1
|
Fahs HZ, Refai FS, Gopinadhan S, Moussa Y, Gan HH, Hunashal Y, Battaglia G, Cipriani PG, Ciancia C, Rahiman N, Kremb S, Xie X, Pearson YE, Butterfoss GL, Maizels RM, Esposito G, Page AP, Gunsalus KC, Piano F. A new class of natural anthelmintics targeting lipid metabolism. Nat Commun 2025; 16:305. [PMID: 39746976 PMCID: PMC11695593 DOI: 10.1038/s41467-024-54965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
Parasitic helminths are a major global health threat, infecting nearly one-fifth of the human population and causing significant losses in livestock and crops. Resistance to the few anthelmintic drugs is increasing. Here, we report a set of avocado fatty alcohols/acetates (AFAs) that exhibit nematocidal activity against four veterinary parasitic nematode species: Brugia pahangi, Teladorsagia circumcincta and Heligmosomoides polygyrus, as well as a multidrug resistant strain (UGA) of Haemonchus contortus. AFA shows significant efficacy in H. polygyrus infected mice. In C. elegans, AFA exposure affects all developmental stages, causing paralysis, impaired mitochondrial respiration, increased reactive oxygen species production and mitochondrial damage. In embryos, AFAs penetrate the eggshell and induce rapid developmental arrest. Genetic and biochemical tests reveal that AFAs inhibit POD-2, encoding an acetyl CoA carboxylase, the rate-limiting enzyme in lipid biosynthesis. These results uncover a new anthelmintic class affecting lipid metabolism.
Collapse
Affiliation(s)
- Hala Zahreddine Fahs
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Fathima S Refai
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Suma Gopinadhan
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Yasmine Moussa
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Hin Hark Gan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Yamanappa Hunashal
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Gennaro Battaglia
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Dipartimento di Scienze Chimiche, Università di Napoli "Federico II", 80138, Naples, Italy
| | - Patricia G Cipriani
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Claire Ciancia
- School of Infection and Immunity, University of Glasgow, Scotland, UK
| | - Nabil Rahiman
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Stephan Kremb
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Xin Xie
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Yanthe E Pearson
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Glenn L Butterfoss
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Rick M Maizels
- School of Infection and Immunity, University of Glasgow, Scotland, UK
| | - Gennaro Esposito
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Istituto Nazionale Biostrutture e Biosistemi, 00136, Rome, Italy
| | - Antony P Page
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Scotland, UK
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates.
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA.
| | - Fabio Piano
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates.
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
2
|
Heestand B, McCarthy B, Simon M, Lister‐Shimauchi EH, Frenk S, Ahmed S. Piwi mutant germ cells transmit a form of heritable stress that promotes longevity. Aging Cell 2025; 24:e14350. [PMID: 39520150 PMCID: PMC11709112 DOI: 10.1111/acel.14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/11/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024] Open
Abstract
The C. elegans Argonaute protein PRG-1/Piwi and associated piRNAs protect metazoan genomes by silencing transposons and other types of foreign DNA. As prg-1 mutants are propagated, their fertility deteriorates prior to the onset of a reproductive arrest phenotype that resembles a starvation-induced stress response. We found that late-generation prg-1 mutants with substantially reduced fertility were long-lived, whereas early- or mid-generation prg-1 mutants had normal lifespans. Loss of the stress response transcription factor DAF-16 caused mid- or late-generation prg-1 mutants to live very short lives, whereas overexpression of DAF-16 enabled both mid- and late-generation prg-1 mutants to live long. Cytoplasmic P-bodies that respond to stress increased in long-lived late-generation prg-1 mutants and were transmitted to F1 but not F2 cross-progeny. Moreover, moderate levels of heritable stress shorten late-generation prg-1 mutant longevity when DAF-16 or P bodies are deficient. Together, these results suggest that the longevity of late-generation prg-1 mutants is a hormetic stress response. However, dauer larvae that occur in response to stress were not observed in late-generation prg-1 mutants. Small germ cell nucleoli that depended on germline DAF-16 were present in late-generation prg-1 mutants but were not necessary for their longevity. We propose that prg-1 mutant germ cells transmit a form of heritable stress, high levels of which promote longevity and strongly reduce fertility. The heritable stress transmitted by prg-1/Piwi mutant germ cells may be generally relevant to epigenetic inheritance of longevity.
Collapse
Affiliation(s)
- Bree Heestand
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Department of BiologyUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Ben McCarthy
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Department of BiologyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Matt Simon
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Department of BiologyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Evan H. Lister‐Shimauchi
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Department of BiologyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Stephen Frenk
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Department of BiologyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Shawn Ahmed
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Department of BiologyUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
3
|
Kim J, Dutta N, Vega M, Bong A, Averbuhk M, Barahona RA, Alcala A, Holmes JT, Garcia G, Higuchi-Sanabria R. Cross comparison of imaging strategies of mitochondria in C. elegans during aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.24.630282. [PMID: 39763886 PMCID: PMC11703187 DOI: 10.1101/2024.12.24.630282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Mitochondria are double membrane-bound organelles with pleiotropic roles in the cell, including energy production through aerobic respiration, calcium signaling, metabolism, proliferation, immune signaling, and apoptosis. Dysfunction of mitochondria is associated with numerous physiological consequences and drives various diseases, and is one of twelve biological hallmarks of aging, linked to aging pathology. There are many distinct changes that occur to the mitochondria during aging including changes in mitochondrial morphology, which can be used as a robust and simple readout of mitochondrial quality and function. Although mitochondrial morphology alone cannot be used to conclude the quality of mitochondria, it is highly correlated with mitochondrial function whereby mitochondria exhibit increased fragmentation with age in multiple cell types of the nematode C. elegans. Thus, C. elegans serve as a robust model for rapidly measuring mitochondrial morphology changes during aging. To standardize imaging methods for mitochondrial morphology in C. elegans, we provide a detailed comparative characterization of several transgenic constructs, highlighting benefits and caveats for aging biology studies.
Collapse
Affiliation(s)
- Juri Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Naibedya Dutta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Matthew Vega
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Andrew Bong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Maxim Averbuhk
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Rebecca Aviles Barahona
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Athena Alcala
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Jacob T. Holmes
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Gilberto Garcia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
4
|
O'Connor LC, Kang WK, Vo P, Spinelli JB, Alkema MJ, Byrne AB. Comamonas aquatica inhibits TIR-1/SARM1 induced axon degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.622298. [PMID: 39605655 PMCID: PMC11601612 DOI: 10.1101/2024.11.20.622298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Emerging evidence suggests the microbiome critically influences the onset and progression of neurodegenerative diseases; however, the identity of neuroprotective bacteria and the molecular mechanisms that respond within the host remain largely unknown. We took advantage of Caenorhabditis elegans' well characterized nervous system and ability to eat uni-bacterial diets to determine how metabolites and neuroprotective molecules from single species of bacteria suppress degeneration of motor neurons. We found Comamonas aquatica significantly protects against degeneration induced by overexpressing a key regulator of axon degeneration, TIR-1/SARM1. Genetic analyses and metabolomics reveal Comamonas protects against neurodegeneration by providing sufficient Vitamin B12 to activate METR-1/MTR methionine synthase in the intestine, which then lowers toxic levels of homocysteine in TIR-1-expressing animals. Defining a molecular pathway between Comamonas and neurodegeneration adds significantly to our understanding of gut-brain interactions and, given the prominent role of homocysteine in neurodegenerative disorders, reveals how such a bacterium could protect against disease.
Collapse
|
5
|
Kovács D, Biró JB, Ahmed S, Kovács M, Sigmond T, Hotzi B, Varga M, Vincze VV, Mohammad U, Vellai T, Barna J. Age-dependent heat shock hormesis to HSF-1 deficiency suggests a compensatory mechanism mediated by the unfolded protein response and innate immunity in young Caenorhabditis elegans. Aging Cell 2024; 23:e14246. [PMID: 38895933 PMCID: PMC11464127 DOI: 10.1111/acel.14246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
The transcription factor HSF-1 (heat shock factor 1) acts as a master regulator of heat shock response in eukaryotic cells to maintain cellular proteostasis. The protein has a protective role in preventing cells from undergoing ageing, and neurodegeneration, and also mediates tumorigenesis. Thus, modulating HSF-1 activity in humans has a promising therapeutic potential for treating these pathologies. Loss of HSF-1 function is usually associated with impaired stress tolerance. Contrary to this conventional knowledge, we show here that inactivation of HSF-1 in the nematode Caenorhabditis elegans results in increased thermotolerance at young adult stages, whereas HSF-1 deficiency in animals passing early adult stages indeed leads to decreased thermotolerance, as compared to wild-type. Furthermore, a gene expression analysis supports that in young adults, distinct cellular stress response and immunity-related signaling pathways become induced upon HSF-1 deficiency. We also demonstrate that increased tolerance to proteotoxic stress in HSF-1-depleted young worms requires the activity of the unfolded protein response of the endoplasmic reticulum and the SKN-1/Nrf2-mediated oxidative stress response pathway, as well as an innate immunity-related pathway, suggesting a mutual compensatory interaction between HSF-1 and these conserved stress response systems. A similar compensatory molecular network is likely to also operate in higher animal taxa, raising the possibility of an unexpected outcome when HSF-1 activity is manipulated in humans.
Collapse
Affiliation(s)
- Dániel Kovács
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
| | | | - Saqib Ahmed
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
| | - Márton Kovács
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
| | - Tímea Sigmond
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
| | - Bernadette Hotzi
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
| | - Máté Varga
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
| | | | - Umar Mohammad
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
| | - Tibor Vellai
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
- HUN‐REN‐ELTE Genetics Research GroupEötvös Loránd UniversityBudapestHungary
| | - János Barna
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
- HUN‐REN‐ELTE Genetics Research GroupEötvös Loránd UniversityBudapestHungary
| |
Collapse
|
6
|
Colino-Lage H, Guerrero-Gómez D, Gómez-Orte E, González X, Martina JA, Dansen TB, Ayuso C, Askjaer P, Puertollano R, Irazoqui JE, Cabello J, Miranda-Vizuete A. Regulation of Caenorhabditis elegans HLH-30 subcellular localization dynamics: Evidence for a redox-dependent mechanism. Free Radic Biol Med 2024; 223:369-383. [PMID: 39059513 PMCID: PMC11977398 DOI: 10.1016/j.freeradbiomed.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Basic Helix-Loop-Helix (bHLH) transcription factors TFEB/TFE3 and HLH-30 are key regulators of autophagy induction and lysosomal biogenesis in mammals and C. elegans, respectively. While much is known about the regulation of TFEB/TFE3, how HLH-30 subcellular dynamics and transactivation are modulated are yet poorly understood. Thus, elucidating the regulation of C. elegans HLH-30 will provide evolutionary insight into the mechanisms governing the function of bHLH transcription factor family. We report here that HLH-30 is retained in the cytoplasm mainly through its conserved Ser201 residue and that HLH-30 physically interacts with the 14-3-3 protein FTT-2 in this location. The FoxO transcription factor DAF-16 is not required for HLH-30 nuclear translocation upon stress, despite that both proteins partner to form a complex that coordinately regulates several organismal responses. Similar as described for DAF-16, the importin IMB-2 assists HLH-30 nuclear translocation, but constitutive HLH-30 nuclear localization is not sufficient to trigger its distinctive transcriptional response. Furthermore, we identify FTT-2 as the target of diethyl maleate (DEM), a GSH depletor that causes a transient nuclear translocation of HLH-30. Together, our work demonstrates that the regulation of TFEB/TFE3 and HLH-30 family members is evolutionarily conserved and that, in addition to a direct redox regulation through its conserved single cysteine residue, HLH-30 can also be indirectly regulated by a redox-dependent mechanism, probably through FTT-2 oxidation.
