1
|
Abu Mohsen Y, Twitto-Greenberg R, Cohen A, Leichner GS, Mahler L, Cohen H, Kamari Y, Shaish A, Harari A, Leikin-Frenkel A, Glick Saar E, Geiger T, Malitsky S, Itkin M, Harats D, Keshet R. Proteomic and lipidomic analysis of low-density lipoprotein identifies potential biomarkers of early estrogen receptor-positive breast cancer. Cancer Metab 2025; 13:20. [PMID: 40312746 PMCID: PMC12046955 DOI: 10.1186/s40170-025-00390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025] Open
Abstract
Estrogen receptor (ER)-positive breast cancer (BC) is a prevalent and fatal cancer among women, and there is a need to identify molecules involved in the disease pathophysiology which could also serve as biomarkers for early detection. Detection of cancer markers in whole plasma produces excessive information, and identifying important markers involved in cancer progression is challenging. We identified a BC-specific low-density lipoprotein (LDL) particle isolated by ultracentrifugation from the plasma of ER-positive BC patients. This LDL has an aberrant proteome and lipidome, significantly different from that of LDL from healthy women, including a high association with the pro-tumor chemokines CXCL4 and CXCL7, and an enrichment with the lipid subclasses phosphatidylethanolamine, ceramide, triglycerides, lysophosphatidylcholine, phosphatidylserine, phosphatidic acid, and sphingomyelin. In contrast, phosphatidylinositol species were significantly less abundant in LDL from tumor patients than in control. Moreover, BC-associated LDL has a distinct effect on macrophage phenotype, inducing an increased gene expression of IL1β, IL8 and CD206 and decreased gene expression of TNFα, a gene signature characteristic of tumor-associated macrophages (TAMs). This suggests that this formerly unrecognized form of LDL may represent LDL particles that are recruited by the tumor microenvironment to support tumor progression by inducing discrete subsets of TAMs. In conclusion, these data offer BC-associated LDL as an early biomarker detection platform for ER-positive BC. Furthermore, LDL-associated proteins and lipids that promote BC progression may also serve in the future as novel targets for BC therapies.
Collapse
Affiliation(s)
- Yamama Abu Mohsen
- The Bert W. Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Ramat Gan, Israel
- School of Medicine, The Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Rachel Twitto-Greenberg
- The Bert W. Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Anna Cohen
- The Bert W. Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Gil S Leichner
- The Bert W. Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Lidor Mahler
- The Bert W. Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Ramat Gan, Israel
- School of Medicine, The Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Hofit Cohen
- The Bert W. Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Ramat Gan, Israel
- School of Medicine, The Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Yehuda Kamari
- The Bert W. Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Ramat Gan, Israel
- School of Medicine, The Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Aviv Shaish
- The Bert W. Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Ramat Gan, Israel
- Achva Academic College, Beer-Tuvia Regional Council, Israel
| | - Ayelet Harari
- The Bert W. Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Alicia Leikin-Frenkel
- The Bert W. Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Ramat Gan, Israel
- School of Medicine, The Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Efrat Glick Saar
- The Wohl Institute for Translational Research, Sheba Medical Center, Ramat Gan, Israel
| | | | | | - Maxim Itkin
- Weizmann Institute of Science, Rehovot, Israel
| | - Dror Harats
- The Bert W. Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Ramat Gan, Israel
- School of Medicine, The Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Rom Keshet
- The Bert W. Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Ramat Gan, Israel.
- School of Medicine, The Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
2
|
Bedia JS, Jacobs IJ, Ryan A, Gentry-Maharaj A, Burnell M, Singh N, Manchanda R, Kalsi JK, Dawnay A, Fallowfield L, McGuire AJ, Campbell S, Parmar MKB, Menon U, Skates SJ. Estimating the ovarian cancer CA-125 preclinical detectable phase, in-vivo tumour doubling time, and window for detection in early stage: an exploratory analysis of UKCTOCS. EBioMedicine 2025; 112:105554. [PMID: 39808947 PMCID: PMC11782890 DOI: 10.1016/j.ebiom.2024.105554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The ovarian cancer (OC) preclinical detectable phase (PCDP), defined as the interval during which cancer is detectable prior to clinical diagnosis, remains poorly characterised. We report exploratory analyses from the United Kingdom Collaborative Trial of Ovarian Cancer Screening (UKCTOCS). METHODS In UKCTOCS between Apr-2001 and Sep-2005, 101,314 postmenopausal women were randomised to no screening (NS) and 50,625 to annual multimodal screening (MMS) (until Dec-2011) using serum CA-125 interpreted by the Risk of Ovarian Cancer Algorithm (ROCA). All provided a baseline blood sample. Women with invasive epithelial OC diagnosed between randomisation and trial censorship (Dec-2014) in the MMS and NS arms with two or more CA-125 measurements, including one within two years of diagnosis were included. OC-free women (2:1 to cases) from the MMS arm provided information on baseline CA-125 distribution. CA-125 measurements were obtained from MMS results, secondary analysis of baseline samples, and medical records. PCDP duration and in-vivo tumour doubling time were estimated using the change-point model underlying ROCA. Early-stage (Stage I and II) PCDP was estimated from a Bayesian model for the probability of early stage given a CA-125 measurement. FINDINGS Of 541 women (2371 CA-125 measurements) with high-grade serous cancer (HGSC), 93% (504/541) secreted CA-125 into the circulation. Median CA-125 PCDP duration for clinically-diagnosed HGSC was 15.2 (IQR 13.1-16.9, 95% IPR 9.6-21.8) months, of which 11.9 (IQR 10.5-13.1, 95% IPR 7.5-16.5) months was in early stage. The median HGSC in-vivo tumour doubling time for cancers secreting CA-125 was 2.9 (IQR 2.3-3.7, 95% IPR 1.5-7.6) months. INTERPRETATION We report a comprehensive characterisation of the OC CA-125 PCDP. The 12-month window for early-stage detection and short tumour doubling time of HGSC provide a benchmark for researchers evaluating novel screening approaches including need to reduce diagnostic workup interval. Equally the findings provide urgent impetus for clinicians to reduce intervals from presentation to treatment onset. FUNDING NCI Early Detection Research Network, Concord (MA) Detect Ovarian Cancer Early Fund, MRC Clinical Trials Unit at UCL Core Funding.
Collapse
Affiliation(s)
- Jacob S Bedia
- MGH Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
| | - Ian J Jacobs
- Department of Women's Cancer, Elizabeth Garrett Anderson Institute for Women's Health, UCL, London, UK
| | - Andy Ryan
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, UCL, London, UK
| | - Aleksandra Gentry-Maharaj
- Department of Women's Cancer, Elizabeth Garrett Anderson Institute for Women's Health, UCL, London, UK; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, UCL, London, UK
| | - Matthew Burnell
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, UCL, London, UK
| | - Naveena Singh
- Department of Cellular Pathology, Barts Health NHS Trust, London, UK
| | - Ranjit Manchanda
- Centre for Cancer Screening, Prevention & Early Diagnosis, Wolfson Institute of Population Health, Queen Mary University of London, London, UK; Department of Health Services Research, Faculty of Public Health & Policy, London School of Hygiene & Tropical Medicine, London, UK; Department of Gynaecological Oncology, Barts Health NHS Trust, London, UK; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, UCL, London, UK
| | - Jatinderpal K Kalsi
- AGE Research Unit, School of Public Health, Imperial College London, London, UK
| | - Anne Dawnay
- Department of Clinical Biochemistry, Barts Health NHS Trust, London, UK
| | - Lesley Fallowfield
- Sussex Health Outcomes Research and Education in Cancer (SHORE-C), Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | | | | | - Mahesh K B Parmar
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, UCL, London, UK
| | - Usha Menon
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, UCL, London, UK
| | - Steven J Skates
- MGH Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
de Saporta B, Thierry d'Argenlieu A, Sabbadin R, Cleynen A. A Monte-Carlo planning strategy for medical follow-up optimization: Illustration on multiple myeloma data. PLoS One 2024; 19:e0315661. [PMID: 39700101 DOI: 10.1371/journal.pone.0315661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
Designing patient-specific follow-up strategies is key to personalized cancer care. Tools to assist doctors in treatment decisions and scheduling follow-ups based on patient preferences and medical data would be highly beneficial. These tools should incorporate realistic models of disease progression under treatment, multi-objective optimization of treatment strategies, and efficient algorithms to personalize follow-ups by considering patient history. We propose modeling cancer evolution using a Piecewise Deterministic Markov Process, where patients alternate between remission and relapse phases, and control the model via long-term cost function optimization. This considers treatment side effects, visit burden, and quality of life, using noisy blood marker measurements for feedback. Instead of discretizing the problem with a discrete Markov Decision Process, we apply the Partially-Observed Monte-Carlo Planning algorithm to solve the continuous-time, continuous-state problem, leveraging the near-deterministic nature of cancer progression. Our approach, tested on multiple myeloma patient data, outperforms exact solutions of the discrete model and allows greater flexibility in cost function modeling, enabling patient-specific follow-ups. This method can also be adapted to other diseases.
Collapse
Affiliation(s)
| | | | | | - Alice Cleynen
- IMAG, CNRS, Univ Montpellier, Montpellier, France
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
4
|
Lin J, Aprahamian H, Golovko G. A proactive/reactive mass screening approach with uncertain symptomatic cases. PLoS Comput Biol 2024; 20:e1012308. [PMID: 39141678 PMCID: PMC11346970 DOI: 10.1371/journal.pcbi.1012308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 08/26/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
We study the problem of mass screening of heterogeneous populations under limited testing budget. Mass screening is an essential tool that arises in various settings, e.g., the COVID-19 pandemic. The objective of mass screening is to classify the entire population as positive or negative for a disease as efficiently and accurately as possible. Under limited budget, testing facilities need to allocate a portion of the budget to target sub-populations (i.e., proactive screening) while reserving the remaining budget to screen for symptomatic cases (i.e., reactive screening). This paper addresses this decision problem by taking advantage of accessible population-level risk information to identify the optimal set of sub-populations for proactive/reactive screening. The framework also incorporates two widely used testing schemes: Individual and Dorfman group testing. By leveraging the special structure of the resulting bilinear optimization problem, we identify key structural properties, which in turn enable us to develop efficient solution schemes. Furthermore, we extend the model to accommodate customized testing schemes across different sub-populations and introduce a highly efficient heuristic solution algorithm for the generalized model. We conduct a comprehensive case study on COVID-19 in the US, utilizing geographically-based data. Numerical results demonstrate a significant improvement of up to 52% in total misclassifications compared to conventional screening strategies. In addition, our case study offers valuable managerial insights regarding the allocation of proactive/reactive measures and budget across diverse geographic regions.
