1
|
Carvalhas-Almeida C, Sehgal A. Glia: the cellular glue that binds circadian rhythms and sleep. Sleep 2025; 48:zsae314. [PMID: 39812780 PMCID: PMC11893543 DOI: 10.1093/sleep/zsae314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/19/2024] [Indexed: 01/16/2025] Open
Abstract
Glia are increasingly appreciated as serving an important function in the control of sleep and circadian rhythms. Glial cells in Drosophila and mammals regulate daily rhythms of locomotor activity and sleep as well as homeostatic rebound following sleep deprivation. In addition, they contribute to proposed functions of sleep, with different functions mapping to varied glial subtypes. Here, we discuss recent findings in Drosophila and rodent models establishing a role of glia in circadian or sleep regulation of synaptic plasticity, brain metabolism, removal of cellular debris, and immune challenges. These findings underscore the relevance of glia for benefits attributed to sleep and have implications for understanding the neurobiological mechanisms underlying sleep and associated disorders.
Collapse
Affiliation(s)
- Catarina Carvalhas-Almeida
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Amita Sehgal
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Koch R, Nagoshi E. Examining the potential involvement of NONO in TDP-43 proteinopathy in Drosophila. Eur J Neurosci 2025; 61:e16632. [PMID: 39690447 DOI: 10.1111/ejn.16632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 10/18/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024]
Abstract
The misfolding and aggregation of TAR DNA binding protein-43 (TDP-43), leading to the formation of cytoplasmic inclusions, emerge as a key pathological feature in a spectrum of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD). TDP-43 shuttles between the nucleus and cytoplasm but forms nuclear bodies (NBs) in response to stress. These NBs partially colocalise with nuclear speckles and paraspeckles that sequester RNAs and proteins, thereby regulating many cellular functions. The laboratory of Steven Brown has recently found that the non-POU domain-containing octamer-binding protein (NONO), a component of paraspeckles, forms novel nuclear speckle-like structures in mouse cortical neurons in response to stress and sleep deprivation. These findings suggest the possibility of a functional link between NONO and TDP-43, potentially contributing to TDP-43 proteinopathy. Here, we demonstrate that pathological phenotypes caused by TDP-43 gain of function-locomotor defects and life span shortening-are exacerbated by silencing the Drosophila homolog of NONO, no on or off transient A (NonA). Additionally, NonA silencing results in an increase in nuclear TDP-43 NBs. These results provide supporting evidence for the functional link between NONO and TDP-43 and lay the foundation for dissecting underlying mechanisms.
Collapse
Affiliation(s)
- Rafael Koch
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Jeong S. Function and regulation of nitric oxide signaling in Drosophila. Mol Cells 2024; 47:100006. [PMID: 38218653 PMCID: PMC10880079 DOI: 10.1016/j.mocell.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/15/2024] Open
Abstract
Nitric oxide (NO) serves as an evolutionarily conserved signaling molecule that plays an important role in a wide variety of cellular processes. Extensive studies in Drosophila melanogaster have revealed that NO signaling is required for development, physiology, and stress responses in many different types of cells. In neuronal cells, multiple NO signaling pathways appear to operate in different combinations to regulate learning and memory formation, synaptic transmission, selective synaptic connections, axon degeneration, and axon regrowth. During organ development, elevated NO signaling suppresses cell cycle progression, whereas downregulated NO leads to an increase in larval body size via modulation of hormone signaling. The most striking feature of the Drosophila NO synthase is that various stressors, such as neuropeptides, aberrant proteins, hypoxia, bacterial infection, and mechanical injury, can activate Drosophila NO synthase, initially regulating cellular physiology to enable cells to survive. However, under severe stress or pathophysiological conditions, high levels of NO promote regulated cell death and the development of neurodegenerative diseases. In this review, I highlight and discuss the current understanding of molecular mechanisms by which NO signaling regulates distinct cellular functions and behaviors.