Collapse
Affiliation(s)
- Hildegard Colino-Lage
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - David Guerrero-Gómez
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Eva Gómez-Orte
- Centro de Investigación Biomédica de la Rioja (CIBIR), Logroño, La Rioja, Spain
| | - Xavier González
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - José A Martina
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tobias B Dansen
- Center for Molecular Medicine, University Medical Center Utrecht, CG Utrecht, the Netherlands
| | - Cristina Ayuso
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, Seville, Spain
| | - Peter Askjaer
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, Seville, Spain
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Javier E Irazoqui
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - Juan Cabello
- Centro de Investigación Biomédica de la Rioja (CIBIR), Logroño, La Rioja, Spain.
| | - Antonio Miranda-Vizuete
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
7
|
Willis AR, Zhao W, Sukhdeo R, Burton NO, Reinke AW. Parental dietary vitamin B12 causes intergenerational growth acceleration and protects offspring from pathogenic microsporidia and bacteria. iScience 2024; 27:110206. [PMID: 38993662 PMCID: PMC11237918 DOI: 10.1016/j.isci.2024.110206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/27/2024] [Accepted: 06/04/2024] [Indexed: 07/13/2024] Open
Abstract
The parental environment of C. elegans can have lasting effects on progeny development and immunity. Vitamin B12 exposure in C. elegans has been shown to accelerate development and protect against pathogenic bacteria. Here, we show that parental exposure to dietary vitamin B12 or vitamin B12-producing bacteria results in offspring with accelerated growth that persists for a single generation. During infection with the microsporidian Nematocida parisii, the offspring of worms fed vitamin B12 diets have better reproductive fitness but similar infection levels, suggesting increased tolerance to microsporidian infection. Vitamin B12-induced intergenerational growth acceleration and N. parisii tolerance is dependent upon the methionine biosynthesis pathway. Offspring from vitamin B12-exposed parents are protected from pathogenic Pseudomonas vranovensis and this protection is mediated through methionine biosynthesis and propionyl-CoA breakdown pathways. Our results show how parental microbial diet impacts progeny development through the transfer of vitamin B12 which results in accelerated growth and pathogen tolerance.
Collapse
Affiliation(s)
- Alexandra R. Willis
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Winnie Zhao
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Ronesh Sukhdeo
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Aaron W. Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Pitkänen M, Matilainen O. Milk Fat Globule Membrane-Containing Protein Powder Promotes Fitness in Caenorhabditis elegans. Nutrients 2024; 16:2290. [PMID: 39064733 PMCID: PMC11280102 DOI: 10.3390/nu16142290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Milk-derived peptides and milk fat globule membrane (MFGM) have gained interest as health-promoting food ingredients. However, the mechanisms by which these nutraceuticals modulate the function of biological systems often remain unclear. We utilized Caenorhabditis elegans to elucidate how MFGM-containing protein powder (MProPow), previously used in a clinical trial, affect the physiology of this model organism. Our results demonstrate that MProPow does not affect lifespan but promotes the fitness of the animals. Surprisingly, gene expression analysis revealed that MProPow decreases the expression of genes functioning on innate immunity, which also translates into reduced survival on pathogenic bacteria. One of the innate immunity-associated genes showing reduced expression upon MProPow supplementation is cpr-3, the homolog of human cathepsin B. Interestingly, knockdown of cpr-3 enhances fitness, but not in MProPow-treated animals, suggesting that MProPow contributes to fitness by downregulating the expression of this gene. In summary, this research highlights the value of C. elegans in testing the biological activity of food supplements and nutraceuticals. Furthermore, this study should encourage investigations into whether milk-derived peptides and MFGM mediate their beneficial effects through the modulation of cathepsin B expression in humans.
Collapse
Affiliation(s)
| | - Olli Matilainen
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland;
| |
Collapse
|
9
|
Lee YT, Senturk M, Guan Y, Wang MC. Bacteria-organelle communication in physiology and disease. J Cell Biol 2024; 223:e202310134. [PMID: 38748249 PMCID: PMC11096858 DOI: 10.1083/jcb.202310134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/03/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Bacteria, omnipresent in our environment and coexisting within our body, exert dual beneficial and pathogenic influences. These microorganisms engage in intricate interactions with the human body, impacting both human health and disease. Simultaneously, certain organelles within our cells share an evolutionary relationship with bacteria, particularly mitochondria, best known for their energy production role and their dynamic interaction with each other and other organelles. In recent years, communication between bacteria and mitochondria has emerged as a new mechanism for regulating the host's physiology and pathology. In this review, we delve into the dynamic communications between bacteria and host mitochondria, shedding light on their collaborative regulation of host immune response, metabolism, aging, and longevity. Additionally, we discuss bacterial interactions with other organelles, including chloroplasts, lysosomes, and the endoplasmic reticulum (ER).
Collapse
Affiliation(s)
- Yi-Tang Lee
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Integrative Program of Molecular and Biochemical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Mumine Senturk
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Youchen Guan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Meng C. Wang
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
10
|
Held JP, Dbouk NH, Strozak AM, Grub LK, Ryou H, Schaffner SH, Patel MR. Germline status and micronutrient availability regulate a somatic mitochondrial quality control pathway via short-chain fatty acid metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.594820. [PMID: 38826313 PMCID: PMC11142046 DOI: 10.1101/2024.05.20.594820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Reproductive status, such as pregnancy and menopause in women, profoundly influences metabolism of the body. Mitochondria likely orchestrate many of these metabolic changes. However, the influence of reproductive status on somatic mitochondria and the underlying mechanisms remain largely unexplored. We demonstrate that reproductive signals modulate mitochondria in the Caenorhabditis elegans soma. We show that the germline acts via an RNA endonuclease, HOE-1, which despite its housekeeping role in tRNA maturation, selectively regulates the mitochondrial unfolded protein response (UPRmt). Mechanistically, we uncover a fatty acid metabolism pathway acting upstream of HOE-1 to convey germline status. Furthermore, we link vitamin B12's dietary intake to the germline's regulatory impact on HOE-1-driven UPRmt. Combined, our study uncovers a germline-somatic mitochondrial connection, reveals the underlying mechanism, and highlights the importance of micronutrients in modulating this connection. Our findings provide insights into the interplay between reproductive biology and metabolic regulation.
Collapse
Affiliation(s)
- James P. Held
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Nadir H. Dbouk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Adrianna M. Strozak
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Lantana K. Grub
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Hayeon Ryou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Maulik R. Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Evolutionary Studies, Vanderbilt University, VU Box #34-1634, Nashville, TN, USA
- Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Quantitative Systems Biology Center, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
11
|
Pees B, Peters L, Treitz C, Hamerich IK, Kissoyan KAB, Tholey A, Dierking K. The Caenorhabditis elegans proteome response to two protective Pseudomonas symbionts. mBio 2024; 15:e0346323. [PMID: 38411078 PMCID: PMC11005407 DOI: 10.1128/mbio.03463-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
The Caenorhabditis elegans natural microbiota isolates Pseudomonas lurida MYb11 and Pseudomonas fluorescens MYb115 protect the host against pathogens through distinct mechanisms. While P. lurida produces an antimicrobial compound and directly inhibits pathogen growth, P. fluorescens MYb115 protects the host without affecting pathogen growth. It is unknown how these two protective microbes affect host biological processes. We used a proteomics approach to elucidate the C. elegans response to MYb11 and MYb115. We found that both Pseudomonas isolates increase vitellogenin protein production in young adults, which confirms previous findings on the effect of microbiota on C. elegans reproductive timing. Moreover, the C. elegans responses to MYb11 and MYb115 exhibit common signatures with the response to other vitamin B12-producing bacteria, emphasizing the importance of vitamin B12 in C. elegans-microbe metabolic interactions. We further analyzed signatures in the C. elegans response specific to MYb11 or MYb115. We provide evidence for distinct modifications in lipid metabolism by both symbiotic microbes. We could identify the activation of host-pathogen defense responses as an MYb11-specific proteome signature and provide evidence that the intermediate filament protein IFB-2 is required for MYb115-mediated protection. These results indicate that MYb11 not only produces an antimicrobial compound but also activates host antimicrobial defenses, which together might increase resistance to infection. In contrast, MYb115 affects host processes such as lipid metabolism and cytoskeleton dynamics, which might increase host tolerance to infection. Overall, this study pinpoints proteins of interest that form the basis for additional exploration into the mechanisms underlying C. elegans microbiota-mediated protection from pathogen infection and other microbiota-mediated traits.IMPORTANCESymbiotic bacteria can defend their host against pathogen infection. While some protective symbionts directly interact with pathogenic bacteria, other protective symbionts elicit a response in the host that improves its own pathogen defenses. To better understand how a host responds to protective symbionts, we examined which host proteins are affected by two protective Pseudomonas bacteria in the model nematode Caenorhabditis elegans. We found that the C. elegans response to its protective symbionts is manifold, which was reflected in changes in proteins that are involved in metabolism, the immune system, and cell structure. This study provides a foundation for exploring the contribution of the host response to symbiont-mediated protection from pathogen infection.
Collapse
Affiliation(s)
- Barbara Pees
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrecht University, Kiel, Germany
| | - Lena Peters
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrecht University, Kiel, Germany
| | - Christian Treitz
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian-Albrecht University, Kiel, Germany
| | - Inga K. Hamerich
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrecht University, Kiel, Germany
| | - Kohar A. B. Kissoyan
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrecht University, Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian-Albrecht University, Kiel, Germany
| | - Katja Dierking
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrecht University, Kiel, Germany
| |
Collapse
|
12
|
Bhat A, Cox RL, Hendrickson BG, Das NK, Schaller ML, Tuckowski AM, Wang E, Shah YM, Leiser SF. A diet of oxidative stress-adapted bacteria improves stress resistance and lifespan in C. elegans via p38-MAPK. SCIENCE ADVANCES 2024; 10:eadk8823. [PMID: 38569037 PMCID: PMC10990273 DOI: 10.1126/sciadv.adk8823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
Organisms across taxa face stresses including variable temperature, redox imbalance, and xenobiotics. Successfully responding to stress and restoring homeostasis are crucial for survival. Aging is associated with a decreased stress response and alterations in the microbiome, which contribute to disease development. Animals and their microbiota share their environment; however, microbes have short generation time and can rapidly evolve and potentially affect host physiology during stress. Here, we leverage Caenorhabditis elegans and its simplified bacterial diet to demonstrate how microbial adaptation to oxidative stress affects the host's lifespan and stress response. We find that worms fed stress-evolved bacteria exhibit enhanced stress resistance and an extended lifespan. Through comprehensive genetic and metabolic analysis, we find that iron in stress-evolved bacteria enhances worm stress resistance and lifespan via activation of the mitogen-activated protein kinase pathway. In conclusion, our study provides evidence that understanding microbial stress-mediated adaptations could be used to slow aging and alleviate age-related health decline.
Collapse
Affiliation(s)
- Ajay Bhat
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rebecca L. Cox
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Nupur K. Das
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Megan L. Schaller
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Angela M. Tuckowski
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily Wang
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yatrik M. Shah
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott F. Leiser
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
DuMez-Kornegay RN, Baker LS, Morris AJ, DeLoach WLM, Dowen RH. Kombucha Tea-associated microbes remodel host metabolic pathways to suppress lipid accumulation. PLoS Genet 2024; 20:e1011003. [PMID: 38547054 PMCID: PMC10977768 DOI: 10.1371/journal.pgen.1011003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/22/2024] [Indexed: 04/02/2024] Open
Abstract
The popularity of the ancient, probiotic-rich beverage Kombucha Tea (KT) has surged in part due to its purported health benefits, which include protection against metabolic diseases; however, these claims have not been rigorously tested and the mechanisms underlying host response to the probiotics in KT are unknown. Here, we establish a reproducible method to maintain C. elegans on a diet exclusively consisting of Kombucha Tea-associated microbes (KTM), which mirrors the microbial community found in the fermenting culture. KT microbes robustly colonize the gut of KTM-fed animals and confer normal development and fecundity. Intriguingly, animals consuming KTMs display a marked reduction in total lipid stores and lipid droplet size. We find that the reduced fat accumulation phenotype is not due to impaired nutrient absorption, but rather it is sustained by a programed metabolic response in the intestine of the host. KTM consumption triggers widespread transcriptional changes within core lipid metabolism pathways, including upregulation of a suite of lysosomal lipase genes that are induced during lipophagy. The elevated lysosomal lipase activity, coupled with a decrease in lipid droplet biogenesis, is partially required for the reduction in host lipid content. We propose that KTM consumption stimulates a fasting-like response in the C. elegans intestine by rewiring transcriptional programs to promote lipid utilization. Our results provide mechanistic insight into how the probiotics in Kombucha Tea reshape host metabolism and how this popular beverage may impact human metabolism.