Collapse
Affiliation(s)
- Jiayi Lin
- Department of Industrial and Systems Engineering, Texas A&M University College Station, Texas, United States of America
| | - Hrayer Aprahamian
- Department of Industrial and Systems Engineering, Texas A&M University College Station, Texas, United States of America
| | - George Golovko
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch Galveston, Texas, United States of America
| |
Collapse
|
5
|
Mahanti K, Saha J, Sarkar D, Pramanik A, Roy Chattopadhyay N, Bhattacharyya S. Alteration of functionality and differentiation directed by changing gene expression patterns in myeloid-derived suppressor cells (MDSCs) in tumor microenvironment and bone marrow through early to terminal phase of tumor progression. J Leukoc Biol 2024; 115:958-984. [PMID: 38236200 DOI: 10.1093/jleuko/qiae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/06/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Myeloid-derived suppressor cells are heterogenous immature myeloid lineage cells that can differentiate into neutrophils, monocytes, and dendritic cells as well. These cells have been characterized to have potent immunosuppressive capacity in neoplasia and a neoplastic chronic inflammatory microenvironment. Increased accumulation of myeloid-derived suppressor cells was reported with poor clinical outcomes in patients. They support neoplastic progression by abrogating antitumor immunity through inhibition of lymphocyte functions and directly by facilitating tumor development. Yet the shifting genetic signatures of this myeloid lineage cell toward immunosuppressive functionality in progressive tumor development remain elusive. We have attempted to identify the gene expression profile using lineage-specific markers of these unique myeloid lineage cells in a tumor microenvironment and bone marrow using a liquid transplantable mice tumor model to trace the changing influence of the tumor microenvironment on myeloid-derived suppressor cells. We analyzed the phenotype, functional shift, suppressive activity, differentiation status, and microarray-based gene expression profile of CD11b+Gr1+ lineage-specific cells isolated from the tumor microenvironment and bone marrow of 4 stages of tumor-bearing mice and compared them with control counterparts. Our analysis of differentially expressed genes of myeloid-derived suppressor cells isolated from bone marrow and the tumor microenvironment reveals unique gene expression patterns in the bone marrow and tumor microenvironment-derived myeloid-derived suppressor cells. It also suggests T-cell suppressive activity of myeloid-derived suppressor cells progressively increases toward the mid-to-late phase of the tumor and a significant differentiation bias of tumor site myeloid-derived suppressor cells toward macrophages, even in the presence of differentiating agents, indicating potential molecular characteristics of myeloid-derived suppressor cells in different stages of the tumor that can emerge as an intervention target.
Collapse
Affiliation(s)
- Krishna Mahanti
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Ranchi Road, Saink School, Purulia, West Bengal 723104, India
| | - Jayasree Saha
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Ranchi Road, Saink School, Purulia, West Bengal 723104, India
- Currently, DST-SERB NPDF, School of Bioscience, IIT Kharagpur, Paschim Medinipur, West Bengal 721302, India
| | - Debanjan Sarkar
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Ranchi Road, Saink School, Purulia, West Bengal 723104, India
| | - Anik Pramanik
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Ranchi Road, Saink School, Purulia, West Bengal 723104, India
| | - Nabanita Roy Chattopadhyay
- Department of Biotechnology, Siksha Bhaban, Visva Bharati, Shantiniketan, Birbhum, West Bengal 731235, India
- Currently, Department of Biotechnology, Haldia Institute of Technology, ICARE Complex, Haldia, West Bengal 721657, India
| | - Sankar Bhattacharyya
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Ranchi Road, Saink School, Purulia, West Bengal 723104, India
| |
Collapse
|
6
|
Yang Y, Wu S, Chen Y, Ju H. Surface-enhanced Raman scattering sensing for detection and mapping of key cellular biomarkers. Chem Sci 2023; 14:12869-12882. [PMID: 38023499 PMCID: PMC10664603 DOI: 10.1039/d3sc04650h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Cellular biomarkers mainly contain proteins, nucleic acids, glycans and many small molecules including small biomolecule metabolites, reactive oxygen species and other cellular chemical entities. The detection and mapping of the key cellular biomarkers can effectively help us to understand important cellular mechanisms associated with physiological and pathological processes, which greatly promote the development of clinical diagnosis and disease treatment. Surface-enhanced Raman scattering (SERS) possesses high sensitivity and is free from the influence of strong self-fluorescence in living systems as well as the photobleaching of the dyes. It exhibits rich and narrow chemical fingerprint spectra for multiplexed detection, and has become a powerful tool to detect and map cellular biomarkers. In this review, we present an overview of recent advances in the detection and mapping of different classes of cellular biomarkers based on SERS sensing. These advances fully confirm that the SERS-based sensors and sensing methods have great potential for the exploration of biological mechanisms and clinical applications. Additionally, we also discuss the limitations of present research and the future developments of the SERS technology in this field.
Collapse
Affiliation(s)
- Yuanjiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Shan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
7
|
Barker AD, Alba MM, Mallick P, Agus DB, Lee JSH. An Inflection Point in Cancer Protein Biomarkers: What Was and What's Next. Mol Cell Proteomics 2023:100569. [PMID: 37196763 PMCID: PMC10388583 DOI: 10.1016/j.mcpro.2023.100569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
Biomarkers remain the highest value proposition in cancer medicine today - especially protein biomarkers. Yet despite decades of evolving regulatory frameworks to facilitate the review of emerging technologies, biomarkers have been mostly about promise with very little to show for improvements in human health. Cancer is an emergent property of a complex system and deconvoluting the integrative and dynamic nature of the overall system through biomarkers is a daunting proposition. The last two decades have seen an explosion of multi-omics profiling and a range of advanced technologies for precision medicine, including the emergence of liquid biopsy, exciting advances in single cell analysis, artificial intelligence (machine and deep learning) for data analysis and many other advanced technologies that promise to transform biomarker discovery. Combining multiple omics modalities to acquire a more comprehensive landscape of the disease state, we are increasingly developing biomarkers to support therapy selection and patient monitoring. Furthering precision medicine, especially in oncology, necessitates moving away from the lens of reductionist thinking towards viewing and understanding that complex diseases are, in fact, complex adaptive systems. As such, we believe it is necessary to re-define biomarkers as representations of biological system states at different hierarchical levels of biological order. This definition could include traditional molecular, histologic, radiographic, or physiological characteristics, as well as emerging classes of digital markers and complex algorithms. To succeed in the future, we must move past purely observational individual studies and instead start building a mechanistic framework to enable integrative analysis of new studies within the context of prior studies. Identifying information in complex systems and applying theoretical constructs, such as information theory, to study cancer as a disease of dysregulated communication could prove to be "game changing" for the clinical outcome of cancer patients.
Collapse
Affiliation(s)
- Anna D Barker
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA; Complex Adaptive Systems Initiative and School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Mario M Alba
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA
| | - Parag Mallick
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA; Department of Radiology, Stanford University, Stanford, CA
| | - David B Agus
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA; Keck School of Medicine, University of Southern California, Los Angeles, CA; Viterbi School of Engineering, University of Southern California, Los Angeles, CA
| | - Jerry S H Lee
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA; Keck School of Medicine, University of Southern California, Los Angeles, CA; Viterbi School of Engineering, University of Southern California, Los Angeles, CA
| |
Collapse
|
8
|
Recent advances in plasmon-enhanced luminescence for biosensing and bioimaging. Anal Chim Acta 2023; 1254:341086. [PMID: 37005018 DOI: 10.1016/j.aca.2023.341086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023]
Abstract
Plasmon-enhanced luminescence (PEL) is a unique photophysical phenomenon in which the interaction between luminescent moieties and metal nanostructures results in a marked luminescence enhancement. PEL offers several advantages and has been extensively used to design robust biosensing platforms for luminescence-based detection and diagnostics applications, as well as for the development of many efficient bioimaging platforms, enabling high-contrast non-invasive real-time optical imaging of biological tissues, cells, and organelles with high spatial and temporal resolution. This review summarizes recent progress in the development of various PEL-based biosensors and bioimaging platforms for diverse biological and biomedical applications. Specifically, we comprehensively assessed rationally designed PEL-based biosensors that can efficiently detect biomarkers (proteins and nucleic acids) in point-of-care tests, highlighting significant improvements in the sensing performance upon the integration of PEL. In addition to discussing the merits and demerits of recently developed PEL-based biosensors on substrates or in solutions, we include a brief discussion on integrating PEL-based biosensing platforms into microfluidic devices as a promising multi-responsive detection method. The review also presents comprehensive details about the recent advances in the development of various PEL-based multi-functional (passive targeting, active targeting, and stimuli-responsive) bioimaging probes, highlighting the scope of future improvements in devising robust PEL-based nanosystems to achieve more effective diagnostic and therapeutic insights by enabling imaging-guided therapy.
Collapse
|
9
|
Blee JA, Liu X, Harland AJ, Fatania K, Currie S, Kurian KM, Hauert S. Liquid biopsies for early diagnosis of brain tumours: in silico mathematical biomarker modelling. J R Soc Interface 2022; 19:20220180. [PMID: 35919979 PMCID: PMC9346349 DOI: 10.1098/rsif.2022.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/07/2022] [Indexed: 11/12/2022] Open
Abstract
Brain tumours are the biggest cancer killer in those under 40 and reduce life expectancy more than any other cancer. Blood-based liquid biopsies may aid early diagnosis, prediction and prognosis for brain tumours. It remains unclear whether known blood-based biomarkers, such as glial fibrillary acidic protein (GFAP), have the required sensitivity and selectivity. We have developed a novel in silico model which can be used to assess and compare blood-based liquid biopsies. We focused on GFAP, a putative biomarker for astrocytic tumours and glioblastoma multi-formes (GBMs). In silico modelling was paired with experimental measurement of cell GFAP concentrations and used to predict the tumour volumes and identify key parameters which limit detection. The average GBM volumes of 449 patients at Leeds Teaching Hospitals NHS Trust were also measured and used as a benchmark. Our model predicts that the currently proposed GFAP threshold of 0.12 ng ml-1 may not be suitable for early detection of GBMs, but that lower thresholds may be used. We found that the levels of GFAP in the blood are related to tumour characteristics, such as vasculature damage and rate of necrosis, which are biological markers of tumour aggressiveness. We also demonstrate how these models could be used to provide clinical insight.
