1
|
Guérin A, Levasseur C, Herger A, Renggli D, Sotiropoulos AG, Kadler G, Hou X, Schaufelberger M, Meyer C, Wicker T, Bigler L, Ringli C. Histidine limitation alters plant development and influences the TOR network. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1085-1098. [PMID: 39688839 PMCID: PMC11850971 DOI: 10.1093/jxb/erae479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
Plant growth depends on growth regulators, nutrient availability, and amino acid levels, all of which influence cell wall formation and cell expansion. Cell wall integrity and structures are surveyed and modified by a complex array of cell wall integrity sensors, including leucine-rich repeat (LRR)-extensins (LRXs) that bind RALF (rapid alkalinization factor) peptides with high affinity and help to compact cell walls. Expressing the Arabidopsis root hair-specific LRX1 without the extensin domain, which anchors the protein to the cell wall (LRX1ΔE14), has a negative effect on root hair development. The mechanism of this negative effect was investigated by a suppressor screen, which led to the identification of a sune (suppressor of dominant-negative LRX1ΔE14) mutant collection. The sune82 mutant was identified as an allele of HISN2, which encodes an enzyme essential for histidine biosynthesis. This mutation leads to reduced accumulation of histidine and an increase in several amino acids, which appears to have an effect on the TOR (target of rapamycin) network, a major controller of eukaryotic cell growth. It also represents an excellent tool to study the effects of reduced histidine levels on plant development, as it is a rare example of a viable partial loss-of-function allele in an essential biosynthetic pathway.
Collapse
Affiliation(s)
- Amandine Guérin
- Department of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Caroline Levasseur
- Department of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Aline Herger
- Department of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Dominik Renggli
- University of Zurich, Department of Chemistry, Zurich, Switzerland
| | | | - Gabor Kadler
- Department of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Xiaoyu Hou
- Department of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Myriam Schaufelberger
- Department of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Christian Meyer
- Institut Jean-Pierre Bourgin (IJPB), INRAe, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Laurent Bigler
- University of Zurich, Department of Chemistry, Zurich, Switzerland
| | - Christoph Ringli
- Department of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| |
Collapse
|
2
|
Wang Y, Ma S, Cao X, Li Z, Pan B, Song Y, Wang Q, Shen H, Sun L. Morphological, histological and transcriptomic mechanisms underlying different fruit shapes in Capsicum spp. PeerJ 2024; 12:e17909. [PMID: 39364369 PMCID: PMC11448748 DOI: 10.7717/peerj.17909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/22/2024] [Indexed: 10/05/2024] Open
Abstract
Pepper (Capsicum spp.) has a long domestication history and has accumulated diverse fruit shape variations. The illustration of the mechanisms underlying different fruit shape is not only important for clarifying the regulation of pepper fruit development but also critical for fully understanding the plant organ morphogenesis. Thus, in this study, morphological, histological and transcriptional investigations have been performed on pepper accessions bearing fruits with five types of shapes. From the results it can be presumed that pepper fruit shape was determined during the developmental processes before and after anthesis, and the anthesis was a critical developmental stage for fruit shape determination. Ovary shape index variations of the studied accessions were mainly due to cell number alterations, while, fruit shape index variations were mainly attributed to the cell division and cell expansion variations. As to the ovary wall thickness and pericarp thickness, they were regulated by both cell division in the abaxial-adaxial direction and cell expansion in the proximal-distal and medio-lateral directions. Transcriptional analysis discovered that the OFP-TRM and IQD-CaM pathways may be involved in the regulation of the slender fruit shape and the largest ovary wall cell number in the blocky-shaped accession can be attributed to the higher expression of CYP735A1, which may lead to an increased cytokinin level. Genes related to development, cell proliferation/division, cytoskeleton, and cell wall may also contribute to the regulation of helical growth in pepper. The insights gained from this study are valuable for further investigations into pepper fruit shape development.
Collapse
Affiliation(s)
- Yixin Wang
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Shijie Ma
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Xiaomeng Cao
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Zixiong Li
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Bingqing Pan
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Yingying Song
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Qian Wang
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Huolin Shen
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Liang Sun
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Sede AR, Wengier DL, Borassi C, Ricardi M, Somoza SC, Aguiló R, Estevez JM, Muschietti JP. Arabidopsis pollen prolyl-hydroxylases P4H4/6 are relevant for correct hydroxylation and secretion of LRX11 in pollen tubes. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4415-4427. [PMID: 38877792 DOI: 10.1093/jxb/erae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 06/13/2024] [Indexed: 06/16/2024]
Abstract
Major constituents of the plant cell walls are structural proteins that belong to the hydroxyproline-rich glycoprotein (HRGP) family. Leucine-rich repeat extensin (LRX) proteins contain a leucine-rich domain and a C-terminal domain with repetitive Ser-Pro3-5 motifs that are potentially to be O-glycosylated. It has been demonstrated that pollen-specific LRX8-LRX11 from Arabidopsis thaliana are necessary to maintain the integrity of the pollen tube cell wall during polarized growth. In HRGPs, including classical extensins (EXTs), and probably in LRXs, proline residues are converted to hydroxyproline by prolyl-4-hydroxylases (P4Hs), thus defining novel O-glycosylation sites. In this context, we aimed to determine whether hydroxylation and subsequent O-glycosylation of Arabidopsis pollen LRXs are necessary for their proper function and cell wall localization in pollen tubes. We hypothesized that pollen-expressed P4H4 and P4H6 catalyze the hydroxylation of the proline units present in Ser-Pro3-5 motifs of LRX8-LRX11. Here, we show that the p4h4-1 p4h6-1 double mutant exhibits a reduction in pollen germination rates and a slight reduction in pollen tube length. Pollen germination is also inhibited by P4H inhibitors, suggesting that prolyl hydroxylation is required for pollen tube development. Plants expressing pLRX11::LRX11-GFP in the p4h4-1 p4h6-1 background show partial re-localization of LRX11-green fluorescent protein (GFP) from the pollen tube tip apoplast to the cytoplasm. Finally, immunoprecipitation-tandem mass spectrometry analysis revealed a decrease in oxidized prolines (hydroxyprolines) in LRX11-GFP in the p4h4-1 p4h6-1 background compared with lrx11 plants expressing pLRX11::LRX11-GFP. Taken together, these results suggest that P4H4 and P4H6 are required for pollen germination and for proper hydroxylation of LRX11 necessary for its localization in the cell wall of pollen tubes.
Collapse
Affiliation(s)
- Ana R Sede
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA, Buenos Aires, Argentina
| | - Diego L Wengier
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | - Cecilia Borassi
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, Argentina
| | - Martiniano Ricardi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-CONICET), Universidad de Buenos Aires, Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - Sofía C Somoza
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA, Buenos Aires, Argentina
| | - Rafael Aguiló
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-CONICET), Universidad de Buenos Aires, Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
- Centro de Biotecnología Vegetal (CBV), Facultad de Cs. de la Vida, Universidad Andrés Bello, ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile and ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA, Buenos Aires, Argentina
| |
Collapse
|
4
|
Cheung AY. FERONIA: A Receptor Kinase at the Core of a Global Signaling Network. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:345-375. [PMID: 38424067 DOI: 10.1146/annurev-arplant-102820-103424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Initially identified as a key regulator of female fertility in Arabidopsis, the FERONIA (FER) receptor kinase is now recognized as crucial for almost all aspects of plant growth and survival. FER partners with a glycosylphosphatidylinositol-anchored protein of the LLG family to act as coreceptors on the cell surface. The FER-LLG coreceptor interacts with different RAPID ALKALINIZATION FACTOR (RALF) peptide ligands to function in various growth and developmental processes and to respond to challenges from the environment. The RALF-FER-LLG signaling modules interact with molecules in the cell wall, cell membrane, cytoplasm, and nucleus and mediate an interwoven signaling network. Multiple FER-LLG modules, each anchored by FER or a FER-related receptor kinase, have been studied, illustrating the functional diversity and the mechanistic complexity of the FER family signaling modules. The challenges going forward are to distill from this complexity the unifying schemes where possible and attain precision and refinement in the knowledge of critical details upon which future investigations can be built. By focusing on the extensively characterized FER, this review provides foundational information to guide the next phase of research on FER in model as well as crop species and potential applications for improving plant growth and resilience.
