1
|
Shyr ZA, Amniouel S, Owusu-Ansah K, Tambe M, Abbott J, Might M, Zheng W. Increased oxidative stress and autophagy in NGLY1 patient iPSC-derived neural stem cells. Exp Cell Res 2025; 448:114540. [PMID: 40189184 DOI: 10.1016/j.yexcr.2025.114540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
NGLY1 (N-glycanase) is a de-glycosylating enzyme that promotes clearance of misfolded glycan proteins. NGLY1 deficiency leads to a disease pathology with varied symptoms, including severe neurological defects. There are no therapeutic options currently available for the treatment of this rare disease. With the goal of finding potential therapeutic avenues, we performed comprehensive characterization of aberrant cellular stress pathways in a patient relevant model of NGLY1 deficiency. For a more accurate study of NGLY1 deficiency without other confounding factors, we compared differences between iPSC-derived neural stem cells carrying the commonly occurring nonsense mutation c.1201A > T (p.R401X) and their genetically similar CRISPR-corrected isogenic controls. Our findings demonstrate that NGLY1 deficiency in neural stem cells leads to an upregulation of ER stress, increased autophagic flux and significant signs of oxidative stress. These results provide new insights into the cellular dysfunctions associated with this disorder. Moreover, they point to better establishing reliable high throughput phenotypic assays that can be utilized for drug discovery.
Collapse
Affiliation(s)
- Zeenat A Shyr
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| | - Soukaina Amniouel
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Kofi Owusu-Ansah
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Mitali Tambe
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Abbott
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Matthew Might
- Hugh Kaul Precision Medicine Institute, The University of Alabama at Birmingham, AL, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Du A, Yang K, Zhou X, Ren L, Liu N, Zhou C, Liang J, Yan N, Gao G, Wang D. Systemic gene therapy corrects the neurological phenotype in a mouse model of NGLY1 deficiency. JCI Insight 2024; 9:e183189. [PMID: 39137042 PMCID: PMC11466192 DOI: 10.1172/jci.insight.183189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
The cytoplasmic peptide:N-glycanase (NGLY1) is ubiquitously expressed and functions as a de-N-glycosylating enzyme that degrades misfolded N-glycosylated proteins. NGLY1 deficiency due to biallelic loss-of-function NGLY1 variants is an ultrarare autosomal recessive deglycosylation disorder with multisystemic involvement; the neurological manifestations represent the main disease burden. Currently, there is no treatment for this disease. To develop a gene therapy, we first characterized a tamoxifen-inducible Ngly1-knockout (iNgly1) C57BL/6J mouse model, which exhibited symptoms recapitulating human disease, including elevation of the biomarker GlcNAc-Asn, motor deficits, kyphosis, Purkinje cell loss, and gait abnormalities. We packaged a codon-optimized human NGLY1 transgene cassette into 2 adeno-associated virus (AAV) capsids, AAV9 and AAV.PHPeB. Systemic administration of the AAV.PHPeB vector to symptomatic iNgly1 mice corrected multiple disease features at 8 weeks after treatment. Furthermore, another cohort of AAV.PHPeB-treated iNgly1 mice were monitored over a year and showed near-complete normalization of the neurological aspects of the disease phenotype, demonstrating the durability of gene therapy. Our data suggested that brain-directed NGLY1 gene replacement via systemic delivery is a promising therapeutic strategy for NGLY1 deficiency. Although the superior CNS tropism of AAV.PHPeB vector does not translate to primates, emerging AAV capsids with enhanced primate CNS tropism will enable future translational studies.
Collapse
Affiliation(s)
- Ailing Du
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Kun Yang
- Department of Immunology and
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xuntao Zhou
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Lingzhi Ren
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Nan Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Chen Zhou
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Jialing Liang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Nan Yan
- Department of Immunology and
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems and
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
3
|
Hirayama H, Fujihira H, Suzuki T. Development of new NGLY1 assay systems - toward developing an early screening method for NGLY1 deficiency. Glycobiology 2024; 34:cwae067. [PMID: 39206713 PMCID: PMC11442003 DOI: 10.1093/glycob/cwae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Cytosolic peptide: N-glycanase (PNGase/NGLY1 in mammals) is an amidase (EC:3.5.1.52) widely conserved in eukaryotes. It catalyzes the removal of N-glycans on glycoproteins, converting N-glycosylated Asn into Asp residues. This enzyme also plays a role in the quality control system for nascent glycoproteins. Since the identification of a patient with an autosomal recessive genetic disorder caused by NGLY1 gene dysfunction, known as NGLY1 deficiency or NGLY1 congenital disorder of deglycosylation (OMIM: 615273), in 2012, more than 100 cases have been reported worldwide. NGLY1 deficiency is characterized by a wide array of symptoms, such as global mental delay, intellectual disability, abnormal electroencephalography findings, seizure, movement disorder, hypolacrima or alacrima, and liver dysfunction. Unfortunately, no effective therapeutic treatments for this disease have been established. However, administration of adeno-associated virus 9 (AAV9) vector harboring human NGLY1 gene to an NGLY1-deficient rat model (Ngly1-/- rat) by intracerebroventricular injection was found to drastically improve motor function defects. This observation indicated that early therapeutic intervention could alleviate various symptoms originating from central nervous system dysfunction in this disease. Therefore, there is a keen interest in the development of facile diagnostic methods for NGLY1 deficiency. This review summarizes the history of assay development for PNGase/NGLY1 activity, as well as the recent progress in the development of novel plate-based assay systems for NGLY1, and also discusses future perspectives.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, 2-1 Hirosawa, Wako Saitama 351-0198, Japan