Collapse
Affiliation(s)
- Sangyun Jeong
- Department of Molecular Biology, Department of Bioactive Material Sciences, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea.
| |
Collapse
|
4
|
Prelic S, Getahun MN, Kaltofen S, Hansson BS, Wicher D. Modulation of the NO-cGMP pathway has no effect on olfactory responses in the Drosophila antenna. Front Cell Neurosci 2023; 17:1180798. [PMID: 37305438 PMCID: PMC10248080 DOI: 10.3389/fncel.2023.1180798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Olfaction is a crucial sensory modality in insects and is underpinned by odor-sensitive sensory neurons expressing odorant receptors that function in the dendrites as odorant-gated ion channels. Along with expression, trafficking, and receptor complexing, the regulation of odorant receptor function is paramount to ensure the extraordinary sensory abilities of insects. However, the full extent of regulation of sensory neuron activity remains to be elucidated. For instance, our understanding of the intracellular effectors that mediate signaling pathways within antennal cells is incomplete within the context of olfaction in vivo. Here, with the use of optical and electrophysiological techniques in live antennal tissue, we investigate whether nitric oxide signaling occurs in the sensory periphery of Drosophila. To answer this, we first query antennal transcriptomic datasets to demonstrate the presence of nitric oxide signaling machinery in antennal tissue. Next, by applying various modulators of the NO-cGMP pathway in open antennal preparations, we show that olfactory responses are unaffected by a wide panel of NO-cGMP pathway inhibitors and activators over short and long timescales. We further examine the action of cAMP and cGMP, cyclic nucleotides previously linked to olfactory processes as intracellular potentiators of receptor functioning, and find that both long-term and short-term applications or microinjections of cGMP have no effect on olfactory responses in vivo as measured by calcium imaging and single sensillum recording. The absence of the effect of cGMP is shown in contrast to cAMP, which elicits increased responses when perfused shortly before olfactory responses in OSNs. Taken together, the apparent absence of nitric oxide signaling in olfactory neurons indicates that this gaseous messenger may play no role as a regulator of olfactory transduction in insects, though may play other physiological roles at the sensory periphery of the antenna.
Collapse
Affiliation(s)
- Sinisa Prelic
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Merid N. Getahun
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Sabine Kaltofen
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Dieter Wicher
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
5
|
Sheng L, Shields EJ, Gospocic J, Sorida M, Ju L, Byrns CN, Carranza F, Berger SL, Bonini N, Bonasio R. Ensheathing glia promote increased lifespan and healthy brain aging. Aging Cell 2023; 22:e13803. [PMID: 36840361 PMCID: PMC10186613 DOI: 10.1111/acel.13803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
Glia have an emergent role in brain aging and disease. In the Drosophila melanogaster brain, ensheathing glia function as phagocytic cells and respond to acute neuronal damage, analogous to mammalian microglia. We previously reported changes in glia composition over the life of ants and fruit flies, including a decline in the relative proportion of ensheathing glia with time. How these changes influence brain health and life expectancy is unknown. Here, we show that ensheathing glia but not astrocytes decrease in number during Drosophila melanogaster brain aging. The remaining ensheathing glia display dysregulated expression of genes involved in lipid metabolism and apoptosis, which may lead to lipid droplet accumulation, cellular dysfunction, and death. Inhibition of apoptosis rescued the decline of ensheathing glia with age, improved the neuromotor performance of aged flies, and extended lifespan. Furthermore, an expanded ensheathing glia population prevented amyloid-beta accumulation in a fly model of Alzheimer's disease and delayed the premature death of the diseased animals. These findings suggest that ensheathing glia play a vital role in regulating brain health and animal longevity.
