1
|
Pradeep S, Zangle TA. LVING reveals the intracellular structure of cell growth. Sci Rep 2024; 14:8544. [PMID: 38609444 PMCID: PMC11014851 DOI: 10.1038/s41598-024-58992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
The continuous balance of growth and degradation inside cells maintains homeostasis. Disturbance of this balance by internal or external factors cause state of disease, while effective disease treatments seek to restore this balance. Here, we present a method based on quantitative phase imaging (QPI) based measurements of cell mass and the velocity of mass transport to quantify the balance of growth and degradation within intracellular control volumes. The result, which we call Lagrangian velocimetry for intracellular net growth (LVING), provides high resolution maps of intracellular biomass production and degradation. We use LVING to quantify the growth in different regions of the cell during phases of the cell cycle. LVING can also be used to quantitatively compare the effect of range of chemotherapy drug doses on subcellular growth processes. Finally, we applied LVING to characterize the effect of autophagy on the growth machinery inside cells. Overall, LVING reveals both the structure and distribution of basal growth within cells, as well as the disruptions to this structure that occur during alterations in cell state.
Collapse
Affiliation(s)
- Soorya Pradeep
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Thomas A Zangle
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah, USA.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
2
|
Villanueva E, Smith T, Pizzinga M, Elzek M, Queiroz RML, Harvey RF, Breckels LM, Crook OM, Monti M, Dezi V, Willis AE, Lilley KS. System-wide analysis of RNA and protein subcellular localization dynamics. Nat Methods 2024; 21:60-71. [PMID: 38036857 PMCID: PMC10776395 DOI: 10.1038/s41592-023-02101-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Although the subcellular dynamics of RNA and proteins are key determinants of cell homeostasis, their characterization is still challenging. Here we present an integrative framework to simultaneously interrogate the dynamics of the transcriptome and proteome at subcellular resolution by combining two methods: localization of RNA (LoRNA) and a streamlined density-based localization of proteins by isotope tagging (dLOPIT) to map RNA and protein to organelles (nucleus, endoplasmic reticulum and mitochondria) and membraneless compartments (cytosol, nucleolus and cytosolic granules). Interrogating all RNA subcellular locations at once enables system-wide quantification of the proportional distribution of RNA. We obtain a cell-wide overview of localization dynamics for 31,839 transcripts and 5,314 proteins during the unfolded protein response, revealing that endoplasmic reticulum-localized transcripts are more efficiently recruited to cytosolic granules than cytosolic RNAs, and that the translation initiation factor eIF3d is key to sustaining cytoskeletal function. Overall, we provide the most comprehensive overview so far of RNA and protein subcellular localization dynamics.
Collapse
Affiliation(s)
- Eneko Villanueva
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tom Smith
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Mariavittoria Pizzinga
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Structural Biology Research Centre, Human Technopole, Milan, Italy
| | - Mohamed Elzek
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Rayner M L Queiroz
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Lisa M Breckels
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Oliver M Crook
- Department of Statistics, University of Oxford, Oxford, UK
| | - Mie Monti
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Veronica Dezi
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK.
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Aleksashin NA, Chang STL, Cate JHD. A highly efficient human cell-free translation system. RNA (NEW YORK, N.Y.) 2023; 29:1960-1972. [PMID: 37793791 PMCID: PMC10653386 DOI: 10.1261/rna.079825.123] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023]
Abstract
Cell-free protein synthesis (CFPS) systems enable easy in vitro expression of proteins with many scientific, industrial, and therapeutic applications. Here we present an optimized, highly efficient human cell-free translation system that bypasses many limitations of currently used in vitro systems. This CFPS system is based on extracts from human HEK293T cells engineered to endogenously express GADD34 and K3L proteins, which suppress phosphorylation of translation initiation factor eIF2α. Overexpression of GADD34 and K3L proteins in human cells before cell lysate preparation significantly simplifies lysate preparation. We find that expression of the GADD34 and K3L accessory proteins before cell lysis maintains low levels of phosphorylation of eIF2α in the extracts. During in vitro translation reactions, eIF2α phosphorylation increases moderately in a GCN2-dependent fashion that can be inhibited by GCN2 kinase inhibitors. This new CFPS system should be useful for exploring human translation mechanisms in more physiological conditions outside the cell.