Collapse
Affiliation(s)
- Johanna A. Blee
- Department of Engineering Mathematics, University of Bristol, Ada Lovelace Building, Bristol BS8 1TW, UK
| | - Xia Liu
- Brain Tumour Research Centre, Bristol Medical School, Bristol BS2 8DZ, UK
| | - Abigail J. Harland
- Brain Tumour Research Centre, Bristol Medical School, Bristol BS2 8DZ, UK
| | - Kavi Fatania
- Department of Radiology, Leeds General Infirmary, Great George Street, Leeds LS1 3EX, UK
| | - Stuart Currie
- Department of Radiology, Leeds General Infirmary, Great George Street, Leeds LS1 3EX, UK
| | | | - Sabine Hauert
- Department of Engineering Mathematics, University of Bristol, Ada Lovelace Building, Bristol BS8 1TW, UK
| |
Collapse
|
10
|
Kim S, Kim J, Im J, Kim M, Kim T, Wang SX, Kim D, Lee JR. Magnetic supercluster particles for highly sensitive magnetic biosensing of proteins. Mikrochim Acta 2022; 189:256. [PMID: 35697882 PMCID: PMC9192248 DOI: 10.1007/s00604-022-05354-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
Abstract
A strategy is reported to improve the detection limits of current giant magnetoresistance (GMR) biosensors by augmenting the effective magnetic moment that the magnetic tags on the biosensors can exert. Magnetic supercluster particles (MSPs), each of which consists of ~ 1000 superparamagnetic cores, are prepared by a wet-chemical technique and are utilized to improve the limit of detection of GMR biosensors down to 17.6 zmol for biotin as a target molecule. This value is more than four orders of magnitude lower than that of the conventional colorimetric assay performed using the same set of reagents except for the signal transducer. The applicability of MSPs in immunoassay is further demonstrated by simultaneously detecting vascular endothelial growth factor (VEGF) and C-reactive protein (CRP) in a duplex assay format. MSPs outperform commercially available magnetic nanoparticles in terms of signal intensity and detection limit.
Collapse
Affiliation(s)
- Songeun Kim
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
- Graduate Program in Smart Factory, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Junyoung Kim
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jisoo Im
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
- Graduate Program in Smart Factory, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Minah Kim
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - Taehyeong Kim
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - Shan X Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Dokyoon Kim
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, 15588, Republic of Korea.
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Jung-Rok Lee
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
- Graduate Program in Smart Factory, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
11
|
Xiao Y, Shen J, Zou X. Mathematical modeling and dynamical analysis of anti-tumor drug dose-response. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:4120-4144. [PMID: 35341290 DOI: 10.3934/mbe.2022190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cancer is a serious threat to human health and life. Using anti-tumor drugs is one of the important ways for treating cancer. A large number of experiments have shown that the hormesis appeared in the dose-response relationship of various anti-tumor drugs. Modeling this phenomenon will contribute to finding the appropriate dose. However, few studies have used dynamical models to quantitatively explore the hormesis phenomenon in anti-tumor drug dose-response. In this study, we present a mathematical model and dynamical analysis to quantify hormesis of anti-tumor drugs and reveal the critical threshold of antibody dose. Firstly, a dynamical model is established to describe the interactions among tumor cells, natural killer cells and M2-polarized macrophages. Model parameters are fitted through the published experimental data. Secondly, the positivity of solution and bounded invariant set are given. The stability of equilibrium points is proved. Thirdly, through bifurcation analysis and numerical simulations, the hormesis phenomenon of low dose antibody promoting tumor growth and high dose antibody inhibiting tumor growth is revealed. Furthermore, we fit out the quantitative relationship of the dose-response of antibodies. Finally, the critical threshold point of antibody dose changing from promoting tumor growth to inhibiting tumor growth is obtained. These results can provide suggestions for the selection of appropriate drug dosage in the clinical treatment of cancer.
Collapse
Affiliation(s)
- Yuyang Xiao
- School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China
| | - Juan Shen
- School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China
| | - Xiufen Zou
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
12
|
Kwong GA, Ghosh S, Gamboa L, Patriotis C, Srivastava S, Bhatia SN. Synthetic biomarkers: a twenty-first century path to early cancer detection. Nat Rev Cancer 2021; 21:655-668. [PMID: 34489588 PMCID: PMC8791024 DOI: 10.1038/s41568-021-00389-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 02/08/2023]
Abstract
Detection of cancer at an early stage when it is still localized improves patient response to medical interventions for most cancer types. The success of screening tools such as cervical cytology to reduce mortality has spurred significant interest in new methods for early detection (for example, using non-invasive blood-based or biofluid-based biomarkers). Yet biomarkers shed from early lesions are limited by fundamental biological and mass transport barriers - such as short circulation times and blood dilution - that limit early detection. To address this issue, synthetic biomarkers are being developed. These represent an emerging class of diagnostics that deploy bioengineered sensors inside the body to query early-stage tumours and amplify disease signals to levels that could potentially exceed those of shed biomarkers. These strategies leverage design principles and advances from chemistry, synthetic biology and cell engineering. In this Review, we discuss the rationale for development of biofluid-based synthetic biomarkers. We examine how these strategies harness dysregulated features of tumours to amplify detection signals, use tumour-selective activation to increase specificity and leverage natural processing of bodily fluids (for example, blood, urine and proximal fluids) for easy detection. Finally, we highlight the challenges that exist for preclinical development and clinical translation of synthetic biomarker diagnostics.
Collapse
Affiliation(s)
- Gabriel A Kwong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA.
- Parker H. Petit Institute of Bioengineering and Bioscience, Atlanta, GA, USA.
- Institute for Electronics and Nanotechnology, Georgia Tech, Atlanta, GA, USA.
- The Georgia Immunoengineering Consortium, Emory University and Georgia Tech, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| | - Sharmistha Ghosh
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Lena Gamboa
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Christos Patriotis
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sudhir Srivastava
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Sangeeta N Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
13
|
Trinidad CV, Tetlow AL, Bantis LE, Godwin AK. Reducing Ovarian Cancer Mortality Through Early Detection: Approaches Using Circulating Biomarkers. Cancer Prev Res (Phila) 2021; 13:241-252. [PMID: 32132118 DOI: 10.1158/1940-6207.capr-19-0184] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/20/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
Abstract
More than two-thirds of all women diagnosed with epithelial ovarian cancer (EOC) will die from the disease (>14,000 deaths annually), a fact that has not changed considerably in the last three decades. Although the 5-year survival rates for most other solid tumors have improved steadily, ovarian cancer remains an exception, making it the deadliest of all gynecologic cancers and five times deadlier than breast cancer. When diagnosed early, treatment is more effective, with a 5-year survival rate of up to 90%. Unfortunately, most cases are not detected until after the cancer has spread, resulting in a dismal 5-year survival rate of less than 30%. Current screening methods for ovarian cancer typically use a combination of a pelvic examination, transvaginal ultrasonography, and serum cancer antigen 125 (CA125), but these have made minimal impact on improving mortality. Thus, there is a compelling unmet need to develop new molecular tools that can be used to diagnose early-stage EOC and/or assist in the clinical management of the disease after a diagnosis, given that more than 220,000 women are living with ovarian cancer in the United States and are at risk of recurrence. Here, we discuss the state of advancing liquid-based approaches for improving the early detection of ovarian cancer.See all articles in this Special Collection Honoring Paul F. Engstrom, MD, Champion of Cancer Prevention.
Collapse
Affiliation(s)
- Camille V Trinidad
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Ashley L Tetlow
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Leonidas E Bantis
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas. .,The University of Kansas Cancer Center, Kansas City, Kansas
| |
Collapse
|
14
|
Machiraju GB, Mallick P, Frieboes HB. Multicompartment modeling of protein shedding kinetics during vascularized tumor growth. Sci Rep 2020; 10:16709. [PMID: 33028917 PMCID: PMC7542472 DOI: 10.1038/s41598-020-73866-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Identification of protein biomarkers for cancer diagnosis and prognosis remains a critical unmet clinical need. A major reason is that the dynamic relationship between proliferating and necrotic cell populations during vascularized tumor growth, and the associated extra- and intra-cellular protein outflux from these populations into blood circulation remains poorly understood. Complementary to experimental efforts, mathematical approaches have been employed to effectively simulate the kinetics of detectable surface proteins (e.g., CA-125) shed into the bloodstream. However, existing models can be difficult to tune and may be unable to capture the dynamics of non-extracellular proteins, such as those shed from necrotic and apoptosing cells. The models may also fail to account for intra-tumoral spatial and microenvironmental heterogeneity. We present a new multi-compartment model to simulate heterogeneously vascularized growing tumors and the corresponding protein outflux. Model parameters can be tuned from histology data, including relative vascular volume, mean vessel diameter, and distance from vasculature to necrotic tissue. The model enables evaluating the difference in shedding rates between extra- and non-extracellular proteins from viable and necrosing cells as a function of heterogeneous vascularization. Simulation results indicate that under certain conditions it is possible for non-extracellular proteins to have superior outflux relative to extracellular proteins. This work contributes towards the goal of cancer biomarker identification by enabling simulation of protein shedding kinetics based on tumor tissue-specific characteristics. Ultimately, we anticipate that models like the one introduced herein will enable examining origins and circulating dynamics of candidate biomarkers, thus facilitating marker selection for validation studies.
Collapse
Affiliation(s)
- Gautam B Machiraju
- Biomedical Informatics Training Program, Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Parag Mallick
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA.
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, USA.
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
- Center for Predictive Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
15
|
Campos-Carrillo A, Weitzel JN, Sahoo P, Rockne R, Mokhnatkin JV, Murtaza M, Gray SW, Goetz L, Goel A, Schork N, Slavin TP. Circulating tumor DNA as an early cancer detection tool. Pharmacol Ther 2020; 207:107458. [PMID: 31863816 PMCID: PMC6957244 DOI: 10.1016/j.pharmthera.2019.107458] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
Circulating tumor DNA holds substantial promise as an early detection biomarker, particularly for cancers that do not have currently accepted screening methodologies, such as ovarian, pancreatic, and gastric cancers. Many features intrinsic to ctDNA analysis may be leveraged to enhance its use as an early cancer detection biomarker: including ctDNA fragment lengths, DNA copy number variations, and associated patient phenotypic information. Furthermore, ctDNA testing may be synergistically used with other multi-omic biomarkers to enhance early detection. For instance, assays may incorporate early detection proteins (i.e., CA-125), epigenetic markers, circulating tumor RNA, nucleosomes, exosomes, and associated immune markers. Many companies are currently competing to develop a marketable early cancer detection test that leverages ctDNA. Although some hurdles (like early stage disease assay accuracy, high implementation costs, confounding from clonal hematopoiesis, and lack of clinical utility studies) need to be addressed before integration into healthcare, ctDNA assays hold substantial potential as an early cancer screening test.
Collapse
Affiliation(s)
| | | | - Prativa Sahoo
- City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Russell Rockne
- City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | - Muhammed Murtaza
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Stacy W Gray
- City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Laura Goetz
- City of Hope National Medical Center, Duarte, CA 91010, USA; Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Ajay Goel
- City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Nicholas Schork
- City of Hope National Medical Center, Duarte, CA 91010, USA; Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Thomas P Slavin
- City of Hope National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Both conventional and novel approaches to early detection of ovarian cancer are reviewed in the context of new developments in our understanding of ovarian cancer biology. RECENT FINDINGS While CA125 as a single value lacks adequate specificity or sensitivity for screening, large studies have shown that a 2-stage strategy which tracks CA125 change over time and prompts transvaginal ultrasound (TVS) for a small subset of women with abnormally rising biomarker values achieves adequate specificity and detects a higher fraction of early-stage disease. Sensitivity could clearly be improved in both blood tests and in imaging. Metastasis can occur from ovarian cancers too small to increase blood levels of protein antigens and a significant fraction of ovarian cancers arise from the fimbriae of fallopian tubes that cannot be imaged with TVS. Autoantibodies, miRNA, ctDNA, DNA methylation in blood, and cervical mucus might improve sensitivity of the initial phase and magnetic relaxometry and autofluorescence could improve imaging in the second phase. Enhancing the sensitivity of two-stage strategies for early detection could reduce mortality from ovarian cancer.
