1
|
Yokoyama K, Mukkatt J, Mathewson N, Fazzolari MD, Hackert VD, Ali MM, Monichan AC, Wilson AJ, Durisile BC, Neuwirth LS. Oligomer sensitive in-situ detection and characterization of gold colloid aggregate formations observed within the hippocampus of the Alzheimer's disease rat. Neurosci Lett 2025; 855:138218. [PMID: 40147752 DOI: 10.1016/j.neulet.2025.138218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/24/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
In order to better understand the dynamics governing the formation of pathological oligomers leading to Alzheimer's disease (AD) in a rat model the present study examined the protein aggregates accumulating on gold colloids in the hippocampus. Sections of the hippocampus of the Long Evans Cohen's AD(+) rat model were mixed with gold colloids and the resulting aggregates were examined by Surface Enhanced Raman Scattering (SERS) imaging. Compared to AD(-) rat tissues, the AD(+) rat hippocampal tissues produced a larger sized gold colloid aggregates. The SERS spectrum of each hippocampal section exhibited similar spectral patterns in the Amide I, II, and III band regions, but showed distinct spectral patterns in the region between 300 cm-1 - 1250 cm-1 in AD(+) rat tissues, respectively. Amyloid fibrils with a β-sheet conformation were previously reported to form gold colloid aggregates in mouse and human AD brain tissues. The gold colloid aggregates in the AD (+) rat hippocampal brain sections showed distinct morphological traits compared to those observed in AD(-) rats. This suggests that there is a spatial distribution of oligomer concentration in the hippocampus, which induces fibril formation to disrupt neuronal networks within the hippocampus and between other parts of the brain.
Collapse
Affiliation(s)
- Kazushige Yokoyama
- Department of Chemistry and Biochemistry, The State University of New York Geneseo College, Geneseo, NY, USA.
| | - Joel Mukkatt
- Department of Chemistry and Biochemistry, The State University of New York Geneseo College, Geneseo, NY, USA
| | - Nicole Mathewson
- Department of Chemistry and Biochemistry, The State University of New York Geneseo College, Geneseo, NY, USA
| | - Marc D Fazzolari
- Department of Chemistry and Biochemistry, The State University of New York Geneseo College, Geneseo, NY, USA
| | - Victoria D Hackert
- Department of Psychology, The State University of New York Old Westbury, Old Westbury, NY, USA; SUNY Neuroscience Research Institute, The State University of New York Old Westbury, Old Westbury, NY, USA
| | - Mohamed M Ali
- SUNY Neuroscience Research Institute, The State University of New York Old Westbury, Old Westbury, NY, USA; Department of Biological Sciences, The State University of New York Old Westbury, Old Westbury, NY, USA
| | - Abel C Monichan
- SUNY Neuroscience Research Institute, The State University of New York Old Westbury, Old Westbury, NY, USA; Department of Biological Sciences, The State University of New York Old Westbury, Old Westbury, NY, USA
| | - Agnes J Wilson
- SUNY Neuroscience Research Institute, The State University of New York Old Westbury, Old Westbury, NY, USA; Department of Biological Sciences, The State University of New York Old Westbury, Old Westbury, NY, USA
| | - Benjamin C Durisile
- SUNY Neuroscience Research Institute, The State University of New York Old Westbury, Old Westbury, NY, USA; Department of Biological Sciences, The State University of New York Old Westbury, Old Westbury, NY, USA
| | - Lorenz S Neuwirth
- Department of Psychology, The State University of New York Old Westbury, Old Westbury, NY, USA; SUNY Neuroscience Research Institute, The State University of New York Old Westbury, Old Westbury, NY, USA
| |
Collapse
|
2
|
Jeans AF, Padamsey Z, Collins H, Foster W, Allison S, Dierksmeier S, Klein WL, van den Maagdenberg AMJM, Emptage NJ. Ca V2.1 mediates presynaptic dysfunction induced by amyloid β oligomers. Cell Rep 2025; 44:115451. [PMID: 40127100 DOI: 10.1016/j.celrep.2025.115451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/06/2025] [Accepted: 02/28/2025] [Indexed: 03/26/2025] Open
Abstract
Synaptic dysfunction is an early pathological phenotype of Alzheimer's disease (AD) that is initiated by oligomers of amyloid β peptide (Aβos). Treatments aimed at correcting synaptic dysfunction could be beneficial in preventing disease progression, but mechanisms underlying Aβo-induced synaptic defects remain incompletely understood. Here, we uncover an epithelial sodium channel (ENaC) - CaV2.3 - protein kinase C (PKC) - glycogen synthase kinase-3β (GSK-3β) signal transduction pathway that is engaged by Aβos to enhance presynaptic CaV2.1 voltage-gated Ca2+ channel activity, resulting in pathological potentiation of action-potential-evoked synaptic vesicle exocytosis. We present evidence that the pathway is active in human APP transgenic mice in vivo and in human AD brains, and we show that either pharmacological CaV2.1 inhibition or genetic CaV2.1 haploinsufficiency is sufficient to restore normal neurotransmitter release. These findings reveal a previously unrecognized mechanism driving synaptic dysfunction in AD and identify multiple potentially tractable therapeutic targets.
Collapse
Affiliation(s)
- Alexander F Jeans
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | - Zahid Padamsey
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Helen Collins
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - William Foster
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Sally Allison
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Steven Dierksmeier
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - William L Klein
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
| | | | - Nigel J Emptage
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
3
|
Gompf HS, Ferrari LL, Anaclet C. Chronic chemogenetic slow-wave-sleep enhancement in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634538. [PMID: 39896659 PMCID: PMC11785230 DOI: 10.1101/2025.01.23.634538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
While epidemiological associations and brief studies of sleep effects in human disease have been conducted, rigorous long-term studies of sleep manipulations and in animal models are needed to establish causation and to understand mechanisms. We have previously developed a mouse model of acute slow-wave-sleep (SWS) enhancement using chemogenetic activation of parafacial zone GABAergic neurons (PZGABA) in the parvicellular reticular formation of the pontine brainstem. However, it was unknown if SWS could be enhanced chronically in this model. In the present study, mice expressing the chemogenetic receptor hM3Dq in PZGABA were administered daily with one of three chemogenetic ligands, clozapine N-oxide (CNO), deschloroclozapine (DCZ) and compound 21 (C21), and sleep-wake phenotypes were analyzed using electroencephalogram (EEG) and electromyogram (EMG). We found that SWS time is increased for three hours, and at the same magnitude for at least six months. This phenotype is associated with an increase of slow wave activity (SWA) of similar magnitude throughout the 6-month dosing period. Interestingly, at the end of the 6-month dosing period, SWA remains increased for at least a week. This study validates a mouse model of chronic SWS enhancement that will allow mechanistic investigations into how SWS promotes physiological function and prevents diseases. The approach of a rotating schedule of three chemogenetic ligands may be broadly applicable in chemogenetic studies that require chronic administration.
Collapse
Affiliation(s)
- Heinrich S. Gompf
- Department of Neurological Surgery, University of California Davis School of Medicine
- Department of Neurobiology. University of Massachusetts Chan Medical School
| | - Loris L. Ferrari
- Department of Neurobiology. University of Massachusetts Chan Medical School
| | - Christelle Anaclet
- Department of Neurological Surgery, University of California Davis School of Medicine
- Department of Neurobiology. University of Massachusetts Chan Medical School
| |
Collapse
|
4
|
Caradonna E, Nemni R, Bifone A, Gandolfo P, Costantino L, Giordano L, Mormone E, Macula A, Cuomo M, Difruscolo R, Vanoli C, Vanoli E, Ferrara F. The Brain-Gut Axis, an Important Player in Alzheimer and Parkinson Disease: A Narrative Review. J Clin Med 2024; 13:4130. [PMID: 39064171 PMCID: PMC11278248 DOI: 10.3390/jcm13144130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are severe age-related disorders with complex and multifactorial causes. Recent research suggests a critical link between neurodegeneration and the gut microbiome, via the gut-brain communication pathway. This review examines the role of trimethylamine N-oxide (TMAO), a gut microbiota-derived metabolite, in the development of AD and PD, and investigates its interaction with microRNAs (miRNAs) along this bidirectional pathway. TMAO, which is produced from dietary metabolites like choline and carnitine, has been linked to increased neuroinflammation, protein misfolding, and cognitive decline. In AD, elevated TMAO levels are associated with amyloid-beta and tau pathologies, blood-brain barrier disruption, and neuronal death. TMAO can cross the blood-brain barrier and promote the aggregation of amyloid and tau proteins. Similarly, TMAO affects alpha-synuclein conformation and aggregation, a hallmark of PD. TMAO also activates pro-inflammatory pathways such as NF-kB signaling, exacerbating neuroinflammation further. Moreover, TMAO modulates the expression of various miRNAs that are involved in neurodegenerative processes. Thus, the gut microbiome-miRNA-brain axis represents a newly discovered mechanistic link between gut dysbiosis and neurodegeneration. MiRNAs regulate the key pathways involved in neuroinflammation, oxidative stress, and neuronal death, contributing to disease progression. As a direct consequence, specific miRNA signatures may serve as potential biomarkers for the early detection and monitoring of AD and PD progression. This review aims to elucidate the complex interrelationships between the gut microbiota, trimethylamine-N-oxide (TMAO), microRNAs (miRNAs), and the central nervous system, and the implications of these connections in neurodegenerative diseases. In this context, an overview of the current neuroradiology techniques available for studying neuroinflammation and of the animal models used to investigate these intricate pathologies will also be provided. In summary, a bulk of evidence supports the concept that modulating the gut-brain communication pathway through dietary changes, the manipulation of the microbiome, and/or miRNA-based therapies may offer novel approaches for implementing the treatment of debilitating neurological disorders.
Collapse
Affiliation(s)
- Eugenio Caradonna
- Integrated Laboratory Medicine Services, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (E.C.); (F.F.)
| | - Raffaello Nemni
- Unit of Neurology, Centro Diagnostico Italiano S.p.A., Milan Fondazione Crespi Spano, 20011 Milan, Italy;
- Nuclear Medicine Unit, Imaging Department, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (P.G.); (M.C.)
| | - Angelo Bifone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10124 Torino, Italy;
| | - Patrizia Gandolfo
- Nuclear Medicine Unit, Imaging Department, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (P.G.); (M.C.)
| | - Lucy Costantino
- Laboratory of Medical Genetics, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (L.C.); (L.G.)
| | - Luca Giordano
- Laboratory of Medical Genetics, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (L.C.); (L.G.)
| | - Elisabetta Mormone
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Anna Macula
- Centro Ricerche Bracco, Bracco Imaging S.p.A., Colleretto Giacosa, 10010 Turin, Italy;
- Department of Physics, University of Torino, 10124 Torino, Italy
| | - Mariarosa Cuomo
- Nuclear Medicine Unit, Imaging Department, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (P.G.); (M.C.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | | | - Camilla Vanoli
- Department of Clinical Psychology, Antioch University Los Angeles, Culver City, CA 90230, USA
| | - Emilio Vanoli
- School of Nursing, Cardiovascular Diseases, University of Pavia, 27100 Pavia, Italy;
| | - Fulvio Ferrara
- Integrated Laboratory Medicine Services, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (E.C.); (F.F.)
| |
Collapse
|
5
|
Guerrero-Carrasco M, Targett I, Olmos-Alonso A, Vargas-Caballero M, Gomez-Nicola D. Low-grade systemic inflammation stimulates microglial turnover and accelerates the onset of Alzheimer's-like pathology. Glia 2024; 72:1340-1355. [PMID: 38597386 DOI: 10.1002/glia.24532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Several in vivo studies have shown that systemic inflammation, mimicked by LPS, triggers an inflammatory response in the CNS, driven by microglia, characterized by an increase in inflammatory cytokines and associated sickness behavior. However, most studies induce relatively high systemic inflammation, not directly compared with the more common low-grade inflammatory events experienced in humans during the life course. Using mice, we investigated the effects of low-grade systemic inflammation during an otherwise healthy early life, and how this may precondition the onset and severity of Alzheimer's disease (AD)-like pathology. Our results indicate that low-grade systemic inflammation induces sub-threshold brain inflammation and promotes microglial proliferation driven by the CSF1R pathway, contrary to the effects caused by high systemic inflammation. In addition, repeated systemic challenges with low-grade LPS induce disease-associated microglia. Finally, using an inducible model of AD-like pathology (Line 102 mice), we observed that preconditioning with repeated doses of low-grade systemic inflammation, prior to APP induction, promotes a detrimental effect later in life, leading to an increase in Aβ accumulation and disease-associated microglia. These results support the notion that episodic low-grade systemic inflammation has the potential to influence the onset and severity of age-related neurological disorders, such as AD.