Collapse
Affiliation(s)
- Nikolay A Aleksashin
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720, USA
| | - Stacey Tsai-Lan Chang
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720, USA
| | - Jamie H D Cate
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720, USA
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
4
|
Biswal SR, Singh M, Dwibedy SLL, Kumari S, Muthuswamy S, Kumar A, Kumar S. Deciphering the RNA-binding protein interaction with the mRNAs encoded from human chromosome 15q11.2 BP1-BP2 microdeletion region. Funct Integr Genomics 2023; 23:174. [PMID: 37219715 DOI: 10.1007/s10142-023-01105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Microdeletion of the 15q11.2 BP1-BP2 region, also known as Burnside-Butler susceptibility region, is associated with phenotypes like delayed developmental language abilities along with motor skill disabilities, combined with behavioral and emotional problems. The 15q11.2 microdeletion region harbors four evolutionarily conserved and non-imprinted protein-coding genes: NIPA1, NIPA2, CYFIP1, and TUBGCP5. This microdeletion is a rare copy number variation frequently associated with several pathogenic conditions in humans. The aim of this study is to investigate the RNA-binding proteins binding with the four genes present in 15q11.2 BP1-BP2 microdeletion region. The results of this study will help to better understand the molecular intricacies of the Burnside-Butler Syndrome and also the possible involvement of these interactions in the disease aetiology. Our results of enhanced crosslinking and immunoprecipitation data analysis indicate that most of the RBPs interacting with the 15q11.2 region are involved in the post-transcriptional regulation of the concerned genes. The RBPs binding to this region are found from the in silico analysis, and the interaction of RBPs like FASTKD2 and EFTUD2 with exon-intron junction sequence of CYFIP1 and TUBGCP5 has also been validated by combined EMSA and western blotting experiment. The exon-intron junction binding nature of these proteins suggests their potential involvement in splicing process. This study may help to understand the intricate relationship of RBPs with mRNAs within this region, along with their functional significance in normal development, and lack thereof, in neurodevelopmental disorders. This understanding will help in the formulation of better therapeutic approaches.
Collapse
Affiliation(s)
- Smruti Rekha Biswal
- Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India
| | - Mandakini Singh
- Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India
| | | | - Subhadra Kumari
- Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India
| | - Srinivasan Muthuswamy
- Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Santosh Kumar
- Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India.
| |
Collapse
|
5
|
Aleksashin NA, Chang STL, Cate JHD. A highly efficient human cell-free translation system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527910. [PMID: 36798401 PMCID: PMC9934684 DOI: 10.1101/2023.02.09.527910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Cell-free protein synthesis (CFPS) systems enable easy in vitro expression of proteins with many scientific, industrial, and therapeutic applications. Here we present an optimized, highly efficient human cell-free translation system that bypasses many limitations of currently used in vitro systems. This CFPS system is based on extracts from human HEK293T cells engineered to endogenously express GADD34 and K3L proteins, which suppress phosphorylation of translation initiation factor eIF2α. Overexpression of GADD34 and K3L proteins in human cells significantly simplifies cell lysate preparation. The new CFPS system improves the translation of 5' cap-dependent mRNAs as well as those that use internal ribosome entry site (IRES) mediated translation initiation. We find that expression of the GADD34 and K3L accessory proteins before cell lysis maintains low levels of phosphorylation of eIF2α in the extracts. During in vitro translation reactions, eIF2α phosphorylation increases moderately in a GCN2-dependent fashion that can be inhibited by GCN2 kinase inhibitors. We also find evidence for activation of regulatory pathways related to eukaryotic elongation factor 2 (eEF2) phosphorylation and ribosome quality control in the extracts. This new CFPS system should be useful for exploring human translation mechanisms in more physiological conditions outside the cell.
Collapse
Affiliation(s)
- Nikolay A. Aleksashin
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Stacey Tsai-Lan Chang
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Jamie H. D. Cate
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
- Department of Chemistry, University of California-Berkeley, Berkeley, CA, USA
| |
Collapse
|
6
|
Knowles CM, Goich D, Bloom ALM, Kalem MC, Panepinto JC. Contributions of Ccr4 and Gcn2 to the Translational Response of C. neoformans to Host-Relevant Stressors and Integrated Stress Response Induction. mBio 2023; 14:e0019623. [PMID: 37017529 PMCID: PMC10127693 DOI: 10.1128/mbio.00196-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/06/2023] [Indexed: 04/06/2023] Open
Abstract
In response to the host environment, the human pathogen Cryptococcus neoformans must rapidly reprogram its translatome from one which promotes growth to one which is responsive to host stress. In this study, we investigate the two events which comprise translatome reprogramming: the removal of abundant, pro-growth mRNAs from the translating pool, and the regulated entry of stress-responsive mRNAs into the translating pool. Removal of pro-growth mRNAs from the translating pool is controlled primarily by two regulatory mechanisms, repression of translation initiation via Gcn2, and decay mediated by Ccr4. We determined that translatome reprogramming in response to oxidative stress requires both Gcn2 and Ccr4, whereas the response to temperature requires only Ccr4. Additionally, we assessed ribosome collision in response to host-relevant stress and found that collided ribosomes accumulated during temperature stress but not during oxidative stress. The phosphorylation of eIF2α that occurred as a result of translational stress led us to investigate the induction of the integrated stress response (ISR). We found that eIF2α phosphorylation varied in response to the type and magnitude of stress, yet all tested conditions induced translation of the ISR transcription factor Gcn4. However, Gcn4 translation did not necessarily result in canonical Gcn4-dependent transcription. Finally, we define the ISR regulon in response to oxidative stress. In conclusion, this study begins to reveal the translational regulation in response to host-relevant stressors in an environmental fungus which is capable of adapting to the environment inside the human host. IMPORTANCE Cryptococcus neoformans is a human pathogen capable of causing devastating infections. It must rapidly adapt to changing environments as it leaves its niche in the soil and enters the human lung. Previous work has demonstrated a need to reprogram gene expression at the level of translation to promote stress adaptation. In this work, we investigate the contributions and interplay of the major mechanisms that regulate entry of new mRNAs into the pool (translation initiation) and the clearance of unneeded mRNAs from the pool (mRNA decay). One result of this reprogramming is the induction of the integrated stress response (ISR) regulon. Surprisingly, all stresses tested led to the production of the ISR transcription factor Gcn4, but not necessarily to transcription of ISR target genes. Furthermore, stresses result in differential levels of ribosome collisions, but these are not necessarily predictive of initiation repression as has been suggested in the model yeast.