Collapse
Affiliation(s)
- Lihong Sheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain Science, Fudan UniversityShanghaiChina
- Epigenetics InstituteUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Department of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Emily J. Shields
- Epigenetics InstituteUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Department of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Department of Urology and Institute of NeuropathologyMedical Center–University of FreiburgFreiburgGermany
| | - Janko Gospocic
- Epigenetics InstituteUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Department of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Department of Urology and Institute of NeuropathologyMedical Center–University of FreiburgFreiburgGermany
| | - Masato Sorida
- Epigenetics InstituteUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Department of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Linyang Ju
- Epigenetics InstituteUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Department of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - China N. Byrns
- Medical Scientist Training ProgramUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Neuroscience Graduate GroupUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Faith Carranza
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Shelley L. Berger
- Epigenetics InstituteUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Department of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of GeneticsUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Nancy Bonini
- Neuroscience Graduate GroupUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Roberto Bonasio
- Epigenetics InstituteUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Department of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Department of Urology and Institute of NeuropathologyMedical Center–University of FreiburgFreiburgGermany
| |
Collapse
|
6
|
Bergmann S, Bohn MC, Dornbusch S, Becker SC, Stern M. Influence of RVFV Infection on Olfactory Perception and Behavior in Drosophila melanogaster. Pathogens 2023; 12:pathogens12040558. [PMID: 37111444 PMCID: PMC10142484 DOI: 10.3390/pathogens12040558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
In blood-feeding dipterans, olfaction plays a role in finding hosts and, hence, in spreading pathogens. Several pathogens are known to alter olfactory responses and behavior in vectors. As a mosquito-borne pathogen, Rift Valley Fever Virus (RVFV) can affect humans and cause great losses in livestock. We test the influence of RVFV infection on sensory perception, olfactory choice behavior and activity on a non-biting insect, Drosophila melanogaster, using electroantennograms (EAG), Y-maze, and locomotor activity monitor. Flies were injected with RVFV MP12 strain. Replication of RVFV and its persistence for at least seven days was confirmed by quantitative reverse transcription-PCR (RT-qPCR). One day post injection, infected flies showed weaker EAG responses towards 1-hexanol, vinegar, and ethyl acetate. In the Y-maze, infected flies showed a significantly lower response for 1-hexanol compared to uninfected flies. At days six or seven post infection, no significant difference between infected and control flies could be found in EAG or Y-maze anymore. Activity of infected flies was reduced at both time points. We found an upregulation of the immune-response gene, nitric oxide synthase, in infected flies. An infection with RVFV is able to transiently reduce olfactory perception and attraction towards food-related odors in Drosophila, while effects on activity and immune effector gene expression persist. A similar effect in blood-feeding insects could affect vector competence in RVFV transmitting dipterans.
Collapse
Affiliation(s)
- Stella Bergmann
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Maja C. Bohn
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Susann Dornbusch
- Institute for Parasitology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Stefanie C. Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Michael Stern
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| |
Collapse
|
7
|
Carvalhas-Almeida C, Serra J, Moita J, Cavadas C, Álvaro AR. Understanding neuron-glia crosstalk and biological clocks in insomnia. Neurosci Biobehav Rev 2023; 147:105100. [PMID: 36804265 DOI: 10.1016/j.neubiorev.2023.105100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
According to the World Health Organization, about one-third of the population experiences insomnia symptoms, and about 10-15% suffer from chronic insomnia, the most common sleep disorder. Sleeping difficulties associated with insomnia are often linked to chronic sleep deprivation, which has a negative health impact partly due to disruption in the internal synchronisation of biological clocks. These are regulated by clock genes and modulate most biological processes. Most studies addressing circadian rhythm regulation have focused on the role of neurons, yet glial cells also impact circadian rhythms and sleep regulation. Chronic insomnia and sleep loss have been associated with glial cell activation, exacerbated neuroinflammation, oxidative stress, altered neuronal metabolism and synaptic plasticity, accelerated age-related processes and decreased lifespan. It is, therefore, essential to highlight the importance of glia-neuron interplay on sleep/circadian regulation and overall healthy brain function. Hence, in this review, we aim to address the main neurobiological mechanisms involved in neuron-glia crosstalk, with an emphasis on microglia and astrocytes, in both healthy sleep, chronic sleep deprivation and chronic insomnia.
