1
|
Das VA, Gautam B, Yadav PK, Varadwaj PK, Wadhwa G, Singh S. Computational approach to identify novel genomic features conferring high fitness in Bacillus atrophaeus CNY01 and Bacillus velezensis AK-0 associated with plant growth promotion (PGP) in apple. BMC PLANT BIOLOGY 2024; 24:1127. [PMID: 39592922 PMCID: PMC11600929 DOI: 10.1186/s12870-024-05795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
A comparative genomic analysis approach provides valuable information about genetic variations and evolutionary relationships among microorganisms, aiding not only in the identification of functional genes responsible for traits such as pathogenicity, antibiotic resistance, and metabolic capabilities but also in enhancing our understanding of microbial genomic diversity and their ecological roles, such as supporting plant growth promotion, thereby enabling the development of sustainable strategies for agriculture. We used two strains from different Bacillus species, Bacillus velezensis AK-0 and Bacillus atrophaeus CNY01, which have previously been reported to have PGP activity in apple, and performed comparative genomic analysis to understand their evolutionary process and obtain a mechanistic understanding of their plant growth-promoting activity. We identified genomic features such as mobile genetic elements (MGEs) that encode key proteins involved in the survival, adaptation and growth of these bacterial strains. The presence of genomic islands and intact prophage DNA in Bacillus atrophaeus CNY01 and Bacillus velezensis AK-0 suggests that horizontal gene transfer has contributed to their diversification and acquisition of adaptive traits, enhancing their evolutionary advantage. We also identified novel DNA motifs that are associated with key physiological processes and metabolic pathways.
Collapse
Affiliation(s)
- Vandana Apurva Das
- Department of Computational Biology and Bioinformatics, JIBB, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, U.P., 211007, India
| | - Budhayash Gautam
- Department of Computational Biology and Bioinformatics, JIBB, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, U.P., 211007, India
| | - Pramod Kumar Yadav
- Department of Computational Biology and Bioinformatics, JIBB, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, U.P., 211007, India
| | - Pritish Kumar Varadwaj
- Bioinformatics Centre, Indian Institute of Information Technology-Allahabad, Prayagraj, 211015, India
| | - Gulshan Wadhwa
- Department of Biotechnology, Ministry of Science and Technology, New Delhi, 110003, India.
| | - Satendra Singh
- Department of Computational Biology and Bioinformatics, JIBB, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, U.P., 211007, India.
| |
Collapse
|
2
|
Piedl K, Aylward FO, Mevers E. The microbiota of moon snail egg collars is shaped by host-specific factors. Microbiol Spectr 2024; 12:e0180424. [PMID: 39365072 PMCID: PMC11537117 DOI: 10.1128/spectrum.01804-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/04/2024] [Indexed: 10/05/2024] Open
Abstract
Moon snails (Family: Naticidae) lay eggs using a mixture of mucus and sediment to form an egg mass commonly referred to as an egg collar. These egg collars do not appear to experience micro-biofouling or predation, and this observation led us to hypothesize that the egg collars possess a chemically rich microbiota that protect the egg collars from pathogens. Herein, we sought to gain an understanding of the bacterial composition of egg collars laid by a single species of moon snails, Neverita delessertiana, by amplifying and sequencing the 16S rRNA gene from the egg collar and sediment samples collected at four distinct geographical regions in southwest Florida. Relative abundance and non-metric multidimensional scaling plots revealed distinct differences in the bacterial composition between the egg collar and sediment samples. In addition, the egg collars had a lower α-diversity than the sediment, with specific genera being significantly enriched in the egg collars. Analysis of microorganisms consistent across two seasons suggests that Flavobacteriaceae make up a large portion of the core microbiota (36%-58% of 16S sequences). We also investigated the natural product potential of the egg collar microbiota by sequencing a core biosynthetic gene, the adenylation domains (ADs), within the gene clusters of non-ribosomal peptide synthetase (NRPS). AD sequences matched multiple modules within known NRPS gene clusters, suggesting that these compounds might be produced within the egg collar system. This study lays the foundation for future studies into the ecological role of the moon snail egg collar microbiota.IMPORTANCEAnimals commonly partner with microorganisms to accomplish essential tasks, including chemically defending the animal host from predation and/or infections. Understanding animal-microbe partnerships and the molecules used by the microbe to defend the animals from pathogens or predation has the potential to lead to new pharmaceutical agents. However, very few of these systems have been investigated. A particularly interesting system is nutrient-rich marine egg collars, which often lack visible protections, and are hypothesized to harbor beneficial microbes that protect the eggs. In this study, we gained an understanding of the bacterial strains that form the core microbiota of moon snail egg collars and gained a preliminary understanding of their natural product potential. This work lays the foundation for future work to understand the ecological role of the core microbiota and to study the molecules involved in chemically defending the moon snail eggs.
Collapse
Affiliation(s)
- Karla Piedl
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Emily Mevers
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
3
|
Guéganton M, Methou P, Aubé J, Noël C, Rouxel O, Cueff‐Gauchard V, Gayet N, Durand L, Pradillon F, Cambon‐Bonavita M. Symbiont Acquisition Strategies in Post-Settlement Stages of Two Co-Occurring Deep-Sea Rimicaris Shrimp. Ecol Evol 2024; 14:e70369. [PMID: 39568770 PMCID: PMC11576329 DOI: 10.1002/ece3.70369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/29/2024] [Accepted: 09/16/2024] [Indexed: 11/22/2024] Open
Abstract
At deep-sea hydrothermal vents, deprived of light, most living communities are fueled by chemosynthetic microorganisms. These can form symbiotic associations with metazoan hosts, which are then called holobionts. Among these, two endemic co-occurring shrimp of the Mid-Atlantic Ridge (MAR), Rimicaris exoculata and Rimicaris chacei are colonized by dense and diversified chemosynthetic symbiotic communities in their cephalothoracic cavity and their digestive system. Although both shrimp harbor similar communities, they exhibit widely different population densities, distribution patterns at small scale and diet, as well as differences in post-settlement morphological modifications leading to the adult stage. These contrasting biological traits may be linked to their symbiotic development success. Consequently, key questions related to the acquisition of the symbiotic communities and the development of the three symbiotic organs are still open. Here we examined symbiotic development in juveniles of R. exoculata and R. chacei from TAG and Snake Pit using 16S metabarcoding to identify which symbiotic lineages are present at each juvenile stage. In addition, we highlighted the abundance and distribution of microorganisms at each stage using Fluorescence in situ Hybridization (FISH) and Scanning Electron Microscopy (SEM). For the first time, Candidatus Microvillispirillaceae family with Candidatus Rimicarispirillum spp. (midgut tube), Candidatus Foregutplasma rimicarensis and Candidatus BG2-rimicarensis (foregut) were identified in late juvenile stages. However, these lineages were absent in early juvenile stages, which coincides for the midgut tube with our observations of an immature tissue, devoid of microvilli. Conversely, symbiotic lineages from the cephalothoracic cavity were present from the earliest juvenile stages of both species and their overall diversities were similar to those of adults. These results suggest different symbiont acquisition dynamics between the cephalothoracic cavity and the digestive system, which may also involve distinct transmission mechanisms.