Collapse
Affiliation(s)
- Corey M. Knowles
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - David Goich
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Amanda L. M. Bloom
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Murat C. Kalem
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - John C. Panepinto
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
7
|
Temaj G, Hadziselimovic R, Nefic H, Nuhii N. Ribosome biogenesis and ribosome therapy in cancer cells. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.81706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Introduction: The process of protein synthesis is a vital process for all kingdoms of life. The ribosome is a ribonucleoprotein complex that reads the genetic code, from messenger RNA (mRNA) to produce proteins and to tightly regulate and ensure cells growth. The fact that numerous diseases are caused by defect during the ribosome biogenesis is important to understand this pathway.
Materials and methods: We have analyzed the literature for ribosome biogenesis and its links with different diseases which have been found.
Results and discussion: We have discussed the key aspect of human ribosome biogenesis and its links to diseases. We have also proposed the potential of applying this knowledge to the development of a ribosomal stress-based cancer therapy.
Conclusion: Major challenges in the future will be to determine factors which play a pivotal role during ribosome biogenesis. Therefore, more anti-cancer drugs and gene therapy for genetic diseases will be developed against ribosomal biogenesis in the coming years.
Graphical abstract:
Collapse
|
8
|
Shichino Y, Iwasaki S. Compounds for selective translational inhibition. Curr Opin Chem Biol 2022; 69:102158. [PMID: 35598529 DOI: 10.1016/j.cbpa.2022.102158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/04/2022] [Accepted: 04/17/2022] [Indexed: 11/23/2022]
Abstract
Since many human diseases are caused by the unwelcome production of harmful proteins, compounds that selectively suppress protein synthesis should provide a unique path for drug development, expanding the druggable proteome. Although surveying the RNA/amino acid contexts that are preferentially affected by translation inhibitors has presented an analytic hurdle, the application of a technique termed ribosome profiling overcomes this problem. Indeed, this technique uncovers the selectivity of translation repression by small molecules such as chloramphenicol, macrolides, PF846, and rocaglates. The molecular understanding of how the compounds inspire context selectivity, despite their targeting to general translation machinery, facilitates rational drug design and discovery for therapeutic purposes.
Collapse
Affiliation(s)
- Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan.
| |
Collapse
|
9
|
Pellegrino S, Terrosu S, Yusupova G, Yusupov M. Inhibition of the Eukaryotic 80S Ribosome as a Potential Anticancer Therapy: A Structural Perspective. Cancers (Basel) 2021; 13:cancers13174392. [PMID: 34503202 PMCID: PMC8430933 DOI: 10.3390/cancers13174392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/16/2023] Open
Abstract
Simple Summary Unravelling the molecular basis of ribosomal inhibition by small molecules is crucial to characterise the function of potential anticancer drugs. After approval of the ribosome inhibitor homoharringtonine for treatment of CML, it became clear that acting on the rate of protein synthesis can be a valuable way to prevent indefinite growth of cancers. The present review discusses the state-of-the-art structural knowledge of the binding modes of inhibitors targeting the cytosolic ribosome, with the ambition of providing not only an overview of what has been achieved so far, but to stimulate further investigations to yield more potent and specific anticancer drugs. Abstract Protein biosynthesis is a vital process for all kingdoms of life. The ribosome is the massive ribonucleoprotein machinery that reads the genetic code, in the form of messenger RNA (mRNA), to produce proteins. The mechanism of translation is tightly regulated to ensure that cell growth is well sustained. Because of the central role fulfilled by the ribosome, it is not surprising that halting its function can be detrimental and incompatible with life. In bacteria, the ribosome is a major target of inhibitors, as demonstrated by the high number of small molecules identified to bind to it. In eukaryotes, the design of ribosome inhibitors may be used as a therapy to treat cancer cells, which exhibit higher proliferation rates compared to healthy ones. Exciting experimental achievements gathered during the last few years confirmed that the ribosome indeed represents a relevant platform for the development of anticancer drugs. We provide herein an overview of the latest structural data that helped to unveil the molecular bases of inhibition of the eukaryotic ribosome triggered by small molecules.
