1
|
Huang R, Li X, Lu Z, Xu J, Lin D, Fu Y, Liang Y, Petersen F, Li X, Zhou Q, Yu X. Thalassemia carriers exhibit reduced expression of the receptor for the malarial parasite Plasmodium vivax on erythrocytes. Blood Adv 2025; 9:1738-1741. [PMID: 39813620 DOI: 10.1182/bloodadvances.2024014792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Affiliation(s)
- Renliang Huang
- Department of Genetics and Prenatal Diagnosis, Hainan Women and Children's Medical Center, Haikou, China
| | - Xinze Li
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Zhe Lu
- Department of Clinical Laboratory, Hainan Women and Children's Medical Center, Haikou, China
| | - Jing Xu
- Department of Genetics and Prenatal Diagnosis, Hainan Women and Children's Medical Center, Haikou, China
| | - Dan Lin
- Department of Genetics and Prenatal Diagnosis, Hainan Women and Children's Medical Center, Haikou, China
| | - Yunxue Fu
- Department of Genetics and Prenatal Diagnosis, Hainan Women and Children's Medical Center, Haikou, China
| | - Yan Liang
- Department of Genetics and Prenatal Diagnosis, Hainan Women and Children's Medical Center, Haikou, China
| | - Frank Petersen
- Priority Research Area Chronic Lung Diseases, Research Center Borstel-Leibniz Lung Center, Member of the German Center for Lung Research, Borstel, Germany
| | - Xuexia Li
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Qiaomiao Zhou
- Department of Genetics and Prenatal Diagnosis, Hainan Women and Children's Medical Center, Haikou, China
| | - Xinhua Yu
- Department of Genetics and Prenatal Diagnosis, Hainan Women and Children's Medical Center, Haikou, China
- Priority Research Area Chronic Lung Diseases, Research Center Borstel-Leibniz Lung Center, Member of the German Center for Lung Research, Borstel, Germany
| |
Collapse
|
2
|
Chappell ME, Breda L, Tricoli L, Guerra A, Jarocha D, Castruccio Castracani C, Papp TE, Tanaka N, Hamilton N, Triebwasser MP, Ghiaccio V, Fedorky MT, Gollomp KL, Bochenek V, Roche AM, Everett JK, Cook EJ, Bushman FD, Teawtrakul N, Glentis S, Kattamis A, Mui BL, Tam YK, Weissman D, Abdulmalik O, Parhiz H, Rivella S. Use of HSC-targeted LNP to generate a mouse model of lethal α-thalassemia and treatment via lentiviral gene therapy. Blood 2024; 144:1633-1645. [PMID: 38949981 PMCID: PMC11487647 DOI: 10.1182/blood.2023023349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
ABSTRACT α-Thalassemia (AT) is one of the most commonly occurring inherited hematological diseases. However, few treatments are available, and allogeneic bone marrow transplantation is the only available therapeutic option for patients with severe AT. Research into AT has remained limited because of a lack of adult mouse models, with severe AT typically resulting in in utero lethality. By using a lipid nanoparticle (LNP) targeting the receptor CD117 and delivering a Cre messenger RNA (mRNACreLNPCD117), we were able to delete floxed α-globin genes at high efficiency in hematopoietic stem cells (HSC) ex vivo. These cells were then engrafted in the absence or presence of a novel α-globin-expressing lentiviral vector (ALS20αI). Myeloablated mice infused with mRNACreLNPCD117-treated HSC showed a complete knock out (KO) of α-globin genes. They showed a phenotype characterized by the synthesis of hemoglobin H (HbH; also known as β-tetramers or β4), aberrant erythropoiesis, and abnormal organ morphology, culminating in lethality ∼8 weeks after engraftment. Mice infused with mRNACreLNPCD117-treated HSC with at least 1 copy of ALS20αI survived long term with normalization of erythropoiesis, decreased production of HbH, and amelioration of the abnormal organ morphology. Furthermore, we tested ALS20αI in erythroid progenitors derived from α-globin-KO CD34+ cells and cells isolated from patients with both deletional and nondeletional HbH disease, demonstrating improvement in α-globin/β-globin mRNA ratio and reduction in the formation of HbH by high-performance liquid chromatography. Our results demonstrate the broad applicability of LNP for disease modeling, characterization of a novel mouse model of severe AT, and the efficacy of ALS20αI for treating AT.
Collapse
Affiliation(s)
- Maxwell E. Chappell
- Cell and Molecular Biology Affinity Group, University of Pennsylvania, Philadelphia, PA
| | - Laura Breda
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Lucas Tricoli
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Amaliris Guerra
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Danuta Jarocha
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Center for Cellular Immunotherapeutics, Translational and Correlative Studies Laboratory, University of Pennsylvania, Philadelphia, PA
| | | | - Tyler E. Papp
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Naoto Tanaka
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Nolan Hamilton
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Michael P. Triebwasser
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Valentina Ghiaccio
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Megan T. Fedorky
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Kandace L. Gollomp
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Veronica Bochenek
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Aoife M. Roche
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John K. Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emma J. Cook
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nattiya Teawtrakul
- Division of Hematology, Department of Internal Medicine, Srinagarind Hospital, Khon Kaen University, Khon Kaen, Thailand
| | - Stavros Glentis
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonis Kattamis
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Drew Weissman
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Osheiza Abdulmalik
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Hamideh Parhiz
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stefano Rivella
- Cell and Molecular Biology Affinity Group, University of Pennsylvania, Philadelphia, PA
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Penn Center for Musculoskeletal Disorders, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA
- Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
3
|
Asare KK, Agrah B, Ofori-Acquah FS, Kudzi W, Aryee NA, Amoah LE. Immune responses to P falciparum antibodies in symptomatic malaria patients with variant hemoglobin genotypes in Ghana. BMC Immunol 2024; 25:14. [PMID: 38336647 PMCID: PMC10858493 DOI: 10.1186/s12865-024-00607-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Haemoglobin (Hb) variants such as sickle cell trait (SCT/HbAS) play a role in protecting against clinical malaria, but little is known about the development of immune responses against malaria parasite (Plasmodium falciparum surface protein 230 (Pfs230) and Plasmodium falciparum erythrocyte binding antigen 175 region-3 (PfEBA175-3R)) and vector (on the An. gambiae Salivary Gland Protein-6 peptide 1 (gSG6-P1)) antigens in individuals with variants Hb genotypes. This study assessed antibody (IgG) responses against malaria parasite, Pfs230 and PfEBA175-3R and vector, gSG6-P1 in febrile individuals with variant Hb genotypes. METHODS The study was conducted on symptomatic malaria patients attending various healthcare facilities throughout Ghana. Microscopy and ELISA were used to determine the natural IgG antibody levels of gSG6-P1, PfEBA175-3R & Pfs230, and Capillarys 2 Flex Piercing was used for Hb variants determination. RESULTS Of the 600 symptomatic malaria patients, 50.0% of the participants had malaria parasites by microscopy. The majority 79.0% (398/504) of the participants had Hb AA, followed by HbAS variant at 11.3% (57/504) and HbAC 6.7% (34/504). There were significantly (p < 0.0001) reduced levels of gSG6-P1 IgG in individuals with both HbAC and HbAS genotypes compared to the HbAA genotype. The levels of gSG6-P1 IgG were significantly (p < 0.0001) higher in HbAS compared to HbAC. Similarly, Pfs230 IgG and PfEBA-175-3R IgG distributions observed across the haemoglobin variants were significantly higher in HbAC relative to HbAS. CONCLUSION The study has shown that haemoglobin variants significantly influence the pattern of anti-gSG6-P1, Pfs230, and PfEBA-175 IgG levels in malaria-endemic population. The HbAS genotype is suggested to confer protection against malaria infection. Reduced exposure to infection ultimately reduces the induction of antibodies targeted against P. falciparum antigens.
Collapse
Affiliation(s)
- Kwame Kumi Asare
- Department of Biomedical Science, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
- Biomedical and Clinical Research Centre, College of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Benjamin Agrah
- Department of Medical Biochemistry, College of Health Sciences, University of Ghana Medical School, University of Ghana, Korle- Bu, Accra, Ghana
| | | | - William Kudzi
- West Africa Genetic Medicine Centre, University of Ghana, Accra, Ghana
| | - Nii Ayite Aryee
- Department of Medical Biochemistry, College of Health Sciences, University of Ghana Medical School, University of Ghana, Korle- Bu, Accra, Ghana
| | - Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| |
Collapse
|
4
|
Purohit P, Mohanty PK, Panigrahi J, Das K, Patel S. Effect of α + Thalassemia on the Severity of Plasmodium falciparum Malaria in Different Sickle Cell Genotypes in Indian Adults: A Hospital-Based Study. Hemoglobin 2023; 47:11-18. [PMID: 37122241 DOI: 10.1080/03630269.2023.2168201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
There is a paucity of literature on the association of α+-thalassemia, sickle-cell hemoglobin disorders, and malaria in India. This study aimed to understand the effect of α+-thalassemia on the severity of Plasmodium falciparum malaria in adults with respect to sickle-cell genotypes. The study subjects were categorized into 'severe-malaria' and 'uncomplicated-malaria' and age-gender matched 'control' groups. Sickle-cell and α+-thalassemia were investigated in all the recruited subjects. The effect of α+-thalassemia on the severity of malaria was analyzed in HbAA and sickle-cell genotypes (HbAS and HbSS) separately. The prevalence of α+-thalassemia in various groups ranged from 41.5% to 81.8%. The prevalence of α+-thalassemia was lower (OR = 1.64; p = 0.0013) in severe malaria (41.5%) as compared to healthy controls (53.8%) with HbAA genotype. In contrast, in HbAS genotype, the prevalence of α+-thalassemia was higher (OR = 4.11; p = 0.0002) in severe malaria (81.8%) compared to controls (52.2%). In severe malaria with HbAA genotype, there was a significantly higher hemoglobin level and low MCV and MCH level in patients with α+-thalassemia compared to the normal α-globin genotype. Further, the incidence of cerebral malaria, hepatopathy, and mortality was lower in patients (HbAA) with α+-thalassemia as compared to normal α-globin genotype (HbAA). In severe malaria with either HbAS or HbSS genotype, only a few parameters showed statistical differences with respect to α+-thalassemia. Low prevalence of α+-thalassemia in severe malaria with HbAA genotype compared to healthy controls with HbAA genotype indicates the protective effect of α+-thalassemia against severe malaria. However, the high prevalence of α+-thalassemia in patients with HbAS genotype depicts its interference in the protective effect of sickle-cell against severe malaria.