Collapse
Affiliation(s)
- Marion Guéganton
- Univ Brest, Ifremer, CNRS, Unite Biologie des Environnements Extrêmes marins ProfondsPlouzaneFrance
| | - Pierre Methou
- Univ Brest, Ifremer, CNRS, Unite Biologie des Environnements Extrêmes marins ProfondsPlouzaneFrance
| | - Johanne Aubé
- Univ Brest, Ifremer, CNRS, Unite Biologie des Environnements Extrêmes marins ProfondsPlouzaneFrance
| | - Cyril Noël
- Ifremer, IRSI, SeBiMER Service de Bioinformatique de l'IfremerPlouzanéFrance
| | - Ouafae Rouxel
- Univ Brest, Ifremer, CNRS, Unite Biologie des Environnements Extrêmes marins ProfondsPlouzaneFrance
| | - Valérie Cueff‐Gauchard
- Univ Brest, Ifremer, CNRS, Unite Biologie des Environnements Extrêmes marins ProfondsPlouzaneFrance
| | - Nicolas Gayet
- Univ Brest, Ifremer, CNRS, Unite Biologie des Environnements Extrêmes marins ProfondsPlouzaneFrance
| | - Lucile Durand
- Univ Brest, Ifremer, CNRS, Unite Biologie des Environnements Extrêmes marins ProfondsPlouzaneFrance
| | - Florence Pradillon
- Univ Brest, Ifremer, CNRS, Unite Biologie des Environnements Extrêmes marins ProfondsPlouzaneFrance
| | | |
Collapse
|
4
|
Piedl K, Aylward FO, Mevers E. The Microbiota of Moon Snail Egg Collars is Shaped by Host-Specific Factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602920. [PMID: 39071397 PMCID: PMC11275906 DOI: 10.1101/2024.07.10.602920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Moon Snails lay eggs using a mixture of mucus and sediment to form an egg mass commonly referred to as an egg collar. These collars do not appear to experience micro-biofouling or predation and this observation led us to hypothesize that the egg collars possess a chemically-rich microbiota that protect the egg collars from pathogens. Herein, we sought to gain an understanding of the bacterial composition of the egg collars by amplifying and sequencing the 16S rRNA gene from egg collar and sediment samples collected at four distinct geographical regions in SW Florida. Relative abundance and non-metric multidimensional scaling plots revealed distinct differences in the bacterial composition between the egg collar and sediment samples. In addition, the egg collars had a lower α-diversity than the sediment, with specific genera being significantly enriched in the egg collars. Analysis of microorganisms consistent across two seasons suggests that Flavobacteriaceae make up a large portion of the core microbiota (36 - 58% of 16S sequences). We also investigated the natural product potential of the egg collar microbiota by sequencing a core biosynthetic gene, the adenylation domains (AD), within the gene clusters of non-ribosomal peptide synthetase (NRPS). AD sequences matched multiple modules within known bioactive NRPs biosynthetic gene clusters, suggesting production is possible within the egg collar system and lays the foundation for future studies into the chemical and ecological role of this microbiota.
Collapse
Affiliation(s)
- Karla Piedl
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Emily Mevers
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
5
|
Chen JZ, Kwong Z, Gerardo NM, Vega NM. Ecological drift during colonization drives within-host and between-host heterogeneity in an animal-associated symbiont. PLoS Biol 2024; 22:e3002304. [PMID: 38662791 PMCID: PMC11075893 DOI: 10.1371/journal.pbio.3002304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 05/07/2024] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
Specialized host-microbe symbioses canonically show greater diversity than expected from simple models, both at the population level and within individual hosts. To understand how this heterogeneity arises, we utilize the squash bug, Anasa tristis, and its bacterial symbionts in the genus Caballeronia. We modulate symbiont bottleneck size and inoculum composition during colonization to demonstrate the significance of ecological drift, the noisy fluctuations in community composition due to demographic stochasticity. Consistent with predictions from the neutral theory of biodiversity, we found that ecological drift alone can account for heterogeneity in symbiont community composition between hosts, even when 2 strains are nearly genetically identical. When acting on competing strains, ecological drift can maintain symbiont genetic diversity among different hosts by stochastically determining the dominant strain within each host. Finally, ecological drift mediates heterogeneity in isogenic symbiont populations even within a single host, along a consistent gradient running the anterior-posterior axis of the symbiotic organ. Our results demonstrate that symbiont population structure across scales does not necessarily require host-mediated selection, as it can emerge as a result of ecological drift acting on both isogenic and unrelated competitors. Our findings illuminate the processes that might affect symbiont transmission, coinfection, and population structure in nature, which can drive the evolution of host-microbe symbioses and microbe-microbe interactions within host-associated microbiomes.
Collapse
Affiliation(s)
- Jason Z. Chen
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Zeeyong Kwong
- Laboratory of Bacteriology, National Institutes of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Nicole M. Gerardo
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Nic M. Vega
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- Department of Physics, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
6
|
Zhou K, Zhang T, Chen XW, Xu Y, Zhang R, Qian PY. Viruses in Marine Invertebrate Holobionts: Complex Interactions Between Phages and Bacterial Symbionts. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:467-485. [PMID: 37647612 DOI: 10.1146/annurev-marine-021623-093133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Marine invertebrates are ecologically and economically important and have formed holobionts by evolving symbiotic relationships with cellular and acellular microorganisms that reside in and on their tissues. In recent decades, significant focus on symbiotic cellular microorganisms has led to the discovery of various functions and a considerable expansion of our knowledge of holobiont functions. Despite this progress, our understanding of symbiotic acellular microorganisms remains insufficient, impeding our ability to achieve a comprehensive understanding of marine holobionts. In this review, we highlight the abundant viruses, with a particular emphasis on bacteriophages; provide an overview of their diversity, especially in extensively studied sponges and corals; and examine their potential life cycles. In addition, we discuss potential phage-holobiont interactions of various invertebrates, including participating in initial bacterial colonization, maintaining symbiotic relationships, and causing or exacerbating the diseases of marine invertebrates. Despite the importance of this subject, knowledge of how viruses contribute to marine invertebrate organisms remains limited. Advancements in technology and greater attention to viruses will enhance our understanding of marine invertebrate holobionts.
Collapse
Affiliation(s)
- Kun Zhou
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China;
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ting Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen, Fujian, China
| | - Xiao-Wei Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen, Fujian, China
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China;
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China;
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China;
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
7
|
Schrecengost A, Rotterová J, Poláková K, Čepička I, Beinart RA. Divergent marine anaerobic ciliates harbor closely related Methanocorpusculum endosymbionts. THE ISME JOURNAL 2024; 18:wrae125. [PMID: 38982749 PMCID: PMC11253715 DOI: 10.1093/ismejo/wrae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/06/2024] [Accepted: 07/06/2024] [Indexed: 07/11/2024]
Abstract
Ciliates are a diverse group of protists known for their ability to establish various partnerships and thrive in a wide variety of oxygen-depleted environments. Most anaerobic ciliates harbor methanogens, one of the few known archaea living intracellularly. These methanogens increase the metabolic efficiency of host fermentation via syntrophic use of host end-product in methanogenesis. Despite the ubiquity of these symbioses in anoxic habitats, patterns of symbiont specificity and fidelity are not well known. We surveyed two unrelated, commonly found groups of anaerobic ciliates, the Plagiopylea and Metopida, isolated from anoxic marine sediments. We sequenced host 18S rRNA and symbiont 16S rRNA marker genes as well as the symbiont internal transcribed spacer region from our cultured ciliates to identify hosts and their associated methanogenic symbionts. We found that marine ciliates from both of these co-occurring, divergent groups harbor closely related yet distinct intracellular archaea within the Methanocorpusculum genus. The symbionts appear to be stable at the host species level, but at higher taxonomic levels, there is evidence that symbiont replacements have occurred. Gaining insight into this unique association will deepen our understanding of the complex transmission modes of marine microbial symbionts, and the mutualistic microbial interactions occurring across domains of life.
