1
|
Plante KS, Plante JA, Azar SR, Shinde DP, Scharton D, Versiani AF, Oliveira da Silva NI, Strange T, Sacchetto L, Fokam EB, Rossi SL, Weaver SC, Marques RE, Nogueira ML, Vasilakis N. Potential of Ilhéus virus to emerge. Heliyon 2024; 10:e27934. [PMID: 38545168 PMCID: PMC10965525 DOI: 10.1016/j.heliyon.2024.e27934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024] Open
Abstract
Ilhéus virus (ILHV)(Flaviviridae:Orthoflavivirus) is an arthropod-borne virus (arbovirus) endemic to Central and South America and the Caribbean. First isolated in 1944, most of our knowledge derives from surveillance and seroprevalence studies. These efforts have detected ILHV in a broad range of mosquito and vertebrate species, including humans, but laboratory investigations of pathogenesis and vector competence have been lacking. Here, we develop an immune intact murine model with several ages and routes of administration. Our model closely recapitulates human neuroinvasive disease with ILHV strain- and mouse age-specific virulence, as well as a uniformly lethal Ifnar-/- A129 immunocompromised model. Replication kinetics in several vertebrate and invertebrate cell lines demonstrate that ILHV is capable of replicating to high titers in a wide variety of potential host and vector species. Lastly, vector competence studies provide strong evidence for efficient infection of and potential transmission by Aedes species mosquitoes, despite ILHV's phylogenetically clustering with Culex vectored flaviviruses, suggesting ILHV is poised for emergence in the neotropics.
Collapse
Affiliation(s)
- Kenneth S. Plante
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jessica A. Plante
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sasha R. Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Divya P. Shinde
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Dionna Scharton
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Alice F. Versiani
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | | | - Taylor Strange
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Lívia Sacchetto
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, 15090-000, SP, Brazil
| | - Eric B. Fokam
- Laboratory for Biodiversity and Conservation Biology, Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea, Cameroon
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Scott C. Weaver
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Rafael E. Marques
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, 13083-100, SP, Brazil
| | - Mauricio L. Nogueira
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, 15090-000, SP, Brazil
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, 13083-100, SP, Brazil
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
2
|
Dabo S, Henrion-Lacritick A, Lecuyer A, Jiolle D, Paupy C, Ayala D, da Veiga Leal S, Badolo A, Vega-Rúa A, Sylla M, Akorli J, Otoo S, Lutomiah J, Sang R, Mutebi JP, Saleh MC, Rose NH, McBride CS, Lambrechts L. Extensive variation and strain-specificity in dengue virus susceptibility among African Aedes aegypti populations. PLoS Negl Trop Dis 2024; 18:e0011862. [PMID: 38527081 PMCID: PMC10994562 DOI: 10.1371/journal.pntd.0011862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/04/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
African populations of the mosquito Aedes aegypti are usually considered less susceptible to infection by human-pathogenic flaviviruses than globally invasive populations found outside Africa. Although this contrast has been well documented for Zika virus (ZIKV), it is unclear to what extent it is true for dengue virus (DENV), the most prevalent flavivirus of humans. Addressing this question is complicated by substantial genetic diversity among DENV strains, most notably in the form of four genetic types (DENV1 to DENV4), that can lead to genetically specific interactions with mosquito populations. Here, we carried out a survey of DENV susceptibility using a panel of seven field-derived Ae. aegypti colonies from across the African range of the species and a colony from Guadeloupe, French West Indies as non-African reference. We found considerable variation in the ability of African Ae. aegypti populations to acquire and replicate a panel of six DENV strains spanning the four DENV types. Although African Ae. aegypti populations were generally less susceptible than the reference non-African population from Guadeloupe, in several instances some African populations were equally or more susceptible than the Guadeloupe population. Moreover, the relative level of susceptibility between African mosquito populations depended on the DENV strain, indicating genetically specific interactions. We conclude that unlike ZIKV susceptibility, there is no clear-cut dichotomy in DENV susceptibility between African and non-African Ae. aegypti. DENV susceptibility of African Ae. aegypti populations is highly heterogeneous and largely governed by the specific pairing of mosquito population and DENV strain.