Collapse
Affiliation(s)
- Rachel N. DuMez-Kornegay
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lillian S. Baker
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alexis J. Morris
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Whitney L. M. DeLoach
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert H. Dowen
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
14
|
Wang Q, Wang L, Huang Z, Xiao Y, Liu M, Liu H, Yu Y, Liang M, Luo N, Li K, Mishra A, Huang Z. Abalone peptide increases stress resilience and cost-free longevity via SKN-1-governed transcriptional metabolic reprogramming in C. elegans. Aging Cell 2024; 23:e14046. [PMID: 37990605 PMCID: PMC10861207 DOI: 10.1111/acel.14046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023] Open
Abstract
A major goal of healthy aging is to prevent declining resilience and increasing frailty, which are associated with many chronic diseases and deterioration of stress response. Here, we propose a loss-or-gain survival model, represented by the ratio of cumulative stress span to life span, to quantify stress resilience at organismal level. As a proof of concept, this is demonstrated by reduced survival resilience in Caenorhabditis elegans exposed to exogenous oxidative stress induced by paraquat or with endogenous proteotoxic stress caused by polyglutamine or amyloid-β aggregation. Based on this, we reveal that a hidden peptide ("cryptide")-AbaPep#07 (SETYELRK)-derived from abalone hemocyanin not only enhances survival resilience against paraquat-induced oxidative stress but also rescues proteotoxicity-mediated behavioral deficits in C. elegans, indicating its capacity against stress and neurodegeneration. Interestingly, AbaPep#07 is also found to increase cost-free longevity and age-related physical fitness in nematodes. We then demonstrate that AbaPep#07 can promote nuclear localization of SKN-1/Nrf, but not DAF-16/FOXO, transcription factor. In contrast to its effects in wild-type nematodes, AbaPep#07 cannot increase oxidative stress survival and physical motility in loss-of-function skn-1 mutant, suggesting an SKN-1/Nrf-dependent fashion of these effects. Further investigation reveals that AbaPep#07 can induce transcriptional activation of immune defense, lipid metabolism, and metabolic detoxification pathways, including many SKN-1/Nrf target genes. Together, our findings demonstrate that AbaPep#07 is able to boost stress resilience and reduce behavioral frailty via SKN-1/Nrf-governed transcriptional reprogramming, and provide an insight into the health-promoting potential of antioxidant cryptides as geroprotectors in aging and associated conditions.
Collapse
Affiliation(s)
- Qiangqiang Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Guangdong Province Key Laboratory for BiocosmeticsGuangzhouChina
| | - Liangyi Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Ziliang Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Yue Xiao
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Guangdong Province Key Laboratory for BiocosmeticsGuangzhouChina
| | - Mao Liu
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Guangdong Province Key Laboratory for BiocosmeticsGuangzhouChina
| | - Huihui Liu
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Yi Yu
- Research and Development Center, Infinitus (China) Company LtdGuangzhouChina
| | - Ming Liang
- Research and Development Center, Infinitus (China) Company LtdGuangzhouChina
| | - Ning Luo
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Kunping Li
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Ajay Mishra
- European Bioinformatics InstituteCambridgeUK
| | - Zebo Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Guangdong Province Key Laboratory for BiocosmeticsGuangzhouChina
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhouChina
| |
Collapse
|
15
|
Hull B, Irby IM, Miller KM, Anderson A, Gardea EA, Sutphin GL. Experimental variables that impact outcomes in Caenorhabditis elegans aging stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574889. [PMID: 38260451 PMCID: PMC10802420 DOI: 10.1101/2024.01.09.574889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cellular stress is a fundamental component of age-associated disease. Cells encounter various forms of stress - oxidative stress, protein misfolding, DNA damage, etc. - and respond by activating specific, well-defined stress response pathways. As we age, the burden of stress and resulting damage increases while our cells' ability to deal with the consequences becomes diminished due to dysregulation of cellular stress response pathways. Many interventions that extend lifespan activate one or more stress response pathways or allow cells to maintain normal stress response later in life. The nematode Caenorhabditis elegans is a commonly used model for both aging and stress response research. As such, stress response experiments are regularly conducted as part of studies focused on mechanisms of aging in C. elegans. However, experimental design across experiments in the field are highly variable, including stressor dose, age at exposure, culture type (liquid vs. solid), bacterial strain used as a food source, and environmental temperature. These differences can result in different experimental outcomes, making comparison of results between studies challenging. Here we evaluate several experimental variables that are variable in the published literature and find that each can meaningfully alter experimental outcomes for multiple stressors. Our goal is to raise awareness of the issue of experimental variability within the field and suggest a standardized experimental design to serve as a set of guidelines for future experiments. By adopting these guidelines as a starting point, and explicitly noting differences in specific experiments, we aim to promote rigor and reproducibility, ultimately fostering more interpretable and translatable outcomes in geroscience research.
Collapse
|
16
|
Frézal L, Saglio M, Zhang G, Noble L, Richaud A, Félix MA. Genome-wide association and environmental suppression of the mortal germline phenotype of wild C. elegans. EMBO Rep 2023; 24:e58116. [PMID: 37983674 PMCID: PMC10702804 DOI: 10.15252/embr.202358116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023] Open
Abstract
The animal germline lineage needs to be maintained along generations. However, some Caenorhabditis elegans wild isolates display a mortal germline phenotype, leading to sterility after several generations at 25°C. Using a genome-wide association approach, we detect a significant peak on chromosome III around 5 Mb, confirmed by introgressions. Thus, a seemingly deleterious genotype is maintained at intermediate frequency in the species. Environmental rescue is a likely explanation, and indeed associated bacteria and microsporidia suppress the phenotype of wild isolates as well as mutants in small RNA inheritance (nrde-2) and histone modifications (set-2). Escherichia coli strains of the K-12 lineage suppress the phenotype compared to B strains. By shifting a wild strain from E. coli K-12 to E. coli B, we find that memory of the suppressing condition is maintained over several generations. Thus, the mortal germline phenotype of wild C. elegans is in part revealed by laboratory conditions and may represent variation in epigenetic inheritance and environmental interactions. This study also points to the importance of non-genetic memory in the face of environmental variation.
Collapse
Affiliation(s)
- Lise Frézal
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Marie Saglio
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Gaotian Zhang
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Luke Noble
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Aurélien Richaud
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| |
Collapse
|
17
|
Chen S, Su X, Zhu J, Xiao L, Cong Y, Yang L, Du Z, Huang X. Metabolic plasticity sustains the robustness of Caenorhabditis elegans embryogenesis. EMBO Rep 2023; 24:e57440. [PMID: 37885348 PMCID: PMC10702823 DOI: 10.15252/embr.202357440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Embryogenesis is highly dependent on maternally loaded materials, particularly those used for energy production. Different environmental conditions and genetic backgrounds shape embryogenesis. The robustness of embryogenesis in response to extrinsic and intrinsic changes remains incompletely understood. By analyzing the levels of two major nutrients, glycogen and neutral lipids, we discovered stage-dependent usage of these two nutrients along with mitochondrial morphology changes during Caenorhabditis elegans embryogenesis. ATGL, the rate-limiting lipase in cellular lipolysis, is expressed and required in the hypodermis to regulate mitochondrial function and support embryogenesis. The embryonic lethality of atgl-1 mutants can be suppressed by reducing sinh-1/age-1-akt signaling, likely through modulating glucose metabolism to maintain sustainable glucose consumption. The embryonic lethality of atgl-1(xd314) is also affected by parental nutrition. Parental glucose and oleic acid supplements promote glycogen storage in atgl-1(xd314) embryos to compensate for the impaired lipolysis. The rescue by parental vitamin B12 supplement is likely through enhancing mitochondrial function in atgl-1 mutants. These findings reveal that metabolic plasticity contributes to the robustness of C. elegans embryogenesis.
Collapse
Affiliation(s)
- Siyu Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xing Su
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jinglin Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Long Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yulin Cong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Leilei Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhuo Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Tianjian Laboratory of Advanced Biomedical SciencesZhengzhouChina
| |
Collapse
|
18
|
Lee YT, Savini M, Chen T, Yang J, Zhao Q, Ding L, Gao SM, Senturk M, Sowa JN, Wang JD, Wang MC. Mitochondrial GTP metabolism controls reproductive aging in C. elegans. Dev Cell 2023; 58:2718-2731.e7. [PMID: 37708895 PMCID: PMC10842941 DOI: 10.1016/j.devcel.2023.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/17/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Healthy mitochondria are critical for reproduction. During aging, both reproductive fitness and mitochondrial homeostasis decline. Mitochondrial metabolism and dynamics are key factors in supporting mitochondrial homeostasis. However, how they are coupled to control reproductive health remains unclear. We report that mitochondrial GTP (mtGTP) metabolism acts through mitochondrial dynamics factors to regulate reproductive aging. We discovered that germline-only inactivation of GTP- but not ATP-specific succinyl-CoA synthetase (SCS) promotes reproductive longevity in Caenorhabditis elegans. We further identified an age-associated increase in mitochondrial clustering surrounding oocyte nuclei, which is attenuated by GTP-specific SCS inactivation. Germline-only induction of mitochondrial fission factors sufficiently promotes mitochondrial dispersion and reproductive longevity. Moreover, we discovered that bacterial inputs affect mtGTP levels and dynamics factors to modulate reproductive aging. These results demonstrate the significance of mtGTP metabolism in regulating oocyte mitochondrial homeostasis and reproductive longevity and identify mitochondrial fission induction as an effective strategy to improve reproductive health.
Collapse
Affiliation(s)
- Yi-Tang Lee
- Integrative Program of Molecular and Biochemical Sciences, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marzia Savini
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tao Chen
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Jin Yang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Qian Zhao
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Lang Ding
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA; Graduate Program in Chemical, Physical & Structural Biology, Graduate School of Biomedical Science, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shihong Max Gao
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Mumine Senturk
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jessica N Sowa
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Meng C Wang
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Emerson FJ, Lee SS. Chromatin: the old and young of it. Front Mol Biosci 2023; 10:1270285. [PMID: 37877123 PMCID: PMC10591336 DOI: 10.3389/fmolb.2023.1270285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/20/2023] [Indexed: 10/26/2023] Open
Abstract
Aging affects nearly all aspects of our cells, from our DNA to our proteins to how our cells handle stress and communicate with each other. Age-related chromatin changes are of particular interest because chromatin can dynamically respond to the cellular and organismal environment, and many modifications at chromatin are reversible. Changes at chromatin occur during aging, and evidence from model organisms suggests that chromatin factors could play a role in modulating the aging process itself, as altering proteins that work at chromatin often affect the lifespan of yeast, worms, flies, and mice. The field of chromatin and aging is rapidly expanding, and high-resolution genomics tools make it possible to survey the chromatin environment or track chromatin factors implicated in longevity with precision that was not previously possible. In this review, we discuss the state of chromatin and aging research. We include examples from yeast, Drosophila, mice, and humans, but we particularly focus on the commonly used aging model, the worm Caenorhabditis elegans, in which there are many examples of chromatin factors that modulate longevity. We include evidence of both age-related changes to chromatin and evidence of specific chromatin factors linked to longevity in core histones, nuclear architecture, chromatin remodeling, and histone modifications.
Collapse
Affiliation(s)
| | - Siu Sylvia Lee
- Lee Lab, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| |
Collapse
|
20
|
Cuervo-Zanatta D, Syeda T, Sánchez-Valle V, Irene-Fierro M, Torres-Aguilar P, Torres-Ramos MA, Shibayama-Salas M, Silva-Olivares A, Noriega LG, Torres N, Tovar AR, Ruminot I, Barros LF, García-Mena J, Perez-Cruz C. Dietary Fiber Modulates the Release of Gut Bacterial Products Preventing Cognitive Decline in an Alzheimer's Mouse Model. Cell Mol Neurobiol 2023; 43:1595-1618. [PMID: 35953741 PMCID: PMC11412426 DOI: 10.1007/s10571-022-01268-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/28/2022] [Indexed: 12/11/2022]
Abstract
Fiber intake is associated with a lower risk for Alzheimer´s disease (AD) in older adults. Intake of plant-based diets rich in soluble fiber promotes the production of short-chain fatty acids (SCFAs: butyrate, acetate, propionate) by gut bacteria. Butyrate administration has antiinflammatory actions, but propionate promotes neuroinflammation. In AD patients, gut microbiota dysbiosis is a common feature even in the prodromal stages of the disease. It is unclear whether the neuroprotective effects of fiber intake rely on gut microbiota modifications and specific actions of SCFAs in brain cells. Here, we show that restoration of the gut microbiota dysbiosis through the intake of soluble fiber resulted in lower propionate and higher butyrate production, reduced astrocyte activation and improved cognitive function in 6-month-old male APP/PS1 mice. The neuroprotective effects were lost in antibiotic-treated mice. Moreover, propionate promoted higher glycolysis and mitochondrial respiration in astrocytes, while butyrate induced a more quiescent metabolism. Therefore, fiber intake neuroprotective action depends on the modulation of butyrate/propionate production by gut bacteria. Our data further support and provide a mechanism to explain the beneficial effects of dietary interventions rich in soluble fiber to prevent dementia and AD. Fiber intake restored the concentration of propionate and butyrate by modulating the composition of gut microbiota in male transgenic (Tg) mice with Alzheimer´s disease. Gut dysbiosis was associated with intestinal damage and high propionate levels in control diet fed-Tg mice. Fiber-rich diet restored intestinal integrity and promoted the abundance of butyrate-producing bacteria. Butyrate concentration was associated with better cognitive performance in fiber-fed Tg mice. A fiber-rich diet may prevent the development of a dysbiotic microbiome and the related cognitive dysfunction in people at risk of developing Alzheimer´s disease.