Collapse
Affiliation(s)
- Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular Biology Program, Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA;
| |
Collapse
|
5
|
Zhong S, Zhao P, Peng X, Li HJ, Duan Q, Cheung AY. From gametes to zygote: Mechanistic advances and emerging possibilities in plant reproduction. PLANT PHYSIOLOGY 2024; 195:4-35. [PMID: 38431529 PMCID: PMC11060694 DOI: 10.1093/plphys/kiae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hong-Ju Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiaohong Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
6
|
Schoenaers S, Lee HK, Gonneau M, Faucher E, Levasseur T, Akary E, Claeijs N, Moussu S, Broyart C, Balcerowicz D, AbdElgawad H, Bassi A, Damineli DSC, Costa A, Feijó JA, Moreau C, Bonnin E, Cathala B, Santiago J, Höfte H, Vissenberg K. Rapid alkalinization factor 22 has a structural and signalling role in root hair cell wall assembly. NATURE PLANTS 2024; 10:494-511. [PMID: 38467800 PMCID: PMC11494403 DOI: 10.1038/s41477-024-01637-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/30/2024] [Indexed: 03/13/2024]
Abstract
Pressurized cells with strong walls make up the hydrostatic skeleton of plants. Assembly and expansion of such stressed walls depend on a family of secreted RAPID ALKALINIZATION FACTOR (RALF) peptides, which bind both a membrane receptor complex and wall-localized LEUCINE-RICH REPEAT EXTENSIN (LRXs) in a mutually exclusive way. Here we show that, in root hairs, the RALF22 peptide has a dual structural and signalling role in cell expansion. Together with LRX1, it directs the compaction of charged pectin polymers at the root hair tip into periodic circumferential rings. Free RALF22 induces the formation of a complex with LORELEI-LIKE-GPI-ANCHORED PROTEIN 1 and FERONIA, triggering adaptive cellular responses. These findings show how a peptide simultaneously functions as a structural component organizing cell wall architecture and as a feedback signalling molecule that regulates this process depending on its interaction partners. This mechanism may also underlie wall assembly and expansion in other plant cell types.
Collapse
Affiliation(s)
- Sébastjen Schoenaers
- Department of Biology, Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, Belgium
- Institut Jean-Pierre Bourgin, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Hyun Kyung Lee
- Department of Plant Molecular Biology, The Plant Signaling Mechanisms Laboratory, University of Lausanne, Lausanne, Switzerland
| | - Martine Gonneau
- Institut Jean-Pierre Bourgin, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Elvina Faucher
- Institut Jean-Pierre Bourgin, AgroParisTech, Université Paris-Saclay, Versailles, France
| | | | - Elodie Akary
- Institut Jean-Pierre Bourgin, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Naomi Claeijs
- Department of Biology, Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, Belgium
| | - Steven Moussu
- Department of Plant Molecular Biology, The Plant Signaling Mechanisms Laboratory, University of Lausanne, Lausanne, Switzerland
| | - Caroline Broyart
- Department of Plant Molecular Biology, The Plant Signaling Mechanisms Laboratory, University of Lausanne, Lausanne, Switzerland
| | - Daria Balcerowicz
- Department of Biology, Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, Belgium
| | - Hamada AbdElgawad
- Department of Biology, Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, Belgium
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Andrea Bassi
- Department of Physics, Politecnico di Milano, Milan, Italy
| | - Daniel Santa Cruz Damineli
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- Center for Mathematics, Computing and Cognition, Federal University of ABC, Santo André, Brazil
| | - Alex Costa
- Department of Biosciences, University of Milan, Milan, Italy
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - José A Feijó
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | | | | | | | - Julia Santiago
- Department of Plant Molecular Biology, The Plant Signaling Mechanisms Laboratory, University of Lausanne, Lausanne, Switzerland.
| | - Herman Höfte
- Institut Jean-Pierre Bourgin, AgroParisTech, Université Paris-Saclay, Versailles, France.
| | - Kris Vissenberg
- Department of Biology, Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, Belgium.
- Department of Agriculture, Plant Biochemistry and Biotechnology Lab, Hellenic Mediterranean University, Heraklion, Greece.
| |
Collapse
|
7
|
Liu MCJ, Yeh FLJ, Yvon R, Simpson K, Jordan S, Chambers J, Wu HM, Cheung AY. Extracellular pectin-RALF phase separation mediates FERONIA global signaling function. Cell 2024; 187:312-330.e22. [PMID: 38157854 DOI: 10.1016/j.cell.2023.11.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/01/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
The FERONIA (FER)-LLG1 co-receptor and its peptide ligand RALF regulate myriad processes for plant growth and survival. Focusing on signal-induced cell surface responses, we discovered that intrinsically disordered RALF triggers clustering and endocytosis of its cognate receptors and FER- and LLG1-dependent endocytosis of non-cognate regulators of diverse processes, thus capable of broadly impacting downstream responses. RALF, however, remains extracellular. We demonstrate that RALF binds the cell wall polysaccharide pectin. They phase separate and recruit FER and LLG1 into pectin-RALF-FER-LLG1 condensates to initiate RALF-triggered cell surface responses. We show further that two frequently encountered environmental challenges, elevated salt and temperature, trigger RALF-pectin phase separation, promiscuous receptor clustering and massive endocytosis, and that this process is crucial for recovery from stress-induced growth attenuation. Our results support that RALF-pectin phase separation mediates an exoskeletal mechanism to broadly activate FER-LLG1-dependent cell surface responses to mediate the global role of FER in plant growth and survival.
Collapse
Affiliation(s)
- Ming-Che James Liu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St., Lederle Graduate Tower, Amherst, MA 01003, USA
| | - Fang-Ling Jessica Yeh
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St., Lederle Graduate Tower, Amherst, MA 01003, USA; Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Robert Yvon
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St., Lederle Graduate Tower, Amherst, MA 01003, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Kelly Simpson
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St., Lederle Graduate Tower, Amherst, MA 01003, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Samuel Jordan
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St., Lederle Graduate Tower, Amherst, MA 01003, USA
| | - James Chambers
- Light Microscopy Core Facility, Institute of Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St., Lederle Graduate Tower, Amherst, MA 01003, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, MA 01003, USA.
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St., Lederle Graduate Tower, Amherst, MA 01003, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, MA 01003, USA; Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
8
|
Gupta S, Guérin A, Herger A, Hou X, Schaufelberger M, Roulard R, Diet A, Roffler S, Lefebvre V, Wicker T, Pelloux J, Ringli C. Growth-inhibiting effects of the unconventional plant APYRASE 7 of Arabidopsis thaliana influences the LRX/RALF/FER growth regulatory module. PLoS Genet 2024; 20:e1011087. [PMID: 38190412 PMCID: PMC10824444 DOI: 10.1371/journal.pgen.1011087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 01/29/2024] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
Plant cell growth involves coordination of numerous processes and signaling cascades among the different cellular compartments to concomitantly enlarge the protoplast and the surrounding cell wall. The cell wall integrity-sensing process involves the extracellular LRX (LRR-Extensin) proteins that bind RALF (Rapid ALkalinization Factor) peptide hormones and, in vegetative tissues, interact with the transmembrane receptor kinase FERONIA (FER). This LRX/RALF/FER signaling module influences cell wall composition and regulates cell growth. The numerous proteins involved in or influenced by this module are beginning to be characterized. In a genetic screen, mutations in Apyrase 7 (APY7) were identified to suppress growth defects observed in lrx1 and fer mutants. APY7 encodes a Golgi-localized NTP-diphosphohydrolase, but opposed to other apyrases of Arabidopsis, APY7 revealed to be a negative regulator of cell growth. APY7 modulates the growth-inhibiting effect of RALF1, influences the cell wall architecture and -composition, and alters the pH of the extracellular matrix, all of which affect cell growth. Together, this study reveals a function of APY7 in cell wall formation and cell growth that is connected to growth processes influenced by the LRX/RALF/FER signaling module.
Collapse
Affiliation(s)
- Shibu Gupta
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Amandine Guérin
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Aline Herger
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Xiaoyu Hou
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Myriam Schaufelberger
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Romain Roulard
- UMR INRAe BioEcoAgro, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, UFR des Sciences, Amiens, France
| | - Anouck Diet
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Stefan Roffler
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Valérie Lefebvre
- UMR INRAe BioEcoAgro, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, UFR des Sciences, Amiens, France
| | - Thomas Wicker
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Jérôme Pelloux
- UMR INRAe BioEcoAgro, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, UFR des Sciences, Amiens, France
| | - Christoph Ringli
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Lee HK, Santiago J. Structural insights of cell wall integrity signaling during development and immunity. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102455. [PMID: 37739866 DOI: 10.1016/j.pbi.2023.102455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/12/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
A communication system between plant cells and their surrounding cell wall is required to coordinate development, immunity, and the integration of environmental cues. This communication network is facilitated by a large pool of membrane- and cell-wall-anchored proteins that can potentially interact with the matrix or its fragments, promoting cell wall patterning or eliciting cellular responses that may lead to changes in the architecture and chemistry of the wall. A mechanistic understanding of how these receptors and cell wall proteins recognize and interact with cell wall epitopes would be key to a better understanding of all plant processes that require cell wall remodeling such as expansion, morphogenesis, and defense responses. This review focuses on the latest developments in structurally and biochemically characterized receptors and protein complexes implicated in reading and regulating cell wall integrity and immunity.