Collapse
Affiliation(s)
- Denise R Nebgen
- Division of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Karen H Lu
- Division of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Robert C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Chen L, Wang X, Song L, Yao D, Tang Q, Zhou J. Upregulation of lncRNA GATA6-AS suppresses the migration and invasion of cervical squamous cell carcinoma by downregulating MTK-1. Oncol Lett 2019; 18:2605-2611. [PMID: 31404324 DOI: 10.3892/ol.2019.10554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 04/29/2019] [Indexed: 01/11/2023] Open
Abstract
The diagnosis and treatment of cervical squamous cell carcinoma is challenged by difficulties in the determination of tumor invasion. GATA binding protein 6 antisense (GATA6-AS) is a recently identified long non-coding RNA that exhibits critical functions in the growth of endothelial cells; however, to the best of our knowledge, its involvement in other physiological and pathological processes is unknown. By reverse transcription-quantitative polymerase chain reaction, the present study examined the expression of GATA6-AS in tumor tissues and adjacent healthy tissues, and the serum from patients with cervical squamous cell carcinoma and healthy controls. The diagnostic and prognostic potentials of GATA6-AS for cervical squamous cell carcinoma were analyzed by receiver operating characteristic curve analysis and survival curve analysis, respectively. Associations between the serum levels of GATA6-AS and clinical characteristics of patients with cervical squamous cell carcinoma were analyzed by a χ2 test. A GATA6-AS overexpression vector was transfected into cervical squamous cell carcinoma cells, and the effects on cell migration and invasion were investigated by Transwell migration and invasion assays, respectively. The expression of mitogen-activated protein kinase kinase 4 (MTK-1) following transfection with the GATA6-AS overexpression vector was detected by western blot analysis. It was identified that the expression levels of GATA6-AS were lower in tumor tissues compared with healthy tissues. In addition, serum levels of GATA6-AS were higher in patients compared with healthy controls. The serum levels of GATA6-AS were associated with tumor metastasis, and may serve as a potential diagnostic and prognostic marker for cervical squamous cell carcinoma. Furthermore, GATA6-AS overexpression inhibited cancer cell migration and invasion. The expression levels of MTK-1 were also reduced following GATA6-AS overexpression. Therefore, the present study proposed that downregulated GATA6-AS expression was associated with tumor metastasis in cervical squamous cell carcinoma, and that GATA6-AS expression may inhibit cancer cell migration and invasion by downregulating MTK-1.
Collapse
Affiliation(s)
- Lan Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xuming Wang
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Limian Song
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Dujuan Yao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qianqian Tang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jun Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
18
|
Ivancic MM, Anson LW, Pickhardt PJ, Megna B, Pooler BD, Clipson L, Reichelderfer M, Sussman MR, Dove WF. Conserved serum protein biomarkers associated with growing early colorectal adenomas. Proc Natl Acad Sci U S A 2019; 116:8471-8480. [PMID: 30971492 PMCID: PMC6486772 DOI: 10.1073/pnas.1813212116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A major challenge for the reduction of colon cancer is to detect patients carrying high-risk premalignant adenomas with minimally invasive testing. As one step, we have addressed the feasibility of detecting protein signals in the serum of patients carrying an adenoma as small as 6-9 mm in maximum linear dimension. Serum protein biomarkers, discovered in two animal models of early colonic adenomagenesis, were studied in patients using quantitative mass-spectrometric assays. One cohort included patients bearing adenomas known to be growing on the basis of longitudinal computed tomographic colonography. The other cohort, screened by optical colonoscopy, included both patients free of adenomas and patients bearing adenomas whose risk status was judged by histopathology. The markers F5, ITIH4, LRG1, and VTN were each elevated both in this patient study and in the studies of the Pirc rat model. The quantitative study in the Pirc rat model had demonstrated that the elevated level of each of these markers is correlated with the number of colonic adenomas. However, the levels of these markers in patients were not significantly correlated with the total adenoma volume. Postpolypectomy blood samples demonstrated that the elevated levels of these four conserved markers persisted after polypectomy. Two additional serum markers rapidly renormalized after polypectomy: growth-associated CRP levels were enhanced only with high-risk adenomas, while PI16 levels, not associated with growth, were reduced regardless of risk status. We discuss biological hypotheses to account for these observations, and ways for these signals to contribute to the prevention of colon cancer.
Collapse
Affiliation(s)
- Melanie M Ivancic
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706;
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Leigh W Anson
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706
| | - Perry J Pickhardt
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792;
| | - Bryant Megna
- Department of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Bryan D Pooler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Linda Clipson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Mark Reichelderfer
- Department of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705;
| | - Michael R Sussman
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706;
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - William F Dove
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705;
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
19
|
Mac QD, Mathews DV, Kahla JA, Stoffers CM, Delmas OM, Holt BA, Adams AB, Kwong GA. Non-invasive early detection of acute transplant rejection via nanosensors of granzyme B activity. Nat Biomed Eng 2019; 3:281-291. [PMID: 30952979 PMCID: PMC6452901 DOI: 10.1038/s41551-019-0358-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 01/16/2019] [Indexed: 12/14/2022]
Abstract
The early detection of the onset of transplant rejection is critical for the long-term survival of patients. The diagnostic gold standard for detecting transplant rejection involves a core biopsy, which is invasive, has limited predictive power and carries a morbidity risk. Here, we show that nanoparticles conjugated with a peptide substrate specific for the serine protease granzyme B, which is produced by recipient T cells during the onset of acute cellular rejection, can serve as a non-invasive biomarker of early rejection. When administered systemically in mouse models of skin graft rejection, these nanosensors preferentially accumulate in allograft tissue, where they are cleaved by granzyme B, releasing a fluorescent reporter that filters into the recipient's urine. Urinalysis then discriminates the onset of rejection with high sensitivity and specificity before features of rejection are apparent in grafted tissues. Moreover, in mice treated with subtherapeutic levels of immunosuppressive drugs, the reporter signals in urine can be detected before graft failure. This method may enable routine monitoring of allograft status without the need for biopsies.
Collapse
Affiliation(s)
- Quoc D Mac
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Dave V Mathews
- Emory Transplant Center, Emory University, Atlanta, GA, USA
| | - Justin A Kahla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Claire M Stoffers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Olivia M Delmas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Brandon Alexander Holt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Andrew B Adams
- Emory Transplant Center, Emory University, Atlanta, GA, USA.
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA.
| | - Gabriel A Kwong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA.
- Parker H. Petit Institute of Bioengineering and Bioscience, Atlanta, GA, USA.
- Institute for Electronics and Nanotechnology, Georgia Tech, Atlanta, GA, USA.
- Integrated Cancer Research Center, Georgia Tech, Atlanta, GA, USA.
- The Georgia Immunoengineering Consortium, Emory University and Georgia Tech, Atlanta, GA, USA.
| |
Collapse
|
20
|
Cerne K, Hadzialjevic B, Skof E, Verdenik I, Kobal B. Potential of osteopontin in the management of epithelial ovarian cancer. Radiol Oncol 2019; 53:105-115. [PMID: 30712025 PMCID: PMC6411016 DOI: 10.2478/raon-2019-0003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023] Open
Abstract
Background Osteopontin (sOPN) is a promising blood tumour marker for detecting epithelial ovarian cancer (EOC). However, other clinical uses of sOPN as a tumour marker in EOC are still lacking. Since sOPN concentrations in serum are not associated with those in ascites, we compared clinical value of sOPN concentrations in the two body fluids. Patients and methods The study included 31 women with advanced EOC and 34 women with benign gynaecological pathology. In the EOC group, serum for sOPN analysis was obtained preoperatively, after primary debulking surgery and after chemotherapy. In the control group, serum was obtained before and after surgery. Ascites and peritoneal fluid were obtained during surgery. sOPN concentrations were determined by flow cytometry bead-based assay. Results The sensitivity and specificity of sOPN in detecting EOC was 91.2% and 90.3% (cut-off = 47.4 ng/ml) in serum, and 96.8% and 100% (cut-off = 529.5 ng/ml) in ascites. Kaplan-Meier analysis showed a significant association between higher serum sOPN concentration and overall survival (p = 0.018) or progression free survival (p = 0.008). Higher ascites sOPN concentrations were associated with suboptimally debulked tumour and unresectable disease. Higher serum sOPN concentrations were associated with refractory disease or incomplete response to platinum-based chemotherapy. Conclusions The study showed that ascites sOPN level mirrors present disease and is superior to serum level for diagnostic purposes and surgical planning, although the end result of treatment is the response of the whole body in fighting the disease. The preoperative sOPN concentration in serum thus better reflects disease outcome.
Collapse
Affiliation(s)
- Katarina Cerne
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University Ljubljana, Ljubljana, Slovenia
| | - Benjamin Hadzialjevic
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University Ljubljana, Ljubljana, Slovenia
| | - Erik Skof
- Department of Medical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Ivan Verdenik
- Department of Gynaecology, Division of Gynaecology and Obstetrics, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University Ljubljana, Ljubljana, Slovenia
| | - Borut Kobal
- Department of Gynaecology, Division of Gynaecology and Obstetrics, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University Ljubljana, Ljubljana, Slovenia
- Prof. Borut Kobal, M.D., Ph.D, Department of Gynaecology and Obstetrics, Faculty of Medicine, University Ljubljana, Šlajmarjeva 3, SI-1000 Ljubljana, Slovenia. Phone: +386 1 522 6060
| |
Collapse
|
21
|
Root A, Ebhardt HA. A two-drug combination simulation study for metastatic castrate resistant prostate cancer. Prostate 2018; 78:1196-1200. [PMID: 30027544 PMCID: PMC6519289 DOI: 10.1002/pros.23694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/02/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Prostate cancer often evolves resistance to androgen deprivation therapy leading to a lethal metastatic castrate-resistant form. Besides androgen independence, subpopulations of the tumor are genetically heterogeneous. With the advent of tumor genome sequencing we asked which has the greater influence on reducing tumor size: genetic background, heterogeneity, or drug potency? METHODS A previously developed theoretical evolutionary dynamics model of stochastic branching processes is applied to compute the probability of tumor eradication with two targeted drugs. Publicly available data sets were surveyed to parameterize the model. RESULTS Our calculations reveal that the greatest influence on successful treatment is the genetic background including the number of mutations overcoming resistance. Another important criteria is the tumor size at which it is still possible to achieve tumor eradication, for example, 2-4 cm large tumors have at best a 10% probability to be eradicated when 50 mutations can confer resistance to each drug. CONCLUSION Overall, this study finds that genetic background and tumor heterogeneity are more important than drug potency in treating mCRPC. It also points toward identifying metastatic sites early using biochemical assays and/or dPET.