Collapse
Affiliation(s)
- Simone Pellegrino
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
- Correspondence: (S.P.); (M.Y.)
| | - Salvatore Terrosu
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France; (S.T.); (G.Y.)
| | - Gulnara Yusupova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France; (S.T.); (G.Y.)
| | - Marat Yusupov
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France; (S.T.); (G.Y.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Correspondence: (S.P.); (M.Y.)
| |
Collapse
|
10
|
Forester CM, Ruggero D. Releasing the brake on protein synthesis in hematopoietic stem cells. Cell Stem Cell 2021; 28:1183-1185. [PMID: 34214436 DOI: 10.1016/j.stem.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein synthesis regulation constitutes a key node in directing decisions between hematopoietic stemness and differentiation. In this issue of Cell Stem Cell, Lv et al. (2021) describe a mechanism by which HSCs fine-tune translation rates by controlling 60S and 40S ribosomal subunit joining through targeted degradation of ZNF622 in response to stress.
Collapse
Affiliation(s)
- Craig M Forester
- Department of Pediatrics, University of Colorado, Denver, CO, USA; Children's Hospital Colorado, Division of Pediatric Hematology/Oncology/Bone Marrow Transplant, Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Davide Ruggero
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94158, USA.
| |
Collapse
|
11
|
Li Y, Zhou LQ. dCas9 techniques for transcriptional repression in mammalian cells: Progress, applications and challenges. Bioessays 2021; 43:e2100086. [PMID: 34327721 DOI: 10.1002/bies.202100086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/10/2023]
Abstract
Innovative loss-of-function techniques developed in recent years have made it much easier to target specific genomic loci at transcriptional levels. CRISPR interference (CRISPRi) has been proven to be the most effective and specific tool to knock down any gene of interest in mammalian cells. The catalytically deactivated Cas9 (dCas9) can be fused with transcription repressors to downregulate gene expression specified by sgRNA complementary to target genomic sequence. Although CRISPRi has huge potential for gene knockdown, there is still a lack of systematic guidelines for efficient and widespread use. Here we describe the working mechanism and development of CRISPRi, designing principles of sgRNA, delivery methods and applications in mammalian cells in detail. Finally, we propose possible solutions and future directions with regard to current challenges.
Collapse
Affiliation(s)
- Yuanyuan Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Dmitriev SE, Vladimirov DO, Lashkevich KA. A Quick Guide to Small-Molecule Inhibitors of Eukaryotic Protein Synthesis. BIOCHEMISTRY (MOSCOW) 2021; 85:1389-1421. [PMID: 33280581 PMCID: PMC7689648 DOI: 10.1134/s0006297920110097] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic ribosome and cap-dependent translation are attractive targets in the antitumor, antiviral, anti-inflammatory, and antiparasitic therapies. Currently, a broad array of small-molecule drugs is known that specifically inhibit protein synthesis in eukaryotic cells. Many of them are well-studied ribosome-targeting antibiotics that block translocation, the peptidyl transferase center or the polypeptide exit tunnel, modulate the binding of translation machinery components to the ribosome, and induce miscoding, premature termination or stop codon readthrough. Such inhibitors are widely used as anticancer, anthelmintic and antifungal agents in medicine, as well as fungicides in agriculture. Chemicals that affect the accuracy of stop codon recognition are promising drugs for the nonsense suppression therapy of hereditary diseases and restoration of tumor suppressor function in cancer cells. Other compounds inhibit aminoacyl-tRNA synthetases, translation factors, and components of translation-associated signaling pathways, including mTOR kinase. Some of them have antidepressant, immunosuppressive and geroprotective properties. Translation inhibitors are also used in research for gene expression analysis by ribosome profiling, as well as in cell culture techniques. In this article, we review well-studied and less known inhibitors of eukaryotic protein synthesis (with the exception of mitochondrial and plastid translation) classified by their targets and briefly describe the action mechanisms of these compounds. We also present a continuously updated database (http://eupsic.belozersky.msu.ru/) that currently contains information on 370 inhibitors of eukaryotic protein synthesis.