Collapse
Affiliation(s)
- Daniel Cuervo-Zanatta
- Laboratorio de Neuroplasticidad y Neurodegeneración, Departamento de Farmacologia, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Av. IPN 2508, Ciudad de Mexico, 07360, México
- Laboratorio de Referencia y Soporte Para Genomas, Transcriptomas y Caracterización de Microbiomas, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Av. IPN 2508, Ciudad de Mexico, 07360, México
| | - Tauqeerunnisa Syeda
- Laboratorio de Neuroplasticidad y Neurodegeneración, Departamento de Farmacologia, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Av. IPN 2508, Ciudad de Mexico, 07360, México
| | - Vicente Sánchez-Valle
- Laboratorio de Neuroplasticidad y Neurodegeneración, Departamento de Farmacologia, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Av. IPN 2508, Ciudad de Mexico, 07360, México
| | - Mariangel Irene-Fierro
- Laboratorio de Neuroplasticidad y Neurodegeneración, Departamento de Farmacologia, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Av. IPN 2508, Ciudad de Mexico, 07360, México
| | - Pablo Torres-Aguilar
- Unidad Periférica de Neurociencias, Instituto de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Ciudad de Mexico, 14269, México
| | - Mónica Adriana Torres-Ramos
- Unidad Periférica de Neurociencias, Instituto de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Ciudad de Mexico, 14269, México
| | - Mineko Shibayama-Salas
- Departmento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Av. IPN 2508, 07360, Ciudad de Mexico, Mexico
| | - Angélica Silva-Olivares
- Departmento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Av. IPN 2508, 07360, Ciudad de Mexico, Mexico
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y de la Nutrición "Salvador Zubiran" (INCMNSZ), 14080, Ciudad de México, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y de la Nutrición "Salvador Zubiran" (INCMNSZ), 14080, Ciudad de México, Mexico
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y de la Nutrición "Salvador Zubiran" (INCMNSZ), 14080, Ciudad de México, Mexico
| | - Iván Ruminot
- Universidad San Sebastián, Facultad de Medicina y Ciencia, Centro de Estudios Científicos-CECs, Valdivia, Chile
| | - L Felipe Barros
- Universidad San Sebastián, Facultad de Medicina y Ciencia, Centro de Estudios Científicos-CECs, Valdivia, Chile
| | - Jaime García-Mena
- Laboratorio de Referencia y Soporte Para Genomas, Transcriptomas y Caracterización de Microbiomas, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Av. IPN 2508, Ciudad de Mexico, 07360, México.
| | - Claudia Perez-Cruz
- Laboratorio de Neuroplasticidad y Neurodegeneración, Departamento de Farmacologia, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Av. IPN 2508, Ciudad de Mexico, 07360, México.
| |
Collapse
|
21
|
Lee YT, Savini M, Chen T, Yang J, Zhao Q, Ding L, Gao SM, Senturk M, Sowa J, Wang JD, Wang MC. Mitochondrial GTP Metabolism Regulates Reproductive Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.02.535296. [PMID: 37066227 PMCID: PMC10103970 DOI: 10.1101/2023.04.02.535296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Healthy mitochondria are critical for reproduction. During aging, both reproductive fitness and mitochondrial homeostasis decline. Mitochondrial metabolism and dynamics are key factors in supporting mitochondrial homeostasis. However, how they are coupled to control reproductive health remains unclear. We report that mitochondrial GTP metabolism acts through mitochondrial dynamics factors to regulate reproductive aging. We discovered that germline-only inactivation of GTP- but not ATP-specific succinyl-CoA synthetase (SCS), promotes reproductive longevity in Caenorhabditis elegans. We further revealed an age-associated increase in mitochondrial clustering surrounding oocyte nuclei, which is attenuated by the GTP-specific SCS inactivation. Germline-only induction of mitochondrial fission factors sufficiently promotes mitochondrial dispersion and reproductive longevity. Moreover, we discovered that bacterial inputs affect mitochondrial GTP and dynamics factors to modulate reproductive aging. These results demonstrate the significance of mitochondrial GTP metabolism in regulating oocyte mitochondrial homeostasis and reproductive longevity and reveal mitochondrial fission induction as an effective strategy to improve reproductive health.
Collapse
|
22
|
Winter AD, Tjahjono E, Beltrán LJ, Johnstone IL, Bulleid NJ, Page AP. Dietary-derived vitamin B12 protects Caenorhabditis elegans from thiol-reducing agents. BMC Biol 2022; 20:228. [PMID: 36209095 PMCID: PMC9548181 DOI: 10.1186/s12915-022-01415-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND One-carbon metabolism, which includes the folate and methionine cycles, involves the transfer of methyl groups which are then utilised as a part of multiple physiological processes including redox defence. During the methionine cycle, the vitamin B12-dependent enzyme methionine synthetase converts homocysteine to methionine. The enzyme S-adenosylmethionine (SAM) synthetase then uses methionine in the production of the reactive methyl carrier SAM. SAM-binding methyltransferases then utilise SAM as a cofactor to methylate proteins, small molecules, lipids, and nucleic acids. RESULTS We describe a novel SAM methyltransferase, RIPS-1, which was the single gene identified from forward genetic screens in Caenorhabditis elegans looking for resistance to lethal concentrations of the thiol-reducing agent dithiothreitol (DTT). As well as RIPS-1 mutation, we show that in wild-type worms, DTT toxicity can be overcome by modulating vitamin B12 levels, either by using growth media and/or bacterial food that provide higher levels of vitamin B12 or by vitamin B12 supplementation. We show that active methionine synthetase is required for vitamin B12-mediated DTT resistance in wild types but is not required for resistance resulting from RIPS-1 mutation and that susceptibility to DTT is partially suppressed by methionine supplementation. A targeted RNAi modifier screen identified the mitochondrial enzyme methylmalonyl-CoA epimerase as a strong genetic enhancer of DTT resistance in a RIPS-1 mutant. We show that RIPS-1 is expressed in the intestinal and hypodermal tissues of the nematode and that treating with DTT, β-mercaptoethanol, or hydrogen sulfide induces RIPS-1 expression. We demonstrate that RIPS-1 expression is controlled by the hypoxia-inducible factor pathway and that homologues of RIPS-1 are found in a small subset of eukaryotes and bacteria, many of which can adapt to fluctuations in environmental oxygen levels. CONCLUSIONS This work highlights the central importance of dietary vitamin B12 in normal metabolic processes in C. elegans, defines a new role for this vitamin in countering reductive stress, and identifies RIPS-1 as a novel methyltransferase in the methionine cycle.
Collapse
Affiliation(s)
- Alan D Winter
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G61 1QH, UK
| | - Elissa Tjahjono
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G61 1QH, UK
| | - Leonardo J Beltrán
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G61 1QH, UK
| | - Iain L Johnstone
- School of Molecular Biosciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Neil J Bulleid
- School of Molecular Biosciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Antony P Page
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
23
|
Wang Y, Guo K, Wang Q, Zhong G, Zhang W, Jiang Y, Mao X, Li X, Huang Z. Caenorhabditis elegans as an emerging model in food and nutrition research: importance of standardizing base diet. Crit Rev Food Sci Nutr 2022; 64:3167-3185. [PMID: 36200941 DOI: 10.1080/10408398.2022.2130875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As a model organism that has helped revolutionize life sciences, Caenorhabditis elegans has been increasingly used in nutrition research. Here we explore the tradeoffs between pros and cons of its use as a dietary model based primarily on literature review from the past decade. We first provide an overview of its experimental strengths as an animal model, focusing on lifespan and healthspan, behavioral and physiological phenotypes, and conservation of key nutritional pathways. We then summarize recent advances of its use in nutritional studies, e.g. food preference and feeding behavior, sugar status and metabolic reprogramming, lifetime and transgenerational nutrition tracking, and diet-microbiota-host interactions, highlighting cutting-edge technologies originated from or developed in C. elegans. We further review current challenges of using C. elegans as a nutritional model, followed by in-depth discussions on potential solutions. In particular, growth scales and throughputs, food uptake mode, and axenic culture of C. elegans are appraised in the context of food research. We also provide perspectives for future development of chemically defined nematode food ("NemaFood") for C. elegans, which is now widely accepted as a versatile and affordable in vivo model and has begun to show transformative potential to pioneer nutrition science.
Collapse
Affiliation(s)
- Yuqing Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
| | - Kaixin Guo
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qiangqiang Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
| | - Guohuan Zhong
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenjun Zhang
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yiyi Jiang
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Xinliang Mao
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Xiaomin Li
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Zebo Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
24
|
Qin S, Wang Y, Li L, Liu J, Xiao C, Duan D, Hao W, Qin C, Chen J, Yao L, Zhang R, You J, Zheng JS, Shen E, Wu L. Early-life vitamin B12 orchestrates lipid peroxidation to ensure reproductive success via SBP-1/SREBP1 in Caenorhabditis elegans. Cell Rep 2022; 40:111381. [PMID: 36130518 DOI: 10.1016/j.celrep.2022.111381] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/05/2022] [Accepted: 08/27/2022] [Indexed: 11/03/2022] Open
Abstract
Vitamin B12 (B12) deficiency is a critical problem worldwide. Such deficiency in infants has long been known to increase the propensity to develop obesity and diabetes later in life through unclear mechanisms. Here, we establish a Caenorhabditis elegans model to study how early-life B12 impacts adult health. We find that early-life B12 deficiency causes increased lipogenesis and lipid peroxidation in adult worms, which in turn induces germline defects through ferroptosis. Mechanistically, we show the central role of the methionine cycle-SBP-1/SREBP1-lipogenesis axis in programming adult traits by early-life B12. Moreover, SBP-1/SREBP1 participates in a crucial feedback loop with NHR-114/HNF4 to maintain cellular B12 homeostasis. Inhibition of SBP-1/SREBP1-lipogenesis signaling and ferroptosis later in life can reverse disorders in adulthood when B12 cannot. Overall, this study provides mechanistic insights into the life-course effects of early-life B12 on the programming of adult health and identifies potential targets for future interventions for adiposity and infertility.
Collapse
Affiliation(s)
- Shenlu Qin
- Fudan University, Shanghai, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yihan Wang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lili Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Junli Liu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Congmei Xiao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Duo Duan
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Wanyu Hao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Chunxia Qin
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jie Chen
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Luxia Yao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Runshuai Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jia You
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Ju-Sheng Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Enzhi Shen
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lianfeng Wu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
25
|
Ge Y, Zadeh M, Mohamadzadeh M. Vitamin B12 Regulates the Transcriptional, Metabolic, and Epigenetic Programing in Human Ileal Epithelial Cells. Nutrients 2022; 14:nu14142825. [PMID: 35889782 PMCID: PMC9321803 DOI: 10.3390/nu14142825] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/22/2022] Open
Abstract
Vitamin B12 (VB12) is a micronutrient that is essential for DNA synthesis and cellular energy production. We recently demonstrated that VB12 oral supplementation coordinates ileal epithelial cells (iECs) and gut microbiota functions to resist pathogen colonization in mice, but it remains unclear whether VB12 directly modulates the cellular homeostasis of iECs derived from humans. Here, we integrated transcriptomic, metabolomic, and epigenomic analyses to identify VB12-dependent molecular and metabolic pathways in human iEC microtissue cultures. RNA sequencing (RNA-seq) revealed that VB12 notably activated genes involved in fatty acid metabolism and epithelial cell proliferation while suppressing inflammatory responses in human iECs. Untargeted metabolite profiling demonstrated that VB12 facilitated the biosynthesis of amino acids and methyl groups, particularly S-adenosylmethionine (SAM), and supported the function of the mitochondrial carnitine shuttle and TCA cycle. Further, genome-wide DNA methylation analysis illuminated a critical role of VB12 in sustaining cellular methylation programs, leading to differential CpG methylation of genes associated with intestinal barrier function and cell proliferation. Together, these findings suggest an essential involvement of VB12 in directing the fatty acid and mitochondrial metabolisms and reconfiguring the epigenome of human iECs to potentially support cellular oxygen utilization and cell proliferation.