Collapse
Affiliation(s)
- Catarina Carvalhas-Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - Joana Serra
- Sleep Medicine Unit, Coimbra Hospital and University Center (CHUC), Coimbra, Portugal
| | - Joaquim Moita
- Sleep Medicine Unit, Coimbra Hospital and University Center (CHUC), Coimbra, Portugal
| | - Cláudia Cavadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Ana Rita Álvaro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
8
|
Davis J, Kolaski E, Babcock DT. Vexed mutations promote degeneration of dopaminergic neurons through excessive activation of the innate immune response. NPJ Parkinsons Dis 2022; 8:147. [PMID: 36323700 PMCID: PMC9630459 DOI: 10.1038/s41531-022-00417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022] Open
Abstract
The hallmark of Parkinson's disease (PD) is the loss of dopaminergic (DA) neurons in the brain. However, little is known about why DA neurons are selectively vulnerable to PD. We previously completed a screen identifying genes associated with the progressive degeneration of DA neurons. Here we describe the role of a previously uncharacterized gene, CG42339, in the loss of DA neurons using Drosophila Melanogaster. CG42339 mutants display a progressive loss of DA neurons and locomotor dysfunction, along with an accumulation of advanced glycation end products (AGEs) in the brain. Based on this phenotype, we refer to CG42339 as vexed. We demonstrate that vexed is specifically required within cortex glia to maintain neuronal viability. Loss of vexed function results in excessive activation of the innate immune response in the brain, leading to loss of DA neurons. We show that activation of the innate immune response leads to increased nitric oxide signaling and accumulation of AGEs, which ultimately result in neurodegeneration. These results provide further insight into the relationship between the role of the immune response in the central nervous system and how this impacts neuronal viability.
Collapse
Affiliation(s)
- Jacinta Davis
- grid.259029.50000 0004 1936 746XDepartment of Biological Sciences, Lehigh University, Bethlehem, PA USA
| | - Elizabeth Kolaski
- grid.259029.50000 0004 1936 746XDepartment of Biological Sciences, Lehigh University, Bethlehem, PA USA
| | - Daniel T. Babcock
- grid.259029.50000 0004 1936 746XDepartment of Biological Sciences, Lehigh University, Bethlehem, PA USA
| |
Collapse
|
9
|
Vaughen JP, Theisen E, Rivas-Serna IM, Berger AB, Kalakuntla P, Anreiter I, Mazurak VC, Rodriguez TP, Mast JD, Hartl T, Perlstein EO, Reimer RJ, Clandinin MT, Clandinin TR. Glial control of sphingolipid levels sculpts diurnal remodeling in a circadian circuit. Neuron 2022; 110:3186-3205.e7. [PMID: 35961319 PMCID: PMC10868424 DOI: 10.1016/j.neuron.2022.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/21/2022] [Accepted: 07/14/2022] [Indexed: 11/19/2022]
Abstract
Structural plasticity in the brain often necessitates dramatic remodeling of neuronal processes, with attendant reorganization of the cytoskeleton and membranes. Although cytoskeletal restructuring has been studied extensively, how lipids might orchestrate structural plasticity remains unclear. We show that specific glial cells in Drosophila produce glucocerebrosidase (GBA) to locally catabolize sphingolipids. Sphingolipid accumulation drives lysosomal dysfunction, causing gba1b mutants to harbor protein aggregates that cycle across circadian time and are regulated by neural activity, the circadian clock, and sleep. Although the vast majority of membrane lipids are stable across the day, a specific subset that is highly enriched in sphingolipids cycles daily in a gba1b-dependent fashion. Remarkably, both sphingolipid biosynthesis and degradation are required for the diurnal remodeling of circadian clock neurites, which grow and shrink across the day. Thus, dynamic sphingolipid regulation by glia enables diurnal circuit remodeling and proper circadian behavior.