Collapse
Affiliation(s)
- Hyun Kyung Lee
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Julia Santiago
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
10
|
Moussu S, Lee HK, Haas KT, Broyart C, Rathgeb U, De Bellis D, Levasseur T, Schoenaers S, Fernandez GS, Grossniklaus U, Bonnin E, Hosy E, Vissenberg K, Geldner N, Cathala B, Höfte H, Santiago J. Plant cell wall patterning and expansion mediated by protein-peptide-polysaccharide interaction. Science 2023; 382:719-725. [PMID: 37943924 DOI: 10.1126/science.adi4720] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
Assembly of cell wall polysaccharides into specific patterns is required for plant growth. A complex of RAPID ALKALINIZATION FACTOR 4 (RALF4) and its cell wall-anchored LEUCINE-RICH REPEAT EXTENSIN 8 (LRX8)-interacting protein is crucial for cell wall integrity during pollen tube growth, but its molecular connection with the cell wall is unknown. Here, we show that LRX8-RALF4 complexes adopt a heterotetrametric configuration in vivo, displaying a dendritic distribution. The LRX8-RALF4 complex specifically interacts with demethylesterified pectins in a charge-dependent manner through RALF4's polycationic surface. The LRX8-RALF4-pectin interaction exerts a condensing effect, patterning the cell wall's polymers into a reticulated network essential for wall integrity and expansion. Our work uncovers a dual structural and signaling role for RALF4 in pollen tube growth and in the assembly of complex extracellular polymers.
Collapse
Affiliation(s)
- Steven Moussu
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Hyun Kyung Lee
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Kalina T Haas
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Caroline Broyart
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ursina Rathgeb
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Damien De Bellis
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
- Electron Microscopy Facility, University of Lausanne, 1015 Lausanne, Switzerland
| | | | - Sébastjen Schoenaers
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| | - Gorka S Fernandez
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | | | - Eric Hosy
- IINS, CNRS UMR5297, University of Bordeaux, 33000 Bordeaux, France
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
- Plant Biochemistry & Biotechnology Lab, Department of Agriculture, Hellenic Mediterranean University, Stavromenos PC 71410, Heraklion, Crete, Greece
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | | | - Herman Höfte
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Julia Santiago
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Lan Z, Song Z, Wang Z, Li L, Liu Y, Zhi S, Wang R, Wang J, Li Q, Bleckmann A, Zhang L, Dresselhaus T, Dong J, Gu H, Zhong S, Qu LJ. Antagonistic RALF peptides control an intergeneric hybridization barrier on Brassicaceae stigmas. Cell 2023; 186:4773-4787.e12. [PMID: 37806310 PMCID: PMC10615786 DOI: 10.1016/j.cell.2023.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 05/24/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023]
Abstract
Pollen-pistil interactions establish interspecific/intergeneric pre-zygotic hybridization barriers in plants. The rejection of undesired pollen at the stigma is crucial to avoid outcrossing but can be overcome with the support of mentor pollen. The mechanisms underlying this hybridization barrier are largely unknown. Here, in Arabidopsis, we demonstrate that receptor-like kinases FERONIA/CURVY1/ANJEA/HERCULES RECEPTOR KINASE 1 and cell wall proteins LRX3/4/5 interact on papilla cell surfaces with autocrine stigmatic RALF1/22/23/33 peptide ligands (sRALFs) to establish a lock that blocks the penetration of undesired pollen tubes. Compatible pollen-derived RALF10/11/12/13/25/26/30 peptides (pRALFs) act as a key, outcompeting sRALFs and enabling pollen tube penetration. By treating Arabidopsis stigmas with synthetic pRALFs, we unlock the barrier, facilitating pollen tube penetration from distantly related Brassicaceae species and resulting in interspecific/intergeneric hybrid embryo formation. Therefore, we uncover a "lock-and-key" system governing the hybridization breadth of interspecific/intergeneric crosses in Brassicaceae. Manipulating this system holds promise for facilitating broad hybridization in crops.
Collapse
Affiliation(s)
- Zijun Lan
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Zihan Song
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Zhijuan Wang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Ling Li
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yiqun Liu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Shuaihua Zhi
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Ruihan Wang
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jizong Wang
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Qiyun Li
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Andrea Bleckmann
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Li Zhang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Juan Dong
- The Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China.
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China.
| |
Collapse
|
12
|
Lu H, Niu X, Fan Y, Yuan Y, Huang L, Zhao B, Liu Y, Xiao F. The extensin protein SAE1 plays a role in leaf senescence and is targeted by the ubiquitin ligase SINA4 in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5635-5652. [PMID: 37368909 DOI: 10.1093/jxb/erad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/25/2023] [Indexed: 06/29/2023]
Abstract
Extensins are hydroxyproline-rich glycoproteins and generally play a structural role in cell wall integrity. In this study, we determined a novel role of tomato (Solanum lycopersicum) SENESCENCE-ASSOCIATED EXTENSIN1 (SAE1) in leaf senescence. Both gain- and loss-of-function analyses suggest that SAE1 plays a positive role in leaf senescence in tomato. Transgenic plants overexpressing SAE1 (SAE1-OX) exhibited premature leaf senescence and enhanced dark-induced senescence, whereas SAE1 knockout (SAE1-KO) plants displayed delayed development-dependent and dark-induced leaf senescence. Heterologous overexpression of SlSAE1 in Arabidopsis also led to premature leaf senescence and enhanced dark-induced senescence. In addition, the SAE1 protein was found to interact with the tomato ubiquitin ligase SlSINA4, and SlSINA4 promoted SAE1 degradation in a ligase-dependent manner when co-expressed in Nicotiana benthamiana leaves, suggesting that SlSINA4 controls SAE1 protein levels via the ubiquitin-proteasome pathway. Introduction of an SlSINA4-overexpression construct into the SAE1-OX tomato plants consistently completely eliminated accumulation of the SAE1 protein and suppressed the phenotypes conferred by overexpression of SAE1. Taken together, our results suggest that the tomato extensin SAE1 plays a positive role in leaf senescence and is regulated by the ubiquitin ligase SINA4.
Collapse
Affiliation(s)
- Han Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
- Department of Plant Sciences, University of Idaho, Moscow, Idaho, 83844, USA
| | - Xiangli Niu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
- Department of Plant Sciences, University of Idaho, Moscow, Idaho, 83844, USA
| | - Youhong Fan
- Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yulin Yuan
- Department of Plant Sciences, University of Idaho, Moscow, Idaho, 83844, USA
| | - Li Huang
- Department of Plant Sciences, University of Idaho, Moscow, Idaho, 83844, USA
| | - Bingyu Zhao
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061, USA
| | - Yongsheng Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
- School of Horticulture, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Fangming Xiao
- Department of Plant Sciences, University of Idaho, Moscow, Idaho, 83844, USA
| |
Collapse
|
13
|
Li J, Zhang Y, Li Z, Dai H, Luan X, Zhong T, Chen S, Xie XM, Qin G, Zhang XQ, Peng H. OsPEX1, an extensin-like protein, negatively regulates root growth in a gibberellin-mediated manner in rice. PLANT MOLECULAR BIOLOGY 2023; 112:47-59. [PMID: 37097548 DOI: 10.1007/s11103-023-01347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/01/2023] [Indexed: 05/09/2023]
Abstract
Leucine-rich repeat extensins (LRXs) are required for plant growth and development through affecting cell growth and cell wall formation. LRX gene family can be classified into two categories: predominantly vegetative-expressed LRX and reproductive-expressed PEX. In contrast to the tissue specificity of Arabidopsis PEX genes in reproductive organs, rice OsPEX1 is also highly expressed in roots in addition to reproductive tissue. However, whether and how OsPEX1 affects root growth is unclear. Here, we found that overexpression of OsPEX1 retarded root growth by reducing cell elongation likely caused by an increase of lignin deposition, whereas knockdown of OsPEX1 had an opposite effect on root growth, indicating that OsPEX1 negatively regulated root growth in rice. Further investigation uncovered the existence of a feedback loop between OsPEX1 expression level and GA biosynthesis for proper root growth. This was supported by the facts that exogenous GA3 application downregulated transcript levels of OsPEX1 and lignin-related genes and rescued the root developmental defects of the OsPEX1 overexpression mutant, whereas OsPEX1 overexpression reduced GA level and the expression of GA biosynthesis genes. Moreover, OsPEX1 and GA showed antagonistic action on the lignin biosynthesis in root. OsPEX1 overexpression upregulated transcript levels of lignin-related genes, whereas exogenous GA3 application downregulated their expression. Taken together, this study reveals a possible molecular pathway of OsPEX1mediated regulation of root growth through coordinate modulation of lignin deposition via a negative feedback regulation between OsPEX1 expression and GA biosynthesis.