Collapse
|
26
|
Ge Y, Zadeh M, Mohamadzadeh M. Vitamin B12 coordinates ileal epithelial cell and microbiota functions to resist Salmonella infection in mice. J Exp Med 2022; 219:e20220057. [PMID: 35674742 PMCID: PMC9184849 DOI: 10.1084/jem.20220057] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/15/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
Deprivation of vitamin B12 (VB12) is linked to various diseases, but the underlying mechanisms in disease progression are poorly understood. Using multiomic approaches, we elucidated the responses of ileal epithelial cells (iECs) and gut microbiome to VB12 dietary restriction. Here, VB12 deficiency impaired the transcriptional and metabolic programming of iECs and reduced epithelial mitochondrial respiration and carnitine shuttling during intestinal Salmonella Typhimurium (STm) infection. Fecal microbial and untargeted metabolomic profiling identified marked changes related to VB12 deficiency, including reductions of metabolites potentially activating mitochondrial β-oxidation in iECs and short-chain fatty acids (SCFAs). Depletion of SCFA-producing microbes by streptomycin treatment decreased the VB12-dependent STm protection. Moreover, compromised mitochondrial function of iECs correlated with declined cell capability to utilize oxygen, leading to uncontrolled oxygen-dependent STm expansion in VB12-deficient mice. Our findings uncovered previously unrecognized mechanisms through which VB12 coordinates ileal epithelial mitochondrial homeostasis and gut microbiota to regulate epithelial oxygenation, resulting in the control of aerobic STm infection.
Collapse
Affiliation(s)
- Yong Ge
- Division of Gastroenterology & Nutrition, Department of Medicine, University of Texas Health, San Antonio, TX
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, FL
| | - Mojgan Zadeh
- Division of Gastroenterology & Nutrition, Department of Medicine, University of Texas Health, San Antonio, TX
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, FL
| | - Mansour Mohamadzadeh
- Division of Gastroenterology & Nutrition, Department of Medicine, University of Texas Health, San Antonio, TX
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, FL
| |
Collapse
|
27
|
McDonagh A, Crew J, van der Linden AM. Dietary vitamin B12 regulates chemosensory receptor gene expression via the MEF2 transcription factor in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2022; 12:jkac107. [PMID: 35512190 PMCID: PMC9157118 DOI: 10.1093/g3journal/jkac107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/24/2022] [Indexed: 02/02/2023]
Abstract
Dynamic changes in chemoreceptor gene expression levels in sensory neurons are one strategy that an animal can use to modify their responses to dietary changes. However, the mechanisms underlying diet-dependent modulation of chemosensory gene expression are unclear. Here, we show that the expression of the srh-234 chemoreceptor gene localized in a single ADL sensory neuron type of Caenorhabditis elegans is downregulated when animals are fed a Comamonas aquatica bacterial diet, but not on an Escherichia coli diet. Remarkably, this diet-modulated effect on srh-234 expression is dependent on the micronutrient vitamin B12 endogenously produced by Comamonas aq. bacteria. Excess propionate and genetic perturbations in the canonical and shunt propionate breakdown pathways are able to override the repressive effects of vitamin B12 on srh-234 expression. The vitamin B12-mediated regulation of srh-234 expression levels in ADL requires the MEF-2 MADS domain transcription factor, providing a potential mechanism by which dietary vitamin B12 may transcriptionally tune individual chemoreceptor genes in a single sensory neuron type, which in turn may change animal responses to biologically relevant chemicals in their diet.
Collapse
Affiliation(s)
- Aja McDonagh
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Jeannette Crew
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|
28
|
Torres TC, Moaddeli D, Averbukh M, Coakley A, Dutta N, Garcia G, Higuchi-Sanabria R. Surveying Low-Cost Methods to Measure Lifespan and Healthspan in Caenorhabditis elegans. JOURNAL OF VISUALIZED EXPERIMENTS : JOVE 2022:10.3791/64091. [PMID: 35665741 PMCID: PMC9881476 DOI: 10.3791/64091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The discovery and development of Caenorhabditis elegans as a model organism was influential in biology, particularly in the field of aging. Many historical and contemporary studies have identified thousands of lifespan-altering paradigms, including genetic mutations, transgenic gene expression, and hormesis, a beneficial, low-grade exposure to stress. With its many advantages, including a short lifespan, easy and low-cost maintenance, and fully sequenced genome with homology to almost two-thirds of all human genes, C. elegans has quickly been adopted as an outstanding model for stress and aging biology. Here, several standardized methods are surveyed for measuring lifespan and healthspan that can be easily adapted into almost any research environment, especially those with limited equipment and funds. The incredible utility of C. elegans is featured, highlighting the capacity to perform powerful genetic analyses in aging biology without the necessity of extensive infrastructure. Finally, the limitations of each analysis and alternative approaches are discussed for consideration.
Collapse
Affiliation(s)
- Toni Castro Torres
- Leonard Davis School of Gerontology, University of Southern California. 3715 McClintock Ave, University Park Campus, Los Angeles, CA 90089
| | - Darius Moaddeli
- Leonard Davis School of Gerontology, University of Southern California. 3715 McClintock Ave, University Park Campus, Los Angeles, CA 90089
| | - Maxim Averbukh
- Leonard Davis School of Gerontology, University of Southern California. 3715 McClintock Ave, University Park Campus, Los Angeles, CA 90089
| | - Aeowynn Coakley
- Leonard Davis School of Gerontology, University of Southern California. 3715 McClintock Ave, University Park Campus, Los Angeles, CA 90089
| | - Naibedya Dutta
- Leonard Davis School of Gerontology, University of Southern California. 3715 McClintock Ave, University Park Campus, Los Angeles, CA 90089
| | - Gilberto Garcia
- Leonard Davis School of Gerontology, University of Southern California. 3715 McClintock Ave, University Park Campus, Los Angeles, CA 90089.,correspondence: ;
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California. 3715 McClintock Ave, University Park Campus, Los Angeles, CA 90089.,correspondence: ;
| |
Collapse
|
29
|
G G, Singh J. Dithiothreitol causes toxicity in C. elegans by modulating the methionine-homocysteine cycle. eLife 2022; 11:76021. [PMID: 35438636 PMCID: PMC9090326 DOI: 10.7554/elife.76021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/17/2022] [Indexed: 11/13/2022] Open
Abstract
The redox reagent dithiothreitol (DTT) causes stress in the endoplasmic reticulum (ER) by disrupting its oxidative protein folding environment, which results in the accumulation and misfolding of the newly synthesized proteins. DTT may potentially impact cellular physiology by ER-independent mechanisms; however, such mechanisms remain poorly characterized. Using the nematode model Caenorhabditis elegans, here we show that DTT toxicity is modulated by the bacterial diet. Specifically, the dietary component vitamin B12 alleviates DTT toxicity in a methionine synthase-dependent manner. Using a forward genetic screen, we discover that loss-of-function of R08E5.3, an S-adenosylmethionine (SAM)-dependent methyltransferase, confers DTT resistance. DTT upregulates R08E5.3 expression and modulates the activity of the methionine–homocysteine cycle. Employing genetic and biochemical studies, we establish that DTT toxicity is a result of the depletion of SAM. Finally, we show that a functional IRE-1/XBP-1 unfolded protein response pathway is required to counteract toxicity at high, but not low, DTT concentrations. Animal and plant cells synthesize a significant fraction of their proteins on a structure known as the endoplasmic reticulum. Researchers often use the molecule dithiothreitol to specifically target this compartment and learn more about its role. The toxin works by disturbing the complex chemical environment present in the reticulum, which is required for the proteins to assemble properly. However, it is important to clarify whether dithiothreitol could also affect other parts of the cell, as this could give rise to misleading results. To explore this possibility, Gokul G and Jogender Singh studied the effects of dithiothreitol on the millimetre-long roundworm Caenorhabditis elegans. Their experiments revealed that vitamin B12 could protect against dithiothreitol toxicity via a complex cascade of molecular events which reduced the levels of an important regulatory molecule known as S-adenosylmethionine. Crucially, the chemical reactions that dithiothreitol targeted took place outside the reticulum, suggesting that the toxin impairs processes in the wider cell. These results suggest that dithiothreitol should be reconsidered for use in endoplasmic reticulum studies. However, they also imply that this toxin could be beneficial in small doses, as a reduced concentration of S-adenosylmethionine increases lifespan and health in a variety of organisms.
Collapse
Affiliation(s)
- Gokul G
- Indian Institute of Science Education and Research, Bhopal, Bhopal, India
| | - Jogender Singh
- Indian Institute of Science Education and Research, Mohali, Mohali, India
| |
Collapse
|
30
|
Zhou J, Duan M, Wang X, Zhang F, Zhou H, Ma T, Yin Q, Zhang J, Tian F, Wang G, Yang C. A feedback loop engaging propionate catabolism intermediates controls mitochondrial morphology. Nat Cell Biol 2022; 24:526-537. [PMID: 35418624 DOI: 10.1038/s41556-022-00883-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 02/28/2022] [Indexed: 12/17/2022]
Abstract
D-2-Hydroxyglutarate (D-2HG) is an α-ketoglutarate-derived mitochondrial metabolite that causes D-2-hydroxyglutaric aciduria, a devastating developmental disorder. How D-2HG adversely affects mitochondria is largely unknown. Here, we report that in Caenorhabditis elegans, loss of the D-2HG dehydrogenase DHGD-1 causes D-2HG accumulation and mitochondrial damage. The excess D-2HG leads to a build-up of 3-hydroxypropionate (3-HP), a toxic metabolite in mitochondrial propionate oxidation, by inhibiting the 3-HP dehydrogenase HPHD-1. We demonstrate that 3-HP binds the MICOS subunit MIC60 (encoded by immt-1) and inhibits its membrane-binding and membrane-shaping activities. We further reveal that dietary and gut bacteria affect mitochondrial health by modulating the host production of 3-HP. These findings identify a feedback loop that links the toxic effects of D-2HG and 3-HP on mitochondria, thus providing important mechanistic insights into human diseases related to D-2HG and 3-HP.
Collapse
Affiliation(s)
- Junxiang Zhou
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Mei Duan
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| | - Xin Wang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Fengxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hejiang Zhou
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Tengfei Ma
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Qiuyuan Yin
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Jie Zhang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Fei Tian
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
31
|
Mello DF, Bergemann CM, Fisher K, Chitrakar R, Bijwadia SR, Wang Y, Caldwell A, Baugh LR, Meyer JN. Rotenone Modulates Caenorhabditis elegans Immunometabolism and Pathogen Susceptibility. Front Immunol 2022; 13:840272. [PMID: 35273616 PMCID: PMC8902048 DOI: 10.3389/fimmu.2022.840272] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondria are central players in host immunometabolism as they function not only as metabolic hubs but also as signaling platforms regulating innate immunity. Environmental exposures to mitochondrial toxicants occur widely and are increasingly frequent. Exposures to these mitotoxicants may pose a serious threat to organismal health and the onset of diseases by disrupting immunometabolic pathways. In this study, we investigated whether the Complex I inhibitor rotenone could alter C. elegans immunometabolism and disease susceptibility. C. elegans embryos were exposed to rotenone (0.5 µM) or DMSO (0.125%) until they reached the L4 larval stage. Inhibition of mitochondrial respiration by rotenone and disruption of mitochondrial metabolism were evidenced by rotenone-induced detrimental effects on mitochondrial efficiency and nematode growth and development. Next, through transcriptomic analysis, we investigated if this specific but mild mitochondrial stress that we detected would lead to the modulation of immunometabolic pathways. We found 179 differentially expressed genes (DEG), which were mostly involved in detoxification, energy metabolism, and pathogen defense. Interestingly, among the down-regulated DEG, most of the known genes were involved in immune defense, and most of these were identified as commonly upregulated during P. aeruginosa infection. Furthermore, rotenone increased susceptibility to the pathogen Pseudomonas aeruginosa (PA14). However, it increased resistance to Salmonella enterica (SL1344). To shed light on potential mechanisms related to these divergent effects on pathogen resistance, we assessed the activation of the mitochondrial unfolded protein response (UPRmt), a well-known immunometabolic pathway in C. elegans which links mitochondria and immunity and provides resistance to pathogen infection. The UPRmt pathway was activated in rotenone-treated nematodes further exposed for 24 h to the pathogenic bacteria P. aeruginosa and S. enterica or the common bacterial food source Escherichia coli (OP50). However, P. aeruginosa alone suppressed UPRmt activation and rotenone treatment rescued its activation only to the level of DMSO-exposed nematodes fed with E. coli. Module-weighted annotation bioinformatics analysis was also consistent with UPRmt activation in rotenone-exposed nematodes consistent with the UPR being involved in the increased resistance to S. enterica. Together, our results demonstrate that the mitotoxicant rotenone can disrupt C. elegans immunometabolism in ways likely protective against some pathogen species but sensitizing against others.