Collapse
Affiliation(s)
- John P Vaughen
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Emma Theisen
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Irma Magaly Rivas-Serna
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Andrew B Berger
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Prateek Kalakuntla
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Ina Anreiter
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Vera C Mazurak
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | | | - Joshua D Mast
- Perlara PBC, 2625 Alcatraz Ave #435, Berkeley, CA 94705, USA
| | - Tom Hartl
- Perlara PBC, 2625 Alcatraz Ave #435, Berkeley, CA 94705, USA
| | | | - Richard J Reimer
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - M Thomas Clandinin
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Tonoki A, Nagai S, Yu Z, Yue T, Lyu S, Hou X, Onuki K, Yabana K, Takahashi H, Itoh M. Nitric oxide-soluble guanylyl cyclase pathway as a contributor to age-related memory impairment in Drosophila. Aging Cell 2022; 21:e13691. [PMID: 35963012 PMCID: PMC9470885 DOI: 10.1111/acel.13691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/27/2022] [Indexed: 01/25/2023] Open
Abstract
Age-related changes in the transcriptome lead to memory impairment. Several genes have been identified to cause age-dependent memory impairment (AMI) by changes in their expression, but genetic screens to identify genes critical for AMI have not been performed. The fruit fly is a useful model for studying AMI due to its short lifespan and the availability of consistent techniques and environments to assess its memory ability. We generated a list of candidate genes that act as AMI regulators by performing a comprehensive analysis of RNAsequencing data from young and aged fly heads and genome-wide RNAi screening data to identify memory-regulating genes. A candidate screen using temporal and panneuronal RNAi expression was performed to identify genes critical for AMI. We identified the guanylyl cyclase β-subunit at 100B (gycβ) gene, which encodes a subunit of soluble guanylyl cyclase (sGC), the only intracellular nitric oxide (NO) receptor in fruit flies, as a negative regulator of AMI. RNAi knockdown of gycβ in neurons and NO synthase (NOS) in glia or neurons enhanced the performance of intermediate-term memory (ITM) without apparent effects on memory acquisition. We also showed that pharmacological inhibition of sGC and NOS enhanced ITM in aged individuals, suggesting the possibility that age-related enhancement of the NO-sGC pathway causes memory impairment.
Collapse
Affiliation(s)
- Ayako Tonoki
- Department of Biochemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Saki Nagai
- Department of Biochemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Zhihua Yu
- Department of Biochemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Tong Yue
- Department of Biochemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Sizhe Lyu
- Department of Biochemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Xue Hou
- Department of Biochemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Kotomi Onuki
- Department of Biochemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Kaho Yabana
- Department of Biochemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | | | - Motoyuki Itoh
- Department of Biochemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| |
Collapse
|
11
|
Chen X, Li J, Gao Z, Yang Y, Kuang W, Dong Y, Chua GH, Huang X, Jiang B, Tian H, Wang Y, Huang X, Li Y, Lam SM, Shui G. Endogenous ceramide phosphoethanolamine modulates circadian rhythm via neural-glial coupling in Drosophila. Natl Sci Rev 2022; 9:nwac148. [PMID: 36713590 PMCID: PMC9875363 DOI: 10.1093/nsr/nwac148] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 06/08/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
While endogenous lipids are known to exhibit rhythmic oscillations, less is known about how specific lipids modulate circadian behavior. Through a series of loss-of-function and gain-of-function experiments on ceramide phosphoethanolamine (CPE) synthase of Drosophila, we demonstrated that pan-glial-specific deficiency in membrane CPE, the structural analog of mammalian sphingomyelin (SM), leads to arrhythmic locomotor behavior and shortens lifespan, while the reverse is true for increasing CPE. Comparative proteomics uncovered dysregulated synaptic glutamate utilization and transport in CPE-deficient flies. An extensive genetic screen was conducted to verify the role of differentially expressed proteins in circadian regulation. Arrhythmic locomotion under cpes1 mutant background was rescued only by restoring endogenous CPE or SM through expressing their respective synthases. Our results underscore the essential role of CPE in maintaining synaptic glutamate homeostasis and modulating circadian behavior in Drosophila. The findings suggest that region-specific elevations of functional membrane lipids can benefit circadian regulation.