| | - Haruhiko Fujihira
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, 2-1 Hirosawa, Wako Saitama 351-0198, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, 2-1 Hirosawa, Wako Saitama 351-0198, Japan
| |
Collapse
|
4
|
Yanagi KS, Jochim B, Kunjo SO, Breen P, Ruvkun G, Lehrbach N. Mutations in nucleotide metabolism genes bypass proteasome defects in png-1/NGLY1-deficient Caenorhabditis elegans. PLoS Biol 2024; 22:e3002720. [PMID: 38991033 PMCID: PMC11265709 DOI: 10.1371/journal.pbio.3002720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/23/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
The conserved SKN-1A/Nrf1 transcription factor regulates the expression of proteasome subunit genes and is essential for maintenance of adequate proteasome function in animal development, aging, and stress responses. Unusual among transcription factors, SKN-1A/Nrf1 is a glycoprotein synthesized in the endoplasmic reticulum (ER). N-glycosylated SKN-1A/Nrf1 exits the ER and is deglycosylated in the cytosol by the PNG-1/NGLY1 peptide:N-glycanase. Deglycosylation edits the protein sequence of SKN-1A/Nrf1 by converting N-glycosylated asparagine residues to aspartate, which is necessary for SKN-1A/Nrf1 transcriptional activation of proteasome subunit genes. Homozygous loss-of-function mutations in the peptide:N-glycanase (NGLY1) gene cause NGLY1 deficiency, a congenital disorder of deglycosylation. There are no effective treatments for NGLY1 deficiency. Since SKN-1A/Nrf1 is a major client of NGLY1, the resulting proteasome deficit contributes to NGLY1 disease. We sought to identify targets for mitigation of proteasome dysfunction in NGLY1 deficiency that might indicate new avenues for treatment. We isolated mutations that suppress the sensitivity to proteasome inhibitors caused by inactivation of the NGLY1 ortholog PNG-1 in Caenorhabditis elegans. We identified multiple suppressor mutations affecting 3 conserved genes: rsks-1, tald-1, and ent-4. We show that the suppressors act through a SKN-1/Nrf-independent mechanism and confer proteostasis benefits consistent with amelioration of proteasome dysfunction. ent-4 encodes an intestinal nucleoside/nucleotide transporter, and we show that restriction of nucleotide availability is beneficial, whereas a nucleotide-rich diet exacerbates proteasome dysfunction in PNG-1/NGLY1-deficient C. elegans. Our findings suggest that dietary or pharmacological interventions altering nucleotide availability have the potential to mitigate proteasome insufficiency in NGLY1 deficiency and other diseases associated with proteasome dysfunction.
Collapse
Affiliation(s)
- Katherine S. Yanagi
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Briar Jochim
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Sheikh Omar Kunjo
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Peter Breen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nicolas Lehrbach
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
5
|
Hirayama H, Tachida Y, Fujinawa R, Matsuda Y, Murase T, Nishiuchi Y, Suzuki T. Development of a fluorescence and quencher-based FRET assay for detection of endogenous peptide:N-glycanase/NGLY1 activity. J Biol Chem 2024; 300:107121. [PMID: 38417795 PMCID: PMC11065741 DOI: 10.1016/j.jbc.2024.107121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024] Open
Abstract
Cytosolic peptide:N-glycanase (PNGase/NGLY1 in mammals) catalyzes deglycosylation of N-glycans on glycoproteins. A genetic disorder caused by mutations in the NGLY1 gene leads to NGLY1 deficiency with symptoms including motor deficits and neurological problems. Effective therapies have not been established, though, a recent study used the administration of an adeno-associated viral vector expressing human NGLY1 to dramatically rescue motor functions in young Ngly1-/- rats. Thus, early therapeutic intervention may improve symptoms arising from central nervous system dysfunction, and assay methods for measuring NGLY1 activity in biological samples are critical for early diagnostics. In this study, we established an assay system for plate-based detection of endogenous NGLY1 activity using a FRET-based probe. Using this method, we revealed significant changes in NGLY1 activity in rat brains during aging. This novel assay offers reliable disease diagnostics and provides valuable insights into the regulation of PNGase/NGLY1 activity in diverse organisms under different stress conditions.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, Wako Saitama, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Yuriko Tachida
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, Wako Saitama, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Reiko Fujinawa
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, Wako Saitama, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan
| | | | | | | | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, Wako Saitama, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan.
| |
Collapse
|
6
|
Suzuki T. A commentary on 'Patient-derived gene and protein expression signatures of NGLY1 deficiency'. J Biochem 2024; 175:221-223. [PMID: 38156787 DOI: 10.1093/jb/mvad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024] Open
Abstract
The cytosolic peptide:N-glycanase (PNGase; NGLY1 in human and PNG1 in budding yeast) is a deglycosylating enzyme widely conserved in eukaryotes. Initially, functional importance of this enzyme remained unknown as the png1Δ mutant in yeast did not exhibit any significant phenotypes. However, the discovery of NGLY1 deficiency, a rare genetic disorder with biallelic mutations in NGLY1 gene, prompted an intensification of research that has resulted in uncovering the significance of NGLY1 as well as the proteins under its influence that are involved in numerous cellular processes. A recent report by Rauscher et al. (Patient-derived gene and protein expression signatures of NGLY1 deficiency. J. Biochem. 2022; 171: 187-199) presented a comprehensive summary of transcriptome/proteome analyses of various cell types derived from NGLY1-deficient patients. The authors also provide a web application called 'NGLY1 browser', which will allow researchers to have access to a wealth of information on gene and protein expression signature for patients with NGLY1 deficiency.