Collapse
Affiliation(s)
- Monica Guerrero-Carrasco
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Imogen Targett
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Adrian Olmos-Alonso
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Mariana Vargas-Caballero
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
- Institute for Life Sciences (IfLS), University of Southampton, Southampton, UK
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
- Institute for Life Sciences (IfLS), University of Southampton, Southampton, UK
| |
Collapse
|
6
|
Kanoh T, Mizoguchi T, Tonoki A, Itoh M. Modeling of age-related neurological disease: utility of zebrafish. Front Aging Neurosci 2024; 16:1399098. [PMID: 38765773 PMCID: PMC11099255 DOI: 10.3389/fnagi.2024.1399098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
Many age-related neurological diseases still lack effective treatments, making their understanding a critical and urgent issue in the globally aging society. To overcome this challenge, an animal model that accurately mimics these diseases is essential. To date, many mouse models have been developed to induce age-related neurological diseases through genetic manipulation or drug administration. These models help in understanding disease mechanisms and finding potential therapeutic targets. However, some age-related neurological diseases cannot be fully replicated in human pathology due to the different aspects between humans and mice. Although zebrafish has recently come into focus as a promising model for studying aging, there are few genetic zebrafish models of the age-related neurological disease. This review compares the aging phenotypes of humans, mice, and zebrafish, and provides an overview of age-related neurological diseases that can be mimicked in mouse models and those that cannot. We presented the possibility that reproducing human cerebral small vessel diseases during aging might be difficult in mice, and zebrafish has potential to be another animal model of such diseases due to their similarity of aging phenotype to humans.
Collapse
Affiliation(s)
- Tohgo Kanoh
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Takamasa Mizoguchi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Ayako Tonoki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Motoyuki Itoh
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Health and Disease Omics Center, Chiba University, Chiba, Japan
| |
Collapse
|
7
|
Liu P, Lapcinski IP, Hlynialuk CJ, Steuer EL, Loude TJ, Shapiro SL, Kemper LJ, Ashe KH. Aβ∗56 is a stable oligomer that impairs memory function in mice. iScience 2024; 27:109239. [PMID: 38433923 PMCID: PMC10905009 DOI: 10.1016/j.isci.2024.109239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/12/2023] [Accepted: 02/11/2024] [Indexed: 03/05/2024] Open
Abstract
Amyloid-β (Aβ) oligomers consist of fibrillar and non-fibrillar soluble assemblies of the Aβ peptide. Aβ∗56 is a non-fibrillar Aβ assembly that is linked to memory deficits. Previous studies did not decipher specific forms of Aβ present in Aβ∗56. Here, we confirmed the memory-impairing characteristics of Aβ∗56 and extended its biochemical characterization. We used anti-Aβ(1-x), anti-Aβ(x-40), anti-Aβ(x-42), and A11 anti-oligomer antibodies in conjunction with western blotting, immunoaffinity purification, and size-exclusion chromatography to probe aqueous brain extracts from Tg2576, 5xFAD, and APP/TTA mice. In Tg2576, Aβ∗56 is a ∼56-kDa, SDS-stable, A11-reactive, non-plaque-dependent, water-soluble, brain-derived oligomer containing canonical Aβ(1-40). In 5xFAD, Aβ∗56 is composed of Aβ(1-42), whereas in APP/TTA, it contains both Aβ(1-40) and Aβ(1-42). When injected into the hippocampus of wild-type mice, Aβ∗56 derived from Tg2576 mice impairs memory. The unusual stability of this oligomer renders it an attractive candidate for studying relationships between molecular structure and effects on brain function.
Collapse
Affiliation(s)
- Peng Liu
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ian P. Lapcinski
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chris J.W. Hlynialuk
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elizabeth L. Steuer
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Thomas J. Loude
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samantha L. Shapiro
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lisa J. Kemper
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Karen H. Ashe
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Koller EJ, Wood CA, Lai Z, Borgenheimer E, Hoffman KL, Jankowsky JL. Doxycycline for transgene control disrupts gut microbiome diversity without compromising acute neuroinflammatory response. J Neuroinflammation 2024; 21:11. [PMID: 38178148 PMCID: PMC10765643 DOI: 10.1186/s12974-023-03004-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
The tetracycline transactivator (tTA) system provides controllable transgene expression through oral administration of the broad-spectrum antibiotic doxycycline. Antibiotic treatment for transgene control in mouse models of disease might have undesirable systemic effects resulting from changes in the gut microbiome. Here we assessed the impact of doxycycline on gut microbiome diversity in a tTA-controlled model of Alzheimer's disease and then examined neuroimmune effects of these microbiome alterations following acute LPS challenge. We show that doxycycline decreased microbiome diversity in both transgenic and wild-type mice and that these changes persisted long after drug withdrawal. Despite the change in microbiome composition, doxycycline treatment had minimal effect on basal transcriptional signatures of inflammation the brain or on the neuroimmune response to LPS challenge. Our findings suggest that central neuroimmune responses may be less affected by doxycycline at doses needed for transgene control than by antibiotic cocktails at doses used for experimental microbiome disruption.
Collapse
Affiliation(s)
- Emily J Koller
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Caleb A Wood
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Zoe Lai
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Ella Borgenheimer
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Kristi L Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Joanna L Jankowsky
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA.
- Departments of Neurology, Neurosurgery, and Molecular and Cellular Biology, Huffington Center On Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Viana da Silva S, Haberl MG, Gaur K, Patel R, Narayan G, Ledakis M, Fu ML, de Castro Vieira M, Koo EH, Leutgeb JK, Leutgeb S. Localized APP expression results in progressive network dysfunction by disorganizing spike timing. Neuron 2024; 112:124-140.e6. [PMID: 37909036 PMCID: PMC10877582 DOI: 10.1016/j.neuron.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/16/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Progressive cognitive decline in Alzheimer's disease could either be caused by a spreading molecular pathology or by an initially focal pathology that causes aberrant neuronal activity in a larger network. To distinguish between these possibilities, we generated a mouse model with expression of mutant human amyloid precursor protein (APP) in only hippocampal CA3 cells. We found that performance in a hippocampus-dependent memory task was impaired in young adult and aged mutant mice. In both age groups, we then recorded from the CA1 region, which receives inputs from APP-expressing CA3 cells. We observed that theta oscillation frequency in CA1 was reduced along with disrupted relative timing of principal cells. Highly localized pathology limited to the presynaptic CA3 cells is thus sufficient to cause aberrant firing patterns in postsynaptic neuronal networks, which indicates that disease progression is not only from spreading pathology but also mediated by progressively advancing physiological dysfunction.
Collapse
Affiliation(s)
- Silvia Viana da Silva
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA; NeuroCure Excellence Cluster and German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Matthias G Haberl
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Neuroscience Research Center, Charitéplatz 1, 10117 Berlin, Germany
| | - Kshitij Gaur
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Rina Patel
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Gautam Narayan
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Max Ledakis
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Maylin L Fu
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Miguel de Castro Vieira
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Neuroscience Research Center, Charitéplatz 1, 10117 Berlin, Germany
| | - Edward H Koo
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jill K Leutgeb
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| | - Stefan Leutgeb
- Neurobiology Department, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA; Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
Li X, Quan M, Wei Y, Wang W, Xu L, Wang Q, Jia J. Critical thinking of Alzheimer's transgenic mouse model: current research and future perspective. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2711-2754. [PMID: 37480469 DOI: 10.1007/s11427-022-2357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/23/2023] [Indexed: 07/24/2023]
Abstract
Transgenic models are useful tools for studying the pathogenesis of and drug development for Alzheimer's Disease (AD). AD models are constructed usually using overexpression or knock-in of multiple pathogenic gene mutations from familial AD. Each transgenic model has its unique behavioral and pathological features. This review summarizes the research progress of transgenic mouse models, and their progress in the unique mechanism of amyloid-β oligomers, including the first transgenic mouse model built in China based on a single gene mutation (PSEN1 V97L) found in Chinese familial AD. We further summarized the preclinical findings of drugs using the models, and their future application in exploring the upstream mechanisms and multitarget drug development in AD.
Collapse
Affiliation(s)
- Xinyue Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Yiping Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wei Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, 100053, China.
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, 100053, China.
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China.
| |
Collapse
|
11
|
Lusk S, Ward CS, Chang A, Twitchell-Heyne A, Fattig S, Allen G, Jankowsky J, Ray R. An automated respiratory data pipeline for waveform characteristic analysis. J Physiol 2023; 601:4767-4806. [PMID: 37786382 PMCID: PMC10841337 DOI: 10.1113/jp284363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/11/2023] [Indexed: 10/04/2023] Open
Abstract
Comprehensive and accurate analysis of respiratory and metabolic data is crucial to modelling congenital, pathogenic and degenerative diseases converging on autonomic control failure. A lack of tools for high-throughput analysis of respiratory datasets remains a major challenge. We present Breathe Easy, a novel open-source pipeline for processing raw recordings and associated metadata into operative outcomes, publication-worthy graphs and robust statistical analyses including QQ and residual plots for assumption queries and data transformations. This pipeline uses a facile graphical user interface for uploading data files, setting waveform feature thresholds and defining experimental variables. Breathe Easy was validated against manual selection by experts, which represents the current standard in the field. We demonstrate Breathe Easy's utility by examining a 2-year longitudinal study of an Alzheimer's disease mouse model to assess contributions of forebrain pathology in disordered breathing. Whole body plethysmography has become an important experimental outcome measure for a variety of diseases with primary and secondary respiratory indications. Respiratory dysfunction, while not an initial symptom in many of these disorders, often drives disability or death in patient outcomes. Breathe Easy provides an open-source respiratory analysis tool for all respiratory datasets and represents a necessary improvement upon current analytical methods in the field. KEY POINTS: Respiratory dysfunction is a common endpoint for disability and mortality in many disorders throughout life. Whole body plethysmography in rodents represents a high face-value method for measuring respiratory outcomes in rodent models of these diseases and disorders. Analysis of key respiratory variables remains hindered by manual annotation and analysis that leads to low throughput results that often exclude a majority of the recorded data. Here we present a software suite, Breathe Easy, that automates the process of data selection from raw recordings derived from plethysmography experiments and the analysis of these data into operative outcomes and publication-worthy graphs with statistics. We validate Breathe Easy with a terabyte-scale Alzheimer's dataset that examines the effects of forebrain pathology on respiratory function over 2 years of degeneration.
Collapse
Affiliation(s)
- Savannah Lusk
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher S. Ward
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andersen Chang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Shaun Fattig
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Genevera Allen
- Departments of Electrical and Computer Engineering, Statistics, and Computer Science, Rice University, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Joanna Jankowsky
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Neurology, Neurosurgery, and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Russell Ray
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- McNair Medical Institute, Houston, TX 77030, USA
| |
Collapse
|
12
|
Quintela-López T, Lezmy J. Homeostatic plasticity of axonal excitable sites in Alzheimer's disease. Front Neurosci 2023; 17:1277251. [PMID: 37937068 PMCID: PMC10626477 DOI: 10.3389/fnins.2023.1277251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Affiliation(s)
| | - Jonathan Lezmy
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
13
|
Yokoyama K, Thomas J, Ardner W, Kieft M, Neuwirth LS, Liu W. An Approach for In-Situ Detection of Gold Colloid Aggregates Amyloid Formations Within The Hippocampus of The Cohen's Alzheimer's Disease Rat Model By Surface Enhanced Raman Scattering Methods. J Neurosci Methods 2023; 393:109892. [PMID: 37230258 DOI: 10.1016/j.jneumeth.2023.109892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Amyloid beta (Aβ) peptides, such as Aβ1-40 or Aβ1-42 are regarded as hallmark neuropathological biomarkers associated with Alzheimer's disease (AD). The formation of an aggregates by Aβ1-40 or Aβ1-42-coated gold nano-particles are hypothesized to contain conformation of Aβ oligomers, which could exist only at an initial stage of fibrillogenesis. NEW METHOD The attempt of in-situ detection of externally initiated gold colloid (ca. 80nm diameter) aggregates in the middle section of the hippocampus of the Long Evans Cohen's Alzheimer's disease rat model was conducted through the Surface Enhanced Raman Scattering (SERS) method. RESULTS The SERS spectral features contained modes associated with β-sheet interactions and a significant number of modes that were previously reported in SERS shifts for Alzheimer diseased rodent and human brain tissues; thereby, strongly implying a containment of amyloid fibrils. The spectral patterns were further examined and compared with those collected from in-vitro gold colloid aggregates which were formed from Aβ1-40 - or Aβ1-42 -coated 80nm gold colloid under pH ~4, pH ~7, and pH ~10, and the best matched datasets were found with that of the aggregates of Aβ1-42 -coated 80nm gold colloid at ~pH 4.0. The morphology and physical size of this specific gold colloid aggregate was clearly different from those found in-vitro. COMPARISON WITH EXISTING METHOD(S) The amyloid fibril with a β-sheet conformation identified in previously reported in AD mouse/human brain tissues was involved in a formation of the gold colloid aggregates. However, to our surprise, best explanation for the observed SERS spectral features was possible with those in vitro Aβ1-42 -coated 80nm gold colloid under pH ~4. CONCLUSIONS A formation of gold colloid aggregates was confirmed in the AD rat hippocampal brain section with unique physical morphology compared to those observed in in-vitro Aβ1-42 or Aβ1-40 mediated gold colloid aggregates. It was concluded that a β-sheet conformation identified in previously reported in AD mouse/human brain tissues was in volved in a formation of the gold colloid aggregates.