Collapse
Affiliation(s)
- Anna Schrecengost
- University of Rhode Island, Graduate School of Oceanography, 215 South Ferry Rd, Narragansett, RI 02882, United States
| | - Johana Rotterová
- University of Rhode Island, Graduate School of Oceanography, 215 South Ferry Rd, Narragansett, RI 02882, United States
- Department of Marine Sciences, University of Puerto Rico Mayagüez, Mayagüez, United States
| | - Kateřina Poláková
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czech Republic
| | - Roxanne A Beinart
- University of Rhode Island, Graduate School of Oceanography, 215 South Ferry Rd, Narragansett, RI 02882, United States
| |
Collapse
|
8
|
Sun Y, Wang M, Cao L, Seim I, Zhou L, Chen J, Wang H, Zhong Z, Chen H, Fu L, Li M, Li C, Sun S. Mosaic environment-driven evolution of the deep-sea mussel Gigantidas platifrons bacterial endosymbiont. MICROBIOME 2023; 11:253. [PMID: 37974296 PMCID: PMC10652631 DOI: 10.1186/s40168-023-01695-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 10/11/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND The within-species diversity of symbiotic bacteria represents an important genetic resource for their environmental adaptation, especially for horizontally transmitted endosymbionts. Although strain-level intraspecies variation has recently been detected in many deep-sea endosymbionts, their ecological role in environmental adaptation, their genome evolution pattern under heterogeneous geochemical environments, and the underlying molecular forces remain unclear. RESULTS Here, we conducted a fine-scale metagenomic analysis of the deep-sea mussel Gigantidas platifrons bacterial endosymbiont collected from distinct habitats: hydrothermal vent and methane seep. Endosymbiont genomes were assembled using a pipeline that distinguishes within-species variation and revealed highly heterogeneous compositions in mussels from different habitats. Phylogenetic analysis separated the assemblies into three distinct environment-linked clades. Their functional differentiation follows a mosaic evolutionary pattern. Core genes, essential for central metabolic function and symbiosis, were conserved across all clades. Clade-specific genes associated with heavy metal resistance, pH homeostasis, and nitrate utilization exhibited signals of accelerated evolution. Notably, transposable elements and plasmids contributed to the genetic reshuffling of the symbiont genomes and likely accelerated adaptive evolution through pseudogenization and the introduction of new genes. CONCLUSIONS The current study uncovers the environment-driven evolution of deep-sea symbionts mediated by mobile genetic elements. Its findings highlight a potentially common and critical role of within-species diversity in animal-microbiome symbioses. Video Abstract.
Collapse
Affiliation(s)
- Yan Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
| | - Minxiao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
| | - Lei Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Li Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
| | - Jianwei Chen
- BGI Research-Qingdao, BGI, Qingdao, 266555, China
| | - Hao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
| | - Zhaoshan Zhong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
| | - Hao Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
| | - Lulu Fu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
| | - Mengna Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
| | - Chaolun Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China.
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Song Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Li Y, He X, Lin Y, Li YX, Kamenev GM, Li J, Qiu JW, Sun J. Reduced chemosymbiont genome in the methane seep thyasirid and the cooperated metabolisms in the holobiont under anaerobic sediment. Mol Ecol Resour 2023; 23:1853-1867. [PMID: 37486074 DOI: 10.1111/1755-0998.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/16/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Previous studies have deciphered the genomic basis of host-symbiont metabolic complementarity in vestimentiferans, bathymodioline mussels, vesicomyid clams and Alviniconcha snails, yet little is known about the chemosynthetic symbiosis in Thyasiridae-a family of Bivalvia regarded as an excellent model in chemosymbiosis research due to their wide distribution in both deep-sea and shallow-water habitats. We report the first circular thyasirid symbiont genome, named Candidatus Ruthturnera sp. Tsphm01, with a size of 1.53 Mb, 1521 coding genes and 100% completeness. Compared to its free-living relatives, Ca. Ruthturnera sp. Tsphm01 genome is reduced, lacking components for chemotaxis, citric acid cycle and de novo biosynthesis of small molecules (e.g. amino acids and cofactors), indicating it is likely an obligate intracellular symbiont. Nevertheless, the symbiont retains complete genomic components of sulphur oxidation and assimilation of inorganic carbon, and these systems were highly and actively expressed. Moreover, the symbiont appears well-adapted to anoxic environment, including capable of anaerobic respiration (i.e. reductions of DMSO and nitrate) and possession of a low oxygen-adapted type of cytochrome c oxidase. Analysis of the host transcriptome revealed its metabolic complementarity to the incomplete metabolic pathways of the symbiont and the acquisition of nutrients from the symbiont via phagocytosis and exosome. By providing the first complete genome of reduced size in a thyasirid symbiont, this study enhances our understanding of the diversity of symbiosis that has enabled bivalves to thrive in chemosynthetic habitats. The resources will be widely used in phylogenetic, geographic and evolutionary studies of chemosynthetic bacteria and bivalves.
Collapse
Affiliation(s)
- Yunlong Li
- Institute of Evolution & Marine Biodiversity, Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Laoshan Laboratory, Qingdao, China
| | - Xing He
- Institute of Evolution & Marine Biodiversity, Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Laoshan Laboratory, Qingdao, China
| | - Yuxuan Lin
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yi-Xuan Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Gennady M Kamenev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Jiying Li
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jin Sun
- Institute of Evolution & Marine Biodiversity, Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Laoshan Laboratory, Qingdao, China
| |
Collapse
|
10
|
Sullivan TJ, Roberts H, Bultman TL. Genetic Covariation Between the Vertically Transmitted Endophyte Epichloë canadensis and Its Host Canada Wildrye. MICROBIAL ECOLOGY 2023; 86:1686-1695. [PMID: 36725749 DOI: 10.1007/s00248-022-02166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/26/2022] [Indexed: 06/18/2023]
Abstract
Symbiotic mutualisms are thought to be stabilized by correlations between the interacting genotypes which may be strengthened via vertical transmission and/or reduced genetic variability within each species. Vertical transmission, however, may weaken interactions over time as the endosymbionts would acquire mutations that could not be purged. Additionally, temporal variation in a conditional mutualism could create genetic variation and increased variation in the interaction outcome. In this study, we assessed genetic variation in both members of a symbiosis, the endosymbiotic fungal endophyte Epichloë canadensis and its grass host Canada wildrye (Elymus canadensis). Both species exhibited comparable levels of diversity, mostly within populations rather than between. There were significant differences between populations, although not in the same pattern for the two species, and the differences were not correlated with geographic distance for either species. Interindividual genetic distance matrices for the two species were significantly correlated, although all combinations of discriminant analysis of principle components (DAPC) defined multilocus genotype groups were found suggesting that strict genotype matching is not necessary. Variation in interaction outcome is common in grass/endophyte interactions, and our results suggest that the accumulation of mutations overtime combined with temporal variation in selection pressures increasing genetic variation in the symbiosis may be the cause.
Collapse
Affiliation(s)
- T J Sullivan
- School of Sciences, Indiana University Kokomo, 2300 S. Washington St, Kokomo, IN, 46902, USA.
| | - Holly Roberts
- School of Sciences, Indiana University Kokomo, 2300 S. Washington St, Kokomo, IN, 46902, USA
| | - Thomas L Bultman
- Department of Biology, Hope College, 35 E. 12th St., Holland, MI, 49423, USA
| |
Collapse
|
11
|
Longley R, Robinson A, Liber JA, Bryson AE, Morales DP, LaButti K, Riley R, Mondo SJ, Kuo A, Yoshinaga Y, Daum C, Barry K, Grigoriev IV, Desirò A, Chain PSG, Bonito G. Comparative genomics of Mollicutes-related endobacteria supports a late invasion into Mucoromycota fungi. Commun Biol 2023; 6:948. [PMID: 37723238 PMCID: PMC10507103 DOI: 10.1038/s42003-023-05299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023] Open
Abstract
Diverse members of early-diverging Mucoromycota, including mycorrhizal taxa and soil-associated Mortierellaceae, are known to harbor Mollicutes-related endobacteria (MRE). It has been hypothesized that MRE were acquired by a common ancestor and transmitted vertically. Alternatively, MRE endosymbionts could have invaded after the divergence of Mucoromycota lineages and subsequently spread to new hosts horizontally. To better understand the evolutionary history of MRE symbionts, we generated and analyzed four complete MRE genomes from two Mortierellaceae genera: Linnemannia (MRE-L) and Benniella (MRE-B). These genomes include the smallest known of fungal endosymbionts and showed signals of a tight relationship with hosts including a reduced functional capacity and genes transferred from fungal hosts to MRE. Phylogenetic reconstruction including nine MRE from mycorrhizal fungi revealed that MRE-B genomes are more closely related to MRE from Glomeromycotina than MRE-L from the same host family. We posit that reductions in genome size, GC content, pseudogene content, and repeat content in MRE-L may reflect a longer-term relationship with their fungal hosts. These data indicate Linnemannia and Benniella MRE were likely acquired independently after their fungal hosts diverged from a common ancestor. This work expands upon foundational knowledge on minimal genomes and provides insights into the evolution of bacterial endosymbionts.