Collapse
Affiliation(s)
- Jieni Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, College of Food Science and Engineering, Foshan University, Foshan, 528000, China
| | - Yuexiong Zhang
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhenyong Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hang Dai
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xin Luan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Tianxiu Zhong
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Shu Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xin-Ming Xie
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Gang Qin
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Xiang-Qian Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, College of Food Science and Engineering, Foshan University, Foshan, 528000, China.
| | - Haifeng Peng
- Guangdong Laboratory for Lingnan Modern Agriculture,College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
14
|
Smokvarska M, Bayle V, Maneta-Peyret L, Fouillen L, Poitout A, Dongois A, Fiche JB, Gronnier J, Garcia J, Höfte H, Nolmann M, Zipfel C, Maurel C, Moreau P, Jaillais Y, Martiniere A. The receptor kinase FERONIA regulates phosphatidylserine localization at the cell surface to modulate ROP signaling. SCIENCE ADVANCES 2023; 9:eadd4791. [PMID: 37027473 PMCID: PMC10081841 DOI: 10.1126/sciadv.add4791] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Cells maintain a constant dialog between the extracellular matrix and their plasma membrane to fine tune signal transduction processes. We found that the receptor kinase FERONIA (FER), which is a proposed cell wall sensor, modulates phosphatidylserine plasma membrane accumulation and nano-organization, a key regulator of Rho GTPase signaling in Arabidopsis. We demonstrate that FER is required for both Rho-of-Plant 6 (ROP6) nano-partitioning at the membrane and downstream production of reactive oxygen species upon hyperosmotic stimulus. Genetic and pharmacological rescue experiments indicate that phosphatidylserine is required for a subset of, but not all, FER functions. Furthermore, application of FER ligand shows that its signaling controls both phosphatidylserine membrane localization and nanodomains formation, which, in turn, tunes ROP6 signaling. Together, we propose that a cell wall-sensing pathway controls via the regulation of membrane phospholipid content, the nano-organization of the plasma membrane, which is an essential cell acclimation to environmental perturbations.
Collapse
Affiliation(s)
- Marija Smokvarska
- IPSiM Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Lilly Maneta-Peyret
- UMR 5200 Membrane Biogenesis Laboratory, CNRS and University of Bordeaux, INRAE Bordeaux, Villenave d'Ornon, France
| | - Laetitia Fouillen
- UMR 5200 Membrane Biogenesis Laboratory, CNRS and University of Bordeaux, INRAE Bordeaux, Villenave d'Ornon, France
- MetaboHub-Bordeaux, Metabolome platform, INRAE, Villenave d’Ornon, France
| | - Arthur Poitout
- IPSiM Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Armelle Dongois
- IPSiM Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Jean-Bernard Fiche
- Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Institut National de la Santé et de la Recherche Médicale U1054, Université de Montpellier, 34090 Montpellier, France
| | - Julien Gronnier
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
- University of Tübingen, Center for Plant Molecular Biology (ZMBP), 72076 Tübingen, Germany
| | - José Garcia
- IPSiM Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Herman Höfte
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Marcelo Nolmann
- Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Institut National de la Santé et de la Recherche Médicale U1054, Université de Montpellier, 34090 Montpellier, France
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Christophe Maurel
- IPSiM Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Patrick Moreau
- UMR 5200 Membrane Biogenesis Laboratory, CNRS and University of Bordeaux, INRAE Bordeaux, Villenave d'Ornon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | | |
Collapse
|
15
|
Ueda A, Aihara Y, Sato S, Kano K, Mishiro-Sato E, Kitano H, Sato A, Fujimoto KJ, Yanai T, Amaike K, Kinoshita T, Itami K. Discovery of 2,6-Dihalopurines as Stomata Opening Inhibitors: Implication of an LRX-Mediated H +-ATPase Phosphorylation Pathway. ACS Chem Biol 2023; 18:347-355. [PMID: 36638821 DOI: 10.1021/acschembio.2c00771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Stomata are pores in the leaf epidermis of plants and their opening and closing regulate gas exchange and water transpiration. Stomatal movements play key roles in both plant growth and stress responses. In recent years, small molecules regulating stomatal movements have been used as a powerful tool in mechanistic studies, as well as key players for agricultural applications. Therefore, the development of new molecules regulating stomatal movement and the elucidation of their mechanisms have attracted much attention. We herein describe the discovery of 2,6-dihalopurines, AUs, as a new stomatal opening inhibitor, and their mechanistic study. Based on biological assays, AUs may involve in the pathway related with plasma membrane H+-ATPase phosphorylation. In addition, we identified leucine-rich repeat extensin proteins (LRXs), LRX3, LRX4 and LRX5 as well as RALF, as target protein candidates of AUs by affinity based pull down assay and molecular dynamics simulation. The mechanism of stomatal movement related with the LRXs-RALF is an unexplored pathway, and therefore further studies may lead to the discovery of new signaling pathways and regulatory factors in the stomatal movement.
Collapse
Affiliation(s)
- Ayaka Ueda
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Yusuke Aihara
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Shinya Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Keiko Kano
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Emi Mishiro-Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Hiroyuki Kitano
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kazuhiro J Fujimoto
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Takeshi Yanai
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kazuma Amaike
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Toshinori Kinoshita
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
16
|
Zhu Q, Feng Y, Xue J, Chen P, Zhang A, Yu Y. Advances in Receptor-like Protein Kinases in Balancing Plant Growth and Stress Responses. PLANTS (BASEL, SWITZERLAND) 2023; 12:427. [PMID: 36771514 PMCID: PMC9919196 DOI: 10.3390/plants12030427] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Accompanying the process of growth and development, plants are exposed to ever-changing environments, which consequently trigger abiotic or biotic stress responses. The large protein family known as receptor-like protein kinases (RLKs) is involved in the regulation of plant growth and development, as well as in the response to various stresses. Understanding the biological function and molecular mechanism of RLKs is helpful for crop breeding. Research on the role and mechanism of RLKs has recently received considerable attention regarding the balance between plant growth and environmental adaptability. In this paper, we systematically review the classification of RLKs, the regulatory roles of RLKs in plant development (meristem activity, leaf morphology and reproduction) and in stress responses (disease resistance and environmental adaptation). This review focuses on recent findings revealing that RLKs simultaneously regulate plant growth and stress adaptation, which may pave the way for the better understanding of their function in crop improvement. Although the exact crosstalk between growth constraint and plant adaptation remains elusive, a profound study on the adaptive mechanisms for decoupling the developmental processes would be a promising direction for the future research.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Yu
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
17
|
Yu TY, Xu CX, Li WJ, Wang B. Peptides/receptors signaling during plant fertilization. FRONTIERS IN PLANT SCIENCE 2022; 13:1090836. [PMID: 36589119 PMCID: PMC9797866 DOI: 10.3389/fpls.2022.1090836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Double fertilization is a unique and particularly complicated process for the generation alternation of angiosperms. Sperm cells of angiosperms lose the motility compared with that of gymnosperms. The sperm cells are passively carried and transported by the pollen tube for a long journey before targeting the ovule. Two sperm cells are released at the cleft between the egg and the central cell and fused with two female gametes to produce a zygote and endosperm, respectively, to accomplish the so-called double fertilization process. In this process, extensive communication and interaction occur between the male (pollen or pollen tube) and the female (ovule). It is suggested that small peptides and receptor kinases play critical roles in orchestrating this cell-cell communication. Here, we illuminate the understanding of phases in the process, such as pollen-stigma recognition, the hydration and germination of pollen grains, the growth, guidance, and rupture of tubes, the release of sperm cells, and the fusion of gametes, by reviewing increasing data recently. The roles of peptides and receptor kinases in signaling mechanisms underlying cell-cell communication were focused on, and directions of future studies were perspected in this review.
Collapse
|
18
|
Noble JA, Bielski NV, Liu MCJ, DeFalco TA, Stegmann M, Nelson ADL, McNamara K, Sullivan B, Dinh KK, Khuu N, Hancock S, Shiu SH, Zipfel C, Cheung AY, Beilstein MA, Palanivelu R. Evolutionary analysis of the LORELEI gene family in plants reveals regulatory subfunctionalization. PLANT PHYSIOLOGY 2022; 190:2539-2556. [PMID: 36156105 PMCID: PMC9706458 DOI: 10.1093/plphys/kiac444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
A signaling complex comprising members of the LORELEI (LRE)-LIKE GPI-anchored protein (LLG) and Catharanthus roseus RECEPTOR-LIKE KINASE 1-LIKE (CrRLK1L) families perceive RAPID ALKALINIZATION FACTOR (RALF) peptides and regulate growth, reproduction, immunity, and stress responses in Arabidopsis (Arabidopsis thaliana). Genes encoding these proteins are members of multigene families in most angiosperms and could generate thousands of signaling complex variants. However, the links between expansion of these gene families and the functional diversification of this critical signaling complex as well as the evolutionary factors underlying the maintenance of gene duplicates remain unknown. Here, we investigated LLG gene family evolution by sampling land plant genomes and explored the function and expression of angiosperm LLGs. We found that LLG diversity within major land plant lineages is primarily due to lineage-specific duplication events, and that these duplications occurred both early in the history of these lineages and more recently. Our complementation and expression analyses showed that expression divergence (i.e. regulatory subfunctionalization), rather than functional divergence, explains the retention of LLG paralogs. Interestingly, all but one monocot and all eudicot species examined had an LLG copy with preferential expression in male reproductive tissues, while the other duplicate copies showed highest levels of expression in female or vegetative tissues. The single LLG copy in Amborella trichopoda is expressed vastly higher in male compared to in female reproductive or vegetative tissues. We propose that expression divergence plays an important role in retention of LLG duplicates in angiosperms.