Collapse
Affiliation(s)
- Stéphanie Dabo
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | | | - Alicia Lecuyer
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Davy Jiolle
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Christophe Paupy
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Diego Ayala
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Silvânia da Veiga Leal
- Laboratório de Entomologia Médica, Instituto Nacional de Saúde Pública, Praia, Cabo Verde
| | - Athanase Badolo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Anubis Vega-Rúa
- Institut Pasteur of Guadeloupe, Laboratory of Vector Control Research, Transmission Reservoir and Pathogens Diversity Unit, Morne Jolivière, Guadeloupe, France
| | - Massamba Sylla
- Department of Livestock Sciences and Techniques, University Sine Saloum El Hadji Ibrahima NIASS, Kaffrine, Senegal
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sampson Otoo
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joel Lutomiah
- Arbovirus/Viral Hemorrhagic Fevers Laboratory, Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Rosemary Sang
- Arbovirus/Viral Hemorrhagic Fevers Laboratory, Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - John-Paul Mutebi
- Department of Solid Waste Management, Mosquito Control Division, Miami, Florida, United States of America
| | - Maria-Carla Saleh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, Paris, France
| | - Noah H. Rose
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Carolyn S. McBride
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Louis Lambrechts
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| |
Collapse
|
3
|
Poungou N, Sevidzem SL, Koumba AA, Koumba CRZ, Mbehang P, Onanga R, Zahouli JZB, Maganga GD, Djogbénou LS, Borrmann S, Adegnika AA, Becker SC, Mavoungou JF, Nguéma RM. Mosquito-Borne Arboviruses Occurrence and Distribution in the Last Three Decades in Central Africa: A Systematic Literature Review. Microorganisms 2023; 12:4. [PMID: 38276174 PMCID: PMC10819313 DOI: 10.3390/microorganisms12010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 01/27/2024] Open
Abstract
Arboviruses represent a real public health problem globally and in the Central African subregion in particular, which represents a high-risk zone for the emergence and re-emergence of arbovirus outbreaks. Furthermore, an updated review on the current arbovirus burden and associated mosquito vectors is lacking for this region. To contribute to filling this knowledge gap, the current study was designed with the following objectives: (i) to systematically review data on the occurrence and distribution of arboviruses and mosquito fauna; and (ii) to identify potential spillover mosquito species in the Central African region in the last 30 years. A web search enabled the documentation of 2454 articles from different online databases. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) and the quality of reporting of meta-analyses (QUORUM) steps for a systematic review enabled the selection of 164 articles that fulfilled our selection criteria. Of the six arboviruses (dengue virus (DENV), chikungunya virus (CHIKV), yellow fever virus (YFV), Zika virus (ZIKV), Rift Valley fever virus (RVFV), and West Nile virus (WNV)) of public health concern studied, the most frequently reported were chikungunya and dengue. The entomological records showed >248 species of mosquitoes regrouped under 15 genera, with Anopheles (n = 100 species), Culex (n = 56 species), and Aedes (n = 52 species) having high species diversity. Three genera were rarely represented, with only one species included, namely, Orthopodomyia, Lutzia, and Verrallina, but individuals of the genera Toxorhinchites and Finlayas were not identified at the species level. We found that two Aedes species (Ae. aegypti and Ae. albopictus) colonised the same microhabitat and were involved in major epidemics of the six medically important arboviruses, and other less-frequently identified mosquito genera consisted of competent species and were associated with outbreaks of medical and zoonotic arboviruses. The present study reveals a high species richness of competent mosquito vectors that could lead to the spillover of medically important arboviruses in the region. Although epidemiological studies were found, they were not regularly documented, and this also applies to vector competence and transmission studies. Future studies will consider unpublished information in dissertations and technical reports from different countries to allow their information to be more consistent. A regional project, entitled "Ecology of Arboviruses" (EcoVir), is underway in three countries (Gabon, Benin, and Cote d'Ivoire) to generate a more comprehensive epidemiological and entomological data on this topic.