Collapse
Affiliation(s)
- Prasanta Purohit
- Sickle Cell Clinic and Molecular Biology Laboratory, Veer Surendra Sai Institute of Medical Sciences and Research (VIMSAR), Burla, Sambalpur, India
- Department of Medicine, Veer Surendra Sai Institute of Medical Sciences and Research (VIMSAR), Burla, Sambalpur, India
| | | | - Jogeswar Panigrahi
- Multidisciplinary Research Unit, M.K.C.G. Medical College, Berhampur, India
| | - Kishalaya Das
- Sickle Cell Clinic and Molecular Biology Laboratory, Veer Surendra Sai Institute of Medical Sciences and Research (VIMSAR), Burla, Sambalpur, India
| | - Siris Patel
- Sickle Cell Clinic and Molecular Biology Laboratory, Veer Surendra Sai Institute of Medical Sciences and Research (VIMSAR), Burla, Sambalpur, India
| |
Collapse
|
5
|
Villegas-Mendez A, Stafford N, Haley MJ, Pravitasari NE, Baudoin F, Ali A, Asih PBS, Siregar JE, Baena E, Syafruddin D, Couper KN, Oceandy D. The plasma membrane calcium ATPase 4 does not influence parasite levels but partially promotes experimental cerebral malaria during murine blood stage malaria. Malar J 2021; 20:297. [PMID: 34215257 PMCID: PMC8252299 DOI: 10.1186/s12936-021-03832-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/24/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Recent genome wide analysis studies have identified a strong association between single nucleotide variations within the human ATP2B4 gene and susceptibility to severe malaria. The ATP2B4 gene encodes the plasma membrane calcium ATPase 4 (PMCA4), which is responsible for controlling the physiological level of intracellular calcium in many cell types, including red blood cells (RBCs). It is, therefore, postulated that genetic differences in the activity or expression level of PMCA4 alters intracellular Ca2+ levels and affects RBC hydration, modulating the invasion and growth of the Plasmodium parasite within its target host cell. METHODS In this study the course of three different Plasmodium spp. infections were examined in mice with systemic knockout of Pmca4 expression. RESULTS Ablation of PMCA4 reduced the size of RBCs and their haemoglobin content but did not affect RBC maturation and reticulocyte count. Surprisingly, knockout of PMCA4 did not significantly alter peripheral parasite burdens or the dynamics of blood stage Plasmodium chabaudi infection or reticulocyte-restricted Plasmodium yoelii infection. Interestingly, although ablation of PMCA4 did not affect peripheral parasite levels during Plasmodium berghei infection, it did promote slight protection against experimental cerebral malaria, associated with a minor reduction in antigen-experienced T cell accumulation in the brain. CONCLUSIONS The finding suggests that PMCA4 may play a minor role in the development of severe malarial complications, but that this appears independent of direct effects on parasite invasion, growth or survival within RBCs.
Collapse
Affiliation(s)
- Ana Villegas-Mendez
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Nicholas Stafford
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Michael J Haley
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | | | - Florence Baudoin
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Adnan Ali
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Manchester, SK10 4TG, UK
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | | | | | - Esther Baena
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Manchester, SK10 4TG, UK
| | - Din Syafruddin
- Eijkman Institute for Molecular Biology, Jakarta, 10430, Indonesia
| | - Kevin N Couper
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
6
|
Sumbele IUN, Otia OV, Bopda OSM, Ebai CB, Kimbi HK, Nkuo-Akenji T. Polyparasitism with Schistosoma haematobium, Plasmodium and soil-transmitted helminths in school-aged children in Muyuka-Cameroon following implementation of control measures: a cross sectional study. Infect Dis Poverty 2021; 10:14. [PMID: 33597042 PMCID: PMC7890808 DOI: 10.1186/s40249-021-00802-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/29/2021] [Indexed: 01/04/2023] Open
Abstract
Background Despite the ubiquity of polyparasitism, its health impacts have been inadequately studied. The aim of this study was to determine the prevalence and determinants of polyparasitism with Schistosoma haematobium, Plasmodium and soil-transmitted helminths (STH) following sustained control measures, as well as evaluate the outcomes and clinical correlates of infection in school-aged children (SAC) living in the schistosomiasis endemic focus of Muyuka-Cameroon. Methods In a cross-sectional study, urine, blood and stool samples were each collected from SAC (4–14 years) selected at random between March and June 2015. Microhaematuria in urine was detected using reagent strip and S. haematobium ova by filtration/microscopy methods. Plasmodium was detected using Giemsa-stained blood films and complete blood count was obtained using an auto-haematology analyser. STH in stool was detected by the Kato-Katz method. Categorical and continuous variables were compared as required, Kappa value estimated and the adjusted odds ratio (aOR) in the multivariate analysis was used to evaluate association of the risk factors with infection. Results Out of the 638 SAC examined, single infection was prevalent in 33.4% while polyparasitism was 19.9%. Prevalence of S. haematobium + Plasmodium was 7.8%; S. haematobium + STH was 0.8%; Plasmodium + STH was 0.8%; while S. haematobium + Plasmodium + STH was 0.9%. Higher preponderance of S. haematobium + Plasmodium infection occurred in females, those from Likoko, did not use potable water, practiced bathing in stream and carried out open defecation than their equivalents. However, being female (aOR = 2.38, P = 0.009) was the only significant risk factor identified. Anaemia was a common morbidity (74.3%) with a slight agreement with microscopy in predicting S. haematobium and Plasmodium infections. The sensitivity and specificity of haematuria (13.0%) in predicting S. haematobium infection was 46.5% and 100% with a moderate agreement with microscopy. Co-infection with S. haematobium and malaria parasite was significantly associated with threefold odds of history of fever in the last three days. Conclusions Polyparasitism is a public health problem in Muyuka with females most at risk. Anaemia prevalence is exacerbated in co- and triple-infections and together with a history of fever are of value in predicting polyparasitism.![]()
Collapse
Affiliation(s)
- Irene Ule Ngole Sumbele
- Department of Zoology and Animal Physiology, University of Buea, Buea, Cameroon. .,Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Ofon Vitalis Otia
- Department of Zoology and Animal Physiology, University of Buea, Buea, Cameroon
| | - Orelien Sylvain Mtopi Bopda
- Department of Zoology and Animal Physiology, University of Buea, Buea, Cameroon.,Department of Medical Laboratory Sciences, University of Buea, Buea, Cameroon
| | - Calvin Bisong Ebai
- Department of Zoology and Animal Physiology, University of Buea, Buea, Cameroon.,Department of Medical Laboratory Science, University of Bamenda, Bambili, Cameroon
| | - Helen KuoKuo Kimbi
- Department of Zoology and Animal Physiology, University of Buea, Buea, Cameroon.,Department of Medical Laboratory Science, University of Bamenda, Bambili, Cameroon
| | - Theresa Nkuo-Akenji
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| |
Collapse
|
7
|
Xu G, van Bruggen R, Gualtieri CO, Moradin N, Fois A, Vallerand D, De Sa Tavares Russo M, Bassenden A, Lu W, Tam M, Lesage S, Girouard H, Avizonis DZ, Deblois G, Prchal JT, Stevenson M, Berghuis A, Muir T, Rabinowitz J, Vidal SM, Fodil N, Gros P. Bisphosphoglycerate Mutase Deficiency Protects against Cerebral Malaria and Severe Malaria-Induced Anemia. Cell Rep 2020; 32:108170. [PMID: 32966787 DOI: 10.1016/j.celrep.2020.108170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 07/07/2020] [Accepted: 08/27/2020] [Indexed: 11/30/2022] Open
Abstract
The replication cycle and pathogenesis of the Plasmodium malarial parasite involves rapid expansion in red blood cells (RBCs), and variants of certain RBC-specific proteins protect against malaria in humans. In RBCs, bisphosphoglycerate mutase (BPGM) acts as a key allosteric regulator of hemoglobin/oxyhemoglobin. We demonstrate here that a loss-of-function mutation in the murine Bpgm (BpgmL166P) gene confers protection against both Plasmodium-induced cerebral malaria and blood-stage malaria. The malaria protection seen in BpgmL166P mutant mice is associated with reduced blood parasitemia levels, milder clinical symptoms, and increased survival. The protective effect of BpgmL166P involves a dual mechanism that enhances the host's stress erythroid response to Plasmodium-driven RBC loss and simultaneously alters the intracellular milieu of the RBCs, including increased oxyhemoglobin and reduced energy metabolism, reducing Plasmodium maturation, and replication. Overall, our study highlights the importance of BPGM as a regulator of hemoglobin/oxyhemoglobin in malaria pathogenesis and suggests a new potential malaria therapeutic target.