Collapse
Affiliation(s)
- Kazushige Yokoyama
- Department of Chemistry, The State University of New York Geneseo College, Geneseo, NY, USA
| | - Joshua Thomas
- Department of Chemistry, The State University of New York Geneseo College, Geneseo, NY, USA
| | - Windsor Ardner
- Department of Chemistry, The State University of New York Geneseo College, Geneseo, NY, USA
| | - Madison Kieft
- Department of Chemistry, The State University of New York Geneseo College, Geneseo, NY, USA
| | - Lorenz S Neuwirth
- Department of Psychology, The State University of New York Old Westbury, Old Westbury, NY, USA; SUNY Neuroscience Research Institute, The State University of New York Old Westbury, Old Westbury, NY, USA
| | - Wei Liu
- WITec Instruments Corp, Knoxville, TN, USA
| |
Collapse
|
14
|
Murray HC, Saar G, Bai L, Bouraoud N, Dodd S, Highet B, Ryan B, Curtis MA, Koretsky A, Belluscio L. Progressive Spread of Beta-amyloid Pathology in an Olfactory-driven Amyloid Precursor Protein Mouse Model. Neuroscience 2023; 516:113-124. [PMID: 36716914 PMCID: PMC10065898 DOI: 10.1016/j.neuroscience.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/04/2022] [Accepted: 01/13/2023] [Indexed: 01/29/2023]
Abstract
Years before Alzheimer's disease (AD) is diagnosed, patients experience an impaired sense of smell, and β-amyloid plaques accumulate within the olfactory mucosa and olfactory bulb (OB). The olfactory vector hypothesis proposes that external agents cause β-amyloid to aggregate and spread from the OB to connected downstream brain regions. To reproduce the slow accumulation of β-amyloid that occurs in human AD, we investigated the progressive accumulation of β-amyloid across the brain using a conditional mouse model that overexpresses a humanized mutant form of the amyloid precursor protein (hAPP) in olfactory sensory neurons. Using design-based stereology, we show the progressive accumulation of β-amyloid plaques within the OB and cortical olfactory regions with age. We also observe reduced OB volumes in these mice when hAPP expression begins prior-to but not post-weaning which we tracked using manganese-enhanced MRI. We therefore conclude that the reduced OB volume does not represent progressive degeneration but rather disrupted OB development. Overall, our data demonstrate that hAPP expression in the olfactory epithelium can lead to the accumulation and spread of β-amyloid through the olfactory system into the hippocampus, consistent with an olfactory system role in the early stages of β-amyloid-related AD progression.
Collapse
Affiliation(s)
- Helen C Murray
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland 1023, New Zealand; Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Galit Saar
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Li Bai
- Circuits, Synapses and Molecular Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Nadia Bouraoud
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Stephen Dodd
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Blake Highet
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland 1023, New Zealand.
| | - Brigid Ryan
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland 1023, New Zealand.
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland 1023, New Zealand.
| | - Alan Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
15
|
Leyder E, Suresh P, Jun R, Overbey K, Banerjee T, Melnikova T, Savonenko A. Depression-related phenotypes at early stages of Aβ and tau accumulation in inducible Alzheimer's disease mouse model: Task-oriented and concept-driven interpretations. Behav Brain Res 2023; 438:114187. [PMID: 36343696 DOI: 10.1016/j.bbr.2022.114187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 10/16/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Depression is highly prevalent in Alzheimer Disease (AD); however, there is paucity of studies that focus specifically on the assessment of depression-relevant phenotypes in AD mouse models. Conditional doxycycline-dependent transgenic mouse models reproducing amyloidosis (TetOffAPPsi) and/or tau (TetOffTauP301L) pathology starting at middle age (6 months) were used in this study. As AD patients can experience depressive symptoms relatively early in disease, testing was conducted at early, pre-pathology stages of Aβ and/or tau accumulation (starting from 45 days of transgenes expression). Tau-related differences were detected in the Novelty Suppressed Feeding task (NSF), whereas APP-related differences were observed predominantly in measures of the Open Field (OF) and Forced Swim tasks (FST). Effects of combined production of Aβ and tau were detected in immobility during the 1st half of the Tail Suspension task (TST). These data demonstrate that results from different tasks are difficult to reconcile using task/variable-centered interpretations in which a single task/variable is assigned an ad-hoc meaning relevant to depression. An alternative, concept-oriented, approach is based on multiple variables/tests, with an understanding of their possible inter-dependence and utilization of statistical approaches that handle correlated data sets. The existence of strong correlations within and between some of the tasks supported utilization of factor analyses (FA). FA explained a similar amount of variability across the genotypes (∼80%) and identified two factors stable across genotypes and representing motor activity and anxiety measures in OF. In contrast, variables related to FST, TST, and NSFT did not demonstrate a structure of factor loadings that would support the existence of a single integral factor of "depressive state" measured by these tasks. In addition, factor loadings varied between genotypes, indicating that genotype-specific between-task correlations need to be considered for interpretations of findings in any single task. In general, this study demonstrates that utilization of multiple tasks to characterize behavioral phenotypes, an approach that is finally gaining more widespread adoption, requires a step of data integration across different behavioral tests for appropriate interpretations.
Collapse
Affiliation(s)
- Erica Leyder
- Department of Pathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Prakul Suresh
- Department of Pathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Rachel Jun
- Department of Pathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Katherine Overbey
- Department of Pathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Tirtho Banerjee
- Department of Pathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Tatiana Melnikova
- Department of Pathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | - Alena Savonenko
- Department of Pathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
Biasetti L, Rey S, Fowler M, Ratnayaka A, Fennell K, Smith C, Marshall K, Hall C, Vargas-Caballero M, Serpell L, Staras K. Elevated amyloid beta disrupts the nanoscale organization and function of synaptic vesicle pools in hippocampal neurons. Cereb Cortex 2023; 33:1263-1276. [PMID: 35368053 PMCID: PMC9930632 DOI: 10.1093/cercor/bhac134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/02/2022] [Accepted: 03/07/2022] [Indexed: 11/14/2022] Open
Abstract
Alzheimer's disease is linked to increased levels of amyloid beta (Aβ) in the brain, but the mechanisms underlying neuronal dysfunction and neurodegeneration remain enigmatic. Here, we investigate whether organizational characteristics of functional presynaptic vesicle pools, key determinants of information transmission in the central nervous system, are targets for elevated Aβ. Using an optical readout method in cultured hippocampal neurons, we show that acute Aβ42 treatment significantly enlarges the fraction of functional vesicles at individual terminals. We observe the same effect in a chronically elevated Aβ transgenic model (APPSw,Ind) using an ultrastructure-function approach that provides detailed information on nanoscale vesicle pool positioning. Strikingly, elevated Aβ is correlated with excessive accumulation of recycled vesicles near putative endocytic sites, which is consistent with deficits in vesicle retrieval pathways. Using the glutamate reporter, iGluSnFR, we show that there are parallel functional consequences, where ongoing information signaling capacity is constrained. Treatment with levetiracetam, an antiepileptic that dampens synaptic hyperactivity, partially rescues these transmission defects. Our findings implicate organizational and dynamic features of functional vesicle pools as targets in Aβ-driven synaptic impairment, suggesting that interventions to relieve the overloading of vesicle retrieval pathways might have promising therapeutic value.
Collapse
Affiliation(s)
- Luca Biasetti
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Stephanie Rey
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
- National Physical Laboratory, Middlesex, TW11 0LW, United Kingdom
| | - Milena Fowler
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Arjuna Ratnayaka
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
- Faculty of Medicine, University of Southampton, SO17 1BJ, United Kingdom
| | - Kate Fennell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Catherine Smith
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Karen Marshall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Catherine Hall
- Sussex Neuroscience, School of Psychology, University of Sussex, Brighton, BN1 9QH, United Kingdom
| | - Mariana Vargas-Caballero
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, United Kingdom
| | - Louise Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Kevin Staras
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| |
Collapse
|
17
|
Ben-Nejma IRH, Keliris AJ, Vanreusel V, Ponsaerts P, Van der Linden A, Keliris GA. Altered dynamics of glymphatic flow in a mature-onset Tet-off APP mouse model of amyloidosis. Alzheimers Res Ther 2023; 15:23. [PMID: 36707887 PMCID: PMC9883946 DOI: 10.1186/s13195-023-01175-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/18/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is an incurable neurodegenerative disorder characterised by the progressive buildup of toxic amyloid-beta (Aβ) and tau protein aggregates eventually leading to cognitive decline. Recent lines of evidence suggest that an impairment of the glymphatic system (GS), a brain waste clearance pathway, plays a key role in the pathology of AD. Moreover, a relationship between GS function and neuronal network integrity has been strongly implicated. Here, we sought to assess the efficacy of the GS in a transgenic Tet-Off APP mouse model of amyloidosis, in which the expression of mutant APP was delayed until maturity, mimicking features of late-onset AD-the most common form of dementia in humans. METHODS To evaluate GS function, we used dynamic contrast-enhanced MRI (DCE-MRI) in 14-month-old Tet-Off APP (AD) mice and aged-matched littermate controls. Brain-wide transport of the Gd-DOTA contrast agent was monitored over time after cisterna magna injection. Region-of-interest analysis and computational modelling were used to assess GS dynamics while characterisation of brain tissue abnormalities at the microscale was performed ex vivo by immunohistochemistry. RESULTS We observed reduced rostral glymphatic flow and higher accumulation of the contrast agent in areas proximal to the injection side in the AD group. Clustering and subsequent computational modelling of voxel time courses revealed significantly lower influx time constants in AD relative to the controls. Ex vivo evaluation showed abundant amyloid plaque burden in the AD group coinciding with extensive astrogliosis and microgliosis. The neuroinflammatory responses were also found in plaque-devoid regions, potentially impacting brain-fluid circulation. CONCLUSIONS In a context resembling late-onset AD in humans, we demonstrate the disruption of glymphatic function and particularly a reduction in brain-fluid influx in the AD group. We conjecture that the hindered circulation of cerebrospinal fluid is potentially caused by wide-spread astrogliosis and amyloid-related obstruction of the normal routes of glymphatic flow resulting in redirection towards caudal regions. In sum, our study highlights the translational potential of alternative approaches, such as targeting brain-fluid circulation as potential therapeutic strategies for AD.
Collapse
Affiliation(s)
- Inès R. H. Ben-Nejma
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Aneta J. Keliris
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Verdi Vanreusel
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium ,Research in Dosimetric Applications, SCK CEN, Boeretang 200, Mol, 2400 Antwerp, Belgium
| | - Peter Ponsaerts
- grid.5284.b0000 0001 0790 3681Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Annemie Van der Linden
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Georgios A. Keliris
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium ,grid.4834.b0000 0004 0635 685XInstitute of Computer Science, Foundation for Research and Technology – Hellas (FORTH), Heraklion, Crete Greece
| |
Collapse
|
18
|
Amyloid-β in Alzheimer's disease - front and centre after all? Neuronal Signal 2023; 7:NS20220086. [PMID: 36687366 PMCID: PMC9829960 DOI: 10.1042/ns20220086] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
The amyloid hypothesis, which proposes that accumulation of the peptide amyloid-β at synapses is the key driver of Alzheimer's disease (AD) pathogenesis, has been the dominant idea in the field of Alzheimer's research for nearly 30 years. Recently, however, serious doubts about its validity have emerged, largely motivated by disappointing results from anti-amyloid therapeutics in clinical trials. As a result, much of the AD research effort has shifted to understanding the roles of a variety of other entities implicated in pathogenesis, such as microglia, astrocytes, apolipoprotein E and several others. All undoubtedly play an important role, but the nature of this has in many cases remained unclear, partly due to their pleiotropic functions. Here, we propose that all of these AD-related entities share at least one overlapping function, which is the local regulation of amyloid-β levels, and that this may be critical to their role in AD pathogenesis. We also review what is currently known of the actions of amyloid-β at the synapse in health and disease, and consider in particular how it might interact with the key AD-associated protein tau in the disease setting. There is much compelling evidence in support of the amyloid hypothesis; rather than detract from this, the implication of many disparate AD-associated cell types, molecules and processes in the regulation of amyloid-β levels may lend further support.
Collapse
|
19
|
Grünblatt E, Homolak J, Babic Perhoc A, Davor V, Knezovic A, Osmanovic Barilar J, Riederer P, Walitza S, Tackenberg C, Salkovic-Petrisic M. From attention-deficit hyperactivity disorder to sporadic Alzheimer's disease-Wnt/mTOR pathways hypothesis. Front Neurosci 2023; 17:1104985. [PMID: 36875654 PMCID: PMC9978448 DOI: 10.3389/fnins.2023.1104985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder with the majority of patients classified as sporadic AD (sAD), in which etiopathogenesis remains unresolved. Though sAD is argued to be a polygenic disorder, apolipoprotein E (APOE) ε4, was found three decades ago to pose the strongest genetic risk for sAD. Currently, the only clinically approved disease-modifying drugs for AD are aducanumab (Aduhelm) and lecanemab (Leqembi). All other AD treatment options are purely symptomatic with modest benefits. Similarly, attention-deficit hyperactivity disorder (ADHD), is one of the most common neurodevelopmental mental disorders in children and adolescents, acknowledged to persist in adulthood in over 60% of the patients. Moreover, for ADHD whose etiopathogenesis is not completely understood, a large proportion of patients respond well to treatment (first-line psychostimulants, e.g., methylphenidate/MPH), however, no disease-modifying therapy exists. Interestingly, cognitive impairments, executive, and memory deficits seem to be common in ADHD, but also in early stages of mild cognitive impairment (MCI), and dementia, including sAD. Therefore, one of many hypotheses is that ADHD and sAD might have similar origins or that they intercalate with one another, as shown recently that ADHD may be considered a risk factor for sAD. Intriguingly, several overlaps have been shown between the two disorders, e.g., inflammatory activation, oxidative stress, glucose and insulin pathways, wingless-INT/mammalian target of rapamycin (Wnt/mTOR) signaling, and altered lipid metabolism. Indeed, Wnt/mTOR activities were found to be modified by MPH in several ADHD studies. Wnt/mTOR was also found to play a role in sAD and in animal models of the disorder. Moreover, MPH treatment in the MCI phase was shown to be successful for apathy including some improvement in cognition, according to a recent meta-analysis. In several AD animal models, ADHD-like behavioral phenotypes have been observed indicating a possible interconnection between ADHD and AD. In this concept paper, we will discuss the various evidence in human and animal models supporting the hypothesis in which ADHD might increase the risk for sAD, with common involvement of the Wnt/mTOR-pathway leading to lifespan alteration at the neuronal levels.