Collapse
Affiliation(s)
- Jennifer A Noble
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Nicholas V Bielski
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Ming-Che James Liu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Thomas A DeFalco
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Martin Stegmann
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Andrew D L Nelson
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, USA
| | - Kara McNamara
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Brooke Sullivan
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Khanhlinh K Dinh
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Nicholas Khuu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Sarah Hancock
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Molecular and Cell Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Mark A Beilstein
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
19
|
Wang G, Zhao Z, Zheng X, Shan W, Fan J. How a single receptor-like kinase exerts diverse roles: lessons from FERONIA. MOLECULAR HORTICULTURE 2022; 2:25. [PMID: 37789486 PMCID: PMC10515002 DOI: 10.1186/s43897-022-00046-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/09/2022] [Indexed: 10/05/2023]
Abstract
FERONIA (FER) is a member of the Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) protein subfamily, which participates in reproduction, abiotic stress, biotic stress, cell growth, hormone response, and other molecular mechanisms of plants. However, the mechanism by which a single RLK is capable of mediating multiple signals and activating multiple cellular responses remains unclear. Here, we summarize research progress revealing the spatial-temporal expression of FER, along with its co-receptors and ligands determined the function of FER signaling pathway in multiple organs. The specificity of the FER signaling pathway is proposed to operate under a four-layered mechanism: (1) Spatial-temporal expression of FER, co-receptors, and ligands specify diverse functions, (2) Specific ligands or ligand combinations trigger variable FER signaling pathways, (3) Diverse co-receptors confer diverse FER perception and response modes, and (4) Unique downstream components that modify FER signaling and responses. Moreover, the regulation mechanism of the signaling pathway- appears to depend on the interaction among the ligands, RLK receptors, co-receptors, and downstream components, which may be a general mechanism of RLKs to maintain signal specificity. This review will provide a insight into understanding the specificity determination of RLKs signaling in both model and horticultural crops.
Collapse
Affiliation(s)
- Gaopeng Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Zhifang Zhao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Xinhang Zheng
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Wenfeng Shan
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Jiangbo Fan
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China.
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China.
| |
Collapse
|
20
|
Cheung AY, Duan Q, Li C, James Liu MC, Wu HM. Pollen-pistil interactions: It takes two to tangle but a molecular cast of many to deliver. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102279. [PMID: 36029655 DOI: 10.1016/j.pbi.2022.102279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Explosive advances have been made in the molecular understanding of pollen-pistil interactions that underlie reproductive success in flowering plants in the past three decades. Among the most notable is the discovery of pollen tube attractants [1∗,2∗]. The roles these molecules play in facilitating conspecific precedence thus promoting interspecific genetic isolation are also emerging [3-5]. Male-female interactions during the prezygotic phase and contributions from the male and female gametophytes have been comprehensively reviewed recently. Here, we focus on key advances in understanding the mechanistic underpinnings of how these interactions overcome barriers at various pollen-pistil interfaces along the pollen tube growth pathway to facilitate fertilization by desirable mates.
Collapse
Affiliation(s)
- Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, MA 01003, USA; Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA.
| | - Qiaohong Duan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China; College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chao Li
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Ming-Che James Liu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
21
|
Liang C, Wei C, Wang L, Guan Z, Shi T, Huang J, Li B, Lu Y, Liu H, Wang Y. Characterization of a Novel Creeping Tartary Buckwheat ( Fagopyrum tataricum) Mutant lazy1. FRONTIERS IN PLANT SCIENCE 2022; 13:815131. [PMID: 35574111 PMCID: PMC9094088 DOI: 10.3389/fpls.2022.815131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/02/2022] [Indexed: 06/15/2023]
Abstract
Gravity is known as an important environmental factor involved in the regulation of plant architecture. To identify genes related to the gravitropism of Tartary buckwheat, a creeping line was obtained and designated as lazy1 from the mutant bank by 60Co-γ ray radiation. Genetic analysis indicated that the creeping phenotype of lazy1 was attributed to a single recessive locus. As revealed by the horizontal and inverted suspension tests, lazy1 was completely lacking in shoot negative gravitropism. The creeping growth of lazy1 occurred at the early seedling stage, which could not be recovered by exogenous heteroauxin, hormodin, α-rhodofix, or gibberellin. Different from the well-organized and equivalent cell elongation of wild type (WT), lazy1 exhibited dilated, distorted, and abnormally arranged cells in the bending stem. However, no statistical difference of indole-3-acetic acid (IAA) levels was found between the far- and near-ground bending sides in lazy1, which suggests that the asymmetric cell elongation of lazy1 was not induced by auxin gradient. Whereas, lazy1 showed up-expressed gibberellin-regulated genes by quantitative real-time PCR (qRT-PCR) as well as significantly higher levels of gibberellin, suggesting that gibberellin might be partly involved in the regulation of creeping growth in lazy1. RNA sequencing (RNA-seq) identified a number of differentially expressed genes (DEGs) related to gravitropism at stages I (before bending), II (bending), and III (after bending) between WT and lazy1. Venn diagram indicated that only Pectate lyase 5 was down-expressed at stages I [Log2 fold change (Log2FC): -3.20], II (Log2FC: -4.97), and III (Log2FC: -1.23) in lazy1, compared with WT. Gene sequencing revealed that a fragment deletion occurred in the coding region of Pectate lyase 5, which induced the destruction of a pbH domain in Pectate lyase 5 of lazy1. qRT-PCR indicated that Pectate lyase 5 was extremely down-expressed in lazy1 at stage II (0.02-fold of WT). Meanwhile, lazy1 showed the affected expression of lignin- and cellulose-related genes and cumulatively abnormal levels of pectin, lignin, and cellulose. These results demonstrate the possibility that Pectate lyase 5 functions as the key gene that could mediate primary cell wall metabolism and get involved in the asymmetric cell elongation regulation of lazy1.
Collapse
Affiliation(s)
- Chenggang Liang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Chunyu Wei
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Li Wang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Zhixiu Guan
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Juan Huang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Bin Li
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yang Lu
- Guizhou Biotechnology Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, China
| | - Hui Liu
- Guizhou Biotechnology Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, China
| | - Yan Wang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang, China
| |
Collapse
|
22
|
Xie Y, Sun P, Li Z, Zhang F, You C, Zhang Z. FERONIA Receptor Kinase Integrates with Hormone Signaling to Regulate Plant Growth, Development, and Responses to Environmental Stimuli. Int J Mol Sci 2022; 23:ijms23073730. [PMID: 35409090 PMCID: PMC8998941 DOI: 10.3390/ijms23073730] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Plant hormones are critical chemicals that participate in almost all aspects of plant life by triggering cellular response cascades. FERONIA is one of the most well studied members in the subfamily of Catharanthus roseus receptor-like kinase1-like (CrRLK1Ls) hormones. It has been proved to be involved in many different processes with the discovery of its ligands, interacting partners, and downstream signaling components. A growing body of evidence shows that FERONIA serves as a hub to integrate inter- and intracellular signals in response to internal and external cues. Here, we summarize the recent advances of FERONIA in regulating plant growth, development, and immunity through interactions with multiple plant hormone signaling pathways.
Collapse
Affiliation(s)
- Yinhuan Xie
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (Y.X.); (P.S.); (Z.L.); (F.Z.)
| | - Ping Sun
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (Y.X.); (P.S.); (Z.L.); (F.Z.)
| | - Zhaoyang Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (Y.X.); (P.S.); (Z.L.); (F.Z.)
| | - Fujun Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (Y.X.); (P.S.); (Z.L.); (F.Z.)
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Chunxiang You
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (Y.X.); (P.S.); (Z.L.); (F.Z.)
- Correspondence: (C.Y.); (Z.Z.)
| | - Zhenlu Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (Y.X.); (P.S.); (Z.L.); (F.Z.)