Collapse
Affiliation(s)
- Natacha Poungou
- Ecole Doctorale Regionale en Infectiologie Tropical de Franceville (EDR), University of Science and Technique of Masuku (USTM), Franceville P.O. Box 943, Gabon;
- Laboratoire d’Ecologie des Maladies Transmissibles (LEMAT), Université Libreville Nord (ULN), Libreville P.O. Box 1177, Gabon
| | - Silas Lendzele Sevidzem
- Laboratoire d’Ecologie des Maladies Transmissibles (LEMAT), Université Libreville Nord (ULN), Libreville P.O. Box 1177, Gabon
| | - Aubin Armel Koumba
- Département de Biologie et Ecologie Animale, Institut de Recherche en Ecologie Tropicale (IRET-CENAREST), Libreville P.O. Box 13354, Gabon
| | - Christophe Roland Zinga Koumba
- Département de Biologie et Ecologie Animale, Institut de Recherche en Ecologie Tropicale (IRET-CENAREST), Libreville P.O. Box 13354, Gabon
| | - Phillipe Mbehang
- Département de Biologie et Ecologie Animale, Institut de Recherche en Ecologie Tropicale (IRET-CENAREST), Libreville P.O. Box 13354, Gabon
| | - Richard Onanga
- Center of Interdisciplinary Medical Analysis of Franceville (CIRMF), Franceville P.O. Box 769, Gabon
| | - Julien Zahouli Bi Zahouli
- Centre d’Entomologie Médicale et Vétérinaire, Université Alassane Ouattara, Bouaké 01 BPV 18, Côte d’Ivoire
| | - Gael Darren Maganga
- Center of Interdisciplinary Medical Analysis of Franceville (CIRMF), Franceville P.O. Box 769, Gabon
| | - Luc Salako Djogbénou
- Université d’Abomey-Calavi, Institut Régional de Santé Publique, Ouidah P.O. Box 384, Benin
| | - Steffen Borrmann
- Institute for Tropical Medicine (ITM), University of Tübingen, 72074 Tübingen, Germany
| | - Ayola Akim Adegnika
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné P.O. Box 242, Gabon
| | - Stefanie C. Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Jacques François Mavoungou
- Département de Biologie et Ecologie Animale, Institut de Recherche en Ecologie Tropicale (IRET-CENAREST), Libreville P.O. Box 13354, Gabon
| | - Rodrigue Mintsa Nguéma
- Laboratoire d’Ecologie des Maladies Transmissibles (LEMAT), Université Libreville Nord (ULN), Libreville P.O. Box 1177, Gabon
- Département de Biologie et Ecologie Animale, Institut de Recherche en Ecologie Tropicale (IRET-CENAREST), Libreville P.O. Box 13354, Gabon
| |
Collapse
|
4
|
Dabo S, Henrion-Lacritick A, Lecuyer A, Jiolle D, Paupy C, Ayala D, da Veiga Leal S, Badolo A, Vega-Rúa A, Sylla M, Akorli J, Otoo S, Lutomiah J, Sang R, Mutebi JP, Saleh MC, Rose NH, McBride CS, Lambrechts L. Extensive variation and strain-specificity in dengue virus susceptibility among African Aedes aegypti populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571617. [PMID: 38168387 PMCID: PMC10760182 DOI: 10.1101/2023.12.14.571617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
African populations of the mosquito Aedes aegypti are usually considered less susceptible to infection by human-pathogenic flaviviruses than globally invasive populations found outside Africa. Although this contrast has been well documented for Zika virus (ZIKV), it is unclear to what extent it is true for dengue virus (DENV), the most prevalent flavivirus of humans. Addressing this question is complicated by substantial genetic diversity among DENV strains, most notably in the form of four genetic types (DENV1 to DENV4), that can lead to genetically specific interactions with mosquito populations. Here, we carried out a continent-wide survey of DENV susceptibility using a panel of field-derived Ae. aegypti colonies from across the African range of the species and a colony from Guadeloupe, French West Indies as non-African reference. We found considerable variation in the ability of African Ae. aegypti populations to acquire and replicate a panel of six DENV strains spanning the four DENV types. Although African Ae. aegypti populations were generally less susceptible than the reference non-African population from Guadeloupe, in several instances some African populations were equally or more susceptible than the Guadeloupe population. Moreover, the relative level of susceptibility between African mosquito populations depended on the DENV strain, indicating genetically specific interactions. We conclude that unlike ZIKV susceptibility, there is no clear-cut dichotomy in DENV susceptibility between African and non-African Ae. aegypti. DENV susceptibility of African Ae. aegypti populations is highly heterogeneous and largely governed by the specific pairing of mosquito population and DENV strain.