Collapse
Affiliation(s)
- Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Jan Homolak
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Virag Davor
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Peter Riederer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany.,Department and Research Unit of Psychiatry, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Christian Tackenberg
- Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
| | - Melita Salkovic-Petrisic
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
20
|
Kim DW, Tu KJ, Wei A, Lau AJ, Gonzalez-Gil A, Cao T, Braunstein K, Ling JP, Troncoso JC, Wong PC, Blackshaw S, Schnaar RL, Li T. Amyloid-beta and tau pathologies act synergistically to induce novel disease stage-specific microglia subtypes. Mol Neurodegener 2022; 17:83. [PMID: 36536457 PMCID: PMC9762062 DOI: 10.1186/s13024-022-00589-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Amongst risk alleles associated with late-onset Alzheimer's disease (AD), those that converged on the regulation of microglia activity have emerged as central to disease progression. Yet, how canonical amyloid-β (Aβ) and tau pathologies regulate microglia subtypes during the progression of AD remains poorly understood. METHODS We use single-cell RNA-sequencing to profile microglia subtypes from mice exhibiting both Aβ and tau pathologies across disease progression. We identify novel microglia subtypes that are induced in response to both Aβ and tau pathologies in a disease-stage-specific manner. To validate the observation in AD mouse models, we also generated a snRNA-Seq dataset from the human superior frontal gyrus (SFG) and entorhinal cortex (ERC) at different Braak stages. RESULTS We show that during early-stage disease, interferon signaling induces a subtype of microglia termed Early-stage AD-Associated Microglia (EADAM) in response to both Aβ and tau pathologies. During late-stage disease, a second microglia subtype termed Late-stage AD-Associated Microglia (LADAM) is detected. While similar microglia subtypes are observed in other models of neurodegenerative disease, the magnitude and composition of gene signatures found in EADAM and LADAM are distinct, suggesting the necessity of both Aβ and tau pathologies to elicit their emergence. Importantly, the pattern of EADAM- and LADAM-associated gene expression is observed in microglia from AD brains, during the early (Braak II)- or late (Braak VI/V)- stage of the disease, respectively. Furthermore, we show that several Siglec genes are selectively expressed in either EADAM or LADAM. Siglecg is expressed in white-matter-associated LADAM, and expression of Siglec-10, the human orthologue of Siglecg, is progressively elevated in an AD-stage-dependent manner but not shown in non-AD tauopathy. CONCLUSIONS Using scRNA-Seq in mouse models bearing amyloid-β and/or tau pathologies, we identify novel microglia subtypes induced by the combination of Aβ and tau pathologies in a disease stage-specific manner. Our findings suggest that both Aβ and tau pathologies are required for the disease stage-specific induction of EADAM and LADAM. In addition, we revealed Siglecs as biomarkers of AD progression and potential therapeutic targets.
Collapse
Affiliation(s)
- Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Kevin J. Tu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Alice Wei
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Ashley J. Lau
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Anabel Gonzalez-Gil
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Tianyu Cao
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Kerstin Braunstein
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Jonathan P. Ling
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Juan C. Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Philip C. Wong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Ronald L. Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Tong Li
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
21
|
Ogbeide-Latario OE, Ferrari LL, Gompf HS, Anaclet C. Two novel mouse models of slow-wave-sleep enhancement in aging and Alzheimer's disease. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2022; 3:zpac022. [PMID: 37193408 PMCID: PMC10104383 DOI: 10.1093/sleepadvances/zpac022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/10/2022] [Indexed: 05/18/2023]
Abstract
Aging and Alzheimer's disease (AD) are both associated with reduced quantity and quality of the deepest stage of sleep, called slow-wave-sleep (SWS). Slow-wave-sleep deficits have been shown to worsen AD symptoms and prevent healthy aging. However, the mechanism remains poorly understood due to the lack of animal models in which SWS can be specifically manipulated. Notably, a mouse model of SWS enhancement has been recently developed in adult mice. As a prelude to studies assessing the impact of SWS enhancement on aging and neurodegeneration, we first asked whether SWS can be enhanced in animal models of aging and AD. The chemogenetic receptor hM3Dq was conditionally expressed in GABAergic neurons of the parafacial zone of aged mice and AD (APP/PS1) mouse model. Sleep-wake phenotypes were analyzed in baseline condition and following clozapine-N-oxide (CNO) and vehicle injections. Both aged and AD mice display deficits in sleep quality, characterized by decreased slow wave activity. Both aged and AD mice show SWS enhancement following CNO injection, characterized by a shorter SWS latency, increased SWS amount and consolidation, and enhanced slow wave activity, compared with vehicle injection. Importantly, the SWS enhancement phenotypes in aged and APP/PS1 model mice are comparable to those seen in adult and littermate wild-type mice, respectively. These mouse models will allow investigation of the role of SWS in aging and AD, using, for the first time, gain-of SWS experiments.
Collapse
Affiliation(s)
- Oghomwen E Ogbeide-Latario
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Loris L Ferrari
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Heinrich S Gompf
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Neurological Surgery, University of California Davis School of Medicine, Davis CA, USA
| | - Christelle Anaclet
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Neurological Surgery, University of California Davis School of Medicine, Davis CA, USA
| |
Collapse
|
22
|
Steuer EL, Kemper LJ, Hlynialuk CJW, Leinonen-Wright K, Montonye ML, Lapcinski IP, Forster CL, Ashe KH, Liu P. Blocking Site-Specific Cleavage of Human Tau Delays Progression of Disease-Related Phenotypes in Genetically Matched Tau-Transgenic Mice Modeling Frontotemporal Dementia. J Neurosci 2022; 42:4737-4754. [PMID: 35508385 PMCID: PMC9186797 DOI: 10.1523/jneurosci.0543-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022] Open
Abstract
Studies have recently demonstrated that a caspase-2-mediated cleavage of human tau (htau) at asparate-314 (D314) is responsible for cognitive deficits and neurodegeneration in mice modeling frontotemporal dementia (FTD). However, these animal studies may be confounded by flaws in their model systems, such as endogenous functional gene disruption and inequivalent transgene expression. To avoid these weaknesses, we examined the pathogenic role of this site-specific htau cleavage in FTD using genetically matched htau targeted-insertion mouse lines: rT2 and rT3. Both male and female mice were included in this study. rT2 mice contain a single copy of the FTD-linked htau proline-to-leucine mutation at amino acid 301 (htau P301L), inserted into a neutral site to avoid dysregulation of host gene expression. The similarly constructed rT3 mice harbor an additional D314-to-glutamate (D314E) mutation that blocks htau cleavage. We demonstrate that htau transgene expression occurs primarily in the forebrain at similar levels in rT2 and rT3 mice. Importantly, expression of the cleavage-resistant D314E mutant delays transgene-induced tau accumulation in the postsynaptic density, brain atrophy, hippocampal neurodegeneration, and spatial memory impairment, without altering age-related progression of pathologic tau conformation and phosphorylation. Our comprehensive investigation of age-dependent disease phenotypes associated with the htau P301L variant in precisely engineered FTD-modeling mice unveils a transiently protective effect of blocking htau cleavage at D314. Findings of this study advance our understanding of the contribution of this tau cleavage to the pathogenesis of FTD, and aid the development of effective dementia-targeting therapies.SIGNIFICANCE STATEMENT A site-specific and caspase-2-mediated cleavage of human tau plays a pathologic role in dementia. In this study, we investigate the contribution of this cleavage to the pathogenesis of frontotemporal dementia (FTD) using two genetically matched, tau-transgene targeted-insertion mouse lines that differ only by a cleavage-resistant mutation. The use of these mice avoids confounding effects associated with the random integration of tau transgenes to the mouse genome and allows us to comprehensively evaluate the impact of the tau cleavage on FTD phenotypes. Our data reveal that blocking this tau cleavage delays memory impairment and neurodegeneration of FTD-modeling mice. These findings improve our understanding of the pathogenic mechanisms underlying FTD and will facilitate the development of effective therapeutics.
Collapse
Affiliation(s)
- Elizabeth L Steuer
- N. Bud Grossman Center for Memory Research and Care
- Department of Neurology
| | - Lisa J Kemper
- N. Bud Grossman Center for Memory Research and Care
- Department of Neurology
| | | | | | | | - Ian P Lapcinski
- N. Bud Grossman Center for Memory Research and Care
- Department of Neurology
| | - Colleen L Forster
- N. Bud Grossman Center for Memory Research and Care
- UMN Academic Health Center Biological Materials Procurement Network, University of Minnesota, Minneapolis, Minnesota 55455
| | - Karen H Ashe
- N. Bud Grossman Center for Memory Research and Care
- Department of Neurology
- Geriatric Research, Education, and Clinical Centers, Veterans Affairs Medical Center, Minneapolis, Minnesota 55417
| | - Peng Liu
- N. Bud Grossman Center for Memory Research and Care
- Department of Neurology
| |
Collapse
|
23
|
Uselman TW, Medina CS, Gray HB, Jacobs RE, Bearer EL. Longitudinal manganese-enhanced magnetic resonance imaging of neural projections and activity. NMR IN BIOMEDICINE 2022; 35:e4675. [PMID: 35253280 PMCID: PMC11064873 DOI: 10.1002/nbm.4675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/19/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) holds exceptional promise for preclinical studies of brain-wide physiology in awake-behaving animals. The objectives of this review are to update the current information regarding MEMRI and to inform new investigators as to its potential. Mn(II) is a powerful contrast agent for two main reasons: (1) high signal intensity at low doses; and (2) biological interactions, such as projection tracing and neural activity mapping via entry into electrically active neurons in the living brain. High-spin Mn(II) reduces the relaxation time of water protons: at Mn(II) concentrations typically encountered in MEMRI, robust hyperintensity is obtained without adverse effects. By selectively entering neurons through voltage-gated calcium channels, Mn(II) highlights active neurons. Safe doses may be repeated over weeks to allow for longitudinal imaging of brain-wide dynamics in the same individual across time. When delivered by stereotactic intracerebral injection, Mn(II) enters active neurons at the injection site and then travels inside axons for long distances, tracing neuronal projection anatomy. Rates of axonal transport within the brain were measured for the first time in "time-lapse" MEMRI. When delivered systemically, Mn(II) enters active neurons throughout the brain via voltage-sensitive calcium channels and clears slowly. Thus behavior can be monitored during Mn(II) uptake and hyperintense signals due to Mn(II) uptake captured retrospectively, allowing pairing of behavior with neural activity maps for the first time. Here we review critical information gained from MEMRI projection mapping about human neuropsychological disorders. We then discuss results from neural activity mapping from systemic Mn(II) imaged longitudinally that have illuminated development of the tonotopic map in the inferior colliculus as well as brain-wide responses to acute threat and how it evolves over time. MEMRI posed specific challenges for image data analysis that have recently been transcended. We predict a bright future for longitudinal MEMRI in pursuit of solutions to the brain-behavior mystery.
Collapse
Affiliation(s)
- Taylor W. Uselman
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Russell E. Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Elaine L. Bearer
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
24
|
Koller EJ, Comstock M, Bean JC, Escobedo G, Park KW, Jankowsky JL. Temporal and spatially controlled APP transgene expression using Cre-dependent alleles. Dis Model Mech 2022; 15:dmm049330. [PMID: 35394029 PMCID: PMC9118045 DOI: 10.1242/dmm.049330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/24/2022] [Indexed: 12/17/2022] Open
Abstract
Although a large number of mouse models have been made to study Alzheimer's disease, only a handful allow experimental control over the location or timing of the protein being used to drive pathology. Other fields have used the Cre and the tamoxifen-inducible CreER driver lines to achieve precise spatial and temporal control over gene deletion and transgene expression, yet these tools have not been widely used in studies of neurodegeneration. Here, we describe two strategies for harnessing the wide range of Cre and CreER driver lines to control expression of disease-associated amyloid precursor protein (APP) in modeling Alzheimer's amyloid pathology. We show that CreER-based spatial and temporal control over APP expression can be achieved with existing lines by combining a Cre driver with a tetracycline-transactivator (tTA)-dependent APP responder using a Cre-to-tTA converter line. We then describe a new mouse line that places APP expression under direct control of Cre recombinase using an intervening lox-stop-lox cassette. Mating this allele with a CreER driver allows both spatial and temporal control over APP expression, and with it, amyloid onset. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Emily J. Koller
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Melissa Comstock
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan C. Bean
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gabriel Escobedo
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kyung-Won Park
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joanna L. Jankowsky
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Neurology, Neurosurgery and Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
25
|
Xu G, Ulm BS, Howard J, Fromholt SE, Lu Q, Lee BB, Walker A, Borchelt DR, Lewis J. TAPPing into the potential of inducible tau/APP transgenic mice. Neuropathol Appl Neurobiol 2022; 48:e12791. [PMID: 35067965 DOI: 10.1111/nan.12791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 11/13/2021] [Indexed: 11/28/2022]
Abstract
AIMS Our understanding of the pathological interactions between amyloidosis and tauopathy in Alzheimer's disease is incomplete. We sought to determine if the relative timing of the amyloidosis and tauopathy is critical for amyloid-enhanced tauopathy. METHODS We crossed an inducible tauopathy model with two β-amyloid models utilising the doxycycline-repressible transgenic system to modulate timing and duration of human tau expression in the context of amyloidosis and then assessed tauopathy, amyloidosis and gliosis. RESULTS We combined inducible rTg4510 tau with APPswe/PS1dE9 [Line 85 (L85)] mice to examine the interactions between Aβ and tauopathy at different stages of amyloidosis. When we initially suppressed mutant human tau expression for 14-15 months and subsequently induced tau expression for 6 months, severe amyloidosis with robust tauopathy resulted in rTg4510/L85 but not rTg4510 mice. When we suppressed mutant tau for 7 months before inducing expression for a subsequent 6 months in another cohort of rTg4510/L85 and rTg4510 mice, only rTg4510/L85 mice displayed robust tauopathy. Lastly, we crossed rTg4510 mice to tet-regulated APPswe/ind [Line 107 (L107)] mice, using doxycycline to initially suppress both transgenes for 1 month before inducing expression for 5 months to model early amyloidosis. In contrast to rTg4510, rTg4510/L107 mice rapidly developed amyloidosis, accompanied by robust tauopathy. CONCLUSIONS These data suggest that tau misfolding is exacerbated by both newly forming Aβ deposits in younger brain and mature deposits in older brains. Refined use and repurposing of these models provide new tools to explore the intersection of ageing, amyloid and tauopathy and to test interventions to disrupt the amyloid cascade.