Collapse
Affiliation(s)
- Reid Longley
- Los Alamos National Laboratory, Los Alamos, NM, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Julian A Liber
- Department of Biology, Duke University, Durham, NC, 27704, USA
| | - Abigail E Bryson
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Kurt LaButti
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Robert Riley
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Stephen J Mondo
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80521, USA
| | - Alan Kuo
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yuko Yoshinaga
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Chris Daum
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kerrie Barry
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Alessandro Desirò
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Gregory Bonito
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
12
|
Breusing C, Xiao Y, Russell SL, Corbett-Detig RB, Li S, Sun J, Chen C, Lan Y, Qian PY, Beinart RA. Ecological differences among hydrothermal vent symbioses may drive contrasting patterns of symbiont population differentiation. mSystems 2023; 8:e0028423. [PMID: 37493648 PMCID: PMC10469979 DOI: 10.1128/msystems.00284-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/13/2023] [Indexed: 07/27/2023] Open
Abstract
The intra-host composition of horizontally transmitted microbial symbionts can vary across host populations due to interactive effects of host genetics, environmental, and geographic factors. While adaptation to local habitat conditions can drive geographic subdivision of symbiont strains, it is unknown how differences in ecological characteristics among host-symbiont associations influence the genomic structure of symbiont populations. To address this question, we sequenced metagenomes of different populations of the deep-sea mussel Bathymodiolus septemdierum, which are common at Western Pacific deep-sea hydrothermal vents and show characteristic patterns of niche partitioning with sympatric gastropod symbioses. Bathymodiolus septemdierum lives in close symbiotic relationship with sulfur-oxidizing chemosynthetic bacteria but supplements its symbiotrophic diet through filter-feeding, enabling it to occupy ecological niches with little exposure to geochemical reductants. Our analyses indicate that symbiont populations associated with B. septemdierum show structuring by geographic location, but that the dominant symbiont strain is uncorrelated with vent site. These patterns are in contrast to co-occurring Alviniconcha and Ifremeria gastropod symbioses that exhibit greater symbiont nutritional dependence and occupy habitats with higher spatial variability in environmental conditions. Our results suggest that relative habitat homogeneity combined with sufficient symbiont dispersal and genomic mixing might promote persistence of similar symbiont strains across geographic locations, while mixotrophy might decrease selective pressures on the host to affiliate with locally adapted symbiont strains. Overall, these data contribute to our understanding of the potential mechanisms influencing symbiont population structure across a spectrum of marine microbial symbioses that occupy contrasting ecological niches. IMPORTANCE Beneficial relationships between animals and microbial organisms (symbionts) are ubiquitous in nature. In the ocean, microbial symbionts are typically acquired from the environment and their composition across geographic locations is often shaped by adaptation to local habitat conditions. However, it is currently unknown how generalizable these patterns are across symbiotic systems that have contrasting ecological characteristics. To address this question, we compared symbiont population structure between deep-sea hydrothermal vent mussels and co-occurring but ecologically distinct snail species. Our analyses show that mussel symbiont populations are less partitioned by geography and do not demonstrate evidence for environmental adaptation. We posit that the mussel's mixotrophic feeding mode may lower its need to affiliate with locally adapted symbiont strains, while microhabitat stability and symbiont genomic mixing likely favors persistence of symbiont strains across geographic locations. Altogether, these findings further our understanding of the mechanisms shaping symbiont population structure in marine environmentally transmitted symbioses.
Collapse
Affiliation(s)
- Corinna Breusing
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Yao Xiao
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
| | - Shelbi L. Russell
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Russell B. Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Sixuan Li
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Jin Sun
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yi Lan
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
| | - Pei-Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
| | - Roxanne A. Beinart
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| |
Collapse
|
13
|
McEvoy SL, Lustenhouwer N, Melen MK, Nguyen O, Marimuthu MPA, Chumchim N, Beraut E, Parker IM, Meyer RS. Chromosome-level reference genome of stinkwort, Dittrichia graveolens (L.) Greuter: A resource for studies on invasion, range expansion, and evolutionary adaptation under global change. J Hered 2023; 114:561-569. [PMID: 37262429 PMCID: PMC10445520 DOI: 10.1093/jhered/esad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/01/2023] [Indexed: 06/03/2023] Open
Abstract
Dittrichia graveolens (L.) Greuter, or stinkwort, is a weedy annual plant within the family Asteraceae. The species is recognized for the rapid expansion of both its native and introduced ranges: in Europe, it has expanded its native distribution northward from the Mediterranean basin by nearly 7 °C latitude since the mid-20th century, while in California and Australia the plant is an invasive weed of concern. Here, we present the first de novo D. graveolens genome assembly (1N = 9 chromosomes), including complete chloroplast (151,013 bp) and partial mitochondrial genomes (22,084 bp), created using Pacific Biosciences HiFi reads and Dovetail Omni-C data. The final primary assembly is 835 Mbp in length, of which 98.1% are represented by 9 scaffolds ranging from 66 to 119 Mbp. The contig N50 is 74.9 Mbp and the scaffold N50 is 96.9 Mbp, which, together with a 98.8% completeness based on the BUSCO embryophyta10 database containing 1,614 orthologs, underscores the high quality of this assembly. This pseudo-molecule-scale genome assembly is a valuable resource for our fundamental understanding of the genomic consequences of range expansion under global change, as well as comparative genomic studies in the Asteraceae.
Collapse
Affiliation(s)
- Susan L McEvoy
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, United States
- Department of Conservation and Research, Santa Barbara Botanic Garden, Santa Barbara, CA, United States
| | - Nicky Lustenhouwer
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, United States
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Miranda K Melen
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Oanh Nguyen
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California, Davis, CA, United States
| | - Mohan P A Marimuthu
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California, Davis, CA, United States
| | - Noravit Chumchim
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California, Davis, CA, United States
| | - Eric Beraut
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Ingrid M Parker
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Rachel S Meyer
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
14
|
Gao ZM, Xu T, Chen HG, Lu R, Tao J, Wang HB, Qiu JW, Wang Y. Early genome erosion and internal phage-symbiont-host interaction in the endosymbionts of a cold-seep tubeworm. iScience 2023; 26:107033. [PMID: 37389180 PMCID: PMC10300362 DOI: 10.1016/j.isci.2023.107033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/11/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Endosymbiosis with chemosynthetic Gammaproteobacteria is widely recognized as an adaptive mechanism of siboglinid tubeworms, yet evolution of these endosymbionts and their driving forces remain elusive. Here, we report a finished endosymbiont genome (HMS1) of the cold-seep tubeworm Sclerolinum annulatum. The HMS1 genome is small in size, with abundant prophages and transposable elements but lacking gene sets coding for denitrification, hydrogen oxidization, oxidative phosphorylation, vitamin biosynthesis, cell pH and/or sodium homeostasis, environmental sensing, and motility, indicative of early genome erosion and adaptive evolution toward obligate endosymbiosis. Unexpectedly, a prophage embedded in the HMS1 genome undergoes lytic cycle. Highly expressed ROS scavenger and LexA repressor genes indicate that the tubeworm host likely activates the lysogenic phage into lytic cycle through the SOS response to regulate endosymbiont population and harvest nutrients. Our findings indicate progressive evolution of Sclerolinum endosymbionts toward obligate endosymbiosis and expand the knowledge about phage-symbiont-host interaction in deep-sea tubeworms.