Collapse
Affiliation(s)
- S E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - D O Vladimirov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - K A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
13
|
Lv K, Gong C, Antony C, Han X, Ren JG, Donaghy R, Cheng Y, Pellegrino S, Warren AJ, Paralkar VR, Tong W. HectD1 controls hematopoietic stem cell regeneration by coordinating ribosome assembly and protein synthesis. Cell Stem Cell 2021; 28:1275-1290.e9. [PMID: 33711283 DOI: 10.1016/j.stem.2021.02.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/28/2020] [Accepted: 02/05/2021] [Indexed: 01/28/2023]
Abstract
Impaired ribosome function is the underlying etiology in a group of bone marrow failure syndromes called ribosomopathies. However, how ribosomes are regulated remains poorly understood, as are approaches to restore hematopoietic stem cell (HSC) function loss because of defective ribosome biogenesis. Here we reveal a role of the E3 ubiquitin ligase HectD1 in regulating HSC function via ribosome assembly and protein translation. Hectd1-deficient HSCs exhibit a striking defect in transplantation ability and ex vivo maintenance concomitant with reduced protein synthesis and growth rate under stress conditions. Mechanistically, HectD1 ubiquitinates and degrades ZNF622, an assembly factor for the ribosomal 60S subunit. Hectd1 loss leads to accumulation of ZNF622 and the anti-association factor eIF6 on 60S, resulting in 60S/40S joining defects. Importantly, Znf622 depletion in Hectd1-deficient HSCs restored ribosomal subunit joining, protein synthesis, and HSC reconstitution capacity. These findings highlight the importance of ubiquitin-coordinated ribosome assembly in HSC regeneration.
Collapse
Affiliation(s)
- Kaosheng Lv
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chujie Gong
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles Antony
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xu Han
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jian-Gang Ren
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan Donaghy
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ying Cheng
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simone Pellegrino
- Cambridge Institute for Medical Research, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Alan J Warren
- Cambridge Institute for Medical Research, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Vikram R Paralkar
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Tong
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Yang Y, Xu X. Identification of key genes in coronary artery disease: an integrative approach based on weighted gene co-expression network analysis and their correlation with immune infiltration. Aging (Albany NY) 2021; 13:8306-8319. [PMID: 33686958 PMCID: PMC8034924 DOI: 10.18632/aging.202638] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/29/2021] [Indexed: 12/04/2022]
Abstract
This study aimed to identify key genes related to coronary artery disease (CAD) and its association with immune cells infiltration. GSE20680 and GSE20681 were downloaded from GEO. We identified red and pink modules in WGCNA analysis and found 104 genes in these two modules. Next, least absolute shrinkage and selection operator (LASSO) logistic regression was used to screen and verify the diagnostic markers of CAD. We identified ASCC2, LRRC18, and SLC25A37 as the key genes in CAD diagnosis. We further studied the immune cells infiltration in CAD patients with CIBERSORT, and the correlation between key genes and infiltrating immune cells was analyzed. We also found immune cells, including macrophages M0, mast cells resting and T cells CD8, were associated with ASCC2, LRRC18 and SLC25A37. Gene enrichment analysis indicated that these genes mainly enriched in apoptotic signaling pathway for biological pathway analysis, riboflavin metabolism for KEGG analysis. The diagnostic efficiency of these key genes measured by AUC in the training set, testing set and validation cohort was 0.92, 0.96 and 0.83, respectively. In conclusion, ASCC2, LRRC18 and SLC25A37 can be used as diagnostic markers of CAD, and immune cell infiltration plays an important role in the onset and development of CAD.
Collapse
Affiliation(s)
- Yang Yang
- Fourth Affiliated Hospital of China Medical University, Huanggu, Shenyang 110032, Liaoning, China
| | - Xiangshan Xu
- Fourth Affiliated Hospital of China Medical University, Huanggu, Shenyang 110032, Liaoning, China
| |
Collapse
|
15
|
Abstract
Inhibiting eukaryotic protein translation with small molecules is emerging as a powerful therapeutic strategy. The advantage of targeting cellular translational machinery is that it is required for the highly proliferative state of many neoplastic cells, replication of certain viruses, and ultimately the expression of a wide variety of protein targets. Although, this approach has been exploited to develop clinical agents, such as homoharringtonine (HHT, 1), used to treat chronic myeloid leukemia (CML), inhibiting components of the translational machinery is often associated with cytotoxic phenotypes. However, recent studies have demonstrated that certain small molecules can inhibit the translation of specific subsets of proteins, leading to lower cytotoxicity, and opening-up therapeutic opportunities for translation inhibitors to be deployed in indications beyond oncology and infectious disease. This review summarizes efforts to develop inhibitors of the eukaryotic translational machinery as therapeutic agents and highlights emerging opportunities for translation inhibitors in the future.
Collapse
Affiliation(s)
- Angela Fan
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Phillip P Sharp
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| |
Collapse
|
16
|
Schirle M, Jenkins JL. Contemporary Techniques for Target Deconvolution and Mode of Action Elucidation. PHENOTYPIC DRUG DISCOVERY 2020. [DOI: 10.1039/9781839160721-00083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The elucidation of the cellular efficacy target and mechanism of action of a screening hit remain key steps in phenotypic drug discovery. A large number of experimental and in silico approaches have been introduced to address these questions and are being discussed in this chapter with a focus on recent developments. In addition to practical considerations such as throughput and technological requirements, these approaches differ conceptually in the specific compound characteristic that they are focusing on, including physical and functional interactions, cellular response patterns as well as structural features. As a result, different approaches often provide complementary information and we describe a multipronged strategy that is frequently key to successful identification of the efficacy target but also other epistatic nodes and off-targets that together shape the overall cellular effect of a bioactive compound.