Collapse
Affiliation(s)
- Alex Root
- Molecular Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNew York
| | | |
Collapse
|
22
|
Nishihara T, Kuno S, Nonaka H, Tabata S, Saito N, Fukuda S, Tomita M, Sando S, Soga T. Beta-galactosidase-responsive synthetic biomarker for targeted tumor detection. Chem Commun (Camb) 2018; 54:11745-11748. [PMID: 30276401 DOI: 10.1039/c8cc06068a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tumor biomarkers are highly desirable for the screening of patients with a risk of tumor development and progression. Here, we report a beta-galactosidase (β-gal)-responsive acetaminophen (β-GR-APAP) as a synthetic plasma biomarker for targeted tumor detection. Tumor β-gal labeling via the recognition of tumor-related antigen enabled the detection of a tumor using β-GR-APAP.
Collapse
Affiliation(s)
- Tatsuya Nishihara
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kim B, Araujo R, Howard M, Magni R, Liotta LA, Luchini A. Affinity enrichment for mass spectrometry: improving the yield of low abundance biomarkers. Expert Rev Proteomics 2018. [PMID: 29542338 DOI: 10.1080/14789450.2018.1450631] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Mass spectrometry (MS) is the premier tool for discovering novel disease-associated protein biomarkers. Unfortunately, when applied to complex body fluid samples, MS has poor sensitivity for the detection of low abundance biomarkers (≪10 ng/mL), derived directly from the diseased tissue cells or pathogens. Areas covered: Herein we discuss the strengths and drawbacks of technologies used to concentrate low abundance analytes in body fluids, with the aim to improve the effective sensitivity for MS discovery. Solvent removal by dry-down or dialysis, and immune-depletion of high abundance serum or plasma proteins, is shown to have disadvantages compared to positive selection of the candidate biomarkers by affinity enrichment. A theoretical analysis of affinity enrichment reveals that the yield for low abundance biomarkers is a direct function of the binding affinity (Association/Dissociation rates) used for biomarker capture. In addition, a high affinity capture pre processing step can effectively dissociate the candidate biomarker from partitioning with high abundance proteins such as albumin. Expert commentary: Properly designed high affinity capture materials can enrich the yield of low abundance (0.1-10 picograms/mL) candidate biomarkers for MS detection. Affinity capture and concentration, as an upfront step in sample preparation for MS, combined with MS advances in software and hardware that improve the resolution of the chromatographic separation can yield a transformative new class of low abundance biomarkers predicting disease risk or disease latency.
Collapse
Affiliation(s)
| | - Robyn Araujo
- b School of Mathematical Sciences , Queensland University of Technology , Brisbane , Australia
| | - Marissa Howard
- c Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| | - Ruben Magni
- c Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| | - Lance A Liotta
- c Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| | - Alessandra Luchini
- c Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| |
Collapse
|
24
|
Eftimie R, Hassanein E. Improving cancer detection through combinations of cancer and immune biomarkers: a modelling approach. J Transl Med 2018; 16:73. [PMID: 29554938 PMCID: PMC5859525 DOI: 10.1186/s12967-018-1432-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/02/2018] [Indexed: 01/12/2023] Open
Abstract
Background Early cancer diagnosis is one of the most important challenges of cancer research, since in many cancers it can lead to cure for patients with early stage diseases. For epithelial ovarian cancer (which is the leading cause of death among gynaecologic malignancies) the classical detection approach is based on measurements of CA-125 biomarker. However, the poor sensitivity and specificity of this biomarker impacts the detection of early-stage cancers. Methods Here we use a computational approach to investigate the effect of combining multiple biomarkers for ovarian cancer (e.g., CA-125 and IL-7), to improve early cancer detection. Results We show that this combined biomarkers approach could lead indeed to earlier cancer detection. However, the immune response (which influences the level of secreted IL-7 biomarker) plays an important role in improving and/or delaying cancer detection. Moreover, the detection level of IL-7 immune biomarker could be in a range that would not allow to distinguish between a healthy state and a cancerous state. In this case, the construction of solution diagrams in the space generated by the IL-7 and CA-125 biomarkers could allow us predict the long-term evolution of cancer biomarkers, thus allowing us to make predictions on cancer detection times. Conclusions Combining cancer and immune biomarkers could improve cancer detection times, and any predictions that could be made (at least through the use of CA-125/IL-7 biomarkers) are patient specific.
Collapse
Affiliation(s)
- Raluca Eftimie
- Division of Mathematics, University of Dundee, Dundee, DD1 4HN, UK.
| | - Esraa Hassanein
- Biophysics Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
25
|
Mathieu KB, Bedi DG, Thrower SL, Qayyum A, Bast RC. Screening for ovarian cancer: imaging challenges and opportunities for improvement. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2018; 51. [PMID: 28639753 PMCID: PMC5788737 DOI: 10.1002/uog.17557] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The United Kingdom Collaborative Trial of Ovarian Cancer Screening (UKCTOCS) recently reported a reduction in the average overall mortality among ovarian cancer patients screened with an annual sequential, multimodal strategy that tracked biomarker CA125 over time, where increasing serum CA125 levels prompted ultrasound. However, multiple cases were documented wherein serum CA125 levels were rising, but ultrasound screens were normal, thus delaying surgical intervention. A significant factor which could contribute to false negatives is that many aggressive ovarian cancers are believed to arise from epithelial cells on the fimbriae of the fallopian tubes, which are not readily imaged. Moreover, because only a fraction of metastatic tumors may reach a sonographically-detectable size before they metastasize, annual screening with ultrasound may fail to detect a large fraction of early-stage ovarian cancers. The ability to detect ovarian carcinomas before they metastasize is critical and future efforts towards improving screening should focus on identifying unique features specific to aggressive, early-stage tumors, as well as improving imaging sensitivity to allow for detection of tubal lesions. Implementation of a three-stage multimodal screening strategy in which a third modality is employed in cases where the first-line blood-based assay is positive and the second-line ultrasound exam is negative may also prove fruitful in detecting early-stage cases missed by ultrasound.
Collapse
Affiliation(s)
- K B Mathieu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1902, Houston, TX, 77054, USA
| | - D G Bedi
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S L Thrower
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1902, Houston, TX, 77054, USA
| | - A Qayyum
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
26
|
Seyedolmohadessin SM, Akbari MT, Nourmohammadi Z, Basiri A, Pourmand G. Assessing the Diagnostic Value of Plasma-Free DNA in Prostate Cancer Screening. IRANIAN BIOMEDICAL JOURNAL 2018; 22:331-7. [PMID: 29475366 PMCID: PMC6058185 DOI: 10.29252/ibj.22.5.331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Prostate cancer is the second form of cancer among men worldwide. For early cancer detection, we should identify tumors in initial stages before the physical signs become visible. The present study aims to evaluate the diagnostic value of cell-free DNA (cfDNA), its comparison with prostate-specific antigen (PSA) level in prostate cancer screening and also in patients with localized prostate cancer, metastatic form, and benign prostatic hyperplasia (BPH). Methods: The participants of this study were selected from 126 patients with genitourinary symptoms suspected prostate cancer, rising PSA, and/or abnormal rectal examination results and 10 healthy subjects as controls. Peripheral blood plasma before any treatment measures was considered. cfDNA was extracted using a commercial kit, and PSA levels were measured by ELISA. The ANOVA test was used to compare the average serum level of PSA and plasma concentration of cfDNA between the groups. The correlation between variables was measured by the Pearson test. Results: The subgroups consisted of 50 patients with localized prostate cancer, 26 patients with metastatic prostate cancer, 50 patients with BPH, and 10 healthy subjects; the average concentrations of cfDNA in these subgroups were 15.04, 19.62, 9.51, and 8.7 ng/μl, respectively. According to p < 0.0001 obtained from multivariate test, there was a significant difference between all the groups. Conclusion: Our findings indicated significant differences between cfDNA levels of patients with localized and metastatic prostate cancer, and differences of these two groups from BPH and healthy cases show the importance of this biomarker in non-invasive diagnostic procedures.
Collapse
Affiliation(s)
| | - Mohammad Taghi Akbari
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Nourmohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Pourmand
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Nishihara T, Inoue J, Tabata S, Murakami S, Ishikawa T, Saito N, Fukuda S, Tomita M, Soga T. Synthetic Biomarker Design by Using Analyte-Responsive Acetaminophen. Chembiochem 2017; 18:910-913. [PMID: 28236354 DOI: 10.1002/cbic.201700023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Indexed: 12/13/2022]
Abstract
The use of synthetic biomarkers is an emerging technique to improve disease diagnosis. Here, we report a novel design strategy that uses analyte-responsive acetaminophen (APAP) to expand the catalogue of analytes available for synthetic biomarker development. As proof-of-concept, we designed hydrogen peroxide (H2 O2 )-responsive APAP (HR-APAP) and succeeded in H2 O2 detection with cellular and animal experiments. In fact, for blood samples following HR-APAP injection, we demonstrated that the plasma concentration ratio [APAP+APAP conjugates]/[HR-APAP] accurately reflects in vivo differences in H2 O2 levels. We anticipate that our practical methodology will be broadly useful for the preparation of various synthetic biomarkers.
Collapse
Affiliation(s)
- Tatsuya Nishihara
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Joe Inoue
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Sho Tabata
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Shinnosuke Murakami
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Takamasa Ishikawa
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Natsumi Saito
- National Institute of Technology, Tsuruoka College, 104 Sawada, Inooka, Tsuruoka, Yamagata, 997-8511, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| |
Collapse
|
28
|
|
29
|
Hori SS, Lutz AM, Paulmurugan R, Gambhir SS. A Model-Based Personalized Cancer Screening Strategy for Detecting Early-Stage Tumors Using Blood-Borne Biomarkers. Cancer Res 2017; 77:2570-2584. [PMID: 28283654 DOI: 10.1158/0008-5472.can-16-2904] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/07/2016] [Accepted: 03/02/2017] [Indexed: 12/18/2022]
Abstract
An effective cancer blood biomarker screening strategy must distinguish aggressive from nonaggressive tumors at an early, intervenable time. However, for blood-based strategies to be useful, the quantity of biomarker shed into the blood and its relationship to tumor growth or progression must be validated. To study how blood biomarker levels correlate with early-stage viable tumor growth in a mouse model of human cancer, we monitored early tumor growth of engineered human ovarian cancer cells (A2780) implanted orthotopically into nude mice. Biomarker shedding was monitored by serial blood sampling, whereas tumor viability and volume were monitored by bioluminescence imaging and ultrasound imaging. From these metrics, we developed a mathematical model of cancer biomarker kinetics that accounts for biomarker shedding from tumor and healthy cells, biomarker entry into vasculature, biomarker elimination from plasma, and subject-specific tumor growth. We validated the model in a separate set of mice in which subject-specific tumor growth rates were accurately predicted. To illustrate clinical translation of this strategy, we allometrically scaled model parameters from mouse to human and used parameters for PSA shedding and prostate cancer. In this manner, we found that blood biomarker sampling data alone were capable of enabling the detection and discrimination of simulated aggressive (2-month tumor doubling time) and nonaggressive (18-month tumor doubling time) tumors as early as 7.2 months and 8.9 years before clinical imaging, respectively. Our model and screening strategy offers broad impact in their applicability to any solid cancer and associated biomarkers shed, thereby allowing a distinction between aggressive and nonaggressive tumors using blood biomarker sampling data alone. Cancer Res; 77(10); 2570-84. ©2017 AACR.