Collapse
Affiliation(s)
- Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
7
|
Suzuki T, Fujihira H. NGLY1: A fascinating, multifunctional molecule. Biochim Biophys Acta Gen Subj 2024; 1868:130379. [PMID: 37951368 DOI: 10.1016/j.bbagen.2023.130379] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 11/14/2023]
Abstract
NGLY1, a cytoplasmic de-N-glycosylating enzyme is well conserved among eukaryotes. This enzyme has attracted considerable attention after mutations on the NGLY1 gene were found to cause a rare genetic disorder called NGLY1 deficiency. Recent explosive progress in NGLY1 research has revealed multi-functional aspects of this protein.
Collapse
Affiliation(s)
- Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan; Takeda-CiRA Joint Program (T-CiRA), Kanagawa, Japan.
| | - Haruhiko Fujihira
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| |
Collapse
|
8
|
Manole A, Wong T, Rhee A, Novak S, Chin SM, Tsimring K, Paucar A, Williams A, Newmeyer TF, Schafer ST, Rosh I, Kaushik S, Hoffman R, Chen S, Wang G, Snyder M, Cuervo AM, Andrade L, Manor U, Lee K, Jones JR, Stern S, Marchetto MC, Gage FH. NGLY1 mutations cause protein aggregation in human neurons. Cell Rep 2023; 42:113466. [PMID: 38039131 PMCID: PMC10826878 DOI: 10.1016/j.celrep.2023.113466] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 08/04/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023] Open
Abstract
Biallelic mutations in the gene that encodes the enzyme N-glycanase 1 (NGLY1) cause a rare disease with multi-symptomatic features including developmental delay, intellectual disability, neuropathy, and seizures. NGLY1's activity in human neural cells is currently not well understood. To understand how NGLY1 gene loss leads to the specific phenotypes of NGLY1 deficiency, we employed direct conversion of NGLY1 patient-derived induced pluripotent stem cells (iPSCs) to functional cortical neurons. Transcriptomic, proteomic, and functional studies of iPSC-derived neurons lacking NGLY1 function revealed several major cellular processes that were altered, including protein aggregate-clearing functionality, mitochondrial homeostasis, and synaptic dysfunctions. These phenotypes were rescued by introduction of a functional NGLY1 gene and were observed in iPSC-derived mature neurons but not astrocytes. Finally, laser capture microscopy followed by mass spectrometry provided detailed characterization of the composition of protein aggregates specific to NGLY1-deficient neurons. Future studies will harness this knowledge for therapeutic development.
Collapse
Affiliation(s)
- Andreea Manole
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Thomas Wong
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Amanda Rhee
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sammy Novak
- Waitt Advanced Biophotonics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Shao-Ming Chin
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Katya Tsimring
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Andres Paucar
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - April Williams
- The Razavi Newman Integrative Genomics and Bioinformatics Core Facility, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Traci Fang Newmeyer
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Simon T Schafer
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Idan Rosh
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rene Hoffman
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Songjie Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Guangwen Wang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Leo Andrade
- Waitt Advanced Biophotonics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Uri Manor
- Waitt Advanced Biophotonics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kevin Lee
- Grace Science Foundation, Menlo Park, CA 94025, USA
| | - Jeffrey R Jones
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Maria C Marchetto
- Department of Anthropology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
9
|
Pandey A, Galeone A, Han SY, Story BA, Consonni G, Mueller WF, Steinmetz LM, Vaccari T, Jafar-Nejad H. Gut barrier defects, intestinal immune hyperactivation and enhanced lipid catabolism drive lethality in NGLY1-deficient Drosophila. Nat Commun 2023; 14:5667. [PMID: 37704604 PMCID: PMC10499810 DOI: 10.1038/s41467-023-40910-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/16/2023] [Indexed: 09/15/2023] Open
Abstract
Intestinal barrier dysfunction leads to inflammation and associated metabolic changes. However, the relative impact of gut bacteria versus non-bacterial insults on animal health in the context of barrier dysfunction is not well understood. Here, we establish that loss of Drosophila N-glycanase 1 (Pngl) in a specific intestinal cell type leads to gut barrier defects, causing starvation and JNK overactivation. These abnormalities, along with loss of Pngl in enterocytes and fat body, result in Foxo overactivation, leading to hyperactive innate immune response and lipid catabolism and thereby contributing to lethality. Germ-free rearing of Pngl mutants rescued their developmental delay but not lethality. However, raising Pngl mutants on isocaloric, fat-rich diets partially rescued lethality. Our data indicate that Pngl functions in Drosophila larvae to establish the gut barrier, and that the lethality caused by loss of Pngl is primarily mediated through non-bacterial induction of immune and metabolic abnormalities.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, USA.
| | - Antonio Galeone
- Department of Biosciences, University of Milan, Milan, Italy
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), Lecce, Italy
| | - Seung Yeop Han
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, USA
| | - Benjamin A Story
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Gaia Consonni
- Department of Biosciences, University of Milan, Milan, Italy
| | - William F Mueller
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Lars M Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Genetics, School of Medicine, Stanford University, Stanford, USA
| | - Thomas Vaccari
- Department of Biosciences, University of Milan, Milan, Italy
| | - Hamed Jafar-Nejad
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, USA.
- Genetics & Genomic Graduate Program, Baylor College of Medicine, Houston, USA.