Collapse
Affiliation(s)
- Guoyue Xu
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3G 0B1, Canada
| | - Rebekah van Bruggen
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3G 0B1, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Christian O Gualtieri
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3G 0B1, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Neda Moradin
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3G 0B1, Canada
| | - Adrien Fois
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Diane Vallerand
- Université de Montréal, Département de Pharmacologie et Physiologie, Pav Roger-Gaudry, 2900 Édouard-Montpetit, Montréal, QC H3T 1J4, Canada
| | | | - Angelia Bassenden
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Wenyun Lu
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Mifong Tam
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Sylvie Lesage
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC H1T 2M4, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Hélène Girouard
- Université de Montréal, Département de Pharmacologie et Physiologie, Pav Roger-Gaudry, 2900 Édouard-Montpetit, Montréal, QC H3T 1J4, Canada
| | - Daina Zofija Avizonis
- Rosalind and Morris Goodman Cancer Research Centre, 1160 Pin Avenue West, Montréal, QC H3A 1A3, Canada
| | - Geneviève Deblois
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Faculté de Pharmacie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Josef T Prchal
- Division of Hematology, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Mary Stevenson
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Albert Berghuis
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Tom Muir
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Joshua Rabinowitz
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Silvia M Vidal
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3G 0B1, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Nassima Fodil
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3G 0B1, Canada; Centre CERMO-FC Pavillon des Sciences Biologiques, 141 Avenue du Président Kennedy, Montréal, QC H2X 3Y7, Canada.
| | - Philippe Gros
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3G 0B1, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
8
|
Opi DH, Swann O, Macharia A, Uyoga S, Band G, Ndila CM, Harrison EM, Thera MA, Kone AK, Diallo DA, Doumbo OK, Lyke KE, Plowe CV, Moulds JM, Shebbe M, Mturi N, Peshu N, Maitland K, Raza A, Kwiatkowski DP, Rockett KA, Williams TN, Rowe JA. Two complement receptor one alleles have opposing associations with cerebral malaria and interact with α +thalassaemia. eLife 2018; 7:e31579. [PMID: 29690995 PMCID: PMC5953541 DOI: 10.7554/elife.31579] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 04/01/2018] [Indexed: 12/13/2022] Open
Abstract
Malaria has been a major driving force in the evolution of the human genome. In sub-Saharan African populations, two neighbouring polymorphisms in the Complement Receptor One (CR1) gene, named Sl2 and McCb, occur at high frequencies, consistent with selection by malaria. Previous studies have been inconclusive. Using a large case-control study of severe malaria in Kenyan children and statistical models adjusted for confounders, we estimate the relationship between Sl2 and McCb and malaria phenotypes, and find they have opposing associations. The Sl2 polymorphism is associated with markedly reduced odds of cerebral malaria and death, while the McCb polymorphism is associated with increased odds of cerebral malaria. We also identify an apparent interaction between Sl2 and α+thalassaemia, with the protective association of Sl2 greatest in children with normal α-globin. The complex relationship between these three mutations may explain previous conflicting findings, highlighting the importance of considering genetic interactions in disease-association studies.
Collapse
Affiliation(s)
- D Herbert Opi
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Olivia Swann
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Alexander Macharia
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Sophie Uyoga
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Gavin Band
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
| | - Carolyne M Ndila
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Ewen M Harrison
- Centre for Medical InfomaticsUsher Insitute of Population Health Sciences and Informatics, University of EdinburghEdinburghUnited Kingdom
| | - Mahamadou A Thera
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy, and DentistryUniversity of BamakoBamakoMali
| | - Abdoulaye K Kone
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy, and DentistryUniversity of BamakoBamakoMali
| | - Dapa A Diallo
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy, and DentistryUniversity of BamakoBamakoMali
| | - Ogobara K Doumbo
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy, and DentistryUniversity of BamakoBamakoMali
| | - Kirsten E Lyke
- Division of Malaria Research, Institute for Global HealthUniversity of Maryland School of MedicineBaltimoreUnited States
| | - Christopher V Plowe
- Division of Malaria Research, Institute for Global HealthUniversity of Maryland School of MedicineBaltimoreUnited States
| | | | - Mohammed Shebbe
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Neema Mturi
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Norbert Peshu
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Kathryn Maitland
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
- Department of MedicineImperial CollegeLondonUnited Kingdom
| | - Ahmed Raza
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Dominic P Kwiatkowski
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
- Wellcome Trust Sanger InstituteCambridgeUnited Kingdom
| | - Kirk A Rockett
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
| | - Thomas N Williams
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
- Department of MedicineImperial CollegeLondonUnited Kingdom
| | - J Alexandra Rowe
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
9
|
Li CK. New trend in the epidemiology of thalassaemia. Best Pract Res Clin Obstet Gynaecol 2017; 39:16-26. [DOI: 10.1016/j.bpobgyn.2016.10.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/21/2016] [Accepted: 10/14/2016] [Indexed: 01/19/2023]
|
10
|
Kenangalem E, Karyana M, Burdarm L, Yeung S, Simpson JA, Tjitra E, Anstey NM, Poespoprodjo JR, Price RN, Douglas NM. Plasmodium vivax infection: a major determinant of severe anaemia in infancy. Malar J 2016; 15:321. [PMID: 27306221 PMCID: PMC4910236 DOI: 10.1186/s12936-016-1373-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/04/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Most malarious countries outside of Africa are co-endemic for Plasmodium falciparum and Plasmodium vivax. The comparative burden of anaemia in the community caused by these two species is incompletely characterized. METHODS A three-stage, cross-sectional, community survey was used to determine the proportion of moderate or severe anaemia (haemoglobin <7 g/dL) attributable to patent P. vivax, P. falciparum and mixed parasitaemia in Papua, Indonesia. Adjusted population-attributable fractions were calculated from multivariable logistic regression models. Eight hundred and twenty-five households were surveyed with a total of 5255 occupants, 3890 (74 %) of whom were present and provided a blood sample. Plasmodium falciparum parasitaemia was present in 8.1 % (n = 315) of participants, P. vivax in 6.4 % (n = 250) and mixed infections in 1.9 % (n = 72). Overall, P. falciparum was associated with a mean reduction in haemoglobin of 1.16 g/dL compared to those without patent parasitaemia [95 % confidence interval (95 % CI) 0.91, 1.41 g/dL]. The corresponding values for P. vivax and mixed infections were 0.66 g/dL (95 % CI 0.35, 0.96) and 1.25 g/dL (0.71, 1.80), respectively. Overall, 16.7 % (95 % CI 8.52, 24.2 %) of haemoglobin concentrations <7 g/dL in the community were estimated to be attributable to patent parasitaemia. The fractions for infants and 1-5 years old were 34.4 % (95 % CI -3.30, 58.3 %) and 23.2 % (95 % CI 3.34, 39.0 %), respectively. Plasmodium vivax was associated with a greater than threefold higher attributable fraction of anaemia in infants compared with P. falciparum [27.6 % (95 % CI -3.20, 49.2 %) versus 7.94 % (-5.87, 20.0 %)]. CONCLUSION Despite comparatively low-level endemicity, malaria is associated with a significant proportion of all cases of community anaemia in southern Papua. Contrary to its benign reputation, P. vivax is an important and preventable risk factor for anaemia during infancy-a probable consequence of relapsing disease prior to the development of immunity.
Collapse
Affiliation(s)
- Enny Kenangalem
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua Indonesia ,Mimika District Health Authority, Timika, Papua Indonesia
| | - Muhammad Karyana
- National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia
| | - Lenny Burdarm
- Mimika District Health Authority, Timika, Papua Indonesia
| | - Shunmay Yeung
- Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, London, UK
| | - Julie A. Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Emiliana Tjitra
- National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia
| | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, PO Box 41096, Casuarina, Darwin, 0811 Australia ,Division of Medicine, Royal Darwin Hospital, Darwin, NT Australia
| | - Jeanne Rini Poespoprodjo
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua Indonesia ,Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, PO Box 41096, Casuarina, Darwin, 0811 Australia ,Department of Child Health, Faculty of Medicine, University Gadjah Mada, Yogyakarta, Indonesia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, PO Box 41096, Casuarina, Darwin, 0811 Australia ,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nicholas M. Douglas
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, PO Box 41096, Casuarina, Darwin, 0811 Australia ,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK ,Division of Medicine, Christchurch Hospital, Christchurch, New Zealand
| |
Collapse
|
11
|
Sumbele IUN, Kimbi HK, Ndamukong-Nyanga JL, Nweboh M, Anchang-Kimbi JK, Lum E, Nana Y, Ndamukong KKJ, Lehman LG. Malarial anaemia and anaemia severity in apparently healthy primary school children in urban and rural settings in the Mount Cameroon area: cross sectional survey. PLoS One 2015; 10:e0123549. [PMID: 25893500 PMCID: PMC4403990 DOI: 10.1371/journal.pone.0123549] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 03/04/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND This study examines the relative importance of living in an urban versus rural setting and malaria in contributing to the public health problem of malarial anaemia (MA) and anaemia respectively in apparently healthy primary school children. METHODS A cross-sectional study was conducted among 727 school children aged between four and 15 years living in an urban (302) and rural (425) settings in the Mount Cameroon area. Blood sample collected from each child was used for the preparation of blood films for detection of malaria parasites and assessment of malaria parasite density as well as full blood count determination using an automated haematology analyzer. Based on haemoglobin (Hb) measurements, children with malaria parasitaemia were stratified into MA (Hb<11 g/dL); mild MA (Hb of 8-10.9 g/dL); moderate MA (Hb of 6.1-7.9 g/dL) and severe MA (Hb≤6 g/dL). Evaluation of potential determinants of MA and anaemia was performed by multinomial logistic-regression analysis and odds ratios used to evaluate risk factors. RESULTS Out of the 727 children examined, 72 (9.9%) had MA. The prevalence of MA and anaemia were significantly higher (χ2 = 36.5, P <0.001; χ2 = 16.19, P <0.001 respectively) in children in the urban (17.9%; 26.8% respectively) than in the rural area (4.2%; 14.8% respectively). Majority of the MA cases were mild (88.9%), with moderate (5.6%) and severe MA (5.6%) occurring in the urban area only. The age group ≤6 years was significantly (P <0.05) associated with both MA and anaemia. In addition, low parasite density was associated with MA while malaria parasite negative and microcytosis were associated with anaemia. CONCLUSIONS Malarial anaemia and anaemia display heterogeneity and complexity that differ with the type of settlement. The presence of severe MA and the contributions of the age group ≤6 years, low parasite density and microcytosis to the public health problem of MA and anaemia are noteworthy.