Collapse
Affiliation(s)
- Sharon Seiko Hori
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California
| | - Amelie M Lutz
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California
| | - Sanjiv Sam Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California. .,Departments of Bioengineering and Materials Science & Engineering, Stanford University, Stanford, California
| |
Collapse
|
30
|
Pla-Roca M, Altay G, Giralt X, Casals A, Samitier J. Design and development of a microarray processing station (MPS) for automated miniaturized immunoassays. Biomed Microdevices 2016; 18:64. [PMID: 27405464 DOI: 10.1007/s10544-016-0087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we describe the design and evaluation of a fluidic device for the automatic processing of microarrays, called microarray processing station or MPS. The microarray processing station once installed on a commercial microarrayer allows automating the washing, and drying steps, which are often performed manually. The substrate where the assay occurs remains on place during the microarray printing, incubation and processing steps, therefore the addressing of nL volumes of the distinct immunoassay reagents such as capture and detection antibodies and samples can be performed on the same coordinate of the substrate with a perfect alignment without requiring any additional mechanical or optical re-alignment methods. This allows the performance of independent immunoassays in a single microarray spot.
Collapse
Affiliation(s)
- Mateu Pla-Roca
- Nanobioengineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac, 10-12, 08028, Barcelona, Spain.
| | - Gizem Altay
- Nanobioengineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac, 10-12, 08028, Barcelona, Spain
| | - Xavier Giralt
- Robotics Laboratory, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac, 10-12, 08028, Barcelona, Spain
| | - Alícia Casals
- Robotics Laboratory, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac, 10-12, 08028, Barcelona, Spain.,Center of Research in Biomedical Engineering, Universitat Politècnica de Catalunya, Jordi Girona, 1-3, 08034, Barcelona, Spain
| | - Josep Samitier
- Nanobioengineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac, 10-12, 08028, Barcelona, Spain.,The Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Maria de Luna, 11, 50018, Zaragoza, Spain.,Department of Engineering: Electronics, University of Barcelona (UB), Martí i Franquès, 1, 08028, Barcelona, Spain
| |
Collapse
|
31
|
Comparative Study of Autoantibody Responses between Lung Adenocarcinoma and Benign Pulmonary Nodules. J Thorac Oncol 2016; 11:334-45. [PMID: 26896032 DOI: 10.1016/j.jtho.2015.11.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 11/14/2015] [Accepted: 11/30/2015] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The reduction in lung cancer mortality associated with computed tomography (CT) screening has led to its increased use and a concomitant increase in the detection of benign pulmonary nodules. Many individuals found to have benign nodules undergo unnecessary, costly, and invasive procedures. Therefore, there is a need for companion diagnostics that stratify individuals with pulmonary nodules into high-risk or low-risk groups. Lung cancers can trigger host immune responses and elicit antibodies against tumor antigens. The identification of these autoantibodies (AAbs) and their corresponding antigens may expand our knowledge of cancer immunity, leading to early diagnosis or even benefiting immunotherapy. Previous studies were performed mostly in the context of comparing cancers and healthy (smoker) controls. We have performed one of the first studies to understand humoral immune response in patients with cancer, patients with benign nodules, and healthy smokers. METHODS We first profiled seroreactivity to 10,000 full-length human proteins in 40 patients with early-stage lung cancer and 40 smoker controls by using nucleic acid programmable protein arrays to identify candidate cancer-specific AAbs. Enzyme-linked immunosorbent assays of promising candidates were performed on 137 patients with lung cancer and 127 smoker controls, as well as on 170 subjects with benign pulmonary nodules. RESULTS From protein microarray screening experiments using a discovery set of 40 patients and 40 smoker controls, 17 antigens showing higher reactivity in lung cancer cases relative to the controls were subsequently selected for evaluation in a large sample set (n = 264) by using enzyme-linked immunosorbent assay. A five-AAb classifier (tetratricopeptide repeat domain 14 [TTC14], B-Raf proto-oncogene, serine/threonine kinase [BRAF], actin like 6B [ACTL6B], MORC family CW-type zinc finger 2 [MORC2], and cancer/testis antigen 1B [CTAG1B]) that can differentiate lung cancers from smoker controls with a sensitivity of 30% at 89% specificity was developed. We further tested AAb responses in subjects with CT-positive benign nodules (n = 170), and developed a five-AAb panel (keratin 8, type II, TTC14, Kruppel-like factor 8, BRAF, and tousled like kinase 1) with a sensitivity of 30% at 88% specificity. Interestingly, messenger RNA levels of six AAb targets (TTC14, BRAF, MORC family CW-type zinc finger 2, cancer/testis antigen 1B, keratin 8, type II, and tousled like kinase 1) were also found to increase in lung adenocarcinoma tissues based on The Cancer Genome Atlas data set. CONCLUSION We discovered AAbs associated with lung adenocaricnoma that have the potential to differentiate cancer from CT-positive benign diseases. We believe that these antibodies warrant future validation using a larger sample set and/or longitudinal samples individually or as a panel. They could potentially be part of companion molecular diagnostic modalities that will benefit subjects undergoing CT screening for lung cancer.
Collapse
|
32
|
A cancer treatment based on synergy between anti-angiogenic and immune cell therapies. J Theor Biol 2016; 394:197-211. [PMID: 26826488 DOI: 10.1016/j.jtbi.2016.01.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 07/06/2015] [Accepted: 01/13/2016] [Indexed: 02/06/2023]
Abstract
A mathematical model integrating tumor angiogenesis and tumor-targeted cytotoxicity by immune cells was developed to identify the therapeutic window of two distinct modes to treat cancer: (1) an anti-angiogenesis treatment based on the monoclonal antibody bevacizumab that targets tumor vasculature, and (2) immunotherapy involving the injection of unlicensed dendritic cells to boost the anti-tumor adaptive response. The angiogenic cytokine Vascular Endothelial Growth Factor (VEGF) contributes to the immunosuppressive tumor microenvironment, which is responsible for the short-lived therapeutic effect of cancer-targeted immunotherapy. The effect of immunosuppression on the width of the therapeutic window of each treatment was quantified. Experimental evidence has shown that neutralizing immunosuppressive cytokines results in an enhanced immune response against infections and chronic diseases. The model was used to determine treatment protocols involving the combination of anti-VEGF and unlicensed dendritic cell injections that enhance tumor regression. The model simulations predicted that the most effective method to treat tumors involves administering a series of biweekly anti-VEGF injections to disrupt angiogenic processes and limit tumor growth. The simulations also verified the hypothesis that reducing the concentration of the immunosuppressive factor VEGF prior to an injection of unlicensed dendritic cells enhances the cytotoxicity of CD8+ T cells and results in complete tumor elimination. Feasible treatment protocols for tumors that are diagnosed late and have grown to a relatively large size were identified.
Collapse
|
33
|
Frieboes HB, Curtis LT, Wu M, Kani K, Mallick P. Simulation of the Protein-Shedding Kinetics of a Fully Vascularized Tumor. Cancer Inform 2015; 14:163-75. [PMID: 26715830 PMCID: PMC4687979 DOI: 10.4137/cin.s35374] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/09/2015] [Accepted: 11/15/2015] [Indexed: 12/12/2022] Open
Abstract
Circulating biomarkers are of significant interest for cancer detection and treatment personalization. However, the biophysical processes that determine how proteins are shed from cancer cells or their microenvironment, diffuse through tissue, enter blood vasculature, and persist in circulation remain poorly understood. Since approaches primarily focused on experimental evaluation are incapable of measuring the shedding and persistence for every possible marker candidate, we propose an interdisciplinary computational/experimental approach that includes computational modeling of tumor tissue heterogeneity. The model implements protein production, transport, and shedding based on tumor vascularization, cell proliferation, hypoxia, and necrosis, thus quantitatively relating the tumor and circulating proteomes. The results highlight the dynamics of shedding as a function of protein diffusivity and production. Linking the simulated tumor parameters to clinical tumor and vascularization measurements could potentially enable this approach to reveal the tumor-specific conditions based on the protein detected in circulation and thus help to more accurately manage cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, USA. ; James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Louis T Curtis
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Min Wu
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Chicago, IL, USA
| | - Kian Kani
- Center for Applied Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Parag Mallick
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| |
Collapse
|
34
|
Abstract
Advances in nanomedicine are providing sophisticated functions to precisely control the behavior of nanoscale drugs and diagnostics. Strategies that coopt protease activity as molecular triggers are increasingly important in nanoparticle design, yet the pharmacokinetics of these systems are challenging to understand without a quantitative framework to reveal nonintuitive associations. We describe a multicompartment mathematical model to predict strategies for ultrasensitive detection of cancer using synthetic biomarkers, a class of activity-based probes that amplify cancer-derived signals into urine as a noninvasive diagnostic. Using a model formulation made of a PEG core conjugated with protease-cleavable peptides, we explore a vast design space and identify guidelines for increasing sensitivity that depend on critical parameters such as enzyme kinetics, dosage, and probe stability. According to this model, synthetic biomarkers that circulate in stealth but then activate at sites of disease have the theoretical capacity to discriminate tumors as small as 5 mm in diameter-a threshold sensitivity that is otherwise challenging for medical imaging and blood biomarkers to achieve. This model may be adapted to describe the behavior of additional activity-based approaches to allow cross-platform comparisons, and to predict allometric scaling across species.