Collapse
Affiliation(s)
- Markus Schirle
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research Cambridge MA 02139 USA
| | - Jeremy L. Jenkins
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research Cambridge MA 02139 USA
| |
Collapse
|
17
|
Phillips BP, Miller EA. Ribosome-associated quality control of membrane proteins at the endoplasmic reticulum. J Cell Sci 2020; 133:133/22/jcs251983. [PMID: 33247003 PMCID: PMC7116877 DOI: 10.1242/jcs.251983] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Protein synthesis is an energetically costly, complex and risky process. Aberrant protein biogenesis can result in cellular toxicity and disease, with membrane-embedded proteins being particularly challenging for the cell. In order to protect the cell from consequences of defects in membrane proteins, quality control systems act to maintain protein homeostasis. The majority of these pathways act post-translationally; however, recent evidence reveals that membrane proteins are also subject to co-translational quality control during their synthesis in the endoplasmic reticulum (ER). This newly identified quality control pathway employs components of the cytosolic ribosome-associated quality control (RQC) machinery but differs from canonical RQC in that it responds to biogenesis state of the substrate rather than mRNA aberrations. This ER-associated RQC (ER-RQC) is sensitive to membrane protein misfolding and malfunctions in the ER insertion machinery. In this Review, we discuss the advantages of co-translational quality control of membrane proteins, as well as potential mechanisms of substrate recognition and degradation. Finally, we discuss some outstanding questions concerning future studies of ER-RQC of membrane proteins.
Collapse
Affiliation(s)
- Ben P Phillips
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | |
Collapse
|
18
|
Banerjee AK, Blanco MR, Bruce EA, Honson DD, Chen LM, Chow A, Bhat P, Ollikainen N, Quinodoz SA, Loney C, Thai J, Miller ZD, Lin AE, Schmidt MM, Stewart DG, Goldfarb D, De Lorenzo G, Rihn SJ, Voorhees RM, Botten JW, Majumdar D, Guttman M. SARS-CoV-2 Disrupts Splicing, Translation, and Protein Trafficking to Suppress Host Defenses. Cell 2020; 183:1325-1339.e21. [PMID: 33080218 PMCID: PMC7543886 DOI: 10.1016/j.cell.2020.10.004] [Citation(s) in RCA: 409] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/26/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus that causes the respiratory disease known as coronavirus disease 2019 (COVID-19). Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis. Here, we comprehensively define the interactions between SARS-CoV-2 proteins and human RNAs. NSP16 binds to the mRNA recognition domains of the U1 and U2 splicing RNAs and acts to suppress global mRNA splicing upon SARS-CoV-2 infection. NSP1 binds to 18S ribosomal RNA in the mRNA entry channel of the ribosome and leads to global inhibition of mRNA translation upon infection. Finally, NSP8 and NSP9 bind to the 7SL RNA in the signal recognition particle and interfere with protein trafficking to the cell membrane upon infection. Disruption of each of these essential cellular functions acts to suppress the interferon response to viral infection. Our results uncover a multipronged strategy utilized by SARS-CoV-2 to antagonize essential cellular processes to suppress host defenses.
Collapse
Affiliation(s)
- Abhik K Banerjee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Mario R Blanco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Emily A Bruce
- Departments of Medicine, Division of Immunobiology and Microbiology, and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Drew D Honson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Linlin M Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Amy Chow
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Prashant Bhat
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Noah Ollikainen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sofia A Quinodoz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Colin Loney
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow G61 1QH, UK
| | - Jasmine Thai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zachary D Miller
- Department of Surgery and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Aaron E Lin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Madaline M Schmidt
- Departments of Medicine, Division of Immunobiology and Microbiology, and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Douglas G Stewart
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow G61 1QH, UK
| | - Daniel Goldfarb
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow G61 1QH, UK
| | - Giuditta De Lorenzo
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow G61 1QH, UK
| | - Suzannah J Rihn
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow G61 1QH, UK
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jason W Botten
- Departments of Medicine, Division of Immunobiology and Microbiology, and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Devdoot Majumdar
- Department of Surgery and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
19
|
The interaction of DNA repair factors ASCC2 and ASCC3 is affected by somatic cancer mutations. Nat Commun 2020; 11:5535. [PMID: 33139697 PMCID: PMC7608686 DOI: 10.1038/s41467-020-19221-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
The ASCC3 subunit of the activating signal co-integrator complex is a dual-cassette Ski2-like nucleic acid helicase that provides single-stranded DNA for alkylation damage repair by the α-ketoglutarate-dependent dioxygenase AlkBH3. Other ASCC components integrate ASCC3/AlkBH3 into a complex DNA repair pathway. We mapped and structurally analyzed interacting ASCC2 and ASCC3 regions. The ASCC3 fragment comprises a central helical domain and terminal, extended arms that clasp the compact ASCC2 unit. ASCC2–ASCC3 interfaces are evolutionarily highly conserved and comprise a large number of residues affected by somatic cancer mutations. We quantified contributions of protein regions to the ASCC2–ASCC3 interaction, observing that changes found in cancers lead to reduced ASCC2–ASCC3 affinity. Functional dissection of ASCC3 revealed similar organization and regulation as in the spliceosomal RNA helicase Brr2. Our results delineate functional regions in an important DNA repair complex and suggest possible molecular disease principles. The DNA helicase ASCC3 is the largest subunit of the activating signal co-integrator complex (ASCC), and its DNA unwinding activity is required for the AlkBH3/ASCC-dependent DNA de-alkylation repair pathway. Here, the authors identify a minimal stable complex of the two ASCC subunits ASCC2 and ASCC3, determine the complex crystal structure and further show that cancer-related mutations at the interface between both proteins reduce ASCC2–ASCC3 affinity.