Collapse
Affiliation(s)
- Danielle F. Mello
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | | | - Kinsey Fisher
- Department of Biology, Duke University, Durham, NC, United States
| | - Rojin Chitrakar
- Department of Biology, Duke University, Durham, NC, United States
| | - Shefali R. Bijwadia
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Yang Wang
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Alexis Caldwell
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Larry Ryan Baugh
- Department of Biology, Duke University, Durham, NC, United States
- Center for Genomic and Computational Biology, Duke University, Durham, NC, United States
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| |
Collapse
|
32
|
Barathikannan K, Chelliah R, Elahi F, Tyagi A, Selvakumar V, Agastian P, Valan Arasu M, Oh DH. Anti-Obesity Efficacy of Pediococcus acidilactici MNL5 in Canorhabditis elegans Gut Model. Int J Mol Sci 2022; 23:1276. [PMID: 35163199 PMCID: PMC8835910 DOI: 10.3390/ijms23031276] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
In the present study, thirty two lactic acid bacteria (LAB) were isolated from fermented Indian herbal medicine. In comparison to other strains, MNL5 had stronger bile salt hydrolase (BSH) and cholesterol-lowering properties. Furthermore, it can withstand the extreme conditions found in the GI tract, due to, e.g., pepsin, bile salts, pancreatin, and acids. Pediococcus acidilactici MNL5 was identified as a probiotic candidate after sequencing the 16S rRNA gene. The antibacterial activity of P. acidilactici MNL5 cell-free supernatants (CFS) against Escherichia coli, Staphylococcus aureus, Helicobacter pylori, Bacillus cereus, and Candida albicans was moderate. A Caenorhabditis elegans experiment was also performed to assess the effectiveness of P. acidilactici MNL5 supplementation to increase life span compared to E. coli supplementation (DAF-2 and LIU1 models) (p < 0.05). An immense reduction of the lipid droplets of C. elegans was identified through a fluorescent microscope. The drastic alteration of the expression of fat genes is related to obesity phenotypes. Hence, several paths are evolutionary for C. elegans; the results of our work highlight the nematode as an important model for obesity.
Collapse
Affiliation(s)
- Kaliyan Barathikannan
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (K.B.); (R.C.); (F.E.); (A.T.); (V.S.)
- Agricultural and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (K.B.); (R.C.); (F.E.); (A.T.); (V.S.)
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Korea
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (K.B.); (R.C.); (F.E.); (A.T.); (V.S.)
| | - Akanksha Tyagi
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (K.B.); (R.C.); (F.E.); (A.T.); (V.S.)
| | - Vijayalakshmi Selvakumar
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (K.B.); (R.C.); (F.E.); (A.T.); (V.S.)
| | - Paul Agastian
- Department of Plant Biology and Biotechnology, Loyola College, Chennai 600 034, India;
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Deog-Hawn Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (K.B.); (R.C.); (F.E.); (A.T.); (V.S.)
| |
Collapse
|
33
|
Garcia G, Homentcovschi S, Kelet N, Higuchi-Sanabria R. Imaging of Actin Cytoskeletal Integrity During Aging in C. elegans. Methods Mol Biol 2022; 2364:101-137. [PMID: 34542850 DOI: 10.1007/978-1-0716-1661-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The actin cytoskeleton plays a fundamental role in the regulation of multiple cellular pathways, including trafficking and locomotion. The functional integrity of the cytoskeleton is important during aging, as the decline of cytoskeletal integrity contributes to the physiological consequence of aging. Moreover, improving cytoskeletal form and function throughout aging is sufficient to drive life span extension and promote organismal health in multiple model systems. For these reasons, optimized protocols for visualization of the actin cytoskeleton and its downstream consequences on health span and life span are critical for understanding the aging process. In C. elegans, the actin cytoskeleton shows diverse morphologies across tissues, potentially due to the significantly different functions of each cell type. This chapter describes an imaging platform utilizing LifeAct to visualize the actin cytoskeleton in live, whole nematodes throughout the aging process and methods to perform follow-up studies on the life span and health span of these organisms.
Collapse
Affiliation(s)
- Gilberto Garcia
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Stefan Homentcovschi
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Naame Kelet
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ryo Higuchi-Sanabria
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA, USA.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
34
|
Nair T, Chakraborty R, Singh P, Rahman SS, Bhaskar AK, Sengupta S, Mukhopadhyay A. Adaptive capacity to dietary Vitamin B12 levels is maintained by a gene-diet interaction that ensures optimal life span. Aging Cell 2022; 21:e13518. [PMID: 35032420 PMCID: PMC8761004 DOI: 10.1111/acel.13518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/16/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022] Open
Abstract
Diet regulates complex life-history traits such as longevity. For optimal lifespan, organisms employ intricate adaptive mechanisms whose molecular underpinnings are less known. We show that Caenorhabditis elegans FLR-4 kinase prevents lifespan differentials on the bacterial diet having higher Vitamin B12 levels. The flr-4 mutants are more responsive to the higher B12 levels of Escherichia coli HT115 diet, and consequently, have enhanced flux through the one-carbon cycle. Mechanistically, a higher level of B12 transcriptionally downregulates the phosphoethanolamine methyltransferase pmt-2 gene, which modulates phosphatidylcholine (PC) levels. Pmt-2 downregulation activates cytoprotective gene expression through the p38-MAPK pathway, leading to increased lifespan only in the mutant. Evidently, preventing bacterial B12 uptake or inhibiting one-carbon metabolism reverses all the above phenotypes. Conversely, supplementation of B12 to E. coli OP50 or genetically reducing PC levels in the OP50-fed mutant extends lifespan. Together, we reveal how worms maintain adaptive capacity to diets having varying micronutrient content to ensure a normal lifespan.
Collapse
Affiliation(s)
- Tripti Nair
- Molecular Aging LaboratoryNational Institute of ImmunologyNew DelhiIndia
| | - Rahul Chakraborty
- CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Praveen Singh
- CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | | | - Akash Kumar Bhaskar
- CSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | | | - Arnab Mukhopadhyay
- Molecular Aging LaboratoryNational Institute of ImmunologyNew DelhiIndia
| |
Collapse
|
35
|
Lam AB, Kervin K, Tanis JE. Vitamin B 12 impacts amyloid beta-induced proteotoxicity by regulating the methionine/S-adenosylmethionine cycle. Cell Rep 2021; 36:109753. [PMID: 34592146 PMCID: PMC8522492 DOI: 10.1016/j.celrep.2021.109753] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/05/2021] [Accepted: 09/01/2021] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder with no effective treatment. Diet, as a modifiable risk factor for AD, could potentially be targeted to slow disease onset and progression. However, complexity of the human diet and indirect effects of the microbiome make it challenging to identify protective nutrients. Multiple factors contribute to AD pathogenesis, including amyloid beta (Aβ) deposition, energy crisis, and oxidative stress. Here, we use Caenorhabditis elegans to define the impact of diet on Aβ proteotoxicity. We discover that dietary vitamin B12 alleviates mitochondrial fragmentation, bioenergetic defects, and oxidative stress, delaying Aβ-induced paralysis without affecting Aβ accumulation. Vitamin B12 has this protective effect by acting as a cofactor for methionine synthase, impacting the methionine/S-adenosylmethionine (SAMe) cycle. Vitamin B12 supplementation of B12-deficient adult Aβ animals is beneficial, demonstrating potential for vitamin B12 as a therapy to target pathogenic features of AD triggered by proteotoxic stress.
Collapse
Affiliation(s)
- Andy B Lam
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Kirsten Kervin
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Jessica E Tanis
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
36
|
Mitochondria-affecting small molecules ameliorate proteostasis defects associated with neurodegenerative diseases. Sci Rep 2021; 11:17733. [PMID: 34489512 PMCID: PMC8421394 DOI: 10.1038/s41598-021-97148-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Macroautophagic recycling of dysfunctional mitochondria, known as mitophagy, is essential for mitochondrial homeostasis and cell viability. Accumulation of defective mitochondria and impaired mitophagy have been widely implicated in many neurodegenerative diseases, and loss-of-function mutations of PINK1 and Parkin, two key regulators of mitophagy, are amongst the most common causes of heritable parkinsonism. This has led to the hypothesis that pharmacological stimulation of mitophagy may be a feasible approach to combat neurodegeneration. Toward this end, we screened ~ 45,000 small molecules using a high-throughput, whole-organism, phenotypic screen that monitored accumulation of PINK-1 protein, a key event in mitophagic activation, in a Caenorhabditis elegans strain carrying a Ppink-1::PINK-1::GFP reporter. We obtained eight hits that increased mitochondrial fragmentation and autophagosome formation. Several of the compounds also reduced ATP production, oxygen consumption, mitochondrial mass, and/or mitochondrial membrane potential. Importantly, we found that treatment with two compounds, which we named PS83 and PS106 (more commonly known as sertraline) reduced neurodegenerative disease phenotypes, including delaying paralysis in a C. elegans β-amyloid aggregation model in a PINK-1-dependent manner. This report presents a promising step toward the identification of compounds that will stimulate mitochondrial turnover.
Collapse
|
37
|
Tsai CE, Yang FJ, Lee CH, Hsueh YP, Kuo CJ, Chen CS. The conserved regulator of autophagy and innate immunity hlh-30/TFEB mediates tolerance of enterohemorrhagic Escherichia coli in Caenorhabditis elegans. Genetics 2021; 217:1-17. [PMID: 33683370 DOI: 10.1093/genetics/iyaa052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/07/2020] [Indexed: 11/14/2022] Open
Abstract
Infection with antibiotic-resistant bacteria is an emerging life-threatening issue worldwide. Enterohemorrhagic Escherichia coli O157: H7 (EHEC) causes hemorrhagic colitis and hemolytic uremic syndrome via contaminated food. Treatment of EHEC infection with antibiotics is contraindicated because of the risk of worsening the syndrome through the secreted toxins. Identifying the host factors involved in bacterial infection provides information about how to combat this pathogen. In our previous study, we showed that EHEC colonizes in the intestine of Caenorhabditis elegans. However, the host factors involved in EHEC colonization remain elusive. Thus, in this study, we aimed to identify the host factors involved in EHEC colonization. We conducted forward genetic screens to isolate mutants that enhanced EHEC colonization and named this phenotype enhanced intestinal colonization (Inc). Intriguingly, four mutants with the Inc phenotype showed significantly increased EHEC-resistant survival, which contrasts with our current knowledge. Genetic mapping and whole-genome sequencing (WGS) revealed that these mutants have loss-of-function mutations in unc-89. Furthermore, we showed that the tolerance of unc-89(wf132) to EHEC relied on HLH-30/TFEB activation. These findings suggest that hlh-30 plays a key role in pathogen tolerance in C. elegans.
Collapse
Affiliation(s)
- Chia-En Tsai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Fang-Jung Yang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ching-Han Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.,Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei 11490, Taiwan.,Taiwan International Graduate Program, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yen-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.,Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei 11490, Taiwan.,Taiwan International Graduate Program, National Defense Medical Center, Taipei 11490, Taiwan.,Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Ju Kuo
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chang-Shi Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
38
|
Andra A, Tanigawa S, Bito T, Ishihara A, Watanabe F, Yabuta Y. Effects of Vitamin B 12 Deficiency on Amyloid-β Toxicity in Caenorhabditis elegans. Antioxidants (Basel) 2021; 10:antiox10060962. [PMID: 34203911 PMCID: PMC8232795 DOI: 10.3390/antiox10060962] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/15/2023] Open
Abstract
High homocysteine (Hcy) levels, mainly caused by vitamin B12 deficiency, have been reported to induce amyloid-β (Aβ) formation and tau hyperphosphorylation in mouse models of Alzheimer's disease. However, the relationship between B12 deficiency and Aβ aggregation is poorly understood, as is the associated mechanism. In the current study, we used the transgenic C. elegans strain GMC101, which expresses human Aβ1-42 peptides in muscle cells, to investigate the effects of B12 deficiency on Aβ aggregation-associated paralysis. C. elegans GMC101 was grown on nematode growth medium with or without B12 supplementation or with 2-O-α-D-glucopyranosyl-L-ascorbic acid (AsA-2G) supplementation. The worms were age-synchronized by hypochlorite bleaching and incubated at 20 °C. After the worms reached the young adult stage, the temperature was increased to 25 °C to induce Aβ production. Worms lacking B12 supplementation exhibited paralysis faster and more severely than those that received it. Furthermore, supplementing B12-deficient growth medium with AsA-2G rescued the paralysis phenotype. However, AsA-2G had no effect on the aggregation of Aβ peptides. Our results indicated that B12 supplementation lowered Hcy levels and alleviated Aβ toxicity, suggesting that oxidative stress caused by elevated Hcy levels is an important factor in Aβ toxicity.