Collapse
|
35
|
Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA. Nanoparticle Probes for the Detection of Cancer Biomarkers, Cells, and Tissues by Fluorescence. Chem Rev 2015; 115:10530-74. [PMID: 26313138 DOI: 10.1021/acs.chemrev.5b00321] [Citation(s) in RCA: 651] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alyssa B Chinen
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chenxia M Guan
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jennifer R Ferrer
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Stacey N Barnaby
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Timothy J Merkel
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
36
|
Li H, Bergeron S, Annis MG, Siegel PM, Juncker D. Serial analysis of 38 proteins during the progression of human breast tumor in mice using an antibody colocalization microarray. Mol Cell Proteomics 2015; 14:1024-37. [PMID: 25680959 PMCID: PMC4390249 DOI: 10.1074/mcp.m114.046516] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Indexed: 01/20/2023] Open
Abstract
Proteins in serum or plasma hold great potential for use in disease diagnosis and monitoring. However, the correlation between tumor burden and protein biomarker concentration has not been established. Here, using an antibody colocalization microarray, the protein concentration in serum was measured and compared with the size of mammary xenograft tumors in 11 individual mice from the time of injection; seven blood samples were collected from each tumor-bearing mouse as well as control mice on a weekly basis. The profiles of 38 proteins detected in sera from these animals were analyzed by clustering, and we identified 10 proteins with the greatest relative increase in serum concentration that correlated with growth of the primary mammary tumor. To evaluate the diagnosis of cancer based on these proteins using either an absolute threshold (i.e. a concentration cutoff) or self-referenced differential threshold based on the increase in concentration before cell injection, receiver operating characteristic curves were produced for 10 proteins with increased concentration, and the area under curve was calculated for each time point based on a single protein or on a panel of proteins, in each case showing a rapid increase of the area under curve. Next, the sensitivity and specificity of individual and optimal protein panels were calculated, showing high accuracy as early as week 2. These results provide a foundation for studies of tumor growth through measuring serial changes of protein concentration in animal models.
Collapse
Affiliation(s)
- Huiyan Li
- From the ‡Biomedical Engineering Department, §McGill University and Genome Quebec Innovation Centre
| | - Sébastien Bergeron
- From the ‡Biomedical Engineering Department, §McGill University and Genome Quebec Innovation Centre
| | | | - Peter M Siegel
- ‖Rosalind and Morris Goodman Cancer Research Centre, and
| | - David Juncker
- From the ‡Biomedical Engineering Department, §McGill University and Genome Quebec Innovation Centre, **Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 0G1, Canada
| |
Collapse
|
37
|
Markushin Y, Sivakumar P, Connolly D, Melikechi N. Tag-femtosecond laser-induced breakdown spectroscopy for the sensitive detection of cancer antigen 125 in blood plasma. Anal Bioanal Chem 2015; 407:1849-55. [PMID: 25577361 DOI: 10.1007/s00216-014-8433-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 11/30/2022]
Abstract
Successful treatment of cancers requires detecting early signs of the disease. One promising way to approach this is to develop minimally invasive tests for the sensitive and specific detection of biomarkers in blood. Irrespective of the detection approach one uses, this remains a challenging task because biomarkers are typically present in low concentrations and there are signals that interfere strongly with prevailing compounds of human fluids. In this paper, we show that elemental encoded particle assay coupled with femtosecond laser-induced breakdown spectroscopy for simultaneous multi-elemental analysis can significantly improve biomarker detectability. An estimated near single molecule per particle efficiency of this method leads to sensitive detection of ovarian cancer biomarker CA125 in human blood plasma. This work opens new ways for earlier detection of cancers and for multiplex assay developments in various analytical applications from proteomics, genomics, and neurology fields.
Collapse
Affiliation(s)
- Yuri Markushin
- Optical Science Center for Applied Research and Applications and Department of Physics and Engineering, Delaware State University, Dover, DE, 19901, USA
| | | | | | | |
Collapse
|
38
|
Warren AD, Gaylord ST, Ngan KC, Dumont Milutinovic M, Kwong GA, Bhatia SN, Walt DR. Disease detection by ultrasensitive quantification of microdosed synthetic urinary biomarkers. J Am Chem Soc 2014; 136:13709-14. [PMID: 25198059 PMCID: PMC4183649 DOI: 10.1021/ja505676h] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The delivery of exogenous agents can enable noninvasive disease monitoring, but existing low-dose approaches require complex infrastructure. In this paper, we describe a microdose-scale injectable formulation of nanoparticles that interrogate the activity of thrombin, a key regulator of clotting, and produce urinary reporters of disease state. We establish a customized single molecule detection assay that enables urinary discrimination of thromboembolic disease in mice using doses of the nanoparticulate diagnostic agents that fall under regulatory guidelines for "microdosing."
Collapse
Affiliation(s)
- Andrew D Warren
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Building 76-453, Cambridge, Massachusetts 02139, United States
| | | | | | | | | | | | | |
Collapse
|
39
|
Jerman KG, Kobal B, Jakimovska M, Verdenik I, Cerne K. Control values of ovarian cancer tumor markers and standardisation of a protocol for sampling peritoneal fluid and performing washing during laparoscopy. World J Surg Oncol 2014; 12:278. [PMID: 25185697 PMCID: PMC4167500 DOI: 10.1186/1477-7819-12-278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/16/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Determination of the tumor marker concentration in peritoneal fluid (PF) may help to assess its potential to detect small concentration changes between benign ovarian pathology and early stage ovarian cancer. Peritoneal washing, which can also be obtained when PF is absent, is already included in the International Federation of Gynecology and Obstetrics (FIGO) staging classification for ovarian cancer but sampling has not yet been standardized. Since our aim was to evaluate the relationship between marker concentration in PF and washing, standardization of the sampling protocol was a prerequisite to ensure reliable results. METHODS Thirty-three women with non-malignant pathology of the reproductive organs were included in the study. We used three promising tumor markers for evaluation of the marker concentration in local fluid: osteopontin (sOPN), splice variant 6 of sCD44 (sCD44-v6) and vascular cell adhesion molecule-1 (sVCAM-1). After aspiration of PF, washing of the uterus, ovaries and pelvic peritoneum was performed with saline solution. Patients were divided into two groups based on the solution volume: A-20 ml and B-50 ml. To determine the efficiency of washing in relation to solution volume, washing was repeated three times. Concentrations of markers in samples were determined using flow cytometry. RESULTS Mean concentrations of markers were significantly higher (P <0.001) in PF than in the first washing. We demonstrated a significant positive correlation between marker concentrations in PF and first washing (sOPN: r = 0.447, P = 0.048; sCD44-v6: r = 0.660, P = 0.002; sVCAM-1: r = 0.526, P = 0.017). When using a smaller solution volume for washing, significantly higher (sVCAM-1: 2.5-fold, P = 0.021; sOPN: 3-fold, P = 0.024) or equal (sCD44-v6) mean concentrations of tumor markers were obtained. CONCLUSIONS Our work demonstrates for the first time that concentrations of sOPN, sCD44-v6 and sVCAM-1 in PF correlate with peritoneal washing in women with non-malignant pathology of the reproductive organs. This indicates that, for selected tumor markers, washing can replace PF when PF is absent. A standardized protocol for sampling PF and performing washing during laparoscopy was established.
Collapse
Affiliation(s)
- Katarina Galic Jerman
- />Department of Gynecology, Division of Gynecology and Obstetrics, University Medical Centre Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia
- />Department of Gynecology and Obstetrics, Faculty of Medicine, University Ljubljana, Slajmarjeva 3, 1000 Ljubljana, Slovenia
| | - Borut Kobal
- />Department of Gynecology, Division of Gynecology and Obstetrics, University Medical Centre Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia
- />Department of Gynecology and Obstetrics, Faculty of Medicine, University Ljubljana, Slajmarjeva 3, 1000 Ljubljana, Slovenia
| | - Marina Jakimovska
- />Department of Gynecology, Division of Gynecology and Obstetrics, University Medical Centre Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia
- />Department of Gynecology and Obstetrics, Faculty of Medicine, University Ljubljana, Slajmarjeva 3, 1000 Ljubljana, Slovenia
| | - Ivan Verdenik
- />Department of Gynecology, Division of Gynecology and Obstetrics, University Medical Centre Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia
- />Department of Gynecology and Obstetrics, Faculty of Medicine, University Ljubljana, Slajmarjeva 3, 1000 Ljubljana, Slovenia
| | - Katarina Cerne
- />Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
40
|
Point-of-care diagnostics for noncommunicable diseases using synthetic urinary biomarkers and paper microfluidics. Proc Natl Acad Sci U S A 2014; 111:3671-6. [PMID: 24567404 DOI: 10.1073/pnas.1314651111] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
With noncommunicable diseases (NCDs) now constituting the majority of global mortality, there is a growing need for low-cost, noninvasive methods to diagnose and treat this class of diseases, especially in resource-limited settings. Molecular biomarkers combined with low-cost point-of-care assays constitute a potential solution for diagnosing NCDs, but the dearth of naturally occurring, predictive markers limits this approach. Here, we describe the design of exogenous agents that serve as synthetic biomarkers for NCDs by producing urinary signals that can be quantified by a companion paper test. These synthetic biomarkers are composed of nanoparticles conjugated to ligand-encoded reporters via protease-sensitive peptide substrates. Upon delivery, the nanoparticles passively target diseased sites, such as solid tumors or blood clots, where up-regulated proteases cleave the peptide substrates and release reporters that are cleared into urine. The reporters are engineered for detection by sandwich immunoassays, and we demonstrate their quantification directly from unmodified urine; furthermore, capture antibody specificity allows the probes to be multiplexed in vivo and quantified simultaneously by ELISA or paper lateral flow assay (LFA). We tailor synthetic biomarkers specific to colorectal cancer, a representative solid tumor, and thrombosis, a common cardiovascular disorder, and demonstrate urinary detection of these diseases in mouse models by paper diagnostic. Together, the LFA and injectable synthetic biomarkers, which could be tailored for multiple diseases, form a generalized diagnostic platform for NCDs that can be applied in almost any setting without expensive equipment or trained medical personnel.
Collapse
|
41
|
Highlights of recent developments and trends in cancer nanotechnology research--view from NCI Alliance for Nanotechnology in Cancer. Biotechnol Adv 2013; 32:666-78. [PMID: 23948249 DOI: 10.1016/j.biotechadv.2013.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/03/2013] [Indexed: 12/18/2022]
Abstract
Although the incidence of cancer and cancer related deaths in the United States has decreased over the past two decades due to improvements in early detection and treatment, cancer still is responsible for a quarter of the deaths in this country. There is much room for improvement on the standard treatments currently available and the National Cancer Institute (NCI) has recognized the potential for nanotechnology and nanomaterials in this area. The NCI Alliance for Nanotechnology in Cancer was formed in 2004 to support multidisciplinary researchers in the application of nanotechnology to cancer diagnosis and treatment. The researchers in the Alliance have been productive in generating innovative solutions to some of the central issues of cancer treatment including how to detect tumors earlier, how to target cancer cells specifically, and how to improve the therapeutic index of existing chemotherapies and radiotherapy treatments. Highly creative ideas are being pursued where novelty in nanomaterial development enables new modalities of detection or therapy. This review highlights some of the innovative materials approaches being pursued by researchers funded by the NCI Alliance. Their discoveries to improve the functionality of nanoparticles for medical applications includes the generation of new platforms, improvements in the manufacturing of nanoparticles and determining the underlying reasons for the movement of nanoparticles in the blood.
