viral reversion to a virulent phenotype extremely unlikely.
Collapse
Affiliation(s)
- Snawar Hussain
- Department of Biomedical Science, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Pottathil Shinu
- Department of Biomedical Science, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Mohammed Monirul Islam
- Department of Biomedical Science, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Muhammad Shahzad Chohan
- Department of Biomedical Science, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Sahibzada Tasleem Rasool
- Department of Biomedical Science, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| |
Collapse
|
32
|
Waterworth SC, Flórez LV, Rees ER, Hertweck C, Kaltenpoth M, Kwan JC. Horizontal Gene Transfer to a Defensive Symbiont with a Reduced Genome in a Multipartite Beetle Microbiome. mBio 2020; 11:e02430-19. [PMID: 32098813 PMCID: PMC7042692 DOI: 10.1128/mbio.02430-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
Symbiotic mutualisms of bacteria and animals are ubiquitous in nature, running a continuum from facultative to obligate from the perspectives of both partners. The loss of functions required for living independently but not within a host gives rise to reduced genomes in many symbionts. Although the phenomenon of genome reduction can be explained by existing evolutionary models, the initiation of the process is not well understood. Here, we describe the microbiome associated with the eggs of the beetle Lagria villosa, consisting of multiple bacterial symbionts related to Burkholderia gladioli, including a reduced-genome symbiont thought to be the exclusive producer of the defensive compound lagriamide. We show that the putative lagriamide-producing symbiont is the only member of the microbiome undergoing genome reduction and that it has already lost the majority of its primary metabolism and DNA repair pathways. The key step preceding genome reduction in the symbiont was likely the horizontal acquisition of the putative lagriamide lga biosynthetic gene cluster. Unexpectedly, we uncovered evidence of additional horizontal transfers to the symbiont's genome while genome reduction was occurring and despite a current lack of genes needed for homologous recombination. These gene gains may have given the genome-reduced symbiont a selective advantage in the microbiome, especially given the maintenance of the large lga gene cluster despite ongoing genome reduction.IMPORTANCE Associations between microorganisms and an animal, plant, or fungal host can result in increased dependence over time. This process is due partly to the bacterium not needing to produce nutrients that the host provides, leading to loss of genes that it would need to live independently and to a consequent reduction in genome size. It is often thought that genome reduction is aided by genetic isolation-bacteria that live in monocultures in special host organs, or inside host cells, have less access to other bacterial species from which they can obtain genes. Here, we describe exposure of a genome-reduced beetle symbiont to a community of related bacteria with nonreduced genomes. We show that the symbiont has acquired genes from other bacteria despite going through genome reduction, suggesting that isolation has not yet played a major role in this case of genome reduction, with horizontal gene gains still offering a potential route for adaptation.
Collapse
Affiliation(s)
- Samantha C Waterworth
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Laura V Flórez
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenburg University, Mainz, Germany
| | - Evan R Rees
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology, Jena, Germany
- Department of Natural Product Chemistry, Friedrich Schiller University, Jena, Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenburg University, Mainz, Germany
| | - Jason C Kwan
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
33
|
Erath J, Djuranovic S, Djuranovic SP. Adaptation of Translational Machinery in Malaria Parasites to Accommodate Translation of Poly-Adenosine Stretches Throughout Its Life Cycle. Front Microbiol 2019; 10:2823. [PMID: 31866984 PMCID: PMC6908487 DOI: 10.3389/fmicb.2019.02823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/21/2019] [Indexed: 11/13/2022] Open
Abstract
Malaria is caused by unicellular apicomplexan parasites of the genus Plasmodium, which includes the major human parasite Plasmodium falciparum. The complex cycle of the malaria parasite in both mosquito and human hosts has been studied extensively. There is tight control of gene expression in each developmental stage, and at every level of gene synthesis: from RNA transcription, to its subsequent translation, and finally post-translational modifications of the resulting protein. Whole-genome sequencing of P. falciparum has laid the foundation for significant biological advances by revealing surprising genomic information. The P. falciparum genome is extremely AT-rich (∼80%), with a substantial portion of genes encoding intragenic polyadenosine (polyA) tracks being expressed throughout the entire parasite life cycle. In most eukaryotes, intragenic polyA runs act as negative regulators of gene expression. Recent studies have shown that translation of mRNAs containing 12 or more consecutive adenosines results in ribosomal stalling and frameshifting; activating mRNA surveillance mechanisms. In contrast, P. falciparum translational machinery can efficiently and accurately translate polyA tracks without activating mRNA surveillance pathways. This unique feature of P. falciparum raises interesting questions: (1) How is P. falciparum able to efficiently and correctly translate polyA track transcripts, and (2) What are the specifics of the translational machinery and mRNA surveillance mechanisms that separate P. falciparum from other organisms? In this review, we analyze possible evolutionary shifts in P. falciparum protein synthesis machinery that allow efficient translation of an AU rich-transcriptome. We focus on physiological and structural differences of P. falciparum stage specific ribosomes, ribosome-associated proteins, and changes in mRNA surveillance mechanisms throughout the complete parasite life cycle, with an emphasis on the mosquito and liver stages.
Collapse
Affiliation(s)
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Slavica Pavlovic Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|