Collapse
Affiliation(s)
- Stéphanie Dabo
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | | | - Alicia Lecuyer
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Davy Jiolle
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Christophe Paupy
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Diego Ayala
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Silvânia da Veiga Leal
- Laboratório de Entomologia Médica, Instituto Nacional de Saúde Pública, Praia, Cabo Verde
| | - Athanase Badolo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Anubis Vega-Rúa
- Institut Pasteur of Guadeloupe, Laboratory of Vector Control Research, Transmission Reservoir and Pathogens Diversity Unit, Morne Jolivière, Guadeloupe, France
| | - Massamba Sylla
- Department of Livestock Sciences and Techniques, University Sine Saloum El Hadji Ibrahima NIASS, Kaffrine, Senegal
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sampson Otoo
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joel Lutomiah
- Arbovirus/Viral Hemorrhagic Fevers Laboratory, Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Rosemary Sang
- Arbovirus/Viral Hemorrhagic Fevers Laboratory, Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - John-Paul Mutebi
- Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Maria-Carla Saleh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, Paris, France
| | - Noah H. Rose
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
- Current address: Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, California, United States of America
| | - Carolyn S. McBride
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Louis Lambrechts
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| |
Collapse
|
5
|
Lambrechts L, Reiner RC, Briesemeister MV, Barrera P, Long KC, Elson WH, Vizcarra A, Astete H, Bazan I, Siles C, Vilcarromero S, Leguia M, Kawiecki AB, Perkins TA, Lloyd AL, Waller LA, Kitron U, Jenkins SA, Hontz RD, Campbell WR, Carrington LB, Simmons CP, Ampuero JS, Vasquez G, Elder JP, Paz-Soldan VA, Vazquez-Prokopec GM, Rothman AL, Barker CM, Scott TW, Morrison AC. Direct mosquito feedings on dengue-2 virus-infected people reveal dynamics of human infectiousness. PLoS Negl Trop Dis 2023; 17:e0011593. [PMID: 37656759 PMCID: PMC10501553 DOI: 10.1371/journal.pntd.0011593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/14/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023] Open
Abstract
Dengue virus (DENV) transmission from humans to mosquitoes is a poorly documented, but critical component of DENV epidemiology. Magnitude of viremia is the primary determinant of successful human-to-mosquito DENV transmission. People with the same level of viremia, however, can vary in their infectiousness to mosquitoes as a function of other factors that remain to be elucidated. Here, we report on a field-based study in the city of Iquitos, Peru, where we conducted direct mosquito feedings on people naturally infected with DENV and that experienced mild illness. We also enrolled people naturally infected with Zika virus (ZIKV) after the introduction of ZIKV in Iquitos during the study period. Of the 54 study participants involved in direct mosquito feedings, 43 were infected with DENV-2, two with DENV-3, and nine with ZIKV. Our analysis excluded participants whose viremia was detectable at enrollment but undetectable at the time of mosquito feeding, which was the case for all participants with DENV-3 and ZIKV infections. We analyzed the probability of onward transmission during 50 feeding events involving 27 participants infected with DENV-2 based on the presence of infectious virus in mosquito saliva 7-16 days post blood meal. Transmission probability was positively associated with the level of viremia and duration of extrinsic incubation in the mosquito. In addition, transmission probability was influenced by the day of illness in a non-monotonic fashion; i.e., transmission probability increased until 2 days after symptom onset and decreased thereafter. We conclude that mildly ill DENV-infected humans with similar levels of viremia during the first two days after symptom onset will be most infectious to mosquitoes on the second day of their illness. Quantifying variation within and between people in their contribution to DENV transmission is essential to better understand the biological determinants of human infectiousness, parametrize epidemiological models, and improve disease surveillance and prevention strategies.