Collapse
Affiliation(s)
- Zhao-Ming Gao
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya 572000, China
| | - Ting Xu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Hua-Guan Chen
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Rui Lu
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jun Tao
- MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511458, China
| | - Hong-Bin Wang
- MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511458, China
| | - Jian-Wen Qiu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yong Wang
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya 572000, China
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518000, China
| |
Collapse
|
15
|
Rose C, Lund MB, Søgård AM, Busck MM, Bechsgaard JS, Schramm A, Bilde T. Social transmission of bacterial symbionts homogenizes the microbiome within and across generations of group-living spiders. ISME COMMUNICATIONS 2023; 3:60. [PMID: 37330540 PMCID: PMC10276852 DOI: 10.1038/s43705-023-00256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/12/2023] [Accepted: 05/12/2023] [Indexed: 06/19/2023]
Abstract
Disentangling modes and fidelity of symbiont transmission are key for understanding host-symbiont associations in wild populations. In group-living animals, social transmission may evolve to ensure high-fidelity transmission of symbionts, since non-reproducing helpers constitute a dead-end for vertical transmission. We investigated symbiont transmission in the social spider Stegodyphus dumicola, which lives in family groups where the majority of females are non-reproducing helpers, females feed offspring by regurgitation, and individuals feed communally on insect prey. Group members share temporally stable microbiomes across generations, while distinct variation in microbiome composition exists between groups. We hypothesized that horizontal transmission of symbionts is enhanced by social interactions, and investigated transmission routes within (horizontal) and across (vertical) generations using bacterial 16S rRNA gene amplicon sequencing in three experiments: (i) individuals were sampled at all life stages to assess at which life stage the microbiome is acquired. (ii) a cross-fostering design was employed to test whether offspring carry the microbiome from their natal nest, or acquire the microbiome of the foster nest via social transmission. (iii) adult spiders with different microbiome compositions were mixed to assess whether social transmission homogenizes microbiome composition among group members. We demonstrate that offspring hatch symbiont-free, and bacterial symbionts are transmitted vertically across generations by social interactions with the onset of regurgitation feeding by (foster)mothers in an early life stage. Social transmission governs horizontal inter-individual mixing and homogenization of microbiome composition among nest mates. We conclude that temporally stable host-symbiont associations in social species can be facilitated and maintained by high-fidelity social transmission.
Collapse
Affiliation(s)
- Clémence Rose
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark.
| | - Marie B Lund
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Andrea M Søgård
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Mette M Busck
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Jesper S Bechsgaard
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Trine Bilde
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
16
|
Zvi-Kedem T, Vintila S, Kleiner M, Tchernov D, Rubin-Blum M. Metabolic handoffs between multiple symbionts may benefit the deep-sea bathymodioline mussels. ISME COMMUNICATIONS 2023; 3:48. [PMID: 37210404 PMCID: PMC10199937 DOI: 10.1038/s43705-023-00254-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/25/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
Bathymodioline mussels rely on thiotrophic and/or methanotrophic chemosynthetic symbionts for nutrition, yet, secondary heterotrophic symbionts are often present and play an unknown role in the fitness of the organism. The bathymodioline Idas mussels that thrive in gas seeps and on sunken wood in the Mediterranean Sea and the Atlantic Ocean, host at least six symbiont lineages that often co-occur. These lineages include the primary symbionts chemosynthetic methane- and sulfur-oxidizing gammaproteobacteria, and the secondary symbionts, Methylophagaceae, Nitrincolaceae and Flavobacteriaceae, whose physiology and metabolism are obscure. Little is known about if and how these symbionts interact or exchange metabolites. Here we curated metagenome-assembled genomes of Idas modiolaeformis symbionts and used genome-centered metatranscriptomics and metaproteomics to assess key symbiont functions. The Methylophagaceae symbiont is a methylotrophic autotroph, as it encoded and expressed the ribulose monophosphate and Calvin-Benson-Bassham cycle enzymes, particularly RuBisCO. The Nitrincolaceae ASP10-02a symbiont likely fuels its metabolism with nitrogen-rich macromolecules and may provide the holobiont with vitamin B12. The Urechidicola (Flavobacteriaceae) symbionts likely degrade glycans and may remove NO. Our findings indicate that these flexible associations allow for expanding the range of substrates and environmental niches, via new metabolic functions and handoffs.
Collapse
Affiliation(s)
- Tal Zvi-Kedem
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa, 3108000, Israel
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Simina Vintila
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dan Tchernov
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Maxim Rubin-Blum
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa, 3108000, Israel.
| |
Collapse
|
17
|
Angst P, Ebert D, Fields PD. Population genetic analysis of the microsporidium Ordospora colligata reveals the role of natural selection and phylogeography on its extremely compact and reduced genome. G3 (BETHESDA, MD.) 2023; 13:jkad017. [PMID: 36655395 PMCID: PMC9997559 DOI: 10.1093/g3journal/jkad017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
The determinants of variation in a species' genome-wide nucleotide diversity include historical, environmental, and stochastic aspects. This diversity can inform us about the species' past and present evolutionary dynamics. In parasites, the mode of transmission and the interactions with the host might supersede the effects of these aspects in shaping parasite genomic diversity. We used genomic samples from 10 populations of the microsporidian parasite Ordospora colligata to investigate present genomic diversity and how it was shaped by evolutionary processes, specifically, the role of phylogeography, co-phylogeography (with the host), natural selection, and transmission mode. Although very closely related microsporidia cause diseases in humans, O. colligata is specific to the freshwater crustacean Daphnia magna and has one of the smallest known eukaryotic genomes. We found an overlapping phylogeography between O. colligata and its host highlighting the long-term, intimate relationship between them. The observed geographic distribution reflects previous findings that O. colligata exhibits adaptations to colder habitats, which differentiates it from other microsporidian gut parasites of D. magna predominantly found in warmer areas. The co-phylogeography allowed us to calibrate the O. colligata phylogeny and thus estimate its mutation rate. We identified several genetic regions under potential selection. Our whole-genome study provides insights into the evolution of one of the most reduced eukaryotic genomes and shows how different processes shape genomic diversity of an obligate parasite.
Collapse
Affiliation(s)
- Pascal Angst
- Department of Environmental Sciences, Zoology, University of Basel, Basel 4051, Switzerland
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel 4051, Switzerland
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, Basel 4051, Switzerland
| |
Collapse
|
18
|
Dharamshi JE, Köstlbacher S, Schön ME, Collingro A, Ettema TJG, Horn M. Gene gain facilitated endosymbiotic evolution of Chlamydiae. Nat Microbiol 2023; 8:40-54. [PMID: 36604515 PMCID: PMC9816063 DOI: 10.1038/s41564-022-01284-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/07/2022] [Indexed: 01/07/2023]
Abstract
Chlamydiae is a bacterial phylum composed of obligate animal and protist endosymbionts. However, other members of the Planctomycetes-Verrucomicrobia-Chlamydiae superphylum are primarily free living. How Chlamydiae transitioned to an endosymbiotic lifestyle is still largely unresolved. Here we reconstructed Planctomycetes-Verrucomicrobia-Chlamydiae species relationships and modelled superphylum genome evolution. Gene content reconstruction from 11,996 gene families suggests a motile and facultatively anaerobic last common Chlamydiae ancestor that had already gained characteristic endosymbiont genes. Counter to expectations for genome streamlining in strict endosymbionts, we detected substantial gene gain within Chlamydiae. We found that divergence in energy metabolism and aerobiosis observed in extant lineages emerged later during chlamydial evolution. In particular, metabolic and aerobic genes characteristic of the more metabolically versatile protist-infecting chlamydiae were gained, such as respiratory chain complexes. Our results show that metabolic complexity can increase during endosymbiont evolution, adding an additional perspective for understanding symbiont evolutionary trajectories across the tree of life.