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
10
|
Badawi S, Mohamed FE, Varghese DS, Ali BR. Genetic disruption of mammalian endoplasmic reticulum-associated protein degradation: Human phenotypes and animal and cellular disease models. Traffic 2023; 24:312-333. [PMID: 37188482 DOI: 10.1111/tra.12902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
Endoplasmic reticulum-associated protein degradation (ERAD) is a stringent quality control mechanism through which misfolded, unassembled and some native proteins are targeted for degradation to maintain appropriate cellular and organelle homeostasis. Several in vitro and in vivo ERAD-related studies have provided mechanistic insights into ERAD pathway activation and its consequent events; however, a majority of these have investigated the effect of ERAD substrates and their consequent diseases affecting the degradation process. In this review, we present all reported human single-gene disorders caused by genetic variation in genes that encode ERAD components rather than their substrates. Additionally, after extensive literature survey, we present various genetically manipulated higher cellular and mammalian animal models that lack specific components involved in various stages of the ERAD pathway.
Collapse
Affiliation(s)
- Sally Badawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Feda E Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Divya Saro Varghese
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
11
|
Pandey A, Galeone A, Han SY, Story BA, Consonni G, Mueller WF, Steinmetz LM, Vaccari T, Jafar-Nejad H. Gut barrier defects, increased intestinal innate immune response, and enhanced lipid catabolism drive lethality in N -glycanase 1 deficient Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536022. [PMID: 37066398 PMCID: PMC10104161 DOI: 10.1101/2023.04.07.536022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Intestinal barrier dysfunction leads to inflammation and associated metabolic changes. However, the relative impact of infectious versus non-infectious mechanisms on animal health in the context of barrier dysfunction is not well understood. Here, we establish that loss of Drosophila N -glycanase 1 (Pngl) leads to gut barrier defects, which cause starvation and increased JNK activity. These defects result in Foxo overactivation, which induces a hyperactive innate immune response and lipid catabolism, thereby contributing to lethality associated with loss of Pngl . Notably, germ-free rearing of Pngl mutants did not rescue lethality. In contrast, raising Pngl mutants on isocaloric, fat-rich diets improved animal survival in a dosage-dependent manner. Our data indicate that Pngl functions in Drosophila larvae to establish the gut barrier, and that the immune and metabolic consequences of loss of Pngl are primarily mediated through non-infectious mechanisms.
Collapse
|
12
|
Abbott J, Tambe M, Pavlinov I, Farkhondeh A, Nguyen HN, Xu M, Pradhan M, York T, Might M, Baumgärtel K, Rodems S, Zheng W. Generation and characterization of NGLY1 patient-derived midbrain organoids. Front Cell Dev Biol 2023; 11:1039182. [PMID: 36875753 PMCID: PMC9978932 DOI: 10.3389/fcell.2023.1039182] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/16/2023] [Indexed: 02/18/2023] Open
Abstract
NGLY1 deficiency is an ultra-rare, autosomal recessive genetic disease caused by mutations in the NGLY1 gene encoding N-glycanase one that removes N-linked glycan. Patients with pathogenic mutations in NGLY1 have complex clinical symptoms including global developmental delay, motor disorder and liver dysfunction. To better understand the disease pathogenesis and the neurological symptoms of the NGLY1 deficiency we generated and characterized midbrain organoids using patient-derived iPSCs from two patients with distinct disease-causing mutations-one homozygous for p. Q208X, the other compound heterozygous for p. L318P and p. R390P and CRISPR generated NGLY1 knockout iPSCs. We demonstrate that NGLY1 deficient midbrain organoids show altered neuronal development compared to one wild type (WT) organoid. Both neuronal (TUJ1) and astrocytic glial fibrillary acid protein markers were reduced in NGLY1 patient-derived midbrain organoids along with neurotransmitter GABA. Interestingly, staining for dopaminergic neuronal marker, tyrosine hydroxylase, revealed a significant reduction in patient iPSC derived organoids. These results provide a relevant NGLY1 disease model to investigate disease mechanisms and evaluate therapeutics for treatments of NGLY1 deficiency.
Collapse
Affiliation(s)
- Joshua Abbott
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Mitali Tambe
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Ivan Pavlinov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Atena Farkhondeh
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Ha Nam Nguyen
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,3Dnamics, Inc., Baltimore, MD, United States
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Manisha Pradhan
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Tate York
- NeuroScience Associates Inc, Knoxville, TN, United States
| | - Matthew Might
- University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Walber S, Partalidou G, Gerling‐Driessen UIM. NGLY1 Deficiency: A Rare Genetic Disorder Unlocks Therapeutic Potential for Common Diseases. Isr J Chem 2022. [DOI: 10.1002/ijch.202200068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Simon Walber
- Institute of Organic and Macromolecular Chemistry Heinrich Heine University Duesseldorf Universitaetsstrasse 1 40225 Duesseldorf Germany
| | - Georgia Partalidou
- Institute of Organic and Macromolecular Chemistry Heinrich Heine University Duesseldorf Universitaetsstrasse 1 40225 Duesseldorf Germany
| | - Ulla I. M. Gerling‐Driessen
- Institute of Organic and Macromolecular Chemistry Heinrich Heine University Duesseldorf Universitaetsstrasse 1 40225 Duesseldorf Germany
| |
Collapse
|
14
|
Yu S, Luo F, Xu Y, Zhang Y, Jin LH. Drosophila Innate Immunity Involves Multiple Signaling Pathways and Coordinated Communication Between Different Tissues. Front Immunol 2022; 13:905370. [PMID: 35911716 PMCID: PMC9336466 DOI: 10.3389/fimmu.2022.905370] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
The innate immune response provides the first line of defense against invading pathogens, and immune disorders cause a variety of diseases. The fruit fly Drosophila melanogaster employs multiple innate immune reactions to resist infection. First, epithelial tissues function as physical barriers to prevent pathogen invasion. In addition, macrophage-like plasmatocytes eliminate intruders through phagocytosis, and lamellocytes encapsulate large particles, such as wasp eggs, that cannot be phagocytosed. Regarding humoral immune responses, the fat body, equivalent to the mammalian liver, secretes antimicrobial peptides into hemolymph, killing bacteria and fungi. Drosophila has been shown to be a powerful in vivo model for studying the mechanism of innate immunity and host-pathogen interactions because Drosophila and higher organisms share conserved signaling pathways and factors. Moreover, the ease with which Drosophila genetic and physiological characteristics can be manipulated prevents interference by adaptive immunity. In this review, we discuss the signaling pathways activated in Drosophila innate immunity, namely, the Toll, Imd, JNK, JAK/STAT pathways, and other factors, as well as relevant regulatory networks. We also review the mechanisms by which different tissues, including hemocytes, the fat body, the lymph gland, muscles, the gut and the brain coordinate innate immune responses. Furthermore, the latest studies in this field are outlined in this review. In summary, understanding the mechanism underlying innate immunity orchestration in Drosophila will help us better study human innate immunity-related diseases.