- Correspondence: (C.Y.); (Z.Z.)
| |
Collapse
|
23
|
Gronnier J, Franck CM, Stegmann M, DeFalco TA, Abarca A, von Arx M, Dünser K, Lin W, Yang Z, Kleine-Vehn J, Ringli C, Zipfel C. Regulation of immune receptor kinase plasma membrane nanoscale organization by a plant peptide hormone and its receptors. eLife 2022; 11:74162. [PMID: 34989334 PMCID: PMC8791635 DOI: 10.7554/elife.74162] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/05/2022] [Indexed: 01/09/2023] Open
Abstract
Spatial partitioning is a propensity of biological systems orchestrating cell activities in space and time. The dynamic regulation of plasma membrane nano-environments has recently emerged as a key fundamental aspect of plant signaling, but the molecular components governing it are still mostly unclear. The receptor kinase FERONIA (FER) controls ligand-induced complex formation of the immune receptor kinase FLAGELLIN SENSING 2 (FLS2) with its co-receptor BRASSINOSTEROID-INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1), and perception of the endogenous peptide hormone RAPID ALKALANIZATION FACTOR 23 (RALF23) by FER inhibits immunity. Here, we show that FER regulates the plasma membrane nanoscale organization of FLS2 and BAK1. Our study demonstrates that akin to FER, leucine-rich repeat (LRR) extensin proteins (LRXs) contribute to RALF23 responsiveness and regulate BAK1 nanoscale organization and immune signaling. Furthermore, RALF23 perception leads to rapid modification of FLS2 and BAK1 nanoscale organization, and its inhibitory activity on immune signaling relies on FER kinase activity. Our results suggest that perception of RALF peptides by FER and LRXs actively modulates plasma membrane nanoscale organization to regulate cell surface signaling by other ligand-binding receptor kinases.
Collapse
Affiliation(s)
- Julien Gronnier
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.,The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Christina M Franck
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Martin Stegmann
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Thomas A DeFalco
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.,The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Alicia Abarca
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Michelle von Arx
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Kai Dünser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Wenwei Lin
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics Center, Haixia, Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenbiao Yang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics Center, Haixia, Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Christoph Ringli
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.,The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
24
|
Narváez-Barragán DA, Tovar-Herrera OE, Guevara-García A, Serrano M, Martinez-Anaya C. Mechanisms of plant cell wall surveillance in response to pathogens, cell wall-derived ligands and the effect of expansins to infection resistance or susceptibility. FRONTIERS IN PLANT SCIENCE 2022; 13:969343. [PMID: 36082287 PMCID: PMC9445675 DOI: 10.3389/fpls.2022.969343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 05/13/2023]
Abstract
Cell wall integrity is tightly regulated and maintained given that non-physiological modification of cell walls could render plants vulnerable to biotic and/or abiotic stresses. Expansins are plant cell wall-modifying proteins active during many developmental and physiological processes, but they can also be produced by bacteria and fungi during interaction with plant hosts. Cell wall alteration brought about by ectopic expression, overexpression, or exogenous addition of expansins from either eukaryote or prokaryote origin can in some instances provide resistance to pathogens, while in other cases plants become more susceptible to infection. In these circumstances altered cell wall mechanical properties might be directly responsible for pathogen resistance or susceptibility outcomes. Simultaneously, through membrane receptors for enzymatically released cell wall fragments or by sensing modified cell wall barrier properties, plants trigger intracellular signaling cascades inducing defense responses and reinforcement of the cell wall, contributing to various infection phenotypes, in which expansins might also be involved. Here, we review the plant immune response activated by cell wall surveillance mechanisms, cell wall fragments identified as responsible for immune responses, and expansin's roles in resistance and susceptibility of plants to pathogen attack.
Collapse
Affiliation(s)
| | | | | | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | |
Collapse
|
25
|
Ortiz-Morea FA, Liu J, Shan L, He P. Malectin-like receptor kinases as protector deities in plant immunity. NATURE PLANTS 2022; 8:27-37. [PMID: 34931075 PMCID: PMC9059209 DOI: 10.1038/s41477-021-01028-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/22/2021] [Indexed: 05/22/2023]
Abstract
Plant malectin-like receptor kinases (MLRs), also known as Catharanthus roseus receptor-like kinase-1-like proteins, are well known for their functions in pollen tube reception and tip growth, cell wall integrity sensing, and hormonal responses. Recently, mounting evidence has indicated a critical role for MLRs in plant immunity. Here we focus on the emerging functions of MLRs in modulating the two-tiered immune system mediated by cell-surface-resident pattern recognition receptors (PRRs) and intracellular nucleotide-binding leucine-rich repeat receptors (NLRs). MLRs complex with PRRs and NLRs and regulate immune receptor complex formation and stability. Rapid alkalinization factor peptide ligands, LORELEI-like glycosylphosphatidylinositol-anchored proteins and cell-wall-associated leucine-rich repeat extensins coordinate with MLRs to orchestrate PRR- and NLR-mediated immunity. We discuss the common theme and unique features of MLR complexes concatenating different branches of plant immune signalling.
Collapse
Affiliation(s)
- Fausto Andres Ortiz-Morea
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA
- Amazonian Research Center Cimaz-Macagual, University of the Amazon, Florencia, Colombia
| | - Jun Liu
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA
| | - Libo Shan
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA
| | - Ping He
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
26
|
Saddhe AA, Mishra AK, Kumar K. Molecular insights into the role of plant transporters in salt stress response. PHYSIOLOGIA PLANTARUM 2021; 173:1481-1494. [PMID: 33963568 DOI: 10.1111/ppl.13453] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/29/2021] [Accepted: 05/06/2021] [Indexed: 05/23/2023]
Abstract
Salt stress disturbs the cellular osmotic and ionic balance, which then creates a negative impact on plant growth and development. The Na+ and Cl- ions can enter into plant cells through various membrane transporters, including specific and non-specific Na+ , K+ , and Ca2+ transporters. Therefore, it is important to understand Na+ and K+ transport mechanisms in plants along with the isolation of genes, their characterization, the structural features, and their post-translation regulation under salt stress. This review summarizes the molecular insights of plant ion transporters, including non-selective cation transporters, cyclic nucleotide-gated cation transporters, glutamate-like receptors, membrane intrinsic proteins, cation proton antiporters, and sodium proton antiporter families. Further, we discussed the K+ transporter families such as high-affinity K+ transporters, HAK/KUP/KT transporters, shaker type K+ transporters, and K+ efflux antiporters. Besides the ion transport process, we have shed light on available literature on epigenetic regulation of transport processes under salt stress. Recent advancements of salt stress sensing mechanisms and various salt sensors within signaling transduction pathways are discussed. Further, we have compiled salt-stress signaling pathways, and their crosstalk with phytohormones.
Collapse
Affiliation(s)
- Ankush Ashok Saddhe
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Goa, 403726, India
| | - Ajay Kumar Mishra
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Kundan Kumar
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Goa, 403726, India
| |
Collapse
|
27
|
Yang H, Wang D, Guo L, Pan H, Yvon R, Garman S, Wu HM, Cheung AY. Malectin/Malectin-like domain-containing proteins: A repertoire of cell surface molecules with broad functional potential. Cell Surf 2021; 7:100056. [PMID: 34308005 PMCID: PMC8287233 DOI: 10.1016/j.tcsw.2021.100056] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/06/2021] [Accepted: 06/18/2021] [Indexed: 11/26/2022] Open
Abstract
Cell walls are at the front line of interactions between walled-organisms and their environment. They support cell expansion, ensure cell integrity and, for multicellular organisms such as plants, they provide cell adherence, support cell shape morphogenesis and mediate cell-cell communication. Wall-sensing, detecting perturbations in the wall and signaling the cell to respond accordingly, is crucial for growth and survival. In recent years, plant signaling research has suggested that a large family of receptor-like kinases (RLKs) could function as wall sensors partly because their extracellular domains show homology with malectin, a diglucose binding protein from the endoplasmic reticulum of animal cells. Studies of several malectin/malectin-like (M/ML) domain-containing RLKs (M/MLD-RLKs) from the model plant Arabidopsis thaliana have revealed an impressive array of biological roles, controlling growth, reproduction and stress responses, processes that in various ways rely on or affect the cell wall. Malectin homologous sequences are widespread across biological kingdoms, but plants have uniquely evolved a highly expanded family of proteins with ML domains embedded within various protein contexts. Here, we present an overview on proteins with malectin homologous sequences in different kingdoms, discuss the chromosomal organization of Arabidopsis M/MLD-RLKs and the phylogenetic relationship between these proteins from several model and crop species. We also discuss briefly the molecular networks that enable the diverse biological roles served by M/MLD-RLKs studied thus far.