Collapse
Affiliation(s)
- Jennah E Dharamshi
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stephan Köstlbacher
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria
- University of Vienna, Doctoral School in Microbiology and Environmental Science, Vienna, Austria
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Max E Schön
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Astrid Collingro
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| | - Matthias Horn
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria.
| |
Collapse
|
19
|
Ganesan R, Wierz JC, Kaltenpoth M, Flórez LV. How It All Begins: Bacterial Factors Mediating the Colonization of Invertebrate Hosts by Beneficial Symbionts. Microbiol Mol Biol Rev 2022; 86:e0012621. [PMID: 36301103 PMCID: PMC9769632 DOI: 10.1128/mmbr.00126-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Beneficial associations with bacteria are widespread across animals, spanning a range of symbiont localizations, transmission routes, and functions. While some of these associations have evolved into obligate relationships with permanent symbiont localization within the host, the majority require colonization of every host generation from the environment or via maternal provisions. Across the broad diversity of host species and tissue types that beneficial bacteria can colonize, there are some highly specialized strategies for establishment yet also some common patterns in the molecular basis of colonization. This review focuses on the mechanisms underlying the early stage of beneficial bacterium-invertebrate associations, from initial contact to the establishment of the symbionts in a specific location of the host's body. We first reflect on general selective pressures that can drive the transition from a free-living to a host-associated lifestyle in bacteria. We then cover bacterial molecular factors for colonization in symbioses from both model and nonmodel invertebrate systems where these have been studied, including terrestrial and aquatic host taxa. Finally, we discuss how interactions between multiple colonizing bacteria and priority effects can influence colonization. Taking the bacterial perspective, we emphasize the importance of developing new experimentally tractable systems to derive general insights into the ecological factors and molecular adaptations underlying the origin and establishment of beneficial symbioses in animals.
Collapse
Affiliation(s)
- Ramya Ganesan
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jürgen C. Wierz
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Laura V. Flórez
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Plant and Environmental Sciences, Section for Organismal Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Sato Y, Wippler J, Wentrup C, Ansorge R, Sadowski M, Gruber-Vodicka H, Dubilier N, Kleiner M. Fidelity varies in the symbiosis between a gutless marine worm and its microbial consortium. MICROBIOME 2022; 10:178. [PMID: 36273146 PMCID: PMC9587655 DOI: 10.1186/s40168-022-01372-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/15/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Many animals live in intimate associations with a species-rich microbiome. A key factor in maintaining these beneficial associations is fidelity, defined as the stability of associations between hosts and their microbiota over multiple host generations. Fidelity has been well studied in terrestrial hosts, particularly insects, over longer macroevolutionary time. In contrast, little is known about fidelity in marine animals with species-rich microbiomes at short microevolutionary time scales, that is at the level of a single host population. Given that natural selection acts most directly on local populations, studies of microevolutionary partner fidelity are important for revealing the ecological and evolutionary processes that drive intimate beneficial associations within animal species. RESULTS In this study on the obligate symbiosis between the gutless marine annelid Olavius algarvensis and its consortium of seven co-occurring bacterial symbionts, we show that partner fidelity varies across symbiont species from strict to absent over short microevolutionary time. Using a low-coverage sequencing approach that has not yet been applied to microbial community analyses, we analysed the metagenomes of 80 O. algarvensis individuals from the Mediterranean and compared host mitochondrial and symbiont phylogenies based on single-nucleotide polymorphisms across genomes. Fidelity was highest for the two chemoautotrophic, sulphur-oxidizing symbionts that dominated the microbial consortium of all O. algarvensis individuals. In contrast, fidelity was only intermediate to absent in the sulphate-reducing and spirochaetal symbionts with lower abundance. These differences in fidelity are likely driven by both selective and stochastic forces acting on the consistency with which symbionts are vertically transmitted. CONCLUSIONS We hypothesize that variable degrees of fidelity are advantageous for O. algarvensis by allowing the faithful transmission of their nutritionally most important symbionts and flexibility in the acquisition of other symbionts that promote ecological plasticity in the acquisition of environmental resources. Video Abstract.
Collapse
Affiliation(s)
- Yui Sato
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany.
| | - Juliane Wippler
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
| | - Cecilia Wentrup
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
| | - Rebecca Ansorge
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| | - Miriam Sadowski
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
| | - Harald Gruber-Vodicka
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany.
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
21
|
Lan Y, Sun J, Chen C, Wang H, Xiao Y, Perez M, Yang Y, Kwan YH, Sun Y, Zhou Y, Han X, Miyazaki J, Watsuji TO, Bissessur D, Qiu JW, Takai K, Qian PY. Endosymbiont population genomics sheds light on transmission mode, partner specificity, and stability of the scaly-foot snail holobiont. THE ISME JOURNAL 2022; 16:2132-2143. [PMID: 35715703 PMCID: PMC9381778 DOI: 10.1038/s41396-022-01261-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022]
Abstract
The scaly-foot snail (Chrysomallon squamiferum) inhabiting deep-sea hydrothermal vents in the Indian Ocean relies on its sulphur-oxidising gammaproteobacterial endosymbionts for nutrition and energy. In this study, we investigate the specificity, transmission mode, and stability of multiple scaly-foot snail populations dwelling in five vent fields with considerably disparate geological, physical and chemical environmental conditions. Results of population genomics analyses reveal an incongruent phylogeny between the endosymbiont and mitochondrial genomes of the scaly-foot snails in the five vent fields sampled, indicating that the hosts obtain endosymbionts via horizontal transmission in each generation. However, the genetic homogeneity of many symbiont populations implies that vertical transmission cannot be ruled out either. Fluorescence in situ hybridisation of ovarian tissue yields symbiont signals around the oocytes, suggesting that vertical transmission co-occurs with horizontal transmission. Results of in situ environmental measurements and gene expression analyses from in situ fixed samples show that the snail host buffers the differences in environmental conditions to provide the endosymbionts with a stable intracellular micro-environment, where the symbionts serve key metabolic functions and benefit from the host’s cushion. The mixed transmission mode, symbiont specificity at the species level, and stable intracellular environment provided by the host support the evolutionary, ecological, and physiological success of scaly-foot snail holobionts in different vents with unique environmental parameters.
Collapse
Affiliation(s)
- Yi Lan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jin Sun
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa Prefecture, Japan
| | - Hao Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yao Xiao
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Maeva Perez
- Department of Biological Sciences, University of Montreal, Montreal, Quebec, Canada
| | - Yi Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yick Hang Kwan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yanan Sun
- Department of Biology and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Yadong Zhou
- Key Laboratory of Marine Ecosystem Dynamics & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Xiqiu Han
- Key Laboratory of Submarine Geosciences & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Junichi Miyazaki
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa Prefecture, Japan
| | - Tomo-O Watsuji
- Department of Food and Nutrition, Higashi-Chikushi Junior College, 5-1-1 Shimoitozu, Kitakyusyu, 803-0846, Japan
| | - Dass Bissessur
- Department for Continental Shelf, Maritime Zones Administration & Exploration, Prime Minister's Office, 2nd Floor, Belmont House, 12 Intendance Street, Port Louis, 11328, Mauritius
| | - Jian-Wen Qiu
- Department of Biology and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ken Takai
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa Prefecture, Japan
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China. .,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
22
|
Andrianto E, Kasai A. Wolbachia in Black Spiny Whiteflies and Their New Parasitoid Wasp in Japan: Evidence of the Distinct Infection Status on Aleurocanthus camelliae Cryptic Species Complex. INSECTS 2022; 13:insects13090788. [PMID: 36135489 PMCID: PMC9502694 DOI: 10.3390/insects13090788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/12/2022] [Accepted: 08/27/2022] [Indexed: 05/21/2023]
Abstract
Wolbachia, an alphaproteobacterial reproductive parasite, can cause profound mitochondrial divergence in insects, which might eventually be a part of cryptic speciation. Aleurocanthus camelliae is a cryptic species complex consisting of several morphospecies and/or haplotypes that are genetically different but morphologically indistinctive. However, little is known about the Wolbachia infection status in these tea and Citrus pests. Thus, this study aimed to profile the diversity and phenotypic characteristics of Wolbachia natural infections in the A. camelliae cryptic species complex. A monophyletic strain of Wolbachia that infected the A. camelliae cryptic species complex (wAlec) with different patterns was discovered. Whiteflies that are morphologically identical to Aleurocanthus spiniferus (Aleurocanthus cf. A. spiniferus in Eurya japonica and A. spiniferus in Citrus) were grouped into uninfected populations, whereas the fixed infection was detected in A. camelliae B1 from Theaceae. The rapid evolution of wAlec was also found to occur through a high recombination event, which produced subgroups A and B in wAlec. It may also be associated with the non-cytoplasmic incompatibility (CI) phenotype of wAlec due to undetectable CI-related genes from phage WO (WOAlec). The current discovery of a novel cryptic species of A. camelliae led to a discussion about the oscillation hypothesis, which may provide insights on cryptic speciation, particularly on how specialization and host expansion have been recorded among these species. This study also identified a parasitoid wasp belonging to the genus Eretmocerus in A. camelliae, for the first time in Japan.