Collapse
Affiliation(s)
- Guilian Xu
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Brittany S Ulm
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - John Howard
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Susan E Fromholt
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Qing Lu
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Brian Benedict Lee
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Ariel Walker
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - David R Borchelt
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- SantaFe HealthCare Alzheimer's Disease Research Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jada Lewis
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| |
Collapse
|
26
|
Broussard JI, Redell JB, Maynard ME, Zhao J, Moore A, Mills RW, Hood KN, Underwood E, Roysam B, Dash PK. Impaired Experience-Dependent Refinement of Place Cells in a Rat Model of Alzheimer's Disease. J Alzheimers Dis 2022; 86:1907-1916. [PMID: 35253742 PMCID: PMC9850819 DOI: 10.3233/jad-215023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Hippocampal place cells play an integral role in generating spatial maps. Impaired spatial memory is a characteristic pathology of Alzheimer's disease (AD), yet it remains unclear how AD influences the properties of hippocampal place cells. OBJECTIVE To record electrophysiological activity in hippocampal CA1 neurons in freely-moving 18-month-old male TgF344-AD and age-matched wild-type (WT) littermates to examine place cell properties. METHODS We implanted 32-channel electrode arrays into the CA1 subfield of 18-month-old male WT and TgF344-AD (n = 6/group) rats. Ten days after implantation, single unit activity in an open field arena was recorded across days. The spatial information content, in-field firing rate, and stability of each place cell was compared across groups. Pathology was assessed by immunohistochemical staining, and a deep neural network approach was used to count cell profiles. RESULTS Aged TgF344-AD rats exhibited hippocampal amyloid-β deposition, and a significant increase in Iba1 immunoreactivity and microglia cell counts. Place cells from WT and TgF344-AD rat showed equivalent spatial information, in-field firing rates, and place field stability when initially exposed to the arena. However, by day 3, the place cells in aged WT rats showed characteristic spatial tuning as evidenced by higher spatial information content, stability, and in-field firing rates, an effect not seen in TgF344-AD rats. CONCLUSION These findings support the notion that altered electrophysiological properties of place cells may contribute to the learning and memory deficits observed in AD.
Collapse
Affiliation(s)
- John I. Broussard
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas 77030,To whom correspondence should be addressed: JI Broussard, Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, 6431 Fannin, St., Suite 7.011, Houston, TX 77030, Phone: (713) 500-5545,
| | - John B. Redell
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas 77030
| | - Mark E. Maynard
- Department of Electrical and Computer Engineering, Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA
| | - Jing Zhao
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas 77030
| | - Anthony Moore
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas 77030
| | - Rachel W. Mills
- Department of Electrical and Computer Engineering, Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA
| | - Kimberly N. Hood
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas 77030
| | - Erica Underwood
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas 77030
| | - Badrinath Roysam
- Department of Electrical and Computer Engineering, Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA
| | - Pramod K. Dash
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas 77030
| |
Collapse
|
27
|
Mckean NE, Handley RR, Snell RG. A Review of the Current Mammalian Models of Alzheimer's Disease and Challenges That Need to Be Overcome. Int J Mol Sci 2021; 22:13168. [PMID: 34884970 PMCID: PMC8658123 DOI: 10.3390/ijms222313168] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 01/04/2023] Open
Abstract
Alzheimer's disease (AD) is one of the looming health crises of the near future. Increasing lifespans and better medical treatment for other conditions mean that the prevalence of this disease is expected to triple by 2050. The impact of AD includes both the large toll on individuals and their families as well as a large financial cost to society. So far, we have no way to prevent, slow, or cure the disease. Current medications can only alleviate some of the symptoms temporarily. Many animal models of AD have been created, with the first transgenic mouse model in 1995. Mouse models have been beset by challenges, and no mouse model fully captures the symptomatology of AD without multiple genetic mutations and/or transgenes, some of which have never been implicated in human AD. Over 25 years later, many mouse models have been given an AD-like disease and then 'cured' in the lab, only for the treatments to fail in clinical trials. This review argues that small animal models are insufficient for modelling complex disorders such as AD. In order to find effective treatments for AD, we need to create large animal models with brains and lifespan that are closer to humans, and underlying genetics that already predispose them to AD-like phenotypes.
Collapse
Affiliation(s)
- Natasha Elizabeth Mckean
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand; (N.E.M.); (R.R.H.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Renee Robyn Handley
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand; (N.E.M.); (R.R.H.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Russell Grant Snell
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand; (N.E.M.); (R.R.H.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
28
|
Oren O, Taube R, Papo N. Amyloid β structural polymorphism, associated toxicity and therapeutic strategies. Cell Mol Life Sci 2021; 78:7185-7198. [PMID: 34643743 PMCID: PMC11072899 DOI: 10.1007/s00018-021-03954-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/30/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
A review of the multidisciplinary scientific literature reveals a large variety of amyloid-β (Aβ) oligomeric species, differing in molecular weight, conformation and morphology. These species, which may assemble via either on- or off-aggregation pathways, exhibit differences in stability, function and neurotoxicity, according to different experimental settings. The conformations of the different Aβ species are stabilized by intra- and inter-molecular hydrogen bonds and by electrostatic and hydrophobic interactions, all depending on the chemical and physical environment (e.g., solvent, ions, pH) and interactions with other molecules, such as lipids and proteins. This complexity and the lack of a complete understanding of the relationship between the different Aβ species and their toxicity is currently dictating the nature of the inhibitor (or inducer)-based approaches that are under development for interfering with (or inducing) the formation of specific species and Aβ oligomerization, and for interfering with the associated downstream neurotoxic effects. Here, we review the principles that underlie the involvement of different Aβ oligomeric species in neurodegeneration, both in vitro and in preclinical studies. In addition, we provide an overview of the existing inhibitors (or inducers) of Aβ oligomerization that serve as potential therapeutics for neurodegenerative diseases. The review, which covers the exciting studies that have been published in the past few years, comprises three main parts: 1) on- and off-fibrillar assembly mechanisms and Aβ structural polymorphism; 2) interactions of Aβ with other molecules and cell components that dictate the Aβ aggregation pathway; and 3) targeting the on-fibrillar Aβ assembly pathway as a therapeutic approach.
Collapse
Affiliation(s)
- Ofek Oren
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
- Department of Biotechnology Engineering, Avram and Stella Goldstein-Goren, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
| | - Ran Taube
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
| | - Niv Papo
- Department of Biotechnology Engineering, Avram and Stella Goldstein-Goren, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel.
| |
Collapse
|
29
|
Duro-Castano A, Borrás C, Herranz-Pérez V, Blanco-Gandía MC, Conejos-Sánchez I, Armiñán A, Mas-Bargues C, Inglés M, Miñarro J, Rodríguez-Arias M, García-Verdugo JM, Viña J, Vicent MJ. Targeting Alzheimer's disease with multimodal polypeptide-based nanoconjugates. SCIENCE ADVANCES 2021; 7:7/13/eabf9180. [PMID: 33771874 PMCID: PMC7997513 DOI: 10.1126/sciadv.abf9180] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 05/04/2023]
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, remains incurable mainly due to our failings in the search for effective pharmacological strategies. Here, we describe the development of targeted multimodal polypeptide-based nanoconjugates as potential AD treatments. Treatment with polypeptide nanoconjugates bearing propargylamine moieties and bisdemethoxycurcumin or genistein afforded neuroprotection and displayed neurotrophic effects, as evidenced by an increase in dendritic density of pyramidal neurons in organotypic hippocampal culture. The additional conjugation of the Angiopep-2 targeting moiety enhanced nanoconjugate passage through the blood-brain barrier and modulated brain distribution with nanoconjugate accumulation in neurogenic areas, including the olfactory bulb. Nanoconjugate treatment effectively reduced neurotoxic β amyloid aggregate levels and rescued impairments to olfactory memory and object recognition in APP/PS1 transgenic AD model mice. Overall, this study provides a description of a targeted multimodal polyglutamate-based nanoconjugate with neuroprotective and neurotrophic potential for AD treatment.
Collapse
Affiliation(s)
- A Duro-Castano
- Polymer Therapeutics Lab., Centro de Investigación Príncipe Felipe (CIPF), Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - C Borrás
- Grupo de Investigación FRESHAGE, Departamento de Fisiología, Facultad de Medicina, Univ.. Valencia, CIBERFES-ISCIII, INCLIVA, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
| | - V Herranz-Pérez
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, Univ. València, CIBERNED, 46980 Valencia, Spain
- Predepartamental Unit of Medicine, Faculty of Health Sciences, Univ. Jaume I, 12071 Castelló de la Plana, Spain
| | - M C Blanco-Gandía
- Departamento de Psicología y Sociología, Facultad de Ciencias Sociales y Humanas, Univ. Zaragoza, Teruel, Spain
| | - I Conejos-Sánchez
- Polymer Therapeutics Lab., Centro de Investigación Príncipe Felipe (CIPF), Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - A Armiñán
- Polymer Therapeutics Lab., Centro de Investigación Príncipe Felipe (CIPF), Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - C Mas-Bargues
- Grupo de Investigación FRESHAGE, Departamento de Fisiología, Facultad de Medicina, Univ.. Valencia, CIBERFES-ISCIII, INCLIVA, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
| | - M Inglés
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Univ. Valencia, Valencia, Spain
| | - J Miñarro
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Univ. Valencia, Valencia, Spain
| | - M Rodríguez-Arias
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Univ. Valencia, Valencia, Spain
| | - J M García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, Univ. València, CIBERNED, 46980 Valencia, Spain
| | - J Viña
- Grupo de Investigación FRESHAGE, Departamento de Fisiología, Facultad de Medicina, Univ.. Valencia, CIBERFES-ISCIII, INCLIVA, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
| | - M J Vicent
- Polymer Therapeutics Lab., Centro de Investigación Príncipe Felipe (CIPF), Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| |
Collapse
|
30
|
Nizari S, Wells JA, Carare RO, Romero IA, Hawkes CA. Loss of cholinergic innervation differentially affects eNOS-mediated blood flow, drainage of Aβ and cerebral amyloid angiopathy in the cortex and hippocampus of adult mice. Acta Neuropathol Commun 2021; 9:12. [PMID: 33413694 PMCID: PMC7791879 DOI: 10.1186/s40478-020-01108-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/15/2020] [Indexed: 11/18/2022] Open
Abstract
Vascular dysregulation and cholinergic basal forebrain degeneration are both early pathological events in the development of Alzheimer’s disease (AD). Acetylcholine contributes to localised arterial dilatation and increased cerebral blood flow (CBF) during neurovascular coupling via activation of endothelial nitric oxide synthase (eNOS). Decreased vascular reactivity is suggested to contribute to impaired clearance of β-amyloid (Aβ) along intramural periarterial drainage (IPAD) pathways of the brain, leading to the development of cerebral amyloid angiopathy (CAA). However, the possible relationship between loss of cholinergic innervation, impaired vasoreactivity and reduced clearance of Aβ from the brain has not been previously investigated. In the present study, intracerebroventricular administration of mu-saporin resulted in significant death of cholinergic neurons and fibres in the medial septum, cortex and hippocampus of C57BL/6 mice. Arterial spin labelling MRI revealed a loss of CBF response to stimulation of eNOS by the Rho-kinase inhibitor fasudil hydrochloride in the cortex of denervated mice. By contrast, the hippocampus remained responsive to drug treatment, in association with altered eNOS expression. Fasudil hydrochloride significantly increased IPAD in the hippocampus of both control and saporin-treated mice, while increased clearance from the cortex was only observed in control animals. Administration of mu-saporin in the TetOAPPSweInd mouse model of AD was associated with a significant and selective increase in Aβ40-positive CAA. These findings support the importance of the interrelationship between cholinergic innervation and vascular function in the aetiology and/or progression of CAA and suggest that combined eNOS/cholinergic therapies may improve the efficiency of Aβ removal from the brain and reduce its deposition as CAA.