Collapse
|
20
|
Chronic exposure to the gibberellin derivative GA-13315 sensitizes breast cancer MCF-7 cells but not colon cancer HCT116 cells to irinotecan. Oncol Lett 2020; 20:281. [PMID: 33014159 PMCID: PMC7520751 DOI: 10.3892/ol.2020.12144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 07/20/2020] [Indexed: 11/05/2022] Open
Abstract
13-Chlorine-3,15-dioxy-gibberellic acid methyl ester (GA-13315) is a gibberellin derivative that exhibits selective cytotoxicity to multidrug resistant MCF-7/ADR cells and reverses drug resistance when administered at subtoxic doses in combination with chemotherapy drugs. The present study aimed to investigate the impact of chronic GA-13315 exposure on the chemosensitivity of MCF-7 and HCT116 cell lines. Cells were administered a subtoxic dose of 1 µM GA-13315 for 12 weeks and the sensitivity of the cells to GA-13315, irinotecan and cisplatin, was assessed. The Cell Counting Kit-8 assay results demonstrated that the chronic exposure did not induce resistance to GA-13315, in either MCF-7 or HCT116 cells. Notably, MCF-7 cells were sensitized to irinotecan following exposure to GA-13315; however, HCT116 cells were not. The sensitizing effect of GA-13315 was associated with the alterations of topoisomerase 1 (Top1) protein expression, tyrosyl DNA phosphodiesterase 1 and checkpoint kinase 1. Further analysis indicated that GA-13315 caused DNA fragmentation; however, DNA damage was not mediated by a Top1-dependent molecular mechanism, as GA-13315 was revealed not to be a Top1 poison, despite inhibiting the catalytic activity of Top1. Taken together, the results of the present study indicated that GA-13315 may be used for sensitizing MCF-7 cells to irinotecan, as the chronic exposure of GA-13315 to MCF-7 cells still showed sensitizing effects to irinotecan.
Collapse
|
21
|
Li W, Chang STL, Ward FR, Cate JHD. Selective inhibition of human translation termination by a drug-like compound. Nat Commun 2020; 11:4941. [PMID: 33009412 PMCID: PMC7532171 DOI: 10.1038/s41467-020-18765-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
Methods to directly inhibit gene expression using small molecules hold promise for the development of new therapeutics targeting proteins that have evaded previous attempts at drug discovery. Among these, small molecules including the drug-like compound PF-06446846 (PF846) selectively inhibit the synthesis of specific proteins, by stalling translation elongation. These molecules also inhibit translation termination by an unknown mechanism. Using cryo-electron microscopy (cryo-EM) and biochemical approaches, we show that PF846 inhibits translation termination by arresting the nascent chain (NC) in the ribosome exit tunnel. The arrested NC adopts a compact α-helical conformation that induces 28 S rRNA nucleotide rearrangements that suppress the peptidyl transferase center (PTC) catalytic activity stimulated by eukaryotic release factor 1 (eRF1). These data support a mechanism of action for a small molecule targeting translation that suppresses peptidyl-tRNA hydrolysis promoted by eRF1, revealing principles of eukaryotic translation termination and laying the foundation for new therapeutic strategies.