Collapse
Affiliation(s)
| | | | - Zhongbao Gao
- University of Chinese Academy of Sciences, Beijing 100049, China,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Yang
- University of Chinese Academy of Sciences, Beijing 100049, China,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenqing Kuang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Dong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gek Huey Chua
- LipidALL Technologies Company Limited, Changzhou213022, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Binhua Jiang
- LipidALL Technologies Company Limited, Changzhou213022, China
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Li
- University of Chinese Academy of Sciences, Beijing 100049, China,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
12
|
Macedo GE, Vieira PDB, Rodrigues NR, Gomes KK, Rodrigues JF, Franco JL, Posser T. Effect of fungal indoor air pollutant 1-octen-3-ol on levels of reactive oxygen species and nitric oxide as well as dehydrogenases activities in drosophila melanogaster males. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:573-585. [PMID: 35354383 DOI: 10.1080/15287394.2022.2054887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fungal pollution of indoor environments contributes to several allergic symptoms and represents a public health problem. It is well-established that 1-octen-3-ol, also known as mushroom alcohol, is a fungal volatile organic compound (VOC) commonly found in damp indoor spaces and responsible for the typical musty odor. Previously it was reported that exposure to 1-octen-3-ol induced inflammations and disrupted mitochondrial morphology and bioenergetic rate in Drosophila melanogaster. The aim of this study was to examine the influence of 1-octen-3-ol on dehydrogenase activity, apoptotic biomarkers, levels of nitric oxide (NO) and reactive oxygen species (ROS), as well as antioxidant enzymes activities. D. melanogaster flies were exposed to an atmosphere containing 1-octen-3-ol (2.5 or ∞l/L) for 24 hr. Data demonstrated that 1-octen-3-ol decreased dehydrogenases activity and NO levels but increased ROS levels accompanied by stimulation of glutathione-S-transferase (GST) and superoxide dismutase (SOD) activities without altering caspase 3/7 activation. These findings indicate that adverse mitochondrial activity effects following exposure of D. melanogaster to 1-octen-3-ol, a fungal VOC, may be attributed to oxidant stress. The underlying mechanisms involved in adverse consequences of indoor fungal exposure appear to be related to necrotic but not apoptotic mechanisms. The adverse consequences were sex-dependent with males displaying higher sensitivity to 1-octen-3-ol. Based upon on the fact that the fly genome shares nearly 75% of disease-related genes to human exposure to this fungus may explain the adverse human responses to mold especially for males.
Collapse
Affiliation(s)
- Giulianna Echeverria Macedo
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Brazil
| | - Patrícia de Brum Vieira
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Brazil
| | - Nathane Rosa Rodrigues
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Brazil
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Karen Kich Gomes
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Brazil
| | - Jéssica Ferreira Rodrigues
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Brazil
| | - Jeferson Luis Franco
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Brazil
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Thaís Posser
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Brazil
| |
Collapse
|
13
|
Arkov AL. Looking at the Pretty "Phase" of Membraneless Organelles: A View From Drosophila Glia. Front Cell Dev Biol 2022; 10:801953. [PMID: 35198559 PMCID: PMC8859445 DOI: 10.3389/fcell.2022.801953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Membraneless granules assemble in different cell types and cellular loci and are the focus of intense research due to their fundamental importance for cellular organization. These dynamic organelles are commonly assembled from RNA and protein components and exhibit soft matter characteristics of molecular condensates currently characterized with biophysical approaches and super-resolution microscopy imaging. In addition, research on the molecular mechanisms of the RNA-protein granules assembly provided insights into the formation of abnormal granules and molecular aggregates, which takes place during many neurodegenerative disorders including Parkinson's diseases (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). While these disorders are associated with formation of abnormal granules, membraneless organelles are normally assembled in neurons and contribute to translational control and affect stability of neuronal RNAs. More recently, a new subtype of membraneless granules was identified in Drosophila glia (glial granules). Interestingly, glial granules were found to contain proteins which are the principal components of the membraneless granules in germ cells (germ granules), indicating some similarity in the functional assembly of these structures in glia and germline. This mini review highlights recent research on glial granules in the context of other membraneless organelles, including their assembly mechanisms and potential functions in the nervous system.