Collapse
|
15
|
Miao X, Wu J, Chen H, Lu G. Comprehensive Analysis of the Structure and Function of Peptide:N-Glycanase 1 and Relationship with Congenital Disorder of Deglycosylation. Nutrients 2022; 14:nu14091690. [PMID: 35565658 PMCID: PMC9102325 DOI: 10.3390/nu14091690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
The cytosolic PNGase (peptide:N-glycanase), also known as peptide-N4-(N-acetyl-β-glucosaminyl)-asparagine amidase, is a well-conserved deglycosylation enzyme (EC 3.5.1.52) which catalyzes the non-lysosomal hydrolysis of an N(4)-(acetyl-β-d-glucosaminyl) asparagine residue (Asn, N) into a N-acetyl-β-d-glucosaminyl-amine and a peptide containing an aspartate residue (Asp, D). This enzyme (NGLY1) plays an essential role in the clearance of misfolded or unassembled glycoproteins through a process named ER-associated degradation (ERAD). Accumulating evidence also points out that NGLY1 deficiency can cause an autosomal recessive (AR) human genetic disorder associated with abnormal development and congenital disorder of deglycosylation. In addition, the loss of NGLY1 can affect multiple cellular pathways, including but not limited to NFE2L1 pathway, Creb1/Atf1-AQP pathway, BMP pathway, AMPK pathway, and SLC12A2 ion transporter, which might be the underlying reasons for a constellation of clinical phenotypes of NGLY1 deficiency. The current comprehensive review uncovers the NGLY1’ssdetailed structure and its important roles for participation in ERAD, involvement in CDDG and potential treatment for NGLY1 deficiency.
Collapse
Affiliation(s)
- Xiangguang Miao
- Queen Mary School, Nanchang University, No. 1299 Xuefu Avenue, Honggutan New District, Nanchang 330036, China;
| | - Jin Wu
- Laboratory of Translational Medicine Research, Department of Pathology, Deyang People’s Hospital, No. 173 First Section of Taishanbei Road, Jingyang District, Deyang 618000, China;
- Deyang Key Laboratory of Tumor Molecular Research, No. 173 First Section of Taishanbei Road, Jingyang District, Deyang 618000, China
- Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Hongping Chen
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang 330006, China
- Correspondence: (H.C.); (G.L.); Tel.: +86-188-0147-4087 (G.L.)
| | - Guanting Lu
- Laboratory of Translational Medicine Research, Department of Pathology, Deyang People’s Hospital, No. 173 First Section of Taishanbei Road, Jingyang District, Deyang 618000, China;
- Deyang Key Laboratory of Tumor Molecular Research, No. 173 First Section of Taishanbei Road, Jingyang District, Deyang 618000, China
- Correspondence: (H.C.); (G.L.); Tel.: +86-188-0147-4087 (G.L.)
| |
Collapse
|
16
|
NGLY1 Deficiency, a Congenital Disorder of Deglycosylation: From Disease Gene Function to Pathophysiology. Cells 2022; 11:cells11071155. [PMID: 35406718 PMCID: PMC8997433 DOI: 10.3390/cells11071155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
N-Glycanase 1 (NGLY1) is a cytosolic enzyme involved in removing N-linked glycans of misfolded N-glycoproteins and is considered to be a component of endoplasmic reticulum-associated degradation (ERAD). The 2012 identification of recessive NGLY1 mutations in a rare multisystem disorder has led to intense research efforts on the roles of NGLY1 in animal development and physiology, as well as the pathophysiology of NGLY1 deficiency. Here, we present a review of the NGLY1-deficient patient phenotypes, along with insights into the function of this gene from studies in rodent and invertebrate animal models, as well as cell culture and biochemical experiments. We will discuss critical processes affected by the loss of NGLY1, including proteasome bounce-back response, mitochondrial function and homeostasis, and bone morphogenetic protein (BMP) signaling. We will also cover the biologically relevant targets of NGLY1 and the genetic modifiers of NGLY1 deficiency phenotypes in animal models. Together, these discoveries and disease models have provided a number of avenues for preclinical testing of potential therapeutic approaches for this disease.