Collapse
|
31
|
Liu M, Beckett TL, Thomason LAM, Dorr A, Stefanovic B, McLaurin J. Covert strokes prior to Alzheimer's disease onset accelerate peri-lesional pathology but not cognitive deficits in an inducible APP mouse model. Brain Res 2021; 1754:147233. [PMID: 33412147 DOI: 10.1016/j.brainres.2020.147233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
Abstract
It is estimated that up to 1 in 3 healthy middle-aged adults will have had a covert stroke during their lifetime. Furthermore, post-stroke, survivors are more than twice as likely to develop dementia. In the present study, we aimed to model the impact of focal subclinical ischemia prior to the onset of AD pathogenesis in a preclinical model. We utilized endothelin-1 to induce ischemia in an iducible transgenic mouse model of Alzheimer's disease, APPsi:tTA, allowing for temporal control of APP gene expression. We induced the focal subclinical ischemic events in the absence of APP expression, thus prior to AD onset. T2 structural magnetic resonance imaging confirmed the volume and location of focal subclinical ischemic lesions to the medial prefrontal cortex. Following recovery from surgery and 7 weeks of APP expression, we found that two subclinical ischemic lesions resulted in a significant localized increase in amyloid load and in microglial activation proximal to the lesion. However, no differences were found in astrogliosis. A battery of behaviour tests was conducted, in which no significant differences were detected in activities of daily living and cognitive function between stroked and sham cohorts. Overall, our results demonstrated that APP expression was the sole driving force behind behavioural deficits. In conclusion, our results suggest that a history of two subclinical strokes prior to AD onset does not worsen early disease trajectory in a mouse model.
Collapse
Affiliation(s)
- Mingzhe Liu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.
| | - Tina L Beckett
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Adrienne Dorr
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Bojana Stefanovic
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - JoAnne McLaurin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
32
|
Johnson ECB, Ho K, Yu GQ, Das M, Sanchez PE, Djukic B, Lopez I, Yu X, Gill M, Zhang W, Paz JT, Palop JJ, Mucke L. Behavioral and neural network abnormalities in human APP transgenic mice resemble those of App knock-in mice and are modulated by familial Alzheimer's disease mutations but not by inhibition of BACE1. Mol Neurodegener 2020; 15:53. [PMID: 32921309 PMCID: PMC7489007 DOI: 10.1186/s13024-020-00393-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most frequent and costly neurodegenerative disorder. Although diverse lines of evidence suggest that the amyloid precursor protein (APP) is involved in its causation, the precise mechanisms remain unknown and no treatments are available to prevent or halt the disease. A favorite hypothesis has been that APP contributes to AD pathogenesis through the cerebral accumulation of the amyloid-β peptide (Aβ), which is derived from APP through sequential proteolytic cleavage by BACE1 and γ-secretase. However, inhibitors of these enzymes have failed in clinical trials despite clear evidence for target engagement. METHODS To further elucidate the roles of APP and its metabolites in AD pathogenesis, we analyzed transgenic mice overexpressing wildtype human APP (hAPP) or hAPP carrying mutations that cause autosomal dominant familial AD (FAD), as well as App knock-in mice that do not overexpress hAPP but have two mouse App alleles with FAD mutations and a humanized Aβ sequence. RESULTS Although these lines of mice had marked differences in cortical and hippocampal levels of APP, APP C-terminal fragments, soluble Aβ, Aβ oligomers and age-dependent amyloid deposition, they all developed cognitive deficits as well as non-convulsive epileptiform activity, a type of network dysfunction that also occurs in a substantive proportion of humans with AD. Pharmacological inhibition of BACE1 effectively reduced levels of amyloidogenic APP C-terminal fragments (C99), soluble Aβ, Aβ oligomers, and amyloid deposits in transgenic mice expressing FAD-mutant hAPP, but did not improve their network dysfunction and behavioral abnormalities, even when initiated at early stages before amyloid deposits were detectable. CONCLUSIONS hAPP transgenic and App knock-in mice develop similar pathophysiological alterations. APP and its metabolites contribute to AD-related functional alterations through complex combinatorial mechanisms that may be difficult to block with BACE inhibitors and, possibly, also with other anti-Aβ treatments.
Collapse
Affiliation(s)
- Erik C. B. Johnson
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Melanie Das
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Pascal E. Sanchez
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Biljana Djukic
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Isabel Lopez
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Xinxing Yu
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Michael Gill
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Weiping Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Institute of Endocrinology, Tianjin Medical University Metabolic Diseases Hospital, Tianjin, China
| | - Jeanne T. Paz
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Jorge J. Palop
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158 USA
| |
Collapse
|
33
|
Relevance of transgenic mouse models for Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 177:1-48. [PMID: 33453936 DOI: 10.1016/bs.pmbts.2020.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the last several decades, a number of mouse models have been generated for mechanistic and preclinical therapeutic research on Alzheimer's disease (AD)-like behavioral impairments and pathology. Acceptance or rejection of these models by the scientific community is playing a prominent role in how research findings are viewed and whether grants get funded and manuscripts published. The question of whether models are useful has become an exceptionally contentious issue. Much time and effort have gone into investigators debating comments such as "there are no mouse models of AD," "…nice work but needs to be tested in another mouse model," or "only data from humans is valid." This leads to extensive written justifications for the choice of a model in grant applications, to the point of almost apologizing for the use of models. These debates also lead to initiatives to create new, better models of AD without consideration of what "better" may mean in this context. On the "other side," an argument supporting the use of mouse models is one cannot dissect a biological mechanism in postmortem human tissue. In this chapter, we examine issues that we believe must be addressed if in vivo AD research is to progress. We opine that it is not the models that are the issue, but rather a lack of understanding the aspects of AD-like pathology the models were designed to mimic. The goal here is to improve the utilization of models to address critical issues, not to offer a critique of existing models or make endorsements.
Collapse
|
34
|
Xu G, Fromholt SE, Chakrabarty P, Zhu F, Liu X, Pace MC, Koh J, Golde TE, Levites Y, Lewis J, Borchelt DR. Diversity in Aβ deposit morphology and secondary proteome insolubility across models of Alzheimer-type amyloidosis. Acta Neuropathol Commun 2020; 8:43. [PMID: 32252825 PMCID: PMC7137436 DOI: 10.1186/s40478-020-00911-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/30/2022] Open
Abstract
A hallmark pathology of Alzheimer's disease (AD) is the formation of amyloid β (Aβ) deposits that exhibit diverse localization and morphologies, ranging from diffuse to cored-neuritic deposits in brain parenchyma, with cerebral vascular deposition in leptomeningeal and parenchymal compartments. Most AD brains exhibit the full spectrum of pathologic Aβ morphologies. In the course of studies to model AD amyloidosis, we have generated multiple transgenic mouse models that vary in the nature of the transgene constructs that are expressed; including the species origin of Aβ peptides, the levels and length of Aβ that is deposited, and whether mutant presenilin 1 (PS1) is co-expressed. These models recapitulate features of human AD amyloidosis, but interestingly some models can produce pathology in which one type of Aβ morphology dominates. In prior studies of mice that primarily develop cored-neuritic deposits, we determined that Aβ deposition is associated with changes in cytosolic protein solubility in which a subset of proteins become detergent-insoluble, indicative of secondary proteome instability. Here, we survey changes in cytosolic protein solubility across seven different transgenic mouse models that exhibit a range of Aβ deposit morphologies. We find a surprisingly diverse range of changes in proteome solubility across these models. Mice that deposit human Aβ40 and Aβ42 in cored-neuritic plaques had the most robust changes in proteome solubility. Insoluble cytosolic proteins were also detected in the brains of mice that develop diffuse Aβ42 deposits but to a lesser extent. Notably, mice with cored deposits containing only Aβ42 had relatively few proteins that became detergent-insoluble. Our data provide new insight into the diversity of biological effects that can be attributed to different types of Aβ pathology and support the view that fibrillar cored-neuritic plaque pathology is the more disruptive Aβ pathology in the Alzheimer's cascade.
Collapse
Affiliation(s)
- Guilian Xu
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Susan E Fromholt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Paramita Chakrabarty
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Fanchao Zhu
- The Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, 32610, USA
| | - Xuefei Liu
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Michael C Pace
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Jin Koh
- The Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, 32610, USA
| | - Todd E Golde
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Yona Levites
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Jada Lewis
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - David R Borchelt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- SantaFe Healthcare Alzheimer's Disease Research Center, Gainesville, FL, USA.
| |
Collapse
|
35
|
Roy ER, Wang B, Wan YW, Chiu G, Cole A, Yin Z, Propson NE, Xu Y, Jankowsky JL, Liu Z, Lee VMY, Trojanowski JQ, Ginsberg SD, Butovsky O, Zheng H, Cao W. Type I interferon response drives neuroinflammation and synapse loss in Alzheimer disease. J Clin Invest 2020; 130:1912-1930. [PMID: 31917687 PMCID: PMC7108898 DOI: 10.1172/jci133737] [Citation(s) in RCA: 331] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
Type I interferon (IFN) is a key cytokine that curbs viral infection and cell malignancy. Previously, we demonstrated a potent IFN immunogenicity of nucleic acid-containing (NA-containing) amyloid fibrils in the periphery. Here, we investigated whether IFN is associated with β-amyloidosis inside the brain and contributes to neuropathology. An IFN-stimulated gene (ISG) signature was detected in the brains of multiple murine Alzheimer disease (AD) models, a phenomenon also observed in WT mouse brain challenged with generic NA-containing amyloid fibrils. In vitro, microglia innately responded to NA-containing amyloid fibrils. In AD models, activated ISG-expressing microglia exclusively surrounded NA+ amyloid β plaques, which accumulated in an age-dependent manner. Brain administration of rIFN-β resulted in microglial activation and complement C3-dependent synapse elimination in vivo. Conversely, selective IFN receptor blockade effectively diminished the ongoing microgliosis and synapse loss in AD models. Moreover, we detected activated ISG-expressing microglia enveloping NA-containing neuritic plaques in postmortem brains of patients with AD. Gene expression interrogation revealed that IFN pathway was grossly upregulated in clinical AD and significantly correlated with disease severity and complement activation. Therefore, IFN constitutes a pivotal element within the neuroinflammatory network of AD and critically contributes to neuropathogenic processes.
Collapse
Affiliation(s)
- Ethan R. Roy
- Huffington Center on Aging
- Translational Biology & Molecular Medicine Program, and
| | | | - Ying-wooi Wan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | | | - Zhuoran Yin
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicholas E. Propson
- Huffington Center on Aging
- Molecular and Cellular Biology Program, Department of Molecular and Cellular Biology
| | - Yin Xu
- Huffington Center on Aging
| | | | - Zhandong Liu
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Virginia M.-Y. Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, USA
- Departments of Psychiatry, Neuroscience & Physiology and the NYU Neuroscience Institute, New York University Langone Medical Center, New York, New York, USA
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hui Zheng
- Huffington Center on Aging
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Wei Cao
- Huffington Center on Aging
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
36
|
Schmidt J, Mayer AK, Bakula D, Freude J, Weber JJ, Weiss A, Riess O, Schmidt T. Vulnerability of frontal brain neurons for the toxicity of expanded ataxin-3. Hum Mol Genet 2020; 28:1463-1473. [PMID: 30576445 DOI: 10.1093/hmg/ddy437] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/16/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is caused by the expansion of CAG repeats in the ATXN3 gene leading to an elongated polyglutamine tract in the ataxin-3 protein. Previously, we demonstrated that symptoms of SCA3 are reversible in the first conditional mouse model for SCA3 directing ataxin-3 predominantly to the hindbrain. Here, we report on the effects of transgenic ataxin-3 expression in forebrain regions. Employing the Tet-off CamKII-promoter mouse line and our previously published SCA3 responder line, we generated double transgenic mice (CamKII/MJD77), which develop a neurological phenotype characterized by impairment in rotarod performance, and deficits in learning new motor tasks as well as hyperactivity. Ataxin-3 and ubiquitin-positive inclusions are detected in brains of double transgenic CamKII/MJD77 mice. After turning off the expression of pathologically expanded ataxin-3, these inclusions disappear. However, the observed phenotype could not be reversed, very likely due to pronounced apoptotic cell death in the frontal brain. Our data demonstrate that cerebellar expression is not required to induce a neurological phenotype using expanded ATXN3 as well as the pronounced sensibility of forebrain neurons for toxic ataxin-3.