Collapse
Affiliation(s)
- Eko Andrianto
- Science of Biological Environment, The United Graduate School of Agricultural Science (UGSAS), Gifu University, Gifu City 501-1193, Japan
- Correspondence: ; Tel./Fax: +81-054-238-4790
| | - Atsushi Kasai
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka City 422-8528, Japan
| |
Collapse
|
23
|
Ferchiou S, Caza F, de Boissel PGJ, Villemur R, St-Pierre Y. Applying the concept of liquid biopsy to monitor the microbial biodiversity of marine coastal ecosystems. ISME COMMUNICATIONS 2022; 2:61. [PMID: 37938655 PMCID: PMC9723566 DOI: 10.1038/s43705-022-00145-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 10/04/2023]
Abstract
Liquid biopsy (LB) is a concept that is rapidly gaining ground in the biomedical field. Its concept is largely based on the detection of circulating cell-free DNA (ccfDNA) fragments that are mostly released as small fragments following cell death in various tissues. A small percentage of these fragments are from foreign (nonself) tissues or organisms. In the present work, we applied this concept to mussels, a sentinel species known for its high filtration capacity of seawater. We exploited the capacity of mussels to be used as natural filters to capture environmental DNA fragments of different origins to provide information on the biodiversity of marine coastal ecosystems. Our results showed that hemolymph of mussels contains DNA fragments that varied considerably in size, ranging from 1 to 5 kb. Shotgun sequencing revealed that a significant amount of DNA fragments had a nonself microbial origin. Among these, we found DNA fragments derived from bacteria, archaea, and viruses, including viruses known to infect a variety of hosts that commonly populate coastal marine ecosystems. Taken together, our study shows that the concept of LB applied to mussels provides a rich and yet unexplored source of knowledge regarding the microbial biodiversity of a marine coastal ecosystem.
Collapse
Affiliation(s)
- Sophia Ferchiou
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, H7V 1B7, Canada
| | - France Caza
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, H7V 1B7, Canada
| | | | - Richard Villemur
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, H7V 1B7, Canada
| | - Yves St-Pierre
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, H7V 1B7, Canada.
| |
Collapse
|
24
|
Romero Picazo D, Werner A, Dagan T, Kupczok A. Pangenome Evolution in Environmentally Transmitted Symbionts of Deep-Sea Mussels Is Governed by Vertical Inheritance. Genome Biol Evol 2022; 14:evac098. [PMID: 35731940 PMCID: PMC9260185 DOI: 10.1093/gbe/evac098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial pangenomes vary across species; their size and structure are determined by genetic diversity within the population and by gene loss and horizontal gene transfer (HGT). Many bacteria are associated with eukaryotic hosts where the host colonization dynamics may impact bacterial genome evolution. Host-associated lifestyle has been recognized as a barrier to HGT in parentally transmitted bacteria. However, pangenome evolution of environmentally acquired symbionts remains understudied, often due to limitations in symbiont cultivation. Using high-resolution metagenomics, here we study pangenome evolution of two co-occurring endosymbionts inhabiting Bathymodiolus brooksi mussels from a single cold seep. The symbionts, sulfur-oxidizing (SOX) and methane-oxidizing (MOX) gamma-proteobacteria, are environmentally acquired at an early developmental stage and individual mussels may harbor multiple strains of each symbiont species. We found differences in the accessory gene content of both symbionts across individual mussels, which are reflected by differences in symbiont strain composition. Compared with core genes, accessory genes are enriched in genome plasticity functions. We found no evidence for recent HGT between both symbionts. A comparison between the symbiont pangenomes revealed that the MOX population is less diverged and contains fewer accessory genes, supporting that the MOX association with B. brooksi is more recent in comparison to that of SOX. Our results show that the pangenomes of both symbionts evolved mainly by vertical inheritance. We conclude that genome evolution of environmentally transmitted symbionts that associate with individual hosts over their lifetime is affected by a narrow symbiosis where the frequency of HGT is constrained.
Collapse
Affiliation(s)
- Devani Romero Picazo
- Genomic Microbiology Group, Institute of General Microbiology, Christian-Albrechts University, 24118 Kiel, Germany
| | - Almut Werner
- Genomic Microbiology Group, Institute of General Microbiology, Christian-Albrechts University, 24118 Kiel, Germany
| | - Tal Dagan
- Genomic Microbiology Group, Institute of General Microbiology, Christian-Albrechts University, 24118 Kiel, Germany
| | - Anne Kupczok
- Genomic Microbiology Group, Institute of General Microbiology, Christian-Albrechts University, 24118 Kiel, Germany
- Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
- Bioinformatics Group, Wageningen University & Research, 6708PB Wageningen, The Netherlands
| |
Collapse
|
25
|
Lajoie G, Parfrey LW. Beyond specialization: re-examining routes of host influence on symbiont evolution. Trends Ecol Evol 2022; 37:590-598. [PMID: 35466020 DOI: 10.1016/j.tree.2022.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 11/17/2022]
Abstract
Our understanding of host influence on microbial evolution has focused on symbiont specialization and the genomic streamlining that often accompanies it. However, a vast diversity of symbiotic lineages facultatively interact with hosts or associate with multiple hosts. Yet, there are no clear expectations for how host association influences the niche of these symbionts or their evolution. Here, we discuss how weak or variable selection on microbial symbiotic associations, horizontal transmission, and low costs of adaptation to novel host habitats are predicted to promote the expansion or maintenance of microbial niches. This broad perspective will aid in developing better and more general predictions for evolution in microbial symbioses.
Collapse
Affiliation(s)
- Geneviève Lajoie
- Botany Department, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada, V6T 1Z4.
| | - Laura Wegener Parfrey
- Botany Department, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
26
|
Laidre KL, Supple MA, Born EW, Regehr EV, Wiig Ø, Ugarte F, Aars J, Dietz R, Sonne C, Hegelund P, Isaksen C, Akse GB, Cohen B, Stern HL, Moon T, Vollmers C, Corbett-Detig R, Paetkau D, Shapiro B. Glacial ice supports a distinct and undocumented polar bear subpopulation persisting in late 21st-century sea-ice conditions. Science 2022; 376:1333-1338. [PMID: 35709290 DOI: 10.1126/science.abk2793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Polar bears are susceptible to climate warming because of their dependence on sea ice, which is declining rapidly. We present the first evidence for a genetically distinct and functionally isolated group of polar bears in Southeast Greenland. These bears occupy sea-ice conditions resembling those projected for the High Arctic in the late 21st century, with an annual ice-free period that is >100 days longer than the estimated fasting threshold for the species. Whereas polar bears in most of the Arctic depend on annual sea ice to catch seals, Southeast Greenland bears have a year-round hunting platform in the form of freshwater glacial mélange. This suggests that marine-terminating glaciers, although of limited availability, may serve as previously unrecognized climate refugia. Conservation of Southeast Greenland polar bears, which meet criteria for recognition as the world's 20th polar bear subpopulation, is necessary to preserve the genetic diversity and evolutionary potential of the species.