Collapse
Affiliation(s)
- He Yang
- Department of Biochemistry and Molecular Biology, University of Massachusetts, USA
- Molecular and Cellular Biology Program, University of Massachusetts, USA
| | - Dong Wang
- Department of Biochemistry and Molecular Biology, University of Massachusetts, USA
- Molecular and Cellular Biology Program, University of Massachusetts, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Li Guo
- Molecular and Cellular Biology Program, University of Massachusetts, USA
- Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Huairong Pan
- Molecular and Cellular Biology Program, University of Massachusetts, USA
- College of Biology, Hunan University, Changsha 410082, China
| | - Robert Yvon
- Department of Biochemistry and Molecular Biology, University of Massachusetts, USA
- Molecular and Cellular Biology Program, University of Massachusetts, USA
| | - Scott Garman
- Department of Biochemistry and Molecular Biology, University of Massachusetts, USA
- Molecular and Cellular Biology Program, University of Massachusetts, USA
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, USA
- Molecular and Cellular Biology Program, University of Massachusetts, USA
| | - Alice Y. Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, USA
- Molecular and Cellular Biology Program, University of Massachusetts, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
28
|
Xue C, Li W, Shen R, Lan P. PERK13 modulates phosphate deficiency-induced root hair elongation in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111060. [PMID: 34620427 DOI: 10.1016/j.plantsci.2021.111060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/02/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Phosphate starvation (-Pi)-induced root hair is crucial for enhancing plants' Pi absorption. Proline-rich extensin-like receptor kinase 13 (PERK13) is transcriptionally induced by -Pi and co-expressed with genes associated with root hair growth. However, how PERK13 participates in -Pi-induced root hair growth remains unclear. Here, we found that PERK13 was transcriptionally responsive to Pi, nitrogen, and iron deficiencies. Loss of PERK13 function (perk13) enhanced root hair growth under Pi/nitrogen limitation. Similar phenotype was also observed in transgenic lines overexpressing PERK13 (PERK13ox). Under -Pi, both perk13 and PERK13ox showed prolonged root hair elongation and increased reactive oxygen species (ROS). Deletion analysis showed, in PERK13ox, the extracellular domain was indispensable for PERK13 in -Pi-induced root hair growth. Different transcription profiles were observed under -Pi between perk13 and PERK13ox with the jasmonate zim-domain genes being repressed in perk13 and genes involved in cell wall remodeling being increased in PERK13ox. Taken together, we demonstrated that PERK13 participates in -Pi-induced root hair growth probably via regulating root hair elongation and the generation of ROS. Our study also suggested PERK13 probably being a vital hub coupling the environmental cues and root hair growth, and might play dual roles in -Pi-induced root hair growth via different processes.
Collapse
Affiliation(s)
- Caiwen Xue
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenfeng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
29
|
Zhu S, Fu Q, Xu F, Zheng H, Yu F. New paradigms in cell adaptation: decades of discoveries on the CrRLK1L receptor kinase signalling network. THE NEW PHYTOLOGIST 2021; 232:1168-1183. [PMID: 34424552 DOI: 10.1111/nph.17683] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/15/2021] [Indexed: 05/15/2023]
Abstract
Receptor-like kinases (RLKs), which constitute the largest receptor family in plants, are essential for perceiving and relaying information about various environmental stimuli. Tremendous progress has been made in the past few decades towards elucidating the mechanisms of action of several RLKs, with emerging paradigms pointing to their roles in cell adaptations. Among these paradigms, Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) proteins and their rapid alkalinization factor (RALF) peptide ligands have attracted much interest. In particular, FERONIA (FER) is a CrRLK1L protein that participates in a wide array of physiological processes associated with RALF signalling, including cell growth and monitoring cell wall integrity, RNA and energy metabolism, and phytohormone and stress responses. Here, we analyse FER in the context of CrRLK1L members and their ligands in multiple species. The FER working model raises many questions about the role of CrRLK1L signalling networks during cell adaptation. For example, how do CrRLK1Ls recognize various RALF peptides from different organisms to initiate specific phosphorylation signal cascades? How do RALF-FER complexes achieve their specific, sometimes opposite, functions in different cell types? Here, we summarize recent major findings and highlight future perspectives in the field of CrRLK1L signalling networks.
Collapse
Affiliation(s)
- Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Qiong Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Fan Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Heping Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Centre, Changsha, 410125, China
| |
Collapse
|
30
|
Abarca A, Franck CM, Zipfel C. Family-wide evaluation of RAPID ALKALINIZATION FACTOR peptides. PLANT PHYSIOLOGY 2021; 187:996-1010. [PMID: 34608971 PMCID: PMC8491022 DOI: 10.1093/plphys/kiab308] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/14/2021] [Indexed: 05/04/2023]
Abstract
Plant peptide hormones are important players that control various aspects of the lives of plants. RAPID ALKALINIZATION FACTOR (RALF) peptides have recently emerged as important players in multiple physiological processes. Numerous studies have increased our understanding of the evolutionary processes that shaped the RALF family of peptides. Nevertheless, to date, there is no comprehensive, family-wide functional study on RALF peptides. Here, we analyzed the phylogeny of the proposed multigenic RALF peptide family in the model plant Arabidopsis (Arabidopsis thaliana), ecotype Col-0, and tested a variety of physiological responses triggered by RALFs. Our phylogenetic analysis reveals that two of the previously proposed RALF peptides are not genuine RALF peptides, which leads us to propose a revision to the consensus AtRALF peptide family annotation. We show that the majority of AtRALF peptides, when applied exogenously as synthetic peptides, induce seedling or root growth inhibition and modulate reactive oxygen species (ROS) production in Arabidopsis. Moreover, our findings suggest that alkalinization and growth inhibition are, generally, coupled characteristics of RALF peptides. Additionally, we show that for the majority of the peptides, these responses are genetically dependent on FERONIA, suggesting a pivotal role for this receptor kinase in the perception of multiple RALF peptides.
Collapse
Affiliation(s)
- Alicia Abarca
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Christina M. Franck
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
- Author for communication:
| |
Collapse
|
31
|
Okuda S. Molecular mechanisms of plant peptide binding to receptors. Peptides 2021; 144:170614. [PMID: 34332962 DOI: 10.1016/j.peptides.2021.170614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/15/2021] [Accepted: 07/24/2021] [Indexed: 01/21/2023]
Abstract
Plants have evolved diverse peptide hormones and cognate receptors to orchestrate plant growth and development. Secreted peptide ligands are mainly sensed by membrane receptor kinases that mediate cell-cell communication. The secreted peptides are categorized into two groups: small linear post-translationally modified peptides and cysteine-rich peptides. The small linear peptides are recognized by the corresponding receptors and co-receptors in a conserved manner. By contrast, the cysteine-rich peptides are perceived by various types of receptor proteins using diverse binding modes. Recent studies have revealed the molecular and mechanistic origins of peptide recognition and receptor activation. This review summarizes plant-peptide binding modes and receptor-activation mechanisms that have been structurally characterized in recent studies.
Collapse
Affiliation(s)
- Satohiro Okuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| |
Collapse
|
32
|
Borassi C, Sede AR, Mecchia MA, Mangano S, Marzol E, Denita-Juarez SP, Salgado Salter JD, Velasquez SM, Muschietti JP, Estevez JM. Proline-rich extensin-like receptor kinases PERK5 and PERK12 are involved in pollen tube growth. FEBS Lett 2021; 595:2593-2607. [PMID: 34427925 DOI: 10.1002/1873-3468.14185] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/17/2021] [Accepted: 08/18/2021] [Indexed: 11/06/2022]
Abstract
Proline-rich extensin-like receptor kinases (PERKs) belong to the hydroxyproline-rich glycoprotein (HRGP) superfamily known to be involved in many plant developmental processes. Here, we characterized two pollen-expressed PERKs from Arabidopsis thaliana, PERK5 and PERK12. Pollen tube growth was impaired in single and double perk5-1 perk12-1 loss of function mutants, with an impact on seed production. When the segregation was analysed, a male gametophytic defect was found, indicating that perk5-1 and perk12-1 mutants carry deficient pollen transmission. Furthermore, perk5-1 perk12-1 displayed an excessive accumulation of pectins and cellulose at the cell wall of the pollen tubes. Our results indicate that PERK5 and PERK12 are necessary for proper pollen tube growth, highlighting their role in cell wall assembly and reactive oxygen species homeostasis.
Collapse
Affiliation(s)
- Cecilia Borassi
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-UBA CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Ana R Sede
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina.,Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Buenos Aires, Argentina
| | - Martín A Mecchia
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Silvina Mangano
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-UBA CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Eliana Marzol
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Silvina P Denita-Juarez
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-UBA CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Juan D Salgado Salter
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-UBA CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | | | - Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Buenos Aires, Argentina.,Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-UBA CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.,Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello and ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
33
|
Behnami S, Bonetta D. With an Ear Up against the Wall: An Update on Mechanoperception in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2021; 10:1587. [PMID: 34451632 PMCID: PMC8398075 DOI: 10.3390/plants10081587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Cells interpret mechanical signals and adjust their physiology or development appropriately. In plants, the interface with the outside world is the cell wall, a structure that forms a continuum with the plasma membrane and the cytoskeleton. Mechanical stress from cell wall damage or deformation is interpreted to elicit compensatory responses, hormone signalling, or immune responses. Our understanding of how this is achieved is still evolving; however, we can refer to examples from animals and yeast where more of the details have been worked out. Here, we provide an update on this changing story with a focus on candidate mechanosensitive channels and plasma membrane-localized receptors.