Collapse
Affiliation(s)
- Jana Schmidt
- SCA3 research group, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases, University of Tuebingen, Tuebingen, Germany.,NGS Competence Center, University of Tuebingen, Tuebingen, Germany
| | - Anja K Mayer
- SCA3 research group, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases, University of Tuebingen, Tuebingen, Germany.,NGS Competence Center, University of Tuebingen, Tuebingen, Germany
| | - Daniela Bakula
- SCA3 research group, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases, University of Tuebingen, Tuebingen, Germany.,NGS Competence Center, University of Tuebingen, Tuebingen, Germany
| | - Jasmin Freude
- SCA3 research group, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases, University of Tuebingen, Tuebingen, Germany.,NGS Competence Center, University of Tuebingen, Tuebingen, Germany
| | - Jonasz J Weber
- SCA3 research group, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases, University of Tuebingen, Tuebingen, Germany.,NGS Competence Center, University of Tuebingen, Tuebingen, Germany
| | | | - Olaf Riess
- SCA3 research group, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases, University of Tuebingen, Tuebingen, Germany.,NGS Competence Center, University of Tuebingen, Tuebingen, Germany
| | - Thorsten Schmidt
- SCA3 research group, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases, University of Tuebingen, Tuebingen, Germany.,NGS Competence Center, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
37
|
Huichalaf CH, Al-Ramahi I, Park KW, Grunke SD, Lu N, de Haro M, El-Zein K, Gallego-Flores T, Perez AM, Jung SY, Botas J, Zoghbi HY, Jankowsky JL. Cross-species genetic screens to identify kinase targets for APP reduction in Alzheimer's disease. Hum Mol Genet 2020; 28:2014-2029. [PMID: 30753434 DOI: 10.1093/hmg/ddz034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 01/07/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
An early hallmark of Alzheimer's disease is the accumulation of amyloid-β (Aβ), inspiring numerous therapeutic strategies targeting this peptide. An alternative approach is to destabilize the amyloid beta precursor protein (APP) from which Aβ is derived. We interrogated innate pathways governing APP stability using a siRNA screen for modifiers whose own reduction diminished APP in human cell lines and transgenic Drosophila. As proof of principle, we validated PKCβ-a known modifier identified by the screen-in an APP transgenic mouse model. PKCβ was genetically targeted using a novel adeno-associated virus shuttle vector to deliver microRNA-adapted shRNA via intracranial injection. In vivo reduction of PKCβ initially diminished APP and delayed plaque formation. Despite persistent PKCβ suppression, the effect on APP and amyloid diminished over time. Our study advances this approach for mining druggable modifiers of disease-associated proteins, while cautioning that prolonged in vivo validation may be needed to reveal emergent limitations on efficacy.
Collapse
Affiliation(s)
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | | | | | - Nan Lu
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Maria de Haro
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Karla El-Zein
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Tatiana Gallego-Flores
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Alma M Perez
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | | | - Juan Botas
- Department of Molecular and Human Genetics.,Department of Molecular and Cellular Biology.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Huda Y Zoghbi
- Department of Neuroscience.,Department of Molecular and Human Genetics.,Department of Pediatrics.,Department of Neurology.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Joanna L Jankowsky
- Department of Neuroscience.,Department of Molecular and Cellular Biology.,Department of Neurology.,Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
38
|
Medina CS, Uselman TW, Barto DR, Cháves F, Jacobs RE, Bearer EL. Decoupling the Effects of the Amyloid Precursor Protein From Amyloid-β Plaques on Axonal Transport Dynamics in the Living Brain. Front Cell Neurosci 2019; 13:501. [PMID: 31849608 PMCID: PMC6901799 DOI: 10.3389/fncel.2019.00501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022] Open
Abstract
Amyloid precursor protein (APP) is the precursor to Aβ plaques. The cytoplasmic domain of APP mediates attachment of vesicles to molecular motors for axonal transport. In APP-KO mice, transport of Mn2+ is decreased. In old transgenic mice expressing mutated human (APPSwInd) linked to Familial Alzheimer's Disease, with both expression of APPSwInd and plaques, the rate and destination of Mn2+ axonal transport is altered, as detected by time-lapse manganese-enhanced magnetic resonance imaging (MEMRI) of the brain in living mice. To determine the relative contribution of expression of APPSwInd versus plaque on transport dynamics, we developed a Tet-off system to decouple expression of APPSwInd from plaque, and then studied hippocampal to forebrain transport by MEMRI. Three groups of mice were compared to wild-type (WT): Mice with plaque and APPSwInd expression; mice with plaque but suppression of APPSwInd expression; and mice with APPSwInd suppressed from mating until 2 weeks before imaging with no plaque. MR images were captured before at successive time points after stereotactic injection of Mn2+ (3-5 nL) into CA3 of the hippocampus. Mice were returned to their home cage between imaging sessions so that transport would occur in the awake freely moving animal. Images of multiple mice from the three groups (suppressed or expressed) together with C57/B6J WT were aligned and processed with our automated computational pipeline, and voxel-wise statistical parametric mapping (SPM) performed. At the conclusion of MR imaging, brains were harvested for biochemistry or histopathology. Paired T-tests within-group between time points (p = 0.01 FDR corrected) support the impression that both plaque alone and APPSwInd expression alone alter transport rates and destination of Mn2+ accumulation. Expression of APPSwInd in the absence of plaque or detectable Aβ also resulted in transport defects as well as pathology of hippocampus and medial septum, suggesting two sources of pathology occur in familial Alzheimer's disease, from toxic mutant protein as well as plaque. Alternatively mice with plaque without APPSwInd expression resemble the human condition of sporadic Alzheimer's, and had better transport. Thus, these mice with APPSwInd expression suppressed after plaque formation will be most useful in preclinical trials.
Collapse
Affiliation(s)
- Christopher S. Medina
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Taylor W. Uselman
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Daniel R. Barto
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Frances Cháves
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Russell E. Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- California Institute of Technology, Pasadena, CA, United States
| | - Elaine L. Bearer
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
- California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
39
|
Ben-Nejma IRH, Keliris AJ, Daans J, Ponsaerts P, Verhoye M, Van der Linden A, Keliris GA. Increased soluble amyloid-beta causes early aberrant brain network hypersynchronisation in a mature-onset mouse model of amyloidosis. Acta Neuropathol Commun 2019; 7:180. [PMID: 31727182 PMCID: PMC6857138 DOI: 10.1186/s40478-019-0810-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/14/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly. According to the amyloid hypothesis, the accumulation and deposition of amyloid-beta (Aβ) peptides play a key role in AD. Soluble Aβ (sAβ) oligomers were shown to be involved in pathological hypersynchronisation of brain resting-state networks in different transgenic developmental-onset mouse models of amyloidosis. However, the impact of protein overexpression during brain postnatal development may cause additional phenotypes unrelated to AD. To address this concern, we investigated sAβ effects on functional resting-state networks in transgenic mature-onset amyloidosis Tet-Off APP (TG) mice. TG mice and control littermates were raised on doxycycline (DOX) diet from 3d up to 3 m of age to suppress transgenic Aβ production. Thereafter, longitudinal resting-state functional MRI was performed on a 9.4 T MR-system starting from week 0 (3 m old mice) up to 28w post DOX treatment. Ex-vivo immunohistochemistry and ELISA analysis was performed to assess the development of amyloid pathology. Functional Connectivity (FC) analysis demonstrated early abnormal hypersynchronisation in the TG mice compared to the controls at 8w post DOX treatment, particularly across regions of the default mode-like network, known to be affected in AD. Ex-vivo analyses performed at this time point confirmed a 20-fold increase in total sAβ levels preceding the apparition of Aβ plaques and inflammatory responses in the TG mice compared to the controls. On the contrary at week 28, TG mice showed an overall hypoconnectivity, coinciding with a widespread deposition of Aβ plaques in the brain. By preventing developmental influence of APP and/or sAβ during brain postnatal development, we demonstrated FC abnormalities potentially driven by sAβ neurotoxicity on resting-state neuronal networks in mature-induced TG mice. Thus, the Tet-Off APP mouse model could be a powerful tool while used as a mature-onset model to shed light into amyloidosis mechanisms in AD.
Collapse
|
40
|
Utilizing supervised machine learning to identify microglia and astrocytes in situ: implications for large-scale image analysis and quantification. J Neurosci Methods 2019; 328:108424. [PMID: 31494186 DOI: 10.1016/j.jneumeth.2019.108424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/14/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND The evaluation of histological tissue samples plays a crucial role in deciphering preclinical disease and injury mechanisms. High-resolution images can be obtained quickly however data acquisition are often bottlenecked by manual analysis methodologies. NEW METHOD We describe and validate a pipeline for a novel machine learning-based analytical method, using the Opera High-Content Screening system and Harmony software, allowing for detailed image analysis of cellular markers in histological samples. RESULTS To validate the machine learning pipeline, analyses of single proteins in mouse brain sections were utilized. To demonstrate adaptability of the pipeline for multiple cell types and epitopes, the percent brain coverage of microglial cells, identified by ionized calcium binding adaptors molecule 1 (Iba1), and of astrocytes, by glial fibrillary acidic protein (GFAP) demonstrated no significant differences between automated and manual analyses protocols. Further to examine the robustness of this protocol for multiple proteins simultaneously labeling of rat brain sections were utilized; co-localization of astrocytic endfeet on blood vessels, using aquaporin-4 and tomato lectin respectively, were efficiently identified and quantified by the novel pipeline and were not significantly different between the two analyses protocols. Comparison with Existing Methods: The automated platform maintained the sensitivity and accuracy of manual analysis, while accomplishing the analyses in 1/200th of the time. CONCLUSIONS We demonstrate the benefits and potential of adapting an automated high-throughput machine-learning analytical approach for the analysis ofin situ tissue samples, show effectiveness across different animal models, while reducing analysis time and increasing productivity.
Collapse
|
41
|
Spangenberg E, Severson PL, Hohsfield LA, Crapser J, Zhang J, Burton EA, Zhang Y, Spevak W, Lin J, Phan NY, Habets G, Rymar A, Tsang G, Walters J, Nespi M, Singh P, Broome S, Ibrahim P, Zhang C, Bollag G, West BL, Green KN. Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer's disease model. Nat Commun 2019; 10:3758. [PMID: 31434879 PMCID: PMC6704256 DOI: 10.1038/s41467-019-11674-z] [Citation(s) in RCA: 553] [Impact Index Per Article: 92.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/26/2019] [Indexed: 01/07/2023] Open
Abstract
Many risk genes for the development of Alzheimer's disease (AD) are exclusively or highly expressed in myeloid cells. Microglia are dependent on colony-stimulating factor 1 receptor (CSF1R) signaling for their survival. We designed and synthesized a highly selective brain-penetrant CSF1R inhibitor (PLX5622) allowing for extended and specific microglial elimination, preceding and during pathology development. We find that in the 5xFAD mouse model of AD, plaques fail to form in the parenchymal space following microglial depletion, except in areas containing surviving microglia. Instead, Aβ deposits in cortical blood vessels reminiscent of cerebral amyloid angiopathy. Altered gene expression in the 5xFAD hippocampus is also reversed by the absence of microglia. Transcriptional analyses of the residual plaque-forming microglia show they exhibit a disease-associated microglia profile. Collectively, we describe the structure, formulation, and efficacy of PLX5622, which allows for sustained microglial depletion and identify roles of microglia in initiating plaque pathogenesis.
Collapse
Affiliation(s)
- Elizabeth Spangenberg
- Department of Neurobiology and Behavior, University of California Irvine (UCI), Irvine, CA, 92697, USA
| | | | - Lindsay A Hohsfield
- Department of Neurobiology and Behavior, University of California Irvine (UCI), Irvine, CA, 92697, USA
| | - Joshua Crapser
- Department of Neurobiology and Behavior, University of California Irvine (UCI), Irvine, CA, 92697, USA
| | | | | | | | | | - Jack Lin
- Plexxikon Inc, Berkeley, CA, 94710, USA
| | - Nicole Y Phan
- Department of Neurobiology and Behavior, University of California Irvine (UCI), Irvine, CA, 92697, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Kim N Green
- Department of Neurobiology and Behavior, University of California Irvine (UCI), Irvine, CA, 92697, USA.
| |
Collapse
|
42
|
Silva PR, Nieva GV, Igaz LM. Suppression of Conditional TDP-43 Transgene Expression Differentially Affects Early Cognitive and Social Phenotypes in TDP-43 Mice. Front Genet 2019; 10:369. [PMID: 31068973 PMCID: PMC6491777 DOI: 10.3389/fgene.2019.00369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of TAR DNA-binding protein 43 (TDP-43) is a hallmark feature of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), two fatal neurodegenerative diseases. TDP-43 is a ubiquitously expressed RNA-binding protein with many physiological functions, playing a role in multiple aspects of RNA metabolism. We developed transgenic mice conditionally overexpressing human wild-type TDP-43 protein (hTDP-43-WT) in forebrain neurons, a model that recapitulates several key features of FTD. After post-weaning transgene (TG) induction during 1 month, these mice display an early behavioral phenotype, including impaired cognitive and social function with no substantial motor abnormalities. In order to expand the analysis of this model, we took advantage of the temporal and regional control of TG expression possible in these mice. We behaviorally evaluated mice at two different times: after 2 weeks of post-weaning TG induction (0.5 month group) and after subsequent TG suppression for 2 weeks following that time point [1 month (sup) group]. We found no cognitive abnormalities after 0.5 month of hTDP-43 expression, evaluated with a spatial working memory task (Y-maze test). Suppression of TG expression with doxycycline (Dox) at this time point prevented the development of cognitive deficits previously observed at 1 month post-induction, as revealed by the performance of the 1 month (sup) group. On the other hand, sociability deficits (assessed through the social interaction test) appeared very rapidly after Dox removal (0.5 month) and TG suppression was not sufficient to reverse this phenotype, indicating differential vulnerability to hTDP-43 expression and suppression. Animals evaluated at the early time point (0.5 month) post-induction do not display a motor phenotype, in agreement with the results obtained after 1 month of TG expression. Moreover, all motor tests (open field, accelerated rotarod, limb clasping, hanging wire grip) showed identical responses in both control and bigenic animals in the suppressed group, demonstrating that this protocol and treatment do not cause non-specific effects in motor behavior, which could potentially mask the phenotypes in other domains. Our results show that TDP-43-WT mice have a phenotype that qualifies them as a useful model of FTD and provide valuable information for susceptibility windows in therapeutic strategies for TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Pablo R Silva
- IFIBIO Bernardo Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Gabriela V Nieva
- IFIBIO Bernardo Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Lionel M Igaz
- IFIBIO Bernardo Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
43
|
Lillehaug S, Yetman MJ, Puchades MA, Checinska MM, Kleven H, Jankowsky JL, Bjaalie JG, Leergaard TB. Brain-wide distribution of reporter expression in five transgenic tetracycline-transactivator mouse lines. Sci Data 2019; 6:190028. [PMID: 30806643 PMCID: PMC6390708 DOI: 10.1038/sdata.2019.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 12/19/2018] [Indexed: 11/22/2022] Open
Abstract
The spatial pattern of transgene expression in tetracycline-controlled mouse models is governed primarily by the driver line used to introduce the tetracycline-controlled transactivator (tTA). Detailed maps showing where each tTA driver activates expression are therefore essential for designing and using tet-regulated models, particularly in brain research where cell type and regional specificity determine the circuits affected by conditional gene expression. We have compiled a comprehensive online repository of serial microscopic images showing brain-wide reporter expression for five commonly used tTA driver lines. We have spatially registered all images to a common three-dimensional mouse brain anatomical reference atlas for direct comparison of spatial distribution across lines. The high-resolution images and associated metadata are shared via the web page of the EU Human Brain Project. Images can be inspected using an interactive viewing tool that includes an optional overlay feature providing anatomical delineations and reference atlas coordinates. Interactive viewing is supplemented by semi-quantitative analyses of expression levels within anatomical subregions for each tTA driver line.