Collapse
Affiliation(s)
- Kristin L Laidre
- Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA 98105, USA.,Greenland Institute of Natural Resources, 3900 Nuuk, Greenland
| | - Megan A Supple
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Erik W Born
- Greenland Institute of Natural Resources, 3900 Nuuk, Greenland
| | - Eric V Regehr
- Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA 98105, USA
| | - Øystein Wiig
- Natural History Museum, University of Oslo, Blindern, NO-0318 Oslo, Norway
| | - Fernando Ugarte
- Greenland Institute of Natural Resources, 3900 Nuuk, Greenland
| | - Jon Aars
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
| | - Rune Dietz
- Department of Ecoscience and Arctic Research Centre, Aarhus University, DK-4000 Roskilde, Denmark
| | - Christian Sonne
- Department of Ecoscience and Arctic Research Centre, Aarhus University, DK-4000 Roskilde, Denmark
| | - Peter Hegelund
- Greenland Institute of Natural Resources, 3900 Nuuk, Greenland
| | - Carl Isaksen
- Greenland Institute of Natural Resources, 3900 Nuuk, Greenland
| | | | - Benjamin Cohen
- Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA 98105, USA
| | - Harry L Stern
- Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA 98105, USA
| | - Twila Moon
- National Snow and Ice Data Center, Cooperative Institute for Research In Environmental Sciences (CIRES), University of Colorado, Boulder, CO 80309, USA
| | - Christopher Vollmers
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Russ Corbett-Detig
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - David Paetkau
- Wildlife Genetics International, Nelson, BC V1L 5P9, Canada
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.,Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
27
|
Perez M, Breusing C, Angers B, Beinart RA, Won YJ, Young CR. Divergent paths in the evolutionary history of maternally transmitted clam symbionts. Proc Biol Sci 2022; 289:20212137. [PMID: 35259985 PMCID: PMC8905170 DOI: 10.1098/rspb.2021.2137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Vertical transmission of bacterial endosymbionts is accompanied by virtually irreversible gene loss that results in a progressive reduction in genome size. While the evolutionary processes of genome reduction have been well described in some terrestrial symbioses, they are less understood in marine systems where vertical transmission is rarely observed. The association between deep-sea vesicomyid clams and chemosynthetic Gammaproteobacteria is one example of maternally inherited symbioses in the ocean. Here, we assessed the contributions of drift, recombination and selection to genome evolution in two extant vesicomyid symbiont clades by comparing 15 representative symbiont genomes (1.017-1.586 Mb) to those of closely related bacteria and the hosts' mitochondria. Our analyses suggest that drift is a significant force driving genome evolution in vesicomyid symbionts, though selection and interspecific recombination appear to be critical for maintaining symbiont functional integrity and creating divergent patterns of gene conservation. Notably, the two symbiont clades possess putative functional differences in sulfide physiology, anaerobic respiration and dependency on environmental vitamin B12, which probably reflect adaptations to different ecological habitats available to each symbiont group. Overall, these results contribute to our understanding of the eco-evolutionary processes shaping reductive genome evolution in vertically transmitted symbioses.
Collapse
Affiliation(s)
- Maëva Perez
- Department of Biological Sciences, Université de Montréal, Montreal, Canada
| | - Corinna Breusing
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Bernard Angers
- Department of Biological Sciences, Université de Montréal, Montreal, Canada
| | - Roxanne A Beinart
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Yong-Jin Won
- Division of EcoScience, Ewha Womans University, Seoul, South Korea
| | | |
Collapse
|
28
|
Oren A, Garrity GM. CANDIDATUS LIST No. 3. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2022; 72. [PMID: 35100104 DOI: 10.1099/ijsem.0.005186] [Citation(s) in RCA: 251] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
29
|
Rosenberg E, Zilber-Rosenberg I. Reconstitution and Transmission of Gut Microbiomes and Their Genes between Generations. Microorganisms 2021; 10:microorganisms10010070. [PMID: 35056519 PMCID: PMC8780831 DOI: 10.3390/microorganisms10010070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Microbiomes are transmitted between generations by a variety of different vertical and/or horizontal modes, including vegetative reproduction (vertical), via female germ cells (vertical), coprophagy and regurgitation (vertical and horizontal), physical contact starting at birth (vertical and horizontal), breast-feeding (vertical), and via the environment (horizontal). Analyses of vertical transmission can result in false negatives (failure to detect rare microbes) and false positives (strain variants). In humans, offspring receive most of their initial gut microbiota vertically from mothers during birth, via breast-feeding and close contact. Horizontal transmission is common in marine organisms and involves selectivity in determining which environmental microbes can colonize the organism's microbiome. The following arguments are put forth concerning accurate microbial transmission: First, the transmission may be of functions, not necessarily of species; second, horizontal transmission may be as accurate as vertical transmission; third, detection techniques may fail to detect rare microbes; lastly, microbiomes develop and reach maturity with their hosts. In spite of the great variation in means of transmission discussed in this paper, microbiomes and their functions are transferred from one generation of holobionts to the next with fidelity. This provides a strong basis for each holobiont to be considered a unique biological entity and a level of selection in evolution, largely maintaining the uniqueness of the entity and conserving the species from one generation to the next.
Collapse
|
30
|
Franke M, Geier B, Hammel JU, Dubilier N, Leisch N. Coming together-symbiont acquisition and early development in deep-sea bathymodioline mussels. Proc Biol Sci 2021; 288:20211044. [PMID: 34403628 PMCID: PMC8370805 DOI: 10.1098/rspb.2021.1044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
How and when symbionts are acquired by their animal hosts has a profound impact on the ecology and evolution of the symbiosis. Understanding symbiont acquisition is particularly challenging in deep-sea organisms because early life stages are so rarely found. Here, we collected early developmental stages of three deep-sea bathymodioline species from different habitats to identify when these acquire their symbionts and how their body plan adapts to a symbiotic lifestyle. These mussels gain their nutrition from chemosynthetic bacteria, allowing them to thrive at deep-sea vents and seeps worldwide. Correlative imaging analyses using synchrotron-radiation based microtomography together with light, fluorescence and electron microscopy revealed that the pediveliger larvae were aposymbiotic. Symbiont colonization began during metamorphosis from a planktonic to a benthic lifestyle, with the symbionts rapidly colonizing first the gills, the symbiotic organ of adults, followed by all other epithelia of their hosts. Once symbiont densities in plantigrades reached those of adults, the host's intestine changed from the looped anatomy typical for bivalves to a straightened form. Within the Mytilidae, this morphological change appears to be specific to Bathymodiolus and Gigantidas, and is probably linked to the decrease in the importance of filter feeding when these mussels switch to gaining their nutrition largely from their symbionts.
Collapse
Affiliation(s)
- Maximilian Franke
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
- MARUM—Zentrum für Marine Umweltwissenschaften, University of Bremen, Leobener Strasse 2, 28359 Bremen, Germany
| | - Benedikt Geier
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
| | - Jörg U. Hammel
- Helmholtz-Zentrum Hereon, Institute of Materials Physics, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
- MARUM—Zentrum für Marine Umweltwissenschaften, University of Bremen, Leobener Strasse 2, 28359 Bremen, Germany
| | - Nikolaus Leisch
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
| |
Collapse
|
31
|
Perreau J, Moran NA. Genetic innovations in animal-microbe symbioses. Nat Rev Genet 2021; 23:23-39. [PMID: 34389828 DOI: 10.1038/s41576-021-00395-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Animal hosts have initiated myriad symbiotic associations with microorganisms and often have maintained these symbioses for millions of years, spanning drastic changes in ecological conditions and lifestyles. The establishment and persistence of these relationships require genetic innovations on the parts of both symbionts and hosts. The nature of symbiont innovations depends on their genetic population structure, categorized here as open, closed or mixed. These categories reflect modes of inter-host transmission that result in distinct genomic features, or genomic syndromes, in symbionts. Although less studied, hosts also innovate in order to preserve and control symbiotic partnerships. New capabilities to sequence host-associated microbial communities and to experimentally manipulate both hosts and symbionts are providing unprecedented insights into how genetic innovations arise under different symbiont population structures and how these innovations function to support symbiotic relationships.
Collapse
Affiliation(s)
- Julie Perreau
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|