Collapse
|
17
|
Forcina GC, Pope L, Murray M, Dong W, Abu-Remaileh M, Bertozzi CR, Dixon SJ. Ferroptosis regulation by the NGLY1/NFE2L1 pathway. Proc Natl Acad Sci U S A 2022; 119:e2118646119. [PMID: 35271393 PMCID: PMC8931371 DOI: 10.1073/pnas.2118646119] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023] Open
Abstract
SignificanceFerroptosis is an oxidative form of cell death whose biochemical regulation remains incompletely understood. Cap'n'collar (CNC) transcription factors including nuclear factor erythroid-2-related factor 1 (NFE2L1/NRF1) and NFE2L2/NRF2 can both regulate oxidative stress pathways but are each regulated in a distinct manner, and whether these two transcription factors can regulate ferroptosis independent of one another is unclear. We find that NFE2L1 can promote ferroptosis resistance, independent of NFE2L2, by maintaining the expression of glutathione peroxidase 4 (GPX4), a key protein that prevents lethal lipid peroxidation. NFE2L2 can also promote ferroptosis resistance but does so through a distinct mechanism that appears independent of GPX4 protein expression. These results suggest that NFE2L1 and NFE2L2 independently regulate ferroptosis.
Collapse
Affiliation(s)
| | - Lauren Pope
- Department of Biology, Stanford University, Stanford, CA 94305
| | | | - Wentao Dong
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
| | - Carolyn R. Bertozzi
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
- Department of Chemistry, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| | - Scott J. Dixon
- Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
18
|
Suzuki T, Yoshida Y. Ever-Expanding NGLY1 biology. J Biochem 2021; 171:141-143. [PMID: 34969094 DOI: 10.1093/jb/mvab134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/12/2022] Open
Abstract
The cytosolic peptide:N-glycanase (PNGase; NGLY1 in humans) is a deglycosylating enzyme that is widely conserved in eukaryotes. This enzyme is involved in the degradation of misfolded N-glycoproteins that are destined for proteasomal degradation in the cytosol, a process that is called endoplasmic reticulum (ER)-associated degradation (ERAD). Although the physiological significance of NGLY1 remained unknown until recently, the discovery of NGLY1 deficiency, a human genetic disorder bearing mutations in the NGLY1 gene, has led to explosive research progress regarding the functional characterization of this enzyme. For example, it is now known that NGLY1 can also act as an "editing enzyme" to convert N-glycosylated asparagine residues to aspartate residues, thus introducing negative charges into a core peptide and modulating the function of the target molecule. Diverse biological processes have also been found to be affected by compromised NGLY1 activity. In this special issue, recent research progress on the functional characterization of NGLY1 and its orthologues in worm/fly/rodents, assay methods/biomarkers useful for the development of therapeutics, and the comprehensive transcriptome/proteome of NGLY1-KO cells as well as patient-derived cells are discussed.
Collapse
Affiliation(s)
- Tadashi Suzuki
- Glycometabolome Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan.,Takeda-CiRA Joint Program (T-CiRA), Kanagawa 251-8555, Japan
| | - Yukiko Yoshida
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
19
|
Rauscher B, Mueller WF, Clauder-Münster S, Jakob P, Islam MS, Sun H, Ghidelli-Disse S, Boesche M, Bantscheff M, Pflaumer H, Collier P, Haase B, Chen S, Hoffman R, Wang G, Benes V, Drewes G, Snyder M, Steinmetz LM. Patient-derived gene and protein expression signatures of NGLY1 deficiency. J Biochem 2021; 171:187-199. [PMID: 34878535 DOI: 10.1093/jb/mvab131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/13/2021] [Indexed: 11/14/2022] Open
Abstract
N-Glycanase 1 (NGLY1) deficiency is a rare and complex genetic disorder. Although recent studies have shed light on the molecular underpinnings of NGLY1 deficiency, a systematic characterization of gene and protein expression changes in patient-derived cells has been lacking. Here, we performed RNA-sequencing and mass spectrometry to determine the transcriptomes and proteomes of 66 cell lines representing 4 different cell types derived from 14 NGLY1 deficient patients and 17 controls. Although NGLY1 protein levels were up to 9.5-fold downregulated in patients compared to parents, residual and likely non-functional NGLY1 protein was detectable in all patient-derived lymphoblastoid cell lines. Consistent with the role of NGLY1 as a regulator of the transcription factor Nrf1, we observed a cell type-independent downregulation of proteasomal genes in NGLY1 deficient cells. In contrast, genes involved in ribosome biogenesis and mRNA processing were upregulated in multiple cell types. In addition, we observed cell type-specific effects. For example, genes and proteins involved in glutathione synthesis, such as the glutamate-cysteine ligase subunits GCLC and GCLM, were downregulated specifically in lymphoblastoid cells. We provide a web application that enables access to all results generated in this study at https://apps.embl.de/ngly1browser. This resource will guide future studies of NGLY1 deficiency in directions that are most relevant to patients.