Collapse
Affiliation(s)
- Wenfei Li
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Stacey Tsai-Lan Chang
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
| | - Fred R Ward
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Jamie H D Cate
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA.
| |
Collapse
|
22
|
Juszkiewicz S, Speldewinde SH, Wan L, Svejstrup JQ, Hegde RS. The ASC-1 Complex Disassembles Collided Ribosomes. Mol Cell 2020; 79:603-614.e8. [PMID: 32579943 PMCID: PMC7447978 DOI: 10.1016/j.molcel.2020.06.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 02/03/2023]
Abstract
Translating ribosomes that slow excessively incur collisions with trailing ribosomes. Persistent collisions are detected by ZNF598, a ubiquitin ligase that ubiquitinates sites on the ribosomal 40S subunit to initiate pathways of mRNA and protein quality control. The collided ribosome complex must be disassembled to initiate downstream quality control, but the mechanistic basis of disassembly is unclear. Here, we reconstitute the disassembly of a collided polysome in a mammalian cell-free system. The widely conserved ASC-1 complex (ASCC) containing the ASCC3 helicase disassembles the leading ribosome in an ATP-dependent reaction. Disassembly, but not ribosome association, requires 40S ubiquitination by ZNF598, but not GTP-dependent factors, including the Pelo-Hbs1L ribosome rescue complex. Trailing ribosomes can elongate once the roadblock has been removed and only become targets if they subsequently stall and incur collisions. These findings define the specific role of ASCC during ribosome-associated quality control and identify the molecular target of its activity.
Collapse
Affiliation(s)
- Szymon Juszkiewicz
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | | | - Li Wan
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
23
|
Hashimoto S, Sugiyama T, Yamazaki R, Nobuta R, Inada T. Identification of a novel trigger complex that facilitates ribosome-associated quality control in mammalian cells. Sci Rep 2020; 10:3422. [PMID: 32099016 PMCID: PMC7042231 DOI: 10.1038/s41598-020-60241-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/13/2020] [Indexed: 11/09/2022] Open
Abstract
Ribosome stalling triggers the ribosome-associated quality control (RQC) pathway, which targets collided ribosomes and leads to subunit dissociation, followed by proteasomal degradation of the nascent peptide. In yeast, RQC is triggered by Hel2-dependent ubiquitination of uS10, followed by subunit dissociation mediated by the RQC-trigger (RQT) complex. In mammals, ZNF598-dependent ubiquitination of collided ribosomes is required for RQC, and activating signal cointegrator 3 (ASCC3), a component of the ASCC complex, facilitates RQC. However, the roles of other components and associated factors of the ASCC complex remain unknown. Here, we demonstrate that the human RQC-trigger (hRQT) complex, an ortholog of the yeast RQT complex, plays crucial roles in RQC. The hRQT complex is composed of ASCC3, ASCC2, and TRIP4, which are orthologs of the RNA helicase Slh1(Rqt2), ubiquitin-binding protein Cue3(Rqt3), and zinc-finger type protein yKR023W(Rqt4), respectively. The ATPase activity of ASCC3 and the ubiquitin-binding activity of ASCC2 are crucial for triggering RQC. Given the proposed function of the RQT complex in yeast, we propose that the hRQT complex recognizes the ubiquitinated stalled ribosome and induces subunit dissociation to facilitate RQC.
Collapse
Affiliation(s)
- Satoshi Hashimoto
- From the Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Takato Sugiyama
- From the Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Reina Yamazaki
- From the Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Risa Nobuta
- From the Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Toshifumi Inada
- From the Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
24
|
Li W, Ward FR, McClure KF, Chang STL, Montabana E, Liras S, Dullea RG, Cate JHD. Structural basis for selective stalling of human ribosome nascent chain complexes by a drug-like molecule. Nat Struct Mol Biol 2019; 26:501-509. [PMID: 31160784 PMCID: PMC6919564 DOI: 10.1038/s41594-019-0236-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/26/2019] [Indexed: 12/30/2022]
Abstract
The drug-like molecule PF-06446846 (PF846) binds the human ribosome and selectively blocks the translation of a small number of proteins by an unknown mechanism. In structures of PF846-stalled human ribosome nascent chain complexes, PF846 binds in the ribosome exit tunnel in a eukaryotic-specific pocket formed by 28S ribosomal RNA, and alters the path of the nascent polypeptide chain. PF846 arrests the translating ribosome in the rotated state of translocation, in which the peptidyl-transfer RNA 3'-CCA end is improperly docked in the peptidyl transferase center. Selections of messenger RNAs from mRNA libraries using translation extracts reveal that PF846 can stall translation elongation, arrest termination or even enhance translation, depending on nascent chain sequence context. These results illuminate how a small molecule selectively targets translation by the human ribosome, and provides a foundation for developing small molecules that modulate the production of proteins of therapeutic interest.
Collapse
Affiliation(s)
- Wenfei Li
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA.,Molecular Biophysics and Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Fred R Ward
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kim F McClure
- Pfizer Medicinal Chemistry, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Stacey Tsai-Lan Chang
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Elizabeth Montabana
- Molecular Biophysics and Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Spiros Liras
- Pfizer Medicinal Chemistry, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Robert G Dullea
- Cardiovascular, Metabolic and Endocrine Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Jamie H D Cate
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA. .,Molecular Biophysics and Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|