Collapse
Affiliation(s)
- Sveinung Lillehaug
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Michael J. Yetman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Maja A. Puchades
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Martyna M. Checinska
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Heidi Kleven
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Joanna L. Jankowsky
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Departments of Molecular and Cellular Biology, Neurology, and Neurosurgery, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Jan G. Bjaalie
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B. Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
44
|
Sri S, Pegasiou CM, Cave CA, Hough K, Wood N, Gomez-Nicola D, Deinhardt K, Bannerman D, Perry VH, Vargas-Caballero M. Emergence of synaptic and cognitive impairment in a mature-onset APP mouse model of Alzheimer's disease. Acta Neuropathol Commun 2019; 7:25. [PMID: 30795807 PMCID: PMC6387506 DOI: 10.1186/s40478-019-0670-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/29/2019] [Indexed: 01/10/2023] Open
Abstract
The synaptic changes underlying the onset of cognitive impairment in Alzheimer’s disease (AD) are poorly understood. In contrast to the well documented inhibition of long-term potentiation (LTP) in CA3-CA1 synapses by acute Aβ application in adult neurons from rodents, young amyloid precursor protein (APP) transgenic mouse models often, surprisingly, show normal LTP. This suggests that there may be important differences between mature-onset and developmental-onset APP expression/ Aβ accumulation and the ensuing synaptic and behavioural phenotype. Here, in agreement with previous studies, we observed that developmental expression of APPSw,Ind (3–4 month old mice from line 102, PLoS Med 2:e355, 2005), resulted in reduced basal synaptic transmission in CA3-CA1 synapses, normal LTP, impaired spatial working memory, but normal spatial reference memory. To analyse early Aβ-mediated synaptic dysfunction and cognitive impairment in a more mature brain, we used controllable mature-onset APPSw,Ind expression in line 102 mice. Within 3 weeks of mature-onset APPSw,Ind expression and Aβ accumulation, we detected the first synaptic dysfunction: an impairment of LTP in hippocampal CA3-CA1 synapses. Cognitively, at this time point, we observed a deficit in short-term memory. A reduction in basal synaptic strength and deficit in long-term associative spatial memory were only evident following 12 weeks of APPSw,Ind expression. Importantly, the plasticity impairment observed after 3 weeks of mature-onset APP expression is reversible. Together, these findings demonstrate important differences between developmental and mature-onset APP expression. Further research targeted at this early stage of synaptic dysfunction could help identify mechanisms to treat cognitive impairment in mild cognitive impairment (MCI) and early AD.
Collapse
|
45
|
Wells C, Brennan SE, Keon M, Saksena NK. Prionoid Proteins in the Pathogenesis of Neurodegenerative Diseases. Front Mol Neurosci 2019; 12:271. [PMID: 31780895 PMCID: PMC6861308 DOI: 10.3389/fnmol.2019.00271] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
There is a growing body of evidence that prionoid protein behaviors are a core element of neurodegenerative diseases (NDs) that afflict humans. Common elements in pathogenesis, pathological effects and protein-level behaviors exist between Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD) and Amyotrophic Lateral Sclerosis (ALS). These extend beyond the affected neurons to glial cells and processes. This results in a complicated system of disease progression, which often takes advantage of protective processes to promote the propagation of pathological protein aggregates. This review article provides a current snapshot of knowledge on these proteins and their intrinsic role in the pathogenesis and disease progression seen across NDs.
Collapse
|
46
|
Tofaris GK, Buckley NJ. Convergent molecular defects underpin diverse neurodegenerative diseases. J Neurol Neurosurg Psychiatry 2018; 89:962-969. [PMID: 29459380 DOI: 10.1136/jnnp-2017-316988] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/24/2018] [Accepted: 02/01/2018] [Indexed: 12/12/2022]
Abstract
In our ageing population, neurodegenerative disorders carry an enormous personal, societal and economic burden. Although neurodegenerative diseases are often thought of as clinicopathological entities, increasing evidence suggests a considerable overlap in the molecular underpinnings of their pathogenesis. Such overlapping biological processes include the handling of misfolded proteins, defective organelle trafficking, RNA processing, synaptic health and neuroinflammation. Collectively but in different proportions, these biological processes in neurons or non-neuronal cells lead to regionally distinct patterns of neuronal vulnerability and progression of pathology that could explain the disease symptomology. With the advent of patient-derived cellular models and novel genetic manipulation tools, we are now able to interrogate this commonality despite the cellular complexity of the brain in order to develop novel therapeutic strategies to prevent or arrest neurodegeneration. Here, we describe broadly these concepts and their relevance across neurodegenerative diseases.
Collapse
Affiliation(s)
- George K Tofaris
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Noel J Buckley
- Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
47
|
Bearer EL, Manifold-Wheeler BC, Medina CS, Gonzales AG, Chaves FL, Jacobs RE. Alterations of functional circuitry in aging brain and the impact of mutated APP expression. Neurobiol Aging 2018; 70:276-290. [PMID: 30055413 DOI: 10.1016/j.neurobiolaging.2018.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/17/2018] [Accepted: 06/18/2018] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a disease of aging that results in cognitive impairment, dementia, and death. Pathognomonic features of AD are amyloid plaques composed of proteolytic fragments of the amyloid precursor protein (APP) and neurofibrillary tangles composed of hyperphosphorylated tau protein. One type of familial AD occurs when mutant forms of APP are inherited. Both APP and tau are components of the microtubule-based axonal transport system, which prompts the hypothesis that axonal transport is disrupted in AD, and that such disruption impacts cognitive function. Transgenic mice expressing mutated forms of APP provide preclinical experimental systems to study AD. Here, we perform manganese-enhanced magnetic resonance imaging to study transport from hippocampus to forebrain in four cohorts of living mice: young and old wild-type and transgenic mice expressing a mutant APP with both Swedish and Indiana mutations (APPSwInd). We find that transport is decreased in normal aging and further altered in aged APPSwInd plaque-bearing mice. These findings support the hypothesis that transport deficits are a component of AD pathology and thus may contribute to cognitive deficits.
Collapse
Affiliation(s)
- Elaine L Bearer
- University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Division of Biology, California Institute of Technology, Pasadena, CA, USA.
| | | | | | - Aaron G Gonzales
- University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Frances L Chaves
- University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Russell E Jacobs
- Division of Biology, California Institute of Technology, Pasadena, CA, USA; Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
48
|
Kiyota T, Machhi J, Lu Y, Dyavarshetty B, Nemati M, Yokoyama I, Mosley RL, Gendelman HE. Granulocyte-macrophage colony-stimulating factor neuroprotective activities in Alzheimer's disease mice. J Neuroimmunol 2018; 319:80-92. [PMID: 29573847 PMCID: PMC5916331 DOI: 10.1016/j.jneuroim.2018.03.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/27/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022]
Abstract
We investigated the effects of granulocyte-macrophage colony stimulating factor (GM-CSF) on behavioral and pathological outcomes in Alzheimer's disease (AD) and non-transgenic mice. GM-CSF treatment in AD mice reduced brain amyloidosis, increased plasma Aβ, and rescued cognitive impairment with increased hippocampal expression of calbindin and synaptophysin and increased levels of doublecortin-positive cells in the dentate gyrus. These data extend GM-CSF pleiotropic neuroprotection mechanisms in AD and include regulatory T cell-mediated immunomodulation of microglial function, Aβ clearance, maintenance of synaptic integrity, and induction of neurogenesis. Together these data support further development of GM-CSF as a neuroprotective agent for AD.
Collapse
Affiliation(s)
- Tomomi Kiyota
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bhagyalaxmi Dyavarshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maryam Nemati
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Izumi Yokoyama
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - R L Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
49
|
Peters F, Salihoglu H, Rodrigues E, Herzog E, Blume T, Filser S, Dorostkar M, Shimshek DR, Brose N, Neumann U, Herms J. BACE1 inhibition more effectively suppresses initiation than progression of β-amyloid pathology. Acta Neuropathol 2018; 135:695-710. [PMID: 29327084 PMCID: PMC5904228 DOI: 10.1007/s00401-017-1804-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 01/04/2023]
Abstract
BACE1 is the rate-limiting protease in the production of synaptotoxic β-amyloid (Aβ) species and hence one of the prime drug targets for potential therapy of Alzheimer's disease (AD). However, so far pharmacological BACE1 inhibition failed to rescue the cognitive decline in mild-to-moderate AD patients, which indicates that treatment at the symptomatic stage might be too late. In the current study, chronic in vivo two-photon microscopy was performed in a transgenic AD model to monitor the impact of pharmacological BACE1 inhibition on early β-amyloid pathology. The longitudinal approach allowed to assess the kinetics of individual plaques and associated presynaptic pathology, before and throughout treatment. BACE1 inhibition could not halt but slow down progressive β-amyloid deposition and associated synaptic pathology. Notably, the data revealed that the initial process of plaque formation, rather than the subsequent phase of gradual plaque growth, is most sensitive to BACE1 inhibition. This finding of particular susceptibility of plaque formation has profound implications to achieve optimal therapeutic efficacy for the prospective treatment of AD.
Collapse
Affiliation(s)
- Finn Peters
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Str. 17, 81377, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Hazal Salihoglu
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Eva Rodrigues
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Etienne Herzog
- Université Bordeaux, IINS, UMR 5297, 33000, Bordeaux, France
- CNRS, IINS, UMR 5297, 33000, Bordeaux, France
| | - Tanja Blume
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Str. 17, 81377, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Severin Filser
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Str. 17, 81377, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Mario Dorostkar
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Str. 17, 81377, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany
| | - Derya R Shimshek
- Neuroscience, Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Ulf Neumann
- Neuroscience, Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Str. 17, 81377, Munich, Germany.
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany.
| |
Collapse
|
50
|
Chiang ACA, Fowler SW, Savjani RR, Hilsenbeck SG, Wallace CE, Cirrito JR, Das P, Jankowsky JL. Combination anti-Aβ treatment maximizes cognitive recovery and rebalances mTOR signaling in APP mice. J Exp Med 2018; 215:1349-1364. [PMID: 29626114 PMCID: PMC5940263 DOI: 10.1084/jem.20171484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/03/2018] [Accepted: 03/07/2018] [Indexed: 01/01/2023] Open
Abstract
Chiang et al. show that combining two complementary approaches for Aβ reduction improved cognitive function in a mouse model of amyloidosis relative to either treatment alone. Efficacy corresponded with restoration of mTOR signaling, TFEB expression, and autophagic flux, suggesting additional targets for future polytherapy in AD. Drug development for Alzheimer’s disease has endeavored to lower amyloid β (Aβ) by either blocking production or promoting clearance. The benefit of combining these approaches has been examined in mouse models and shown to improve pathological measures of disease over single treatment; however, the impact on cellular and cognitive functions affected by Aβ has not been tested. We used a controllable APP transgenic mouse model to test whether combining genetic suppression of Aβ production with passive anti-Aβ immunization improved functional outcomes over either treatment alone. Compared with behavior before treatment, arresting further Aβ production (but not passive immunization) was sufficient to stop further decline in spatial learning, working memory, and associative memory, whereas combination treatment reversed each of these impairments. Cognitive improvement coincided with resolution of neuritic dystrophy, restoration of synaptic density surrounding deposits, and reduction of hyperactive mammalian target of rapamycin signaling. Computational modeling corroborated by in vivo microdialysis pointed to the reduction of soluble/exchangeable Aβ as the primary driver of cognitive recovery.
Collapse
Affiliation(s)
- Angie C A Chiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | | | | | - Susan G Hilsenbeck
- Department of Medicine, Lester and Sue Smith Breast Center, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Clare E Wallace
- Department of Neurology, Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - John R Cirrito
- Department of Neurology, Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - Pritam Das
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL
| | - Joanna L Jankowsky
- Department of Neuroscience, Baylor College of Medicine, Houston, TX .,Departments of Neurology, Neurosurgery, and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|