Collapse
Affiliation(s)
- Irene Ule Ngole Sumbele
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Buea, Cameroon
- * E-mail:
| | - Helen Kuokuo Kimbi
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Judith Lum Ndamukong-Nyanga
- Department of Biological Sciences, Higher Teachers Training College, University of Yaoundé I, Yaoundé, Cameroon
| | - Malaika Nweboh
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Buea, Cameroon
| | | | - Emmaculate Lum
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Yannick Nana
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Kenneth K. J. Ndamukong
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Leopold G. Lehman
- Department of Biological Sciences, Faculty of Science, University of Douala, Douala, Cameroon
| |
Collapse
|
12
|
Confirmation of a founder effect in a Northern European population of a new β-globin variant: HBB:c.23_26dup (codons 8/9 (+AGAA)). Eur J Hum Genet 2014; 23:1158-64. [PMID: 25469539 PMCID: PMC4538212 DOI: 10.1038/ejhg.2014.263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 10/27/2014] [Accepted: 10/30/2014] [Indexed: 11/25/2022] Open
Abstract
β-Thalassemia is a genetic disease caused by a defect in the production of the β-like globin chain. More than 200 known different variants can lead to the disease and are mainly found in populations that have been exposed to malaria parasites. We recently described a duplication of four nucleotides in the first exon of β-globin gene in several families of patients living in Nord-Pas-de-Calais (France). Using the genotypes at 12 microsatellite markers surrounding the β-globin gene of four unrelated variant carriers plus an additional one recently discovered, we found that they shared a common haplotype indicating a founder effect that was estimated to have taken place 225 years ago (nine generations). In order to determine whether this variant arose in this region of Northern Europe or was introduced by migrants from regions of the world where thalassemia is endemic, we genotyped the first 4 unrelated variant carriers and 32 controls from Nord-Pas-de-Calais for 97 European ancestry informative markers (EAIMs). Using these EAIMs and comparing with population reference panels, we demonstrated that the variant carriers were very similar to the controls and were closer to North European populations than to South European or Middle-East populations. Rare β-thalassemia variants have already been described in patients sampled in non-endemic regions, but it is the first proof of a founder effect in Northern Europe.
Collapse
|
13
|
|
14
|
Effect of malarial infection on haematological parameters in population near Thailand-Myanmar border. Malar J 2014; 13:218. [PMID: 24898891 PMCID: PMC4053303 DOI: 10.1186/1475-2875-13-218] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 06/01/2014] [Indexed: 01/28/2023] Open
Abstract
Background Malaria is a major mosquito-borne public health problem in Thailand with varied haematological consequences. The study sought to elucidate the haematological changes in people who suspected malaria infection and their possible predictive values of malaria infection. Methods Haematological parameters of 4,985 patients, including 703 malaria-infected and 4,282 non-malaria infected, who admitted at Phop Phra Hospital, Tak Province, an area of malaria endemic transmission in Thailand during 2009 were evaluated. Results The following parameters were significantly lower in malaria-infected patients; red blood cells (RBCs) count, haemoglobin (Hb), platelets count, white blood cells (WBCs) count, neutrophil, monocyte, lymphocyte and eosinophil counts, while mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), Mean corpuscular haemoglobin concentration (MCHC), neutrophil-lymphocyte ratio (NLR), and monocyte-lymphocyte ratio (MLR) were higher in comparison to non-malaria infected patients. Patients with platelet counts < 150,000/uL were 31.8 times (odds ratio) more likely to have a malaria infection. Thrombocytopenia was present in 84.9% of malaria-infected patients and was independent of age, gender and nationality (P value < 0.0001). Conclusion Patients infected with malaria exhibited important changes in most of haematological parameters with low platelet, WBCs, and lymphocyte counts being the most important predictors of malaria infection. When used in combination with other clinical and microscopy methods, these parameters could improve malaria diagnosis and treatment.
Collapse
|
15
|
Glushakova S, Balaban A, McQueen PG, Coutinho R, Miller JL, Nossal R, Fairhurst RM, Zimmerberg J. Hemoglobinopathic erythrocytes affect the intraerythrocytic multiplication of Plasmodium falciparum in vitro. J Infect Dis 2014; 210:1100-9. [PMID: 24688070 DOI: 10.1093/infdis/jiu203] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The mechanisms by which α-thalassemia and sickle cell traits confer protection from severe Plasmodium falciparum malaria are not yet fully elucidated. We hypothesized that hemoglobinopathic erythrocytes reduce the intraerythrocytic multiplication of P. falciparum, potentially delaying the development of life-threatening parasite densities until parasite clearing immunity is achieved. METHODS We developed a novel in vitro assay to quantify the number of merozoites released from an individual schizont, termed the "intraerythrocytic multiplication factor" (IMF). RESULTS P. falciparum (3D7 line) schizonts produce variable numbers of merozoites in all erythrocyte types tested, with median IMFs of 27, 27, 29, 23, and 23 in control, HbAS, HbSS, and α- and β-thalassemia trait erythrocytes, respectively. IMF correlated strongly (r(2) = 0.97; P < .001) with mean corpuscular hemoglobin concentration, and varied significantly with mean corpuscular volume and hemoglobin content. Reduction of IMFs in thalassemia trait erythrocytes was confirmed using clinical parasite isolates with different IMFs. Mathematical modeling of the effect of IMF on malaria progression indicates that the lower IMF in thalassemia trait erythrocytes limits parasite density and anemia severity over the first 2 weeks of parasite replication. CONCLUSIONS P. falciparum IMF, a parasite heritable virulence trait, correlates with erythrocyte indices and is reduced in thalassemia trait erythrocytes. Parasite IMF should be examined in other low-indices erythrocytes.
Collapse
Affiliation(s)
- Svetlana Glushakova
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health
| | - Amanda Balaban
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health
| | - Philip G McQueen
- Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health
| | - Rosane Coutinho
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health
| | - Jeffery L Miller
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health
| | - Ralph Nossal
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Joshua Zimmerberg
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health
| |
Collapse
|
16
|
Major burden of severe anemia from non-falciparum malaria species in Southern Papua: a hospital-based surveillance study. PLoS Med 2013; 10:e1001575; discussion e1001575. [PMID: 24358031 PMCID: PMC3866090 DOI: 10.1371/journal.pmed.1001575] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 11/06/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The burden of anemia attributable to non-falciparum malarias in regions with Plasmodium co-endemicity is poorly documented. We compared the hematological profile of patients with and without malaria in southern Papua, Indonesia. METHODS AND FINDINGS Clinical and laboratory data were linked for all patients presenting to a referral hospital between April 2004 and December 2012. Data were available on patient demographics, malaria diagnosis, hemoglobin concentration, and clinical outcome, but other potential causes of anemia could not be identified reliably. Of 922,120 patient episodes (837,989 as outpatients and 84,131 as inpatients), a total of 219,845 (23.8%) were associated with a hemoglobin measurement, of whom 67,696 (30.8%) had malaria. Patients with P. malariae infection had the lowest hemoglobin concentration (n = 1,608, mean = 8.93 [95% CI 8.81-9.06]), followed by those with mixed species infections (n = 8,645, mean = 9.22 [95% CI 9.16-9.28]), P. falciparum (n = 37,554, mean = 9.47 [95% CI 9.44-9.50]), and P. vivax (n = 19,858, mean = 9.53 [95% CI 9.49-9.57]); p-value for all comparisons <0.001. Severe anemia (hemoglobin <5 g/dl) was present in 8,151 (3.7%) patients. Compared to patients without malaria, those with mixed Plasmodium infection were at greatest risk of severe anemia (adjusted odds ratio [AOR] 3.25 [95% CI 2.99-3.54]); AORs for severe anaemia associated with P. falciparum, P. vivax, and P. malariae were 2.11 (95% CI 2.00-2.23), 1.87 (95% CI 1.74-2.01), and 2.18 (95% CI 1.76-2.67), respectively, p<0.001. Overall, 12.2% (95% CI 11.2%-13.3%) of severe anemia was attributable to non-falciparum infections compared with 15.1% (95% CI 13.9%-16.3%) for P. falciparum monoinfections. Patients with severe anemia had an increased risk of death (AOR = 5.80 [95% CI 5.17-6.50]; p<0.001). Not all patients had a hemoglobin measurement, thus limitations of the study include the potential for selection bias, and possible residual confounding in multivariable analyses. CONCLUSIONS In Papua P. vivax is the dominant cause of severe anemia in early infancy, mixed P. vivax/P. falciparum infections are associated with a greater hematological impairment than either species alone, and in adulthood P. malariae, although rare, is associated with the lowest hemoglobin concentration. These findings highlight the public health importance of integrated genus-wide malaria control strategies in areas of Plasmodium co-endemicity.