Collapse
|
39
|
Tjahjono E, Revtovich AV, Kirienko NV. Imaging and Fluorescence Quantification in Caenorhabditis eleganswith Flow Vermimetry and Automated Microscopy. Bio Protoc 2021; 11:e4024. [PMID: 34150931 DOI: 10.21769/bioprotoc.4024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022] Open
Abstract
Gene activation and cellular biomarkers are commonly monitored using fluorescent signals from transgenic reporters or dyes. These quantifiable markers are critical for biological research and serve as an incredibly powerful tool, even more so when combined with high-throughput screening. Caenorhabditis elegans is a particularly useful model in this regard, as it is inexpensive to grow in vast numbers, has a rapid generation time, is optically transparent, and can readily fit within 384-well plates. However, fluorescence quantification in worms is often cumbersome. Quantification is frequently performed using laborious, low-throughput, bias-prone methods that measure fluorescence in a comparatively small number of individual worms. Here we describe two methods, flow vermimetry using a COPAS BioSorter and an automated imaging platform and analysis pipeline using a Cytation5 multimode plate reader and image analysis software, that enable high-throughput, high-content screening in C. elegans. Flow vermimetry provides a better signal-to-noise ratio with fewer processing steps, while the Cytation5 provides a convenient platform to image samples across time. Fluorescence values from the two methods show strong correlation. Either method can be easily extended to include other parameters, such as the measurement of various metabolites, worm viability, and other aspects of cell physiology. This broadens the utility of the system and allows it to be used for a wide range of molecular biological purposes.
Collapse
Affiliation(s)
- Elissa Tjahjono
- Department of BioSciences, 6100 Main St, MS140, Rice University, Houston, TX 77005, USA
| | - Alexey V Revtovich
- Department of BioSciences, 6100 Main St, MS140, Rice University, Houston, TX 77005, USA
| | - Natalia V Kirienko
- Department of BioSciences, 6100 Main St, MS140, Rice University, Houston, TX 77005, USA
| |
Collapse
|
40
|
Mendel M, Delaney K, Pandey RR, Chen KM, Wenda JM, Vågbø CB, Steiner FA, Homolka D, Pillai RS. Splice site m 6A methylation prevents binding of U2AF35 to inhibit RNA splicing. Cell 2021; 184:3125-3142.e25. [PMID: 33930289 PMCID: PMC8208822 DOI: 10.1016/j.cell.2021.03.062] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 02/16/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
The N6-methyladenosine (m6A) RNA modification is used widely to alter the fate of mRNAs. Here we demonstrate that the C. elegans writer METT-10 (the ortholog of mouse METTL16) deposits an m6A mark on the 3′ splice site (AG) of the S-adenosylmethionine (SAM) synthetase pre-mRNA, which inhibits its proper splicing and protein production. The mechanism is triggered by a rich diet and acts as an m6A-mediated switch to stop SAM production and regulate its homeostasis. Although the mammalian SAM synthetase pre-mRNA is not regulated via this mechanism, we show that splicing inhibition by 3′ splice site m6A is conserved in mammals. The modification functions by physically preventing the essential splicing factor U2AF35 from recognizing the 3′ splice site. We propose that use of splice-site m6A is an ancient mechanism for splicing regulation. m6A deposited at 3′ splice site by worm METT-10 inhibits splicing Methylation blocks 3′ splice site recognition by splicing factor U2AF35 Methylation and splicing inhibition is a response to change in worm diet Splicing inhibition by 3′ splice site m6A is conserved in mammals
Collapse
Affiliation(s)
- Mateusz Mendel
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Kamila Delaney
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Radha Raman Pandey
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Kuan-Ming Chen
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Joanna M Wenda
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Cathrine Broberg Vågbø
- Proteomics and Modomics Experimental Core (PROMEC), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU) and St. Olavs Hospital Central Staff, Trondheim, Norway
| | - Florian A Steiner
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - David Homolka
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | - Ramesh S Pillai
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
41
|
Jia Q, Sieburth D. Mitochondrial hydrogen peroxide positively regulates neuropeptide secretion during diet-induced activation of the oxidative stress response. Nat Commun 2021; 12:2304. [PMID: 33863916 PMCID: PMC8052458 DOI: 10.1038/s41467-021-22561-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondria play a pivotal role in the generation of signals coupling metabolism with neurotransmitter release, but a role for mitochondrial-produced ROS in regulating neurosecretion has not been described. Here we show that endogenously produced hydrogen peroxide originating from axonal mitochondria (mtH2O2) functions as a signaling cue to selectively regulate the secretion of a FMRFamide-related neuropeptide (FLP-1) from a pair of interneurons (AIY) in C. elegans. We show that pharmacological or genetic manipulations that increase mtH2O2 levels lead to increased FLP-1 secretion that is dependent upon ROS dismutation, mitochondrial calcium influx, and cysteine sulfenylation of the calcium-independent PKC family member PKC-1. mtH2O2-induced FLP-1 secretion activates the oxidative stress response transcription factor SKN-1/Nrf2 in distal tissues and protects animals from ROS-mediated toxicity. mtH2O2 levels in AIY neurons, FLP-1 secretion and SKN-1 activity are rapidly and reversibly regulated by exposing animals to different bacterial food sources. These results reveal a previously unreported role for mtH2O2 in linking diet-induced changes in mitochondrial homeostasis with neuropeptide secretion.
Collapse
Affiliation(s)
- Qi Jia
- PIBBS program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Derek Sieburth
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
42
|
Kingsley SF, Seo Y, Allen C, Ghanta KS, Finkel S, Tissenbaum HA. Bacterial processing of glucose modulates C. elegans lifespan and healthspan. Sci Rep 2021; 11:5931. [PMID: 33723307 PMCID: PMC7971010 DOI: 10.1038/s41598-021-85046-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/17/2021] [Indexed: 01/08/2023] Open
Abstract
Intestinal microbiota play an essential role in the health of a host organism. Here, we define how commensal Escherichia coli (E. coli) alters its host after long term exposure to glucose using a Caenorhabditis elegans-E. coli system where only the bacteria have direct contact with glucose. Our data reveal that bacterial processing of glucose results in reduced lifespan and healthspan including reduced locomotion, oxidative stress resistance, and heat stress resistance in C. elegans. With chronic exposure to glucose, E. coli exhibits growth defects and increased advanced glycation end products. These negative effects are abrogated when the E. coli is not able to process the additional glucose and by the addition of the anti-glycation compound carnosine. Physiological changes of the host C. elegans are accompanied by dysregulation of detoxifying genes including glyoxalase, glutathione-S-transferase, and superoxide dismutase. Loss of the glutathione-S-transferase, gst-4 shortens C. elegans lifespan and blunts the animal's response to a glucose fed bacterial diet. Taken together, we reveal that added dietary sugar may alter intestinal microbial E. coli to decrease lifespan and healthspan of the host and define a critical role of detoxification genes in maintaining health during a chronic high-sugar diet.
Collapse
Affiliation(s)
- Samuel F Kingsley
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Yonghak Seo
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Calista Allen
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Krishna S Ghanta
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Steven Finkel
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Heidi A Tissenbaum
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
43
|
Killingsworth J, Sawmiller D, Shytle RD. Propionate and Alzheimer's Disease. Front Aging Neurosci 2021; 12:580001. [PMID: 33505301 PMCID: PMC7831739 DOI: 10.3389/fnagi.2020.580001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Propionate, a short-chain fatty acid, serves important roles in the human body. However, our review of the current literature suggests that under certain conditions, excess levels of propionate may play a role in Alzheimer's disease (AD). The cause of the excessive levels of propionate may be related to the Bacteroidetes phylum, which are the primary producers of propionate in the human gut. Studies have shown that the relative abundance of the Bacteroidetes phylum is significantly increased in older adults. Other studies have shown that levels of the Bacteroidetes phylum are increased in persons with AD. Studies on the diet, medication use, and propionate metabolism offer additional potential causes. There are many different mechanisms by which excess levels of propionate may lead to AD, such as hyperammonemia. These mechanisms offer potential points for intervention.
Collapse
Affiliation(s)
- Jessica Killingsworth
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | | | | |
Collapse
|
44
|
Abstract
Trends moving in opposite directions (increasing antimicrobial resistance and declining novel antimicrobial development) have precipitated a looming crisis: a nearly complete inability to safely and effectively treat bacterial infections. To avert this, new approaches are needed. Traditionally, treatments for bacterial infection have focused on killing the microbe or preventing its growth. As antimicrobial resistance becomes more ubiquitous, the feasibility of this approach is beginning to wane and attention has begun to shift toward disrupting the host-pathogen interaction by improving the host defense. Using a high-throughput, fragment-based screen to identify compounds that alleviate Pseudomonas aeruginosa-mediated killing of Caenorhabditis elegans, we identified over 20 compounds that stimulated host defense gene expression. Five of these molecules were selected for further characterization. Four of five compounds showed little toxicity against mammalian cells or worms, consistent with their identification in a phenotypic, high-content screen. Each of the compounds activated several host defense pathways, but the pathways were generally dispensable for compound-mediated rescue in liquid killing, suggesting redundancy or that the activation of unknown pathway(s) may be driving compound effects. A genetic mechanism was identified for LK56, which required the Mediator subunit MDT-15/MED15 and NHR-49/HNF4 for its function. Interestingly, LK32, LK34, LK38, and LK56 also rescued C. elegans from P. aeruginosa in an agar-based assay, which uses different virulence factors and defense mechanisms. Rescue in an agar-based assay for LK38 entirely depended upon the PMK-1/p38 MAPK pathway. Three compounds—LK32, LK34, and LK56—also conferred resistance to Enterococcus faecalis, and the two lattermost, LK34 and LK56, also reduced pathogenesis from Staphylococcus aureus. This study supports a growing role for MDT-15 and NHR-49 in immune response and identifies five molecules that have significant potential for use as tools in the investigation of innate immunity. IMPORTANCE Trends moving in opposite directions (increasing antimicrobial resistance and declining novel antimicrobial development) have precipitated a looming crisis: the nearly complete inability to safely and effectively treat bacterial infections. To avert this, new approaches are needed. One idea is to stimulate host defense pathways to improve the clearance of bacterial infection. Here, we describe five small molecules that promote resistance to infectious bacteria by activating C. elegans’ innate immune pathways. Several are effective against both Gram-positive and Gram-negative pathogens. One of the compounds was mapped to the action of MDT-15/MED15 and NHR-49/HNF4, a pair of transcriptional regulators more generally associated with fatty acid metabolism, potentially highlighting a new link between these biological functions. These studies pave the way for future characterization of the anti-infective activity of the molecules in higher organisms and highlight the compounds’ potential utility for further investigation of immune modulation as a novel therapeutic approach.
Collapse
|
45
|
Brinkmann V, Schiavi A, Shaik A, Puchta DR, Ventura N. Dietary and environmental factors have opposite AhR-dependent effects on C. elegans healthspan. Aging (Albany NY) 2020; 13:104-133. [PMID: 33349622 PMCID: PMC7835051 DOI: 10.18632/aging.202316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022]
Abstract
Genetic, dietary, and environmental factors concurrently shape the aging process. The aryl hydrocarbon receptor (AhR) was discovered as a dioxin-binding transcription factor involved in the metabolism of different environmental toxicants in vertebrates. Since then, the variety of pathophysiological processes regulated by the AhR has grown, ranging from immune response, metabolic pathways, and aging. Many modulators of AhR activity may impact on aging and age-associated pathologies, but, whether their effects are AhR-dependent has never been explored. Here, using Caenorhabditis elegans, as an elective model organism for aging studies, we show for the first time that lack of CeAHR-1 can have opposite effects on health and lifespan in a context-dependent manner. Using known mammalian AhR modulators we found that, ahr-1 protects against environmental insults (benzo(a)pyrene and UVB light) and identified a new role for AhR-bacterial diet interaction in animal lifespan, stress resistance, and age-associated pathologies. We narrowed down the dietary factor to a bacterially extruded metabolite likely involved in tryptophan metabolism. This is the first study clearly establishing C. elegans as a good model organism to investigate evolutionarily conserved functions of AhR-modulators and -regulated processes, indicating it can be exploited to contribute to the discovery of novel information about AhR in mammals.