Collapse
Affiliation(s)
- Benedikt Rauscher
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | | | - Sandra Clauder-Münster
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Petra Jakob
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - M Saiful Islam
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Han Sun
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Sonja Ghidelli-Disse
- Cellzome GmbH, a GlaxoSmithKline Company, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Markus Boesche
- Cellzome GmbH, a GlaxoSmithKline Company, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Marcus Bantscheff
- Cellzome GmbH, a GlaxoSmithKline Company, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Hannah Pflaumer
- Cellzome GmbH, a GlaxoSmithKline Company, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Paul Collier
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Bettina Haase
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Songjie Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Rene Hoffman
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Guangwen Wang
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Vladimir Benes
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Gerard Drewes
- Cellzome GmbH, a GlaxoSmithKline Company, Meyerhofstrasse 1, Heidelberg, Germany, 69117
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Lars M Steinmetz
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany, Meyerhofstrasse 1, Heidelberg, Germany, 69117.,Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.,Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
| |
Collapse
|
20
|
Hirayama H, Suzuki T. Assay for the peptide:N-glycanase/NGLY1 and disease-specific biomarkers for diagnosing NGLY1 deficiency. J Biochem 2021; 171:169-176. [PMID: 34791337 DOI: 10.1093/jb/mvab127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Cytosolic peptide:N-glycanase (NGLY1 in mammals), a highly conserved enzyme in eukaryotes, catalyzes the deglycosylation of N-glycans that are attached to glycopeptide/glycoproteins. In 2012, an autosomal recessive disorder related to the NGLY1 gene, which was referred to as NGLY1 deficiency, was reported. Since then, more than 100 patients have been identified. Patients with this disease exhibit various symptoms, including various motor deficits and other neurological problems. Effective therapeutic treatments for this disease, however, have not been established. Most recently, it was demonstrated that the intracerebroventricular administration of an adeno-associated virus 9 vector expressing human NGLY1 during the weaning period allowed some motor functions to be recovered in Ngly1-/- rats. This observation led us to hypothesize that a therapeutic intervention for improving these motor deficits or other neurological symptoms found in the patients might be possible. To achieve this, it is critical to establish robust and facile methods for assaying NGLY1 activity in biological samples, for the early diagnosis and evaluation of the therapeutic efficacy for the treatment of NGLY1 deficiency. In this mini-review, we summarize progress made in the development of various assay methods for NGLY1 activity, as well as a recent progress in the identification of NGLY1 deficiency-specific biomarkers.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Japan.,Takeda-CiRA Joint Program (T-CiRA), Kanagawa, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Japan.,Takeda-CiRA Joint Program (T-CiRA), Kanagawa, Japan
| |
Collapse
|
21
|
Lechado Terradas A, Zittlau KI, Macek B, Fraiberg M, Elazar Z, Kahle PJ. Regulation of mitochondrial cargo-selective autophagy by posttranslational modifications. J Biol Chem 2021; 297:101339. [PMID: 34688664 PMCID: PMC8591368 DOI: 10.1016/j.jbc.2021.101339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are important organelles in eukaryotes. Turnover and quality control of mitochondria are regulated at the transcriptional and posttranslational level by several cellular mechanisms. Removal of defective mitochondrial proteins is mediated by mitochondria resident proteases or by proteasomal degradation of individual proteins. Clearance of bulk mitochondria occurs via a selective form of autophagy termed mitophagy. In yeast and some developing metazoan cells (e.g., oocytes and reticulocytes), mitochondria are largely removed by ubiquitin-independent mechanisms. In such cases, the regulation of mitophagy is mediated via phosphorylation of mitochondria-anchored autophagy receptors. On the other hand, ubiquitin-dependent recruitment of cytosolic autophagy receptors occurs in situations of cellular stress or disease, where dysfunctional mitochondria would cause oxidative damage. In mammalian cells, a well-studied ubiquitin-dependent mitophagy pathway induced by mitochondrial depolarization is regulated by the mitochondrial protein kinase PINK1, which upon activation recruits the ubiquitin ligase parkin. Here, we review mechanisms of mitophagy with an emphasis on posttranslational modifications that regulate various mitophagy pathways. We describe the autophagy components involved with particular emphasis on posttranslational modifications. We detail the phosphorylations mediated by PINK1 and parkin-mediated ubiquitylations of mitochondrial proteins that can be modulated by deubiquitylating enzymes. We also discuss the role of accessory factors regulating mitochondrial fission/fusion and the interplay with pro- and antiapoptotic Bcl-2 family members. Comprehensive knowledge of the processes of mitophagy is essential for the understanding of vital mitochondrial turnover in health and disease.
Collapse
Affiliation(s)
- Anna Lechado Terradas
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | | | - Boris Macek
- Proteome Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Milana Fraiberg
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Zvulun Elazar
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Philipp J Kahle
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| |
Collapse
|
22
|
Lehrbach NJ. NGLY1: Insights from C. elegans. J Biochem 2021; 171:145-152. [PMID: 34697631 DOI: 10.1093/jb/mvab112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/01/2021] [Indexed: 01/31/2023] Open
Abstract
Peptide:N-glycanase is an evolutionarily conserved deglycosylating enzyme that catalyzes the removal of N-linked glycans from cytosolic glycoproteins. Recessive mutations that inactivate this enzyme cause NGLY1 deficiency, a multisystemic disorder with symptoms including developmental delay and defects in cognition and motor control. Developing treatments for NGLY1 deficiency will require an understanding of how failure to deglycosylate NGLY1 substrates perturbs cellular and organismal function. In this review, I highlight insights into peptide:N-glycanase biology gained by studies in the highly tractable genetic model animal C. elegans. I focus on the recent discovery of SKN-1A/Nrf1, an N-glycosylated transcription factor, as a peptide:N-glycanase substrate critical for regulation of the proteasome. I describe the elaborate post-translational mechanism that culminates in activation of SKN-1A/Nrf1 via NGLY1-dependent 'sequence editing' and discuss the implications of these findings for our understanding of NGLY1 deficiency.
Collapse
|
23
|
Fujihira H, Asahina M, Suzuki T. Physiological importance of NGLY1, as revealed by rodent model analyses. J Biochem 2021; 171:161-167. [PMID: 34580715 DOI: 10.1093/jb/mvab101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/01/2021] [Indexed: 12/29/2022] Open
Abstract
Cytosolic peptide:N-glycanase (NGLY1) is an enzyme that cleaves N-glycans from glycoproteins that has been retrotranslocated from the endoplasmic reticulum (ER) lumen into the cytosol. It is known that NGLY1 is involved in the degradation of cytosolic glycans (non-lysosomal glycan degradation) as well as ER-associated degradation (ERAD), a quality control system for newly synthesized glycoproteins. The discovery of NGLY1 deficiency, which is caused by mutations in the human NGLY1 gene and results in multisystemic symptoms, has attracted interest in the physiological functions of NGLY1 in mammals. Studies using various animal models led to the identification of possible factors that contribute to the pathogenesis of NGLY1 deficiency. In this review, we summarize phenotypic consequences that have been reported for various Ngly1-deficient rodent models, and discuss future perspectives to provide more insights into the physiological functions of NGLY1.