Collapse
|
17
|
Al-Dabbagh B, Shawqi S, Yasin J, Al Essa A, Nagelkerke N, Denic S. Half of the Emirati population has abnormal red cell parameters: challenges for standards and screening guidelines. Hemoglobin 2013; 38:56-9. [PMID: 24205932 DOI: 10.3109/03630269.2013.848811] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In populations with high prevalences of iron deficiency and thalassemia trait, many apparently healthy individuals have abnormal erythroid parameters, which may cause diagnostic problems in clinical practice. We studied the prevalence and causes of red cell parameter values outside their reference ranges in 394 healthy individuals of Bedouin Arab origin, who had complete blood counts (CBCs), hemoglobin (Hb) analyses and serum ferritin tests done. Their mean age ± standard deviation (SD) was 24.8 ± 4.9 years and 51.8% were females. Overall, 53.0% (209/394) had low Hb, MCV or MCH or high RDW. Anemia was present in 27.0% (55/204) of the women and 3.0% (6/190) of the men. Overall prevalence of MCV < 80.0 fL was 45.0% (176/394) and MCH < 27.0 pg was 48.0% (190/394); RDW > 14.0% was found in 21.0% (43/204) of women and 7.0% (14/190) of men. Of the women, 16.0% had iron deficiency anemia (33/204) and 65.0% had ferritin values of < 30.0 μg/L (133/204). The estimated prevalence of α-thalassemia (α-thal) trait in men was 32.0% (60/190) and that of β-thalassemia (β-thal) trait in both sexes was 3.0% (12/394). In conclusion, half of the healthy Emirati population have abnormal CBC values. For clinical purposes, they require reference standards for red cells that are derived from their own population. Screening of women for iron deficiency is justified due to a high prevalence of iron deficiency.
Collapse
Affiliation(s)
- Bayan Al-Dabbagh
- Department of Chemistry, College of Science, United Arab Emirates University , Al Ain, Abu Dhabi , United Arab Emirates
| | | | | | | | | | | |
Collapse
|
18
|
Oxidative stress and β-thalassemic erythroid cells behind the molecular defect. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:985210. [PMID: 24205432 PMCID: PMC3800594 DOI: 10.1155/2013/985210] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/04/2013] [Indexed: 11/18/2022]
Abstract
β-thalassemia is a worldwide distributed monogenic red cell disorder, characterized by the absence or reduced β-globin chain synthesis. Despite the extensive knowledge of the molecular defects causing β-thalassemia, less is known about the mechanisms responsible for the associated ineffective erythropoiesis and reduced red cell survival, which sustain anemia of β-thalassemia. The unbalance of alpha-gamma chain and the presence of pathological free iron promote a severe red cell membrane oxidative stress, which results in abnormal β-thalassemic red cell features. These cells are precociously removed by the macrophage system through two mechanisms: the removal of phosphatidylserine positive cells and through the natural occurring antibody produced against the abnormally clustered membrane protein band 3. In the present review we will discuss the changes in β-thalassemic red cell homeostasis related to the oxidative stress and its connection with production of microparticles and with malaria infection. The reactive oxygen species (ROS) are also involved in ineffective erythropoiesis of β-thalassemia through still partially known pathways. Novel cytoprotective systems such as ASHP, eIF2α, and peroxiredoxin-2 have been suggested to be important against ROS in β-thalassemic erythropoiesis. Finally, we will discuss the results of the major in vitro and in vivo studies with antioxidants in β-thalassemia.
Collapse
|
19
|
Opoku-Okrah C, Gordge M, Kweku Nakua E, Abgenyega T, Parry M, Robertson C, Smith CL. An investigation of the protective effect of alpha+-thalassaemia against severe Plasmodium falciparum amongst children in Kumasi, Ghana. Int J Lab Hematol 2013; 36:62-70. [PMID: 23837700 DOI: 10.1111/ijlh.12122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/30/2013] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Several factors influence the severity of Plasmodium falciparum; here, we investigate the impact of alpha+-thalassaemia genotype on P. falciparum parasitemia and prevalence of severe anaemia amongst microcytic children from Kumasi, Ghana. METHODS Seven hundred and thirty-two children (≤10 years) with P. falciparum were categorised into normocytic and microcytic (mean cell volume ≤76 fL). Microcytic individuals were genotyped for the -α(3.7) deletional thalassaemia mutation and parasite densities determined. RESULTS Amongst microcytic patients both parasite densities and prevalence of severe malaria parasitemia (≥100 000/μL) were significantly lower (P < 0.001) in the presence of an alpha+-thalassaemia genotype compared with non-alpha+-thalassaemia genotype. There was no evidence that alpha+-thalassaemia protected against severe anaemia. The protection conferred by alpha-thalassaemia genotype against severe P. falciparum parasitemia did not change with increasing age. CONCLUSION The severity of P. falciparum parasitemia was significantly lower in both the homozygous and heterozygous alpha+-thalassaemia groups compared with microcytic individuals with non-alpha+-thalassaemia genotype. The protective effect, from severe malaria, of the alpha+-thalassaemia allele does not alter with age.
Collapse
Affiliation(s)
- C Opoku-Okrah
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.,University of Westminster, School of Life Sciences, London, UK
| | - M Gordge
- University of Westminster, School of Life Sciences, London, UK
| | - E Kweku Nakua
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - T Abgenyega
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - M Parry
- University of Westminster, School of Life Sciences, London, UK
| | - C Robertson
- University of Westminster, School of Life Sciences, London, UK
| | - C L Smith
- University of Westminster, School of Life Sciences, London, UK
| |
Collapse
|
20
|
Qiu QW, Wu DD, Yu LH, Yan TZ, Zhang W, Li ZT, Liu YH, Zhang YP, Xu XM. Evidence of recent natural selection on the Southeast Asian deletion (--(SEA)) causing α-thalassemia in South China. BMC Evol Biol 2013; 13:63. [PMID: 23497175 PMCID: PMC3626844 DOI: 10.1186/1471-2148-13-63] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 02/27/2013] [Indexed: 01/09/2023] Open
Abstract
Background The Southeast Asian deletion (--SEA) is the most commonly observed mutation among diverse α-thalassemia alleles in Southeast Asia and South China. It is generally argued that mutation --SEA, like other variants causing hemoglobin disorders, is associated with protection against malaria that is endemic in these regions. However, little evidence has been provided to support this claim. Results We first examined the genetic imprint of recent positive selection on the --SEA allele and flanking sequences in the human α-globin cluster, covering a genomic region spanning ~410 kb, by genotyping 28 SNPs in a Chinese population consisting of 76 --SEA heterozygotes and 138 normal individuals. The pattern of linkage disequilibrium (LD) and the long-range haplotype test revealed a signature of positive selection. The network of inferred haplotypes suggested a single origin of the --SEA allele. Conclusions Thus, our data support the hypothesis that the --SEA allele has been subjected to recent balancing selection, triggered by malaria.
Collapse
Affiliation(s)
- Qin-Wei Qiu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Anstey NM, Douglas NM, Poespoprodjo JR, Price RN. Plasmodium vivax: clinical spectrum, risk factors and pathogenesis. ADVANCES IN PARASITOLOGY 2013. [PMID: 23199488 DOI: 10.1016/b978-0-12-397900-1.00003-7] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Vivax malaria was historically described as 'benign tertian malaria' because individual clinical episodes were less likely to cause severe illness than Plasmodium falciparum. Despite this, Plasmodium vivax was, and remains, responsible for major morbidity and significant mortality in vivax-endemic areas. Single infections causing febrile illness in otherwise healthy individuals rarely progress to severe disease. Nevertheless, in the presence of co-morbidities, P. vivax can cause severe illness and fatal outcomes. Recurrent or chronic infections in endemic areas can cause severe anaemia and malnutrition, particularly in early childhood. Other severe manifestations include acute lung injury, acute kidney injury and uncommonly, coma. Multiorgan failure and shock are described but further studies are needed to investigate the role of bacterial and other co-infections in these syndromes. In pregnancy, P. vivax infection can cause maternal anaemia, miscarriage, low birth weight and congenital malaria. Compared to P. falciparum, P. vivax has a greater capacity to elicit an inflammatory response, resulting in a lower pyrogenic threshold. Conversely, cytoadherence of P. vivax to endothelial cells is less frequent and parasite sequestration is not thought to be a significant cause of severe illness in vivax malaria. With a predilection for young red cells, P. vivax does not result in the high parasite biomass associated with severe disease in P. falciparum, but a four to fivefold greater removal of uninfected red cells from the circulation relative to P. falciparum is associated with a similar risk of severe anaemia. Mechanisms underlying the pathogenesis of severe vivax syndromes remain incompletely understood.