Collapse
|
42
|
Mehan MR, Ostroff R, Wilcox SK, Steele F, Schneider D, Jarvis TC, Baird GS, Gold L, Janjic N. Highly Multiplexed Proteomic Platform for Biomarker Discovery, Diagnostics, and Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 735:283-300. [DOI: 10.1007/978-1-4614-4118-2_20] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Kwong GA, von Maltzahn G, Murugappan G, Abudayyeh O, Mo S, Papayannopoulos IA, Sverdlov DY, Liu SB, Warren AD, Popov Y, Schuppan D, Bhatia SN. Mass-encoded synthetic biomarkers for multiplexed urinary monitoring of disease. Nat Biotechnol 2012; 31:63-70. [PMID: 23242163 PMCID: PMC3542405 DOI: 10.1038/nbt.2464] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 11/21/2012] [Indexed: 12/15/2022]
Abstract
Biomarkers are becoming increasingly important in the clinical management of complex diseases, yet our ability to discover new biomarkers remains limited by our dependence on endogenous molecules. Here we describe the development of exogenously administered 'synthetic biomarkers' composed of mass-encoded peptides conjugated to nanoparticles that leverage intrinsic features of human disease and physiology for noninvasive urinary monitoring. These protease-sensitive agents perform three functions in vivo: they target sites of disease, sample dysregulated protease activities and emit mass-encoded reporters into host urine for multiplexed detection by mass spectrometry. Using mouse models of liver fibrosis and cancer, we show that these agents can noninvasively monitor liver fibrosis and resolution without the need for invasive core biopsies and substantially improve early detection of cancer compared with current clinically used blood biomarkers. This approach of engineering synthetic biomarkers for multiplexed urinary monitoring should be broadly amenable to additional pathophysiological processes and point-of-care diagnostics.
Collapse
Affiliation(s)
- Gabriel A Kwong
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhu C, Pinsky P, Berg C. Improving Research on Biomarkers for Early Detection and Screening of Cancers. Cancer Biomark 2012. [DOI: 10.1201/b14318-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
|
46
|
Hori SS, Gambhir SS. Mathematical model identifies blood biomarker-based early cancer detection strategies and limitations. Sci Transl Med 2012; 3:109ra116. [PMID: 22089452 DOI: 10.1126/scitranslmed.3003110] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Most clinical blood biomarkers lack the necessary sensitivity and specificity to reliably detect cancer at an early stage, when it is best treatable. It is not yet clear how early a clinical blood assay can be used to detect cancer or how biomarker-based strategies can be improved to enable earlier detection of smaller tumors. To address these issues, we developed a mathematical model describing dynamic plasma biomarker kinetics in relation to the growth of a tumor, beginning with a single cancer cell. To exemplify a realistic scenario in which biomarker is shed by both cancerous and noncancerous cells, we primed the model on ovarian tumor growth and CA125 shedding data, for which tumor growth parameters and shedding rates are readily available in published literature. We found that a tumor could grow unnoticed for more than 10.1 years and reach a volume of about π/6(25.36 mm)(3), corresponding to a spherical diameter of about 25.36 mm, before becoming detectable by current clinical blood assays. Model parameters were perturbed over log orders of magnitude to quantify ideal shedding rates and identify other blood-based strategies required for early submillimeter tumor detectability. The detection times we estimated are consistent with recently published tumor progression time lines based on clinical genomic sequencing data for several cancers. Here, we rigorously showed that shedding rates of current clinical blood biomarkers are likely 10(4)-fold too low to enable detection of a developing tumor within the first decade of tumor growth. The model presented here can be extended to virtually any solid cancer and associated biomarkers.
Collapse
Affiliation(s)
- Sharon S Hori
- Department of Radiology, Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, CA 94305-5427, USA
| | | |
Collapse
|
47
|
|
48
|
Pla-Roca M, Leulmi RF, Tourekhanova S, Bergeron S, Laforte V, Moreau E, Gosline SJC, Bertos N, Hallett M, Park M, Juncker D. Antibody colocalization microarray: a scalable technology for multiplex protein analysis in complex samples. Mol Cell Proteomics 2011; 11:M111.011460. [PMID: 22171321 PMCID: PMC3322566 DOI: 10.1074/mcp.m111.011460] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
DNA microarrays were rapidly scaled up from 256 to 6.5 million targets, and although antibody microarrays were proposed earlier, sensitive multiplex sandwich assays have only been scaled up to a few tens of targets. Cross-reactivity, arising because detection antibodies are mixed, is a known weakness of multiplex sandwich assays that is mitigated by lengthy optimization. Here, we introduce (1) vulnerability as a metric for assays. The vulnerability of multiplex sandwich assays to cross-reactivity increases quadratically with the number of targets, and together with experimental results, substantiates that scaling up of multiplex sandwich assays is unfeasible. We propose (2) a novel concept for multiplexing without mixing named antibody colocalization microarray (ACM). In ACMs, both capture and detection antibodies are physically colocalized by spotting to the same two-dimensional coordinate. Following spotting of the capture antibodies, the chip is removed from the arrayer, incubated with the sample, placed back onto the arrayer and then spotted with the detection antibodies. ACMs with up to 50 targets were produced, along with a binding curve for each protein. The ACM was validated by comparing it to ELISA and to a small-scale, conventional multiplex sandwich assay (MSA). Using ACMs, proteins in the serum of breast cancer patients and healthy controls were quantified, and six candidate biomarkers identified. Our results indicate that ACMs are sensitive, robust, and scalable.
Collapse
Affiliation(s)
- M Pla-Roca
- Biomedical Engineering Department, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tamburro D, Fredolini C, Espina V, Douglas TA, Ranganathan A, Ilag L, Zhou W, Russo P, Espina BH, Muto G, Petricoin EF, Liotta LA, Luchini A. Multifunctional core-shell nanoparticles: discovery of previously invisible biomarkers. J Am Chem Soc 2011; 133:19178-88. [PMID: 21999289 PMCID: PMC3223427 DOI: 10.1021/ja207515j] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Indexed: 01/05/2023]
Abstract
Many low-abundance biomarkers for early detection of cancer and other diseases are invisible to mass spectrometry because they exist in body fluids in very low concentrations, are masked by high-abundance proteins such as albumin and immunoglobulins, and are very labile. To overcome these barriers, we created porous, buoyant, core-shell hydrogel nanoparticles containing novel high affinity reactive chemical baits for protein and peptide harvesting, concentration, and preservation in body fluids. Poly(N-isopropylacrylamide-co-acrylic acid) nanoparticles were functionalized with amino-containing dyes via zero-length cross-linking amidation reactions. Nanoparticles functionalized in the core with 17 different (12 chemically novel) molecular baits showed preferential high affinities (K(D) < 10(-11) M) for specific low-abundance protein analytes. A poly(N-isopropylacrylamide-co-vinylsulfonic acid) shell was added to the core particles. This shell chemistry selectively prevented unwanted entry of all size peptides derived from albumin without hindering the penetration of non-albumin small proteins and peptides. Proteins and peptides entered the core to be captured with high affinity by baits immobilized in the core. Nanoparticles effectively protected interleukin-6 from enzymatic degradation in sweat and increased the effective detection sensitivity of human growth hormone in human urine using multiple reaction monitoring analysis. Used in whole blood as a one-step, in-solution preprocessing step, the nanoparticles greatly enriched the concentration of low-molecular weight proteins and peptides while excluding albumin and other proteins above 30 kDa; this achieved a 10,000-fold effective amplification of the analyte concentration, enabling mass spectrometry (MS) discovery of candidate biomarkers that were previously undetectable.
Collapse
Affiliation(s)
- Davide Tamburro
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
- Department of Analytical Chemistry, Stockholm University, Stockholm 106 91, Sweden
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Claudia Fredolini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
- Department of Analytical Chemistry, Stockholm University, Stockholm 106 91, Sweden
- Department of Medicine and Experimental Oncology, University of Turin, 10125 Turin, Italy
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Temple A. Douglas
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Adarsh Ranganathan
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Leopold Ilag
- Department of Analytical Chemistry, Stockholm University, Stockholm 106 91, Sweden
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Paul Russo
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Benjamin H. Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Giovanni Muto
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
- Department of Analytical Chemistry, Stockholm University, Stockholm 106 91, Sweden
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
- Department of Urology, S. Giovanni Bosco Hospital, Turin 10154, Italy
- Department of Medicine and Experimental Oncology, University of Turin, 10125 Turin, Italy
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| |
Collapse
|
50
|
Lin RS, Plevritis SK. Comparing the benefits of screening for breast cancer and lung cancer using a novel natural history model. Cancer Causes Control 2011; 23:175-85. [PMID: 22116537 DOI: 10.1007/s10552-011-9866-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 10/28/2011] [Indexed: 12/26/2022]
Abstract
To estimate the impact of early detection of cancer, knowledge of how quickly primary tumors grow and at what size they shed lethal metastases is critical. We developed a natural history model of cancer to estimate the probability of disease-specific cure as a function of tumor size, the tumor volume doubling time (TVDT), and disease-specific mortality reduction achievable by screening. The model was applied to non-small-cell lung carcinoma (NSCLC) and invasive ductal carcinoma (IDC), separately. Model parameter estimates were based on Surveillance Epidemiology and End Results (SEER) cancer registry datasets and validated on screening trials. Compared to IDC, NSCLC is estimated to have a lower probability of disease-specific cure at the same detected tumor size, shed lethal metastases at smaller sizes (median: 19 mm for IDC versus 8 mm for NSCLC), have a TVDT that is almost half as long (median: 252 days for IDC versus 134 days for NSCLC). Consequently, NSCLC is associated with a lower mortality reduction from screening at the same screen detection threshold and screening interval. In summary, using a similar natural history model of cancer, we quantify the disease-specific curability attributable to screening for breast cancer, and separately lung cancer, in terms of the TVDT and onset of lethal metastases.
Collapse
MESH Headings
- Aged
- Breast Neoplasms/diagnosis
- Breast Neoplasms/epidemiology
- Breast Neoplasms/pathology
- Breast Neoplasms/prevention & control
- Carcinoma, Ductal, Breast/diagnosis
- Carcinoma, Ductal, Breast/epidemiology
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/prevention & control
- Carcinoma, Non-Small-Cell Lung/diagnosis
- Carcinoma, Non-Small-Cell Lung/epidemiology
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/prevention & control
- Cell Growth Processes/physiology
- Early Detection of Cancer/methods
- Female
- Humans
- Lung Neoplasms/diagnosis
- Lung Neoplasms/epidemiology
- Lung Neoplasms/pathology
- Lung Neoplasms/prevention & control
- Male
- Middle Aged
- Models, Biological
- Neoplasm Metastasis
- SEER Program
- United States/epidemiology
Collapse
Affiliation(s)
- Ray S Lin
- Department of Radiology, Stanford School of Medicine, LUCAS Center, Stanford University, 1201 Welch Road, Stanford, CA 94305, USA
| | | |
Collapse
|