Collapse
Affiliation(s)
- Alexey L. Arkov
- Department of Biological Sciences, Murray State University, Murray, KY, United States
| |
Collapse
|
14
|
Yildirim E, Curtis R, Hwangbo DS. Roles of peripheral clocks: lessons from the fly. FEBS Lett 2022; 596:263-293. [PMID: 34862983 PMCID: PMC8844272 DOI: 10.1002/1873-3468.14251] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 02/03/2023]
Abstract
To adapt to and anticipate rhythmic changes in the environment such as daily light-dark and temperature cycles, internal timekeeping mechanisms called biological clocks evolved in a diverse set of organisms, from unicellular bacteria to humans. These biological clocks play critical roles in organisms' fitness and survival by temporally aligning physiological and behavioral processes to the external cues. The central clock is located in a small subset of neurons in the brain and drives daily activity rhythms, whereas most peripheral tissues harbor their own clock systems, which generate metabolic and physiological rhythms. Since the discovery of Drosophila melanogaster clock mutants in the early 1970s, the fruit fly has become an extensively studied model organism to investigate the mechanism and functions of circadian clocks. In this review, we primarily focus on D. melanogaster to survey key discoveries and progresses made over the past two decades in our understanding of peripheral clocks. We discuss physiological roles and molecular mechanisms of peripheral clocks in several different peripheral tissues of the fly.
Collapse
Affiliation(s)
| | - Rachel Curtis
- Department of Biology, University of Louisville, Louisville, KY, USA
| | - Dae-Sung Hwangbo
- Department of Biology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
15
|
Multi-Modal Regulation of Circadian Physiology by Interactive Features of Biological Clocks. BIOLOGY 2021; 11:biology11010021. [PMID: 35053019 PMCID: PMC8772734 DOI: 10.3390/biology11010021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022]
Abstract
The circadian clock is a fundamental biological timing mechanism that generates nearly 24 h rhythms of physiology and behaviors, including sleep/wake cycles, hormone secretion, and metabolism. Evolutionarily, the endogenous clock is thought to confer living organisms, including humans, with survival benefits by adapting internal rhythms to the day and night cycles of the local environment. Mirroring the evolutionary fitness bestowed by the circadian clock, daily mismatches between the internal body clock and environmental cycles, such as irregular work (e.g., night shift work) and life schedules (e.g., jet lag, mistimed eating), have been recognized to increase the risk of cardiac, metabolic, and neurological diseases. Moreover, increasing numbers of studies with cellular and animal models have detected the presence of functional circadian oscillators at multiple levels, ranging from individual neurons and fibroblasts to brain and peripheral organs. These oscillators are tightly coupled to timely modulate cellular and bodily responses to physiological and metabolic cues. In this review, we will discuss the roles of central and peripheral clocks in physiology and diseases, highlighting the dynamic regulatory interactions between circadian timing systems and multiple metabolic factors.
Collapse
|
16
|
Buhlman LM, Krishna G, Jones TB, Thomas TC. Drosophila as a model to explore secondary injury cascades after traumatic brain injury. Biomed Pharmacother 2021; 142:112079. [PMID: 34463269 PMCID: PMC8458259 DOI: 10.1016/j.biopha.2021.112079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022] Open
Abstract
Drosophilae are emerging as a valuable model to study traumatic brain injury (TBI)-induced secondary injury cascades that drive persisting neuroinflammation and neurodegenerative pathology that imposes significant risk for long-term neurological deficits. As in mammals, TBI in Drosophila triggers axonal injury, metabolic crisis, oxidative stress, and a robust innate immune response. Subsequent neurodegeneration stresses quality control systems and perpetuates an environment for neuroprotection, regeneration, and delayed cell death via highly conserved cell signaling pathways. Fly injury models continue to be developed and validated for both whole-body and head-specific injury to isolate, evaluate, and modulate these parallel pathways. In conjunction with powerful genetic tools, the ability for longitudinal evaluation, and associated neurological deficits that can be tested with established behavioral tasks, Drosophilae are an attractive model to explore secondary injury cascades and therapeutic intervention after TBI. Here, we review similarities and differences between mammalian and fly pathophysiology and highlight strategies for their use in translational neurotrauma research.
Collapse
Affiliation(s)
- Lori M Buhlman
- Biomedical Sciences Program, Midwestern University, Glendale, AZ, USA.
| | - Gokul Krishna
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA; Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - T Bucky Jones
- Department of Anatomy, Midwestern University, Glendale, AZ, USA
| | - Theresa Currier Thomas
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA; Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA; Phoenix VA Health Care System, Phoenix, AZ, USA.
| |
Collapse
|