Collapse
Affiliation(s)
- Nicholas M Anstey
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | | | | | | |
Collapse
|
22
|
Manjurano A, Clark TG, Nadjm B, Mtove G, Wangai H, Sepulveda N, Campino SG, Maxwell C, Olomi R, Rockett KR, Jeffreys A, Riley EM, Reyburn H, Drakeley C. Candidate human genetic polymorphisms and severe malaria in a Tanzanian population. PLoS One 2012; 7:e47463. [PMID: 23144702 PMCID: PMC3483265 DOI: 10.1371/journal.pone.0047463] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/12/2012] [Indexed: 11/18/2022] Open
Abstract
Human genetic background strongly influences susceptibility to malaria infection and progression to severe disease and death. Classical genetic studies identified haemoglobinopathies and erythrocyte-associated polymorphisms, as protective against severe disease. High throughput genotyping by mass spectrometry allows multiple single nucleotide polymorphisms (SNPs) to be examined simultaneously. We compared the prevalence of 65 human SNP's, previously associated with altered risk of malaria, between Tanzanian children with and without severe malaria. Five hundred children, aged 1–10 years, with severe malaria were recruited from those admitted to hospital in Muheza, Tanzania and compared with matched controls. Genotyping was performed by Sequenom MassArray, and conventional PCR was used to detect deletions in the alpha-thalassaemia gene. SNPs in two X-linked genes were associated with altered risk of severe malaria in females but not in males: heterozygosity for one or other of two SNPs in the G6PD gene was associated with protection from all forms of severe disease whilst two SNPs in the gene encoding CD40L were associated with respiratory distress. A SNP in the adenyl cyclase 9 (ADCY9) gene was associated with protection from acidosis whilst a polymorphism in the IL-1α gene (IL1A) was associated with an increased risk of acidosis. SNPs in the genes encoding IL-13 and reticulon-3 (RTN3) were associated with increased risk of cerebral malaria. This study confirms previously known genetic associations with protection from severe malaria (HbS, G6PD). It identifies two X-linked genes associated with altered risk of severe malaria in females, identifies mutations in ADCY9, IL1A and CD40L as being associated with altered risk of severe respiratory distress and acidosis, both of which are characterised by high serum lactate levels, and also identifies novel genetic associations with severe malaria (TRIM5) and cerebral malaria(IL-13 and RTN3). Further studies are required to test the generality of these associations and to understand their functional consequences.
Collapse
Affiliation(s)
- Alphaxard Manjurano
- Joint Malaria Programme, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Behzad Nadjm
- Joint Malaria Programme, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - George Mtove
- Joint Malaria Programme, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Hannah Wangai
- Joint Malaria Programme, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Nuno Sepulveda
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Caroline Maxwell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Raimos Olomi
- Joint Malaria Programme, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Kirk R. Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Jeffreys
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Eleanor M. Riley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Hugh Reyburn
- Joint Malaria Programme, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Christopher Drakeley
- Joint Malaria Programme, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Rosanas-Urgell A, Senn N, Rarau P, Aponte JJ, Reeder JC, Siba PM, Michon P, Mueller I. Lack of associations of α(+)-thalassemia with the risk of Plasmodium falciparum and Plasmodium vivax infection and disease in a cohort of children aged 3-21 months from Papua New Guinea. Int J Parasitol 2012; 42:1107-13. [PMID: 23085147 DOI: 10.1016/j.ijpara.2012.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 10/01/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
Abstract
Despite consistent evidence of a protective effect of α(+)-thalassemia against severe Plasmodium falciparum disease, the mechanisms underlying this protection remain unknown. An increase in risk of Plasmodium vivax malaria in early childhood resulting in a cross-species protection against severe P. falciparum malaria has been proposed as a possible mechanism in Melanesian children. The association of α(+)-thalassemia genotypes with a risk of P. falciparum and P. vivax infection and uncomplicated illness was reassessed in a cohort of 1,112 Papua New Guinean children, followed from 3 to 21 months of age. Three hundred and eighty-nine (35.0%) children were homozygous for α(+)-thalassemia (-α/-α), 506 (45.5%) heterozygous (αα/-α) and 217 (19.5%) homozygous for the wild-type allele. No significant differences in the incidence of P. falciparum (Pf) or P. vivax (Pv) malaria were observed between α(+)-thalassemia homozygote (Pf: incidence rate ratio (IRR)=1.13, CI(95) (0.82, 1.56), P=0.45, Pv: IRR=1.15, CI(95) (0.88, 1.50), P=0.31), heterozygote (Pf: IRR=0.98, CI(95) (0.71, 1.34), P=0.93, Pv: IRR=1.14, CI(95) (0.88, 1.48), P=0.33) and wild-type children. The prevalence of infection with either species did not differ between α(+)-thalassemia genotypes, although densities of P. vivax (but not of P. falciparum) infections were significantly higher in α(+)-thalassemia homozygote and heterozygote children. An excessive risk of moderate-to-severe anemia (Hb<8 g/dl) was observed in α(+)-thalassemia homozygote children (IRR=1.54, CI(95) (1.12, 2.11), P=0.008). This study therefore failed to confirm an increased risk of P. vivax or P. falciparum malaria in very young, α(+)-thalassemic children without significant levels of acquired immunity. This confirms the lack of protection by α(+)-thalassemia against uncomplicated P. falciparum and challenges the hypothesis of immunological cross-protection between P. falciparum and P. vivax as a mechanism underlying α(+)-thalassemia protection against severe P. falciparum disease in Melanesian children.
Collapse
|
24
|
Suchdev PS, Ruth LJ, Earley M, Macharia A, Williams TN. The burden and consequences of inherited blood disorders among young children in western Kenya. MATERNAL AND CHILD NUTRITION 2012; 10:135-44. [PMID: 22973867 PMCID: PMC3963444 DOI: 10.1111/j.1740-8709.2012.00454.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Although inherited blood disorders are common among children in many parts of Africa, limited data are available about their prevalence or contribution to childhood anaemia. We conducted a cross‐sectional survey of 858 children aged 6–35 months who were randomly selected from 60 villages in western Kenya. Haemoglobin (Hb), ferritin, malaria, C‐reactive protein (CRP) and retinol binding protein (RBP) were measured from capillary blood. Using polymerase chain reaction (PCR), Hb type, −3.7 kb alpha‐globin chain deletion, glucose‐6‐phosphate dehydrogenase (G6PD) genotype and haptoglobin (Hp) genotype were determined. More than 2 out of 3 children had at least one measured blood disorder. Sickle cell trait (HbAS) and disease (HbSS) were found in 17.1% and 1.6% of children, respectively; 38.5% were heterozygotes and 9.6% were homozygotes for α+‐thalassaemia. The Hp 2‐2 genotype was found in 20.4% of children, whereas 8.2% of males and 6.8% of children overall had G6PD deficiency. There were no significant differences in the distribution of malaria by the measured blood disorders, except among males with G6PD deficiency who had a lower prevalence of clinical malaria than males of normal G6PD genotype (P = 0.005). After excluding children with malaria parasitaemia, inflammation (CRP > 5 mg L−1), iron deficiency (ferritin < 12 μg L−1) or vitamin A deficiency (RBP < 0.7 μg L−1), the prevalence of anaemia among those without α+‐thalassaemia (43.0%) remained significantly lower than that among children who were either heterozygotes (53.5%) or homozygotes (67.7%, P = 0.03). Inherited blood disorders are common among pre‐school children in western Kenya and are important contributors to anaemia.
Collapse
Affiliation(s)
- Parminder S Suchdev
- Nutrition Branch, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA; Department of Pediatrics and Global Health, Emory University, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
25
|
Williams TN, Weatherall DJ. World distribution, population genetics, and health burden of the hemoglobinopathies. Cold Spring Harb Perspect Med 2012; 2:a011692. [PMID: 22951448 PMCID: PMC3426822 DOI: 10.1101/cshperspect.a011692] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although information about the precise world distribution and frequency of the inherited hemoglobin disorders is still limited, there is no doubt that they are going to pose an increasing burden on global health resources in the future. Their high frequency is a reflection of natural selection combined with a high frequency of consanguineous marriages in many countries, together with an epidemiological transition; whereby, as public health measures improve in the poorer countries of the world, more babies with these disorders are surviving to present for treatment.
Collapse
Affiliation(s)
- Thomas N Williams
- Kenya Medical Research Institute/Wellcome Trust Programme, Centre for Geographical Research, Kilifi District Hospital, PO Box 230, Kilifi, Kenya.
| | | |
Collapse
|
26
|
Fairhurst RM, Bess CD, Krause MA. Abnormal PfEMP1/knob display on Plasmodium falciparum-infected erythrocytes containing hemoglobin variants: fresh insights into malaria pathogenesis and protection. Microbes Infect 2012; 14:851-62. [PMID: 22634344 DOI: 10.1016/j.micinf.2012.05.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 11/24/2022]
Abstract
Hemoglobin (Hb) variants are associated with reduced risk of life-threatening Plasmodium falciparum malaria syndromes, including cerebral malaria and severe malarial anemia. Despite decades of research, the mechanisms by which common Hb variants - sickle HbS, HbC, α-thalassemia, fetal HbF - protect African children against severe and fatal malaria have not been fully elucidated. In vitro experimental and epidemiological data have long suggested that Hb variants do not confer malaria protection by restricting the growth of parasites in red blood cells (RBCs). Recently, four Hb variants were found to impair cytoadherence, the binding of P. falciparum-infected RBCs (PfRBCs) to microvascular endothelial cells (MVECs), a centrally important event in both parasite survival and malaria pathogenesis in humans. Impaired cytoadherence is associated with abnormal display of P. falciparum erythrocyte membrane protein 1 (PfEMP1), the parasite's major cytoadherence ligand and virulence factor, on the surface of host RBCs. We propose a model in which Hb variants allow parasites to display relatively low levels of PfEMP1, sufficient for sequestering PfRBCs in microvessels and avoiding their clearance from the bloodstream by the spleen. By preventing the display of high levels of PfEMP1, Hb variants may weaken the binding of PfRBCs to MVECs, compromising their ability to activate endothelium and initiate the downstream microvascular events that drive the pathogenesis of malaria.