Collapse
Affiliation(s)
- Haruhiko Fujihira
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 3510198 Saitama, Japan.,Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 1138421 Tokyo, Japan
| | - Makoto Asahina
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, 2518555 Kanagawa, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 3510198 Saitama, Japan.,T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, 2518555 Kanagawa, Japan
| |
Collapse
|
24
|
Pandey A, Jafar-Nejad H. Tracing the NGLY1 footprints: Insights from Drosophila. J Biochem 2021; 171:153-160. [PMID: 34270726 DOI: 10.1093/jb/mvab084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/11/2021] [Indexed: 02/03/2023] Open
Abstract
Recessive mutations in human N-glycanase 1 (NGLY1) cause a multisystem disorder with various phenotypes including global developmental delay. One of the models utilized to understand the biology of NGLY1 and the pathophysiology of NGLY1 deficiency is Drosophila melanogaster, a well-established, genetically tractable organism broadly used to study various biological processes and human diseases. Loss of the Drosophila NGLY1 homolog (Pngl) causes a host of phenotypes including developmental delay and lethality. Phenotypic, transcriptomic and genome-wide association analyses on Drosophila have revealed links between NGLY1 and several critical developmental and cellular pathways/processes. Further, repurposing screens of FDA-approved drugs have identified potential candidates to ameliorate some of the Pngl mutant phenotypes. Here, we will summarize the insights gained into the functions of NGLY1 from Drosophila studies. We hope that the current review article will encourage additional studies in Drosophila and other model systems towards establishing a therapeutic strategy for NGLY1 deficiency patients.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, United States of America
| | - Hamed Jafar-Nejad
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, United States of America.,Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA.,Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
25
|
Asahina M, Fujinawa R, Hirayama H, Tozawa R, Kajii Y, Suzuki T. Reversibility of motor dysfunction in the rat model of NGLY1 deficiency. Mol Brain 2021; 14:91. [PMID: 34120625 PMCID: PMC8201687 DOI: 10.1186/s13041-021-00806-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022] Open
Abstract
N-glycanase 1 (NGLY1) deficiency is a rare inherited disorder characterized by developmental delay, hypolacrima or alacrima, seizure, intellectual disability, motor deficits, and other neurological symptoms. The underlying mechanisms of the NGLY1 phenotype are poorly understood, and no effective therapy is currently available. Similar to human patients, the rat model of NGLY1 deficiency, Ngly1-/-, shows developmental delay, movement disorder, somatosensory impairment, scoliosis, and learning disability. Here we show that single intracerebroventricular administration of AAV9 expressing human NGLY1 cDNA (AAV9-hNGLY1) to Ngly1-/- rats during the weaning period restored NGLY1 expression in the brain and spinal cord, concomitant with increased enzymatic activity of NGLY1 in the brain. hNGLY1 protein expressed by AAV9 was found predominantly in mature neurons, but not in glial cells, of Ngly1-/- rats. Strikingly, intracerebroventricular administration of AAV9-hNGLY1 normalized the motor phenotypes of Ngly1-/- rats assessed by the rota-rod test and gait analysis. The reversibility of motor deficits in Ngly1-/- rats by central nervous system (CNS)-restricted gene delivery suggests that the CNS is the primary therapeutic target organs for NGLY1 deficiency, and that the Ngly1-/- rat model may be useful for evaluating therapeutic treatments in pre-clinical studies.
Collapse
Affiliation(s)
- Makoto Asahina
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, 2518555, Japan
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, 2518555, Japan
| | - Reiko Fujinawa
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, 2518555, Japan
| | - Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, 2518555, Japan
| | - Ryuichi Tozawa
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, 2518555, Japan
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, 2518555, Japan
| | - Yasushi Kajii
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, 2518555, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, 2518555, Japan.
| |
Collapse
|
26
|
Pradhan M, Farkhondeh A, Cheng YS, Xu M, Beers J, Zou J, Liu C, Might M, Rodems S, Baumgärtel K, Zheng W. An induced pluripotent stem cell line (NCATS-CL9075) from a patient carrying compound heterozygote mutations, p.R390P and p.L318P, in the NGLY1 gene. Stem Cell Res 2021; 54:102400. [PMID: 34051448 PMCID: PMC8362228 DOI: 10.1016/j.scr.2021.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/16/2021] [Accepted: 05/15/2021] [Indexed: 11/10/2022] Open
Abstract
NGLY1 deficiency is a rare disorder caused by mutations in the NGLY1 gene which codes for the highly conserved N-glycanase1 (NGLY1). This enzyme functions in cytosolic deglycosylation of N-linked glycoproteins. An induced pluripotent stem cell (iPSC) line was generated from the dermal fibroblasts of a 2-year-old patient carrying compound heterozygous mutations, p.R390P and p.L318P in the NGLY1 gene. This cell-based iPSC disease model provides a resource to study disease pathophysiology and to develop a cell-based disease model for drug development for NGLY1 patients.
Collapse
Affiliation(s)
- Manisha Pradhan
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Atena Farkhondeh
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| | - Yu-Shan Cheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Jeanette Beers
- iPSC Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jizhong Zou
- iPSC Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthew Might
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven Rodems
- Travere Therapeutics, 3611 Valley Centre Drive, Suite 300, San Diego, CA, USA
| | - Karsten Baumgärtel
- Travere Therapeutics, 3611 Valley Centre Drive, Suite 300, San Diego, CA, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|