Collapse
Affiliation(s)
- Vanessa Brinkmann
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Alfonso Schiavi
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany.,Institute of Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany
| | - Anjumara Shaik
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany.,Institute of Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany
| | - Daniel Rüdiger Puchta
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Natascia Ventura
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany.,Institute of Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany
| |
Collapse
|
46
|
Amin MR, Mahmud SA, Dowgielewicz JL, Sapkota M, Pellegrino MW. A novel gene-diet interaction promotes organismal lifespan and host protection during infection via the mitochondrial UPR. PLoS Genet 2020; 16:e1009234. [PMID: 33338044 PMCID: PMC7781476 DOI: 10.1371/journal.pgen.1009234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 01/04/2021] [Accepted: 10/29/2020] [Indexed: 11/18/2022] Open
Abstract
Cells use a variety of mechanisms to maintain optimal mitochondrial function including the mitochondrial unfolded protein response (UPRmt). The UPRmt mitigates mitochondrial dysfunction by differentially regulating mitoprotective gene expression through the transcription factor ATFS-1. Since UPRmt activation is commensurate with organismal benefits such as extended lifespan and host protection during infection, we sought to identify pathways that promote its stimulation. Using unbiased forward genetics screening, we isolated novel mutant alleles that could activate the UPRmt. Interestingly, we identified one reduction of function mutant allele (osa3) in the mitochondrial ribosomal gene mrpl-2 that activated the UPRmt in a diet-dependent manner. We find that mrpl-2(osa3) mutants lived longer and survived better during pathogen infection depending on the diet they were fed. A diet containing low levels of vitamin B12 could activate the UPRmt in mrpl-2(osa3) animals. Also, we find that the vitamin B12-dependent enzyme methionine synthase intersects with mrpl-2(osa3) to activate the UPRmt and confer animal lifespan extension at the level of ATFS-1. Thus, we present a novel gene-diet pairing that promotes animal longevity that is mediated by the UPRmt.
Collapse
Affiliation(s)
- Mustafi Raisa Amin
- Department of Biology, University of Texas Arlington, Arlington, Texas, United States of America
| | - Siraje Arif Mahmud
- Department of Biology, University of Texas Arlington, Arlington, Texas, United States of America
| | - Jonathan L. Dowgielewicz
- Department of Biology, University of Texas Arlington, Arlington, Texas, United States of America
| | - Madhab Sapkota
- Department of Biology, University of Texas Arlington, Arlington, Texas, United States of America
| | - Mark W. Pellegrino
- Department of Biology, University of Texas Arlington, Arlington, Texas, United States of America
| |
Collapse
|
47
|
Espada L, Dakhovnik A, Chaudhari P, Martirosyan A, Miek L, Poliezhaieva T, Schaub Y, Nair A, Döring N, Rahnis N, Werz O, Koeberle A, Kirkpatrick J, Ori A, Ermolaeva MA. Loss of metabolic plasticity underlies metformin toxicity in aged Caenorhabditis elegans. Nat Metab 2020; 2:1316-1331. [PMID: 33139960 DOI: 10.1038/s42255-020-00307-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
Current clinical trials are testing the life-extending benefits of the diabetes drug metformin in healthy individuals without diabetes. However, the metabolic response of a non-diabetic cohort to metformin treatment has not been studied. Here, we show in C. elegans and human primary cells that metformin shortens lifespan when provided in late life, contrary to its positive effects in young organisms. We find that metformin exacerbates ageing-associated mitochondrial dysfunction, causing respiratory failure. Age-related failure to induce glycolysis and activate the dietary-restriction-like mobilization of lipid reserves in response to metformin result in lethal ATP exhaustion in metformin-treated aged worms and late-passage human cells, which can be rescued by ectopic stabilization of cellular ATP content. Metformin toxicity is alleviated in worms harbouring disruptions in insulin-receptor signalling, which show enhanced resilience to mitochondrial distortions at old age. Together, our data show that metformin induces deleterious changes of conserved metabolic pathways in late life, which could bring into question its benefits for older individuals without diabetes.
Collapse
Affiliation(s)
- Lilia Espada
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - Prerana Chaudhari
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Asya Martirosyan
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Laura Miek
- Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | | | - Yvonne Schaub
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Ashish Nair
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Nadia Döring
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Norman Rahnis
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Oliver Werz
- Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Andreas Koeberle
- Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
- Michael Popp Research Institute, University of Innsbruck, Innsbruck, Austria
| | | | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Maria A Ermolaeva
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
| |
Collapse
|
48
|
Chen PC, Ruan L, Jin J, Tao YT, Ding XB, Zhang HB, Guo WP, Yang QL, Yao H, Chen X. Predicted functional interactome of Caenorhabditis elegans and a web tool for the functional interpretation of differentially expressed genes. Biol Direct 2020; 15:20. [PMID: 33076954 PMCID: PMC7574172 DOI: 10.1186/s13062-020-00271-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 09/23/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nematode worm, Caenorhabditis elegans, is a saprophytic species that has been emerging as a standard model organism since the early 1960s. This species is useful in numerous fields, including developmental biology, neurobiology, and ageing. A high-quality comprehensive molecular interaction network is needed to facilitate molecular mechanism studies in C. elegans. RESULTS We present the predicted functional interactome of Caenorhabditis elegans (FIC), which integrates functional association data from 10 public databases to infer functional gene interactions on diverse functional perspectives. In this work, FIC includes 108,550 putative functional associations with balanced sensitivity and specificity, which are expected to cover 21.42% of all C. elegans protein interactions, and 29.25% of these associations may represent protein interactions. Based on FIC, we developed a gene set linkage analysis (GSLA) web tool to interpret potential functional impacts from a set of differentially expressed genes observed in transcriptome analyses. CONCLUSION We present the predicted C. elegans interactome database FIC, which is a high-quality database of predicted functional interactions among genes. The functional interactions in FIC serve as a good reference interactome for GSLA to annotate differentially expressed genes for their potential functional impacts. In a case study, the FIC/GSLA system shows more comprehensive and concise annotations compared to other widely used gene set annotation tools, including PANTHER and DAVID. FIC and its associated GSLA are available at the website http://worm.biomedtzc.cn .
Collapse
Affiliation(s)
- Peng-Cheng Chen
- Institute of Pharmaceutical Biotechnology of Zhejiang University School of Medicine and Department of Radiology of the First Affiliated Hospital, Hangzhou, 310058, China
| | - Li Ruan
- Institute of Big Data and Artificial Intelligence in Medicine, School of Electronics and Information Engineering, Taizhou University, Taizhou, 318000, China
| | - Jie Jin
- Institute of Big Data and Artificial Intelligence in Medicine, School of Electronics and Information Engineering, Taizhou University, Taizhou, 318000, China
| | - Yu-Tian Tao
- Institute of Big Data and Artificial Intelligence in Medicine, School of Electronics and Information Engineering, Taizhou University, Taizhou, 318000, China
| | - Xiao-Bao Ding
- Institute of Big Data and Artificial Intelligence in Medicine, School of Electronics and Information Engineering, Taizhou University, Taizhou, 318000, China
| | - Hai-Bo Zhang
- Institute of Big Data and Artificial Intelligence in Medicine, School of Electronics and Information Engineering, Taizhou University, Taizhou, 318000, China
| | - Wen-Ping Guo
- Institute of Big Data and Artificial Intelligence in Medicine, School of Electronics and Information Engineering, Taizhou University, Taizhou, 318000, China
| | - Qiao-Lei Yang
- Institute of Pharmaceutical Biotechnology of Zhejiang University School of Medicine and Department of Radiology of the First Affiliated Hospital, Hangzhou, 310058, China
| | - Heng Yao
- Institute of Pharmaceutical Biotechnology of Zhejiang University School of Medicine and Department of Radiology of the First Affiliated Hospital, Hangzhou, 310058, China
| | - Xin Chen
- Institute of Pharmaceutical Biotechnology of Zhejiang University School of Medicine and Department of Radiology of the First Affiliated Hospital, Hangzhou, 310058, China. .,Institute of Big Data and Artificial Intelligence in Medicine, School of Electronics and Information Engineering, Taizhou University, Taizhou, 318000, China. .,Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
49
|
Giese GE, Walker MD, Ponomarova O, Zhang H, Li X, Minevich G, Walhout AJ. Caenorhabditis elegans methionine/S-adenosylmethionine cycle activity is sensed and adjusted by a nuclear hormone receptor. eLife 2020; 9:60259. [PMID: 33016879 PMCID: PMC7561351 DOI: 10.7554/elife.60259] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/02/2020] [Indexed: 01/17/2023] Open
Abstract
Vitamin B12 is an essential micronutrient that functions in two metabolic pathways: the canonical propionate breakdown pathway and the methionine/S-adenosylmethionine (Met/SAM) cycle. In Caenorhabditis elegans, low vitamin B12, or genetic perturbation of the canonical propionate breakdown pathway results in propionate accumulation and the transcriptional activation of a propionate shunt pathway. This propionate-dependent mechanism requires nhr-10 and is referred to as ‘B12-mechanism-I’. Here, we report that vitamin B12 represses the expression of Met/SAM cycle genes by a propionate-independent mechanism we refer to as ‘B12-mechanism-II’. This mechanism is activated by perturbations in the Met/SAM cycle, genetically or due to low dietary vitamin B12. B12-mechanism-II requires nhr-114 to activate Met/SAM cycle gene expression, the vitamin B12 transporter, pmp-5, and adjust influx and efflux of the cycle by activating msra-1 and repressing cbs-1, respectively. Taken together, Met/SAM cycle activity is sensed and transcriptionally adjusted to be in a tight metabolic regime.
Collapse
Affiliation(s)
- Gabrielle E Giese
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Melissa D Walker
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Olga Ponomarova
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Hefei Zhang
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Xuhang Li
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Gregory Minevich
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Albertha Jm Walhout
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
50
|
Pérez-Hernández CA, Kern CC, Butkeviciute E, McCarthy E, Dockrell HM, Moreno-Altamirano MMB, Aguilar-López BA, Bhosale G, Wang H, Gems D, Duchen MR, Smith SG, Sánchez-García FJ. Mitochondrial Signature in Human Monocytes and Resistance to Infection in C. elegans During Fumarate-Induced Innate Immune Training. Front Immunol 2020; 11:1715. [PMID: 32849605 PMCID: PMC7419614 DOI: 10.3389/fimmu.2020.01715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
Monocytes can develop immunological memory, a functional characteristic widely recognized as innate immune training, to distinguish it from memory in adaptive immune cells. Upon a secondary immune challenge, either homologous or heterologous, trained monocytes/macrophages exhibit a more robust production of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, than untrained monocytes. Candida albicans, β-glucan, and BCG are all inducers of monocyte training and recent metabolic profiling analyses have revealed that training induction is dependent on glycolysis, glutaminolysis, and the cholesterol synthesis pathway, along with fumarate accumulation; interestingly, fumarate itself can induce training. Since fumarate is produced by the tricarboxylic acid (TCA) cycle within mitochondria, we asked whether extra-mitochondrial fumarate has an effect on mitochondrial function. Results showed that the addition of fumarate to monocytes induces mitochondrial Ca2+ uptake, fusion, and increased membrane potential (Δψm), while mitochondrial cristae became closer to each other, suggesting that immediate (from minutes to hours) mitochondrial activation plays a role in the induction phase of innate immune training of monocytes. To establish whether fumarate induces similar mitochondrial changes in vivo in a multicellular organism, effects of fumarate supplementation were tested in the nematode worm Caenorhabditis elegans. This induced mitochondrial fusion in both muscle and intestinal cells and also increased resistance to infection of the pharynx with E. coli. Together, these findings contribute to defining a mitochondrial signature associated with the induction of innate immune training by fumarate treatment, and to the understanding of whole organism infection resistance.
Collapse
Affiliation(s)
- C. Angélica Pérez-Hernández
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Carina C. Kern
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Egle Butkeviciute
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Elizabeth McCarthy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Hazel M. Dockrell
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Bruno A. Aguilar-López
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Gauri Bhosale
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Hongyuan Wang
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - David Gems
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Michael R. Duchen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Steven G. Smith
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Francisco Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|