Collapse
Affiliation(s)
- Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | | | |
Collapse
|
27
|
Krause MA, Diakite SAS, Lopera-Mesa TM, Amaratunga C, Arie T, Traore K, Doumbia S, Konate D, Keefer JR, Diakite M, Fairhurst RM. α-Thalassemia impairs the cytoadherence of Plasmodium falciparum-infected erythrocytes. PLoS One 2012; 7:e37214. [PMID: 22623996 PMCID: PMC3356384 DOI: 10.1371/journal.pone.0037214] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 04/16/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND α-Thalassemia results from decreased production of α-globin chains that make up part of hemoglobin tetramers (Hb; α(2)β(2)) and affects up to 50% of individuals in some regions of sub-Saharan Africa. Heterozygous (-α/αα) and homozygous (-α/-α) genotypes are associated with reduced risk of severe Plasmodium falciparum malaria, but the mechanism of this protection remains obscure. We hypothesized that α-thalassemia impairs the adherence of parasitized red blood cells (RBCs) to microvascular endothelial cells (MVECs) and monocytes--two interactions that are centrally involved in the pathogenesis of severe disease. METHODS AND FINDINGS We obtained P. falciparum isolates directly from Malian children with malaria and used them to infect αα/αα (normal), -α/αα and -α/-α RBCs. We also used laboratory-adapted P. falciparum clones to infect -/-α RBCs obtained from patients with HbH disease. Following a single cycle of parasite invasion and maturation to the trophozoite stage, we tested the ability of parasitized RBCs to bind MVECs and monocytes. Compared to parasitized αα/αα RBCs, we found that parasitized -α/αα, -α/-α and -/-α RBCs showed, respectively, 22%, 43% and 63% reductions in binding to MVECs and 13%, 33% and 63% reductions in binding to monocytes. α-Thalassemia was associated with abnormal display of P. falciparum erythrocyte membrane protein 1 (PfEMP1), the parasite's main cytoadherence ligand and virulence factor, on the surface of parasitized RBCs. CONCLUSIONS Parasitized α-thalassemic RBCs show PfEMP1 display abnormalities that are reminiscent of those on the surface of parasitized sickle HbS and HbC RBCs. Our data suggest a model of malaria protection in which α-thalassemia ameliorates the pro-inflammatory effects of cytoadherence. Our findings also raise the possibility that other unstable hemoglobins such as HbE and unpaired α-globin chains (in the case of β-thalassemia) protect against life-threatening malaria by a similar mechanism.
Collapse
Affiliation(s)
- Michael A. Krause
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Seidina A. S. Diakite
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Bamako, Bamako, Mali
| | - Tatiana M. Lopera-Mesa
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chanaki Amaratunga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Takayuki Arie
- Department of Physics and Electronics, School of Engineering, Osaka Prefecture University, Osaka, Japan
| | - Karim Traore
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Bamako, Bamako, Mali
| | - Saibou Doumbia
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Bamako, Bamako, Mali
| | - Drissa Konate
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Bamako, Bamako, Mali
| | - Jeffrey R. Keefer
- Division of Pediatric Hematology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Mahamadou Diakite
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Bamako, Bamako, Mali
| | - Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
28
|
Douglas NM, Anstey NM, Buffet PA, Poespoprodjo JR, Yeo TW, White NJ, Price RN. The anaemia of Plasmodium vivax malaria. Malar J 2012; 11:135. [PMID: 22540175 PMCID: PMC3438072 DOI: 10.1186/1475-2875-11-135] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 04/17/2012] [Indexed: 12/22/2022] Open
Abstract
Plasmodium vivax threatens nearly half the world's population and is a significant impediment to achievement of the millennium development goals. It is an important, but incompletely understood, cause of anaemia. This review synthesizes current evidence on the epidemiology, pathogenesis, treatment and consequences of vivax-associated anaemia. Young children are at high risk of clinically significant and potentially severe vivax-associated anaemia, particularly in countries where transmission is intense and relapses are frequent. Despite reaching lower densities than Plasmodium falciparum, Plasmodium vivax causes similar absolute reduction in red blood cell mass because it results in proportionately greater removal of uninfected red blood cells. Severe vivax anaemia is associated with substantial indirect mortality and morbidity through impaired resilience to co-morbidities, obstetric complications and requirement for blood transfusion. Anaemia can be averted by early and effective anti-malarial treatment.
Collapse
Affiliation(s)
- Nicholas M Douglas
- Global Health Division, Menzies School of Health Research, PO Box 41096, Casuarina, NT 0811, Australia
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Division of Medicine, Royal Darwin Hospital, Darwin, NT, Australia
| | - Nicholas M Anstey
- Global Health Division, Menzies School of Health Research, PO Box 41096, Casuarina, NT 0811, Australia
- Division of Medicine, Royal Darwin Hospital, Darwin, NT, Australia
| | - Pierre A Buffet
- INSERM - UPMC, (Paris 6 University) UMRs945, F-75013, Paris, France
- Department of Parasitology, Pitié-Salpétrière Hospital, Assistance Publique – Hôpitaux de Paris, F-75013, Paris, France
- Institut Pasteur, Unité d’Immunologie Moléculaire des Parasites, Département de Parasitologie Mycologie, F-75015, Paris, France
| | - Jeanne R Poespoprodjo
- Global Health Division, Menzies School of Health Research, PO Box 41096, Casuarina, NT 0811, Australia
- Mimika District Health Authority, Timika, Papua, Indonesia
- Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
| | - Tsin W Yeo
- Global Health Division, Menzies School of Health Research, PO Box 41096, Casuarina, NT 0811, Australia
- Division of Medicine, Royal Darwin Hospital, Darwin, NT, Australia
| | - Nicholas J White
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ric N Price
- Global Health Division, Menzies School of Health Research, PO Box 41096, Casuarina, NT 0811, Australia
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Division of Medicine, Royal Darwin Hospital, Darwin, NT, Australia
| |
Collapse
|
29
|
Veenemans J, Jansen EJS, Baidjoe AY, Mbugi EV, Demir AY, Kraaijenhagen RJ, Savelkoul HFJ, Verhoef H. Effect of α(+)-thalassaemia on episodes of fever due to malaria and other causes: a community-based cohort study in Tanzania. Malar J 2011; 10:280. [PMID: 21939508 PMCID: PMC3195205 DOI: 10.1186/1475-2875-10-280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 09/22/2011] [Indexed: 11/10/2022] Open
Abstract
Background It is controversial to what degree α+-thalassaemia protects against episodes of uncomplicated malaria and febrile disease due to infections other than Plasmodium. Methods In Tanzania, in children aged 6-60 months and height-for-age z-score < -1.5 SD (n = 612), rates of fevers due to malaria and other causes were compared between those with heterozygous or homozygotes α+-thalassaemia and those with a normal genotype, using Cox regression models that accounted for multiple events per child. Results The overall incidence of malaria was 3.0/child-year (1, 572/526 child-years); no differences were found in malaria rates between genotypes (hazard ratios, 95% CI: 0.93, 0.82-1.06 and 0.91, 0.73-1.14 for heterozygotes and homozygotes respectively, adjusted for baseline factors that were predictive for outcome). However, this association strongly depended on age: among children aged 6-17 months, those with α+-thalassaemia experienced episodes more frequently than those with a normal genotype (1.30, 1.02-1.65 and 1.15, 0.80-1.65 for heterozygotes and homozygotes respectively), whereas among their peers aged 18-60 months, α+-thalassaemia protected against malaria (0.80, 0.68-0.95 and 0.78, 0.60-1.03; p-value for interaction 0.001 and 0.10 for hetero- and homozygotes respectively). No effect was observed on non-malarial febrile episodes. Conclusions In this population, the association between α+-thalassaemia and malaria depends on age. Our data suggest that protection by α+-thalassaemia is conferred by more efficient acquisition of malaria-specific immunity.
Collapse
Affiliation(s)
- Jacobien Veenemans
- Wageningen University, Cell Biology and Immunology Group, Wageningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Driss A, Hibbert JM, Wilson NO, Iqbal SA, Adamkiewicz TV, Stiles JK. Genetic polymorphisms linked to susceptibility to malaria. Malar J 2011; 10:271. [PMID: 21929748 PMCID: PMC3184115 DOI: 10.1186/1475-2875-10-271] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 09/19/2011] [Indexed: 12/26/2022] Open
Abstract
The influence of host genetics on susceptibility to Plasmodium falciparum malaria has been extensively studied over the past twenty years. It is now clear that malaria parasites have imposed strong selective forces on the human genome in endemic regions. Different genes have been identified that are associated with different malaria related phenotypes. Factors that promote severity of malaria include parasitaemia, parasite induced inflammation, anaemia and sequestration of parasitized erythrocytes in brain microvasculature. Recent advances in human genome research technologies such as genome-wide association studies (GWAS) and fine genotyping tools have enabled the discovery of several genetic polymorphisms and biomarkers that warrant further study in host-parasite interactions. This review describes and discusses human gene polymorphisms identified thus far that have been shown to be associated with susceptibility or resistance to P. falciparum malaria. Although some polymorphisms play significant roles in susceptibility to malaria, several findings are inconclusive and contradictory and must be considered with caution. The discovery of genetic markers associated with different malaria phenotypes will help elucidate the pathophysiology of malaria and enable development of interventions or cures. Diversity in human populations as well as environmental effects can influence the clinical heterogeneity of malaria, thus warranting further investigations with a goal of developing new interventions, therapies and better management against malaria.