Collapse
Affiliation(s)
- Louis Lambrechts
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Robert C. Reiner
- University of Washington, Seattle, Washington, United States of America
| | - M. Veronica Briesemeister
- Department of Entomology and Nematology, University of California, Davis, California, United States of America
| | - Patricia Barrera
- Department of Entomology and Nematology, University of California, Davis, California, United States of America
- Genomics Laboratory, Pontificia Universidad Católica del Peru, Lima, Peru
| | - Kanya C. Long
- Department of Family Medicine and Public Health, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - William H. Elson
- Department of Entomology and Nematology, University of California, Davis, California, United States of America
| | - Alfonso Vizcarra
- Department of Entomology and Nematology, University of California, Davis, California, United States of America
| | - Helvio Astete
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
- Department of Entomology, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - Isabel Bazan
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - Crystyan Siles
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - Stalin Vilcarromero
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - Mariana Leguia
- Genomics Laboratory, Pontificia Universidad Católica del Peru, Lima, Peru
| | - Anna B. Kawiecki
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - T. Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Alun L. Lloyd
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Lance A. Waller
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Uriel Kitron
- Department of Environmental Sciences, Emory University, Atlanta, Georgia, United States of America
| | - Sarah A. Jenkins
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - Robert D. Hontz
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - Wesley R. Campbell
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
| | | | - Cameron P. Simmons
- Institute for Vector-Borne Disease, Monash University, Clayton, Victoria, Australia
| | - J. Sonia Ampuero
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - Gisella Vasquez
- Department of Entomology, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - John P. Elder
- School of Public Health, San Diego State University, San Diego, California, United States of America
| | - Valerie A. Paz-Soldan
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | | | - Alan L. Rothman
- Institute for Immunology and Informatics and Department of Cell and Molecular Biology, University of Rhode Island, Providence, Rhode Island, United States of America
| | - Christopher M. Barker
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Thomas W. Scott
- Department of Entomology and Nematology, University of California, Davis, California, United States of America
| | - Amy C. Morrison
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| |
Collapse
|
6
|
Merkling SH, Crist AB, Henrion-Lacritick A, Frangeul L, Couderc E, Gausson V, Blanc H, Bergman A, Baidaliuk A, Romoli O, Saleh MC, Lambrechts L. Multifaceted contributions of Dicer2 to arbovirus transmission by Aedes aegypti. Cell Rep 2023; 42:112977. [PMID: 37573505 DOI: 10.1016/j.celrep.2023.112977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/20/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) transmitted by Aedes aegypti mosquitoes are an increasing threat to global health. The small interfering RNA (siRNA) pathway is considered the main antiviral immune pathway of insects, but its effective impact on arbovirus transmission is surprisingly poorly understood. Here, we use CRISPR-Cas9-mediated gene editing in vivo to mutate Dicer2, a gene encoding the RNA sensor and key component of the siRNA pathway. The loss of Dicer2 enhances early viral replication and systemic viral dissemination of four medically significant arboviruses (chikungunya, Mayaro, dengue, and Zika viruses) representing two viral families. However, Dicer2 mutants and wild-type mosquitoes display overall similar levels of vector competence. In addition, Dicer2 mutants undergo significant virus-induced mortality during infection with chikungunya virus. Together, our results define a multifaceted role for Dicer2 in the transmission of arboviruses by Ae. aegypti mosquitoes and pave the way for further mechanistic investigations.