Collapse
Affiliation(s)
| | - Dario Bonetta
- Faculty of Science, Ontario Tech University, 2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada;
| |
Collapse
|
34
|
Defects in Cell Wall Differentiation of the Arabidopsis Mutant rol1-2 Is Dependent on Cyclin-Dependent Kinase CDK8. Cells 2021; 10:cells10030685. [PMID: 33808926 PMCID: PMC8003768 DOI: 10.3390/cells10030685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 01/02/2023] Open
Abstract
Plant cells are encapsulated by cell walls whose properties largely determine cell growth. We have previously identified the rol1-2 mutant, which shows defects in seedling root and shoot development. rol1-2 is affected in the Rhamnose synthase 1 (RHM1) and shows alterations in the structures of Rhamnogalacturonan I (RG I) and RG II, two rhamnose-containing pectins. The data presented here shows that root tissue of the rol1-2 mutant fails to properly differentiate the cell wall in cell corners and accumulates excessive amounts of callose, both of which likely alter the physical properties of cells. A surr (suppressor of the rol1-2 root developmental defect) mutant was identified that alleviates the cell growth defects in rol1-2. The cell wall differentiation defect is re-established in the rol1-2 surr mutant and callose accumulation is reduced compared to rol1-2. The surr mutation is an allele of the cyclin-dependent kinase 8 (CDK8), which encodes a component of the mediator complex that influences processes central to plant growth and development. Together, the identification of the surr mutant suggests that changes in cell wall composition and turnover in the rol1-2 mutant have a significant impact on cell growth and reveals a function of CDK8 in cell wall architecture and composition.
Collapse
|
35
|
Petersen BL, MacAlister CA, Ulvskov P. Plant Protein O-Arabinosylation. FRONTIERS IN PLANT SCIENCE 2021; 12:645219. [PMID: 33815452 PMCID: PMC8012813 DOI: 10.3389/fpls.2021.645219] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 05/26/2023]
Abstract
A wide range of proteins with diverse functions in development, defense, and stress responses are O-arabinosylated at hydroxyprolines (Hyps) within distinct amino acid motifs of continuous stretches of Hyps, as found in the structural cell wall extensins, or at non-continuous Hyps as, for example, found in small peptide hormones and a variety of plasma membrane proteins involved in signaling. Plant O-glycosylation relies on hydroxylation of Prolines to Hyps in the protein backbone, mediated by prolyl-4-hydroxylase (P4H) which is followed by O-glycosylation of the Hyp C4-OH group by either galactosyltransferases (GalTs) or arabinofuranosyltranferases (ArafTs) yielding either Hyp-galactosylation or Hyp-arabinosylation. A subset of the P4H enzymes with putative preference to hydroxylation of continuous prolines and presumably all ArafT enzymes needed for synthesis of the substituted arabinose chains of one to four arabinose units, have been identified and functionally characterized. Truncated root-hair phenotype is one common denominator of mutants of Hyp formation and Hyp-arabinosylation glycogenes, which act on diverse groups of O-glycosylated proteins, e.g., the small peptide hormones and cell wall extensins. Dissection of different substrate derived effects may not be regularly feasible and thus complicate translation from genotype to phenotype. Recently, lack of proper arabinosylation on arabinosylated proteins has been shown to influence their transport/fate in the secretory pathway, hinting to an additional layer of functionality of O-arabinosylation. Here, we provide an update on the prevalence and types of O-arabinosylated proteins and the enzymatic machinery responsible for their modifications.
Collapse
Affiliation(s)
- Bent Larsen Petersen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Cora A. MacAlister
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Peter Ulvskov
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Strasser R, Seifert G, Doblin MS, Johnson KL, Ruprecht C, Pfrengle F, Bacic A, Estevez JM. Cracking the "Sugar Code": A Snapshot of N- and O-Glycosylation Pathways and Functions in Plants Cells. FRONTIERS IN PLANT SCIENCE 2021; 12:640919. [PMID: 33679857 PMCID: PMC7933510 DOI: 10.3389/fpls.2021.640919] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/22/2021] [Indexed: 05/04/2023]
Abstract
Glycosylation is a fundamental co-translational and/or post-translational modification process where an attachment of sugars onto either proteins or lipids can alter their biological function, subcellular location and modulate the development and physiology of an organism. Glycosylation is not a template driven process and as such produces a vastly larger array of glycan structures through combinatorial use of enzymes and of repeated common scaffolds and as a consequence it provides a huge expansion of both the proteome and lipidome. While the essential role of N- and O-glycan modifications on mammalian glycoproteins is already well documented, we are just starting to decode their biological functions in plants. Although significant advances have been made in plant glycobiology in the last decades, there are still key challenges impeding progress in the field and, as such, holistic modern high throughput approaches may help to address these conceptual gaps. In this snapshot, we present an update of the most common O- and N-glycan structures present on plant glycoproteins as well as (1) the plant glycosyltransferases (GTs) and glycosyl hydrolases (GHs) responsible for their biosynthesis; (2) a summary of microorganism-derived GHs characterized to cleave specific glycosidic linkages; (3) a summary of the available tools ranging from monoclonal antibodies (mAbs), lectins to chemical probes for the detection of specific sugar moieties within these complex macromolecules; (4) selected examples of N- and O-glycoproteins as well as in their related GTs to illustrate the complexity on their mode of action in plant cell growth and stress responses processes, and finally (5) we present the carbohydrate microarray approach that could revolutionize the way in which unknown plant GTs and GHs are identified and their specificities characterized.
Collapse
Affiliation(s)
- Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Georg Seifert
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Monika S. Doblin
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant & Soil Sciences, La Trobe University, Bundoora, VIC, Australia
- The Sino-Australia Plant Cell Wall Research Centre, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Kim L. Johnson
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant & Soil Sciences, La Trobe University, Bundoora, VIC, Australia
- The Sino-Australia Plant Cell Wall Research Centre, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Colin Ruprecht
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Fabian Pfrengle
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Antony Bacic
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant & Soil Sciences, La Trobe University, Bundoora, VIC, Australia
- The Sino-Australia Plant Cell Wall Research Centre, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - José M. Estevez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
37
|
Seifert GJ. The FLA4-FEI Pathway: A Unique and Mysterious Signaling Module Related to Cell Wall Structure and Stress Signaling. Genes (Basel) 2021; 12:145. [PMID: 33499195 PMCID: PMC7912651 DOI: 10.3390/genes12020145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 01/05/2023] Open
Abstract
Cell wall integrity control in plants involves multiple signaling modules that are mostly defined by genetic interactions. The putative co-receptors FEI1 and FEI2 and the extracellular glycoprotein FLA4 present the core components of a signaling pathway that acts in response to environmental conditions and insults to cell wall structure to modulate the balance of various growth regulators and, ultimately, to regulate the performance of the primary cell wall. Although the previously established genetic interactions are presently not matched by intermolecular binding studies, numerous receptor-like molecules that were identified in genome-wide interaction studies potentially contribute to the signaling machinery around the FLA4-FEI core. Apart from its function throughout the model plant Arabidopsis thaliana for the homeostasis of growth and stress responses, the FLA4-FEI pathway might support important agronomic traits in crop plants.
Collapse
Affiliation(s)
- Georg J Seifert
- Institute of Plant Biotechnology and Cell biology, University of Natural Resources and Life Science, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
38
|
Somoza SC, Sede AR, Boccardo NA, Muschietti JP. Keeping up with the RALFs: how these small peptides control pollen-pistil interactions in Arabidopsis. THE NEW PHYTOLOGIST 2021; 229:14-18. [PMID: 32687662 DOI: 10.1111/nph.16817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The pollen and pistil RALF peptides, along with multiple receptor-like kinases and leucine-rich repeat extensins, regulate pollen tube growth and the final burst within the ovule, where sperm cells are released for fertilisation to occur. This review introduces some new questions that arose about the regulation of this complex process.
Collapse
Affiliation(s)
- Sofía C Somoza
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres" (INGEBI-CONICET), 2490 Vuelta de Obligado, Buenos Aires, 1428, Argentina
| | - Ana R Sede
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres" (INGEBI-CONICET), 2490 Vuelta de Obligado, Buenos Aires, 1428, Argentina
| | - Noelia A Boccardo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres" (INGEBI-CONICET), 2490 Vuelta de Obligado, Buenos Aires, 1428, Argentina
| | - Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres" (INGEBI-CONICET), 2490 Vuelta de Obligado, Buenos Aires, 1428, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
| |
Collapse
|