Collapse
Affiliation(s)
- Adel Driss
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Mehdi SR, Al Dahmash BA. A comparative study of hematological parameters of α and β thalassemias in a high prevalence zone: Saudi Arabia. INDIAN JOURNAL OF HUMAN GENETICS 2011; 17:207-11. [PMID: 22345994 PMCID: PMC3276991 DOI: 10.4103/0971-6866.92106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND AIMS Saudi Arabia falls in the high prevalent zone of αα and β thalassemias. Early screening for the type of thalassemia is essential for further investigations and management. The study was carried out to differentiate the type of thalassemia based on red cell indices and other hematological parameters. MATERIALS AND METHODS The study was carried out on 991 clinically suspected cases of thalassemias in Riyadh, Saudi Arabia. The hematological parameters were studied on Coulter STKS. Cellulose acetate hemoglobin electrophoresis and high-performance liquid chromatography (HPLC) were performed on all the blood samples. Gene deletion studies were carried out by restriction fragment length polymorphism (RFLP) technique using the restriction endonucleases Bam HI. STATISTICAL ANALYSIS Statistical analysis was performed on SPSS 11.5 version. RESULTS The hemoglobin electrophoresis and gene studies revealed that there were 406 (40.96%) and 59 (5.95 %) cases of β thalassemia trait and β thalassemia major respectively including adults and children. 426 cases of various deletion forms of α thalassemias were seen. Microcytosis was a common feature in β thalassemias trait and (-α/-α) and (--/αα) types of α thalassemias. MCH was a more significant distinguishing feature among thalassemias. β thalassemia major and α thalassemia (-α/αα) had almost normal hematological parameters. CONCLUSION MCV and RBC counts are not statistically significant features for discriminating between α and β thalassemias. There is need for development of a discrimination index to differentiate between α and β thalassemias traits on the lines of discriminatory Indices available for distinguishing β thalassemias trait from iron deficiency anemia.
Collapse
Affiliation(s)
- Syed Riaz Mehdi
- Department of Medical Laboratory, Medical College, King Saud University, Riyadh-11416, Saudi Arabia
| | - Badr Abdullah Al Dahmash
- Department of Medical Laboratory, Medical College, King Saud University, Riyadh-11416, Saudi Arabia
| |
Collapse
|
32
|
Affiliation(s)
- Karen P Day
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
33
|
Weatherall D, Williams T, Allen S, O’Donnell A. The Population Genetics and Dynamics of the Thalassemias. Hematol Oncol Clin North Am 2010; 24:1021-31. [DOI: 10.1016/j.hoc.2010.08.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
The Historical Ecology of Human and Wild Primate Malarias in the New World. DIVERSITY-BASEL 2010. [DOI: 10.3390/d2020256] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Recent insights into the population genetics and dynamics of the inherited disorders of hemoglobin. Mediterr J Hematol Infect Dis 2009; 1:e200922. [PMID: 21416000 PMCID: PMC3033164 DOI: 10.4084/mjhid.2009.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 12/16/2009] [Indexed: 11/16/2022] Open
Abstract
The inherited disorders of hemoglobin are by far the commonest monogenic diseases and there is considerable evidence that they have reached their very high frequencies due to heterozygote advantage against malaria. Recent studies have begun to clarify the effect of interactions between malaria and some of the more severe inherited hemoglobin disorders and demonstrated how complex epistatic interactions between different hemoglobin variants with respect to malaria resistance and modification of their phenotypic severity may explain the remarkable heterogeneity of distribution and the frequency of these conditions both between and within individual populations.
Collapse
|
36
|
Epistatic interactions between genetic disorders of hemoglobin can explain why the sickle-cell gene is uncommon in the Mediterranean. Proc Natl Acad Sci U S A 2009; 106:21242-6. [PMID: 19955437 DOI: 10.1073/pnas.0910840106] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several human genetic disorders of hemoglobin have risen in frequency because of the protection they offer against death from malaria, sickle-cell anemia being a canonical example. Here we address the issue of why this highly protective mutant, present at high frequencies in subSaharan Africa, is uncommon in Mediterranean populations that instead harbor a diverse range of thalassemic hemoglobin disorders. We demonstrate that these contrasting profiles of malaria-protective alleles can arise and be stably maintained by two well-documented phenomena: an alleviation of the clinical severity of alpha- and beta-thalassemia in compound thalassemic genotypes and a cancellation of malaria protection when alpha-thalassemia and the sickle-cell trait are coinherited. The complex distribution of globin mutants across Africa and the Mediterranean can therefore be explained by their specific intracellular interactions.
Collapse
|
37
|
Wellems TE, Hayton K, Fairhurst RM. The impact of malaria parasitism: from corpuscles to communities. J Clin Invest 2009; 119:2496-505. [PMID: 19729847 DOI: 10.1172/jci38307] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Malaria continues to exert a tremendous health burden on human populations, reflecting astonishingly successful adaptations of the causative Plasmodium parasites. We discuss here how this burden has driven the natural selection of numerous polymorphisms in the genes encoding hemoglobin and other erythrocyte proteins and some effectors of immunity. Plasmodium falciparum, the most deadly parasite species in humans, displays a vigorous system of antigen variation to counter host defenses and families of functionally redundant ligands to invade human cells. Advances in genetics and genomics are providing fresh insights into the nature of these evolutionary adaptations, processes of parasite transmission and infection, and the difficult challenges of malaria control.
Collapse
Affiliation(s)
- Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892-8132, USA.
| | | | | |
Collapse
|
38
|
Verra F, Mangano VD, Modiano D. Genetics of susceptibility to Plasmodium falciparum: from classical malaria resistance genes towards genome-wide association studies. Parasite Immunol 2009; 31:234-53. [PMID: 19388945 DOI: 10.1111/j.1365-3024.2009.01106.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmodium falciparum represents one of the strongest selective forces on the human genome. This stable and perennial pressure has contributed to the progressive accumulation in the exposed populations of genetic adaptations to malaria. Descriptive genetic epidemiology provides the initial step of a logical procedure of consequential phases spanning from the identification of genes involved in the resistance/susceptibility to diseases, to the determination of the underlying mechanisms and finally to the possible translation of the acquired knowledge in new control tools. In malaria, the rational development of this strategy is traditionally based on complementary interactions of heterogeneous disciplines going from epidemiology to vaccinology passing through genetics, pathogenesis and immunology. New tools including expression profile analysis and genome-wide association studies are recently available to explore the complex interactions of host-parasite co-evolution. Particularly, the combination of genome-wide association studies with large multi-centre initiatives can overcome the limits of previous results due to local population dynamics. Thus, we anticipate substantial advances in the interpretation and validation of the effects of genetic variation on malaria susceptibility, and thereby on molecular mechanisms of protective immune responses and pathogenesis.
Collapse
Affiliation(s)
- F Verra
- Department of Public Health, University of Rome La Sapienza, Rome, Italy.
| | | | | |
Collapse
|
39
|
The pathophysiology of vivax malaria. Trends Parasitol 2009; 25:220-7. [PMID: 19349210 DOI: 10.1016/j.pt.2009.02.003] [Citation(s) in RCA: 281] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2008] [Revised: 02/02/2009] [Accepted: 02/05/2009] [Indexed: 12/12/2022]
Abstract
Long considered a benign infection, Plasmodium vivax is now recognized as a cause of severe and fatal malaria, despite its low parasite biomass, the increased deformability of vivax-infected red blood cells and an apparent paucity of parasite sequestration. Severe anemia is associated with recurrent bouts of hemolysis of predominantly uninfected erythrocytes with increased fragility, and lung injury is associated with inflammatory increases in alveolar-capillary membrane permeability. Although rare, vivax-associated coma challenges our understanding of pathobiology caused by Plasmodium spp. Host and parasite factors contribute to the risk of severe disease, and comorbidities might contribute to vivax mortality. In this review, we discuss potential mechanisms underlying the syndromes of uncomplicated and severe vivax malaria, identifying key areas for future research.
Collapse
|
40
|
Danquah I, Mockenhaupt FP. Alpha(+)-thalassaemia and malarial anaemia. Trends Parasitol 2008; 24:479-81. [PMID: 18782679 DOI: 10.1016/j.pt.2008.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/16/2008] [Accepted: 07/28/2008] [Indexed: 10/21/2022]
Abstract
The mechanisms by which alpha(+)-thalassaemia protects against severe malaria, and severe malarial anaemia in particular, are poorly understood. A recent report proposes that the increased count of microcytic and hypochromic erythrocytes in alpha(+)-thalassaemia reduces the haemoglobin decline during acute malaria and, thus, reduces the risk of anaemia. This mechanism might add to further alpha(+)-thalassaemic attributes that are involved in the attenuation of anaemia caused by both acute and chronic Plasmodium infections.
Collapse
Affiliation(s)
- Ina Danquah
- Institute of Tropical Medicine and International Health, Charité - University Medicine Berlin, Spandauer Damm 130, 14050 Berlin, Germany
| | | |
Collapse
|
41
|
Abstract
The pathogenesis of severe malarial disease is not yet fully understood. It is clear that host immunopathology plays a central role, and a recent paper in BMC Evolutionary Biology suggests that the ability of the parasite to stimulate interleukin-10 production is a major factor and speculates on its impact on the coevolution of host and parasite.
Collapse
Affiliation(s)
- Bridget Penman
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | | |
Collapse
|