Collapse
Affiliation(s)
- Sarah Hélène Merkling
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, 75015 Paris, France
| | - Anna Beth Crist
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, 75015 Paris, France
| | - Annabelle Henrion-Lacritick
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Lionel Frangeul
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Elodie Couderc
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, 75015 Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Valérie Gausson
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Hervé Blanc
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Alexander Bergman
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, 75015 Paris, France
| | - Artem Baidaliuk
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, 75015 Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Ottavia Romoli
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Maria-Carla Saleh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France.
| | - Louis Lambrechts
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, 75015 Paris, France.
| |
Collapse
|
7
|
Kramer IM, Pfenninger M, Feldmeyer B, Dhimal M, Gautam I, Shreshta P, Baral S, Phuyal P, Hartke J, Magdeburg A, Groneberg DA, Ahrens B, Müller R, Waldvogel AM. Genomic profiling of climate adaptation in Aedes aegypti along an altitudinal gradient in Nepal indicates nongradual expansion of the disease vector. Mol Ecol 2023; 32:350-368. [PMID: 36305220 DOI: 10.1111/mec.16752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 01/11/2023]
Abstract
Driven by globalization, urbanization and climate change, the distribution range of invasive vector species has expanded to previously colder ecoregions. To reduce health-threatening impacts on humans, insect vectors are extensively studied. Population genomics can reveal the genomic basis of adaptation and help to identify emerging trends of vector expansion. By applying whole genome analyses and genotype-environment associations to populations of the main dengue vector Aedes aegypti, sampled along an altitudinal gradient in Nepal (200-1300 m), we identify putatively adaptive traits and describe the species' genomic footprint of climate adaptation to colder ecoregions. We found two differentiated clusters with significantly different allele frequencies in genes associated to climate adaptation between the highland population (1300 m) and all other lowland populations (≤800 m). We revealed nonsynonymous mutations in 13 of the candidate genes associated to either altitude, precipitation or cold tolerance and identified an isolation-by-environment differentiation pattern. Other than the expected gradual differentiation along the altitudinal gradient, our results reveal a distinct genomic differentiation of the highland population. Local high-altitude adaptation could be one explanation of the population's phenotypic cold tolerance. Carrying alleles relevant for survival under colder climate increases the likelihood of this highland population to a worldwide expansion into other colder ecoregions.
Collapse
Affiliation(s)
- Isabelle Marie Kramer
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt am Main, Germany.,Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany.,Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | | | - Ishan Gautam
- Natural History Museum, Tribhuvan University, Kathmandu, Nepal
| | | | | | - Parbati Phuyal
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt am Main, Germany
| | - Juliane Hartke
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Axel Magdeburg
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt am Main, Germany
| | - David A Groneberg
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt am Main, Germany
| | - Bodo Ahrens
- Institute for Atmospheric and Environmental Sciences, Goethe University, Frankfurt am Main, Germany
| | - Ruth Müller
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Frankfurt am Main, Germany.,Unit Entomology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ann-Marie Waldvogel
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany.,Institute of Zoology, University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Vector Competence of Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Brazil and New Caledonia for Three Zika Virus Lineages. Pathogens 2020; 9:pathogens9070575. [PMID: 32708536 PMCID: PMC7399907 DOI: 10.3390/pathogens9070575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 11/17/2022] Open
Abstract
Zika virus (ZIKV) has caused severe epidemics in South America beginning in 2015, following its spread through the Pacific. We comparatively assessed the vector competence of ten populations of Aedesaegypti and Ae. albopictus from Brazil and two of Ae.aegypti and one of Culex quinquefasciatus from New Caledonia to transmit three ZIKV isolates belonging to African, Asian and American lineages. Recently colonized mosquitoes from eight distinct sites from both countries were orally challenged with the same viral load (107 TCID50/mL) and examined after 7, 14 and 21 days. Cx. quinquefasciatus was refractory to infection with all virus strains. In contrast, although competence varied with geographical origin, Brazilian and New Caledonian Ae. aegypti could transmit the three ZIKV lineages, with a strong advantage for the African lineage (the only one reaching saliva one-week after challenge). Brazilian Ae. albopictus populations were less competent than Ae. aegypti populations. Ae. albopictus generally exhibited almost no transmission for Asian and American lineages, but was efficient in transmitting the African ZIKV. Viral surveillance and mosquito control measures must be strengthened to avoid the spread of new ZIKV lineages and minimize the transmission of viruses currently circulating.
Collapse
|