1
|
Sim MJW, Li B, Long EO. Peptide-specific natural killer cell receptors. OXFORD OPEN IMMUNOLOGY 2025; 6:iqaf003. [PMID: 40297637 PMCID: PMC12036969 DOI: 10.1093/oxfimm/iqaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
Class I and II human leukocyte antigens (HLA-I and HLA-II) present peptide antigens for immunosurveillance by T cells. HLA molecules also form ligands for a plethora of innate, germline-encoded receptors. Many of these receptors engage HLA molecules in a peptide sequence independent manner, with binding sites outside the peptide binding groove. However, some receptors, typically expressed on natural killer (NK) cells, engage the HLA presented peptide directly. Remarkably, some of these receptors display exquisite specificity for peptide sequences, with the capacity to detect sequences conserved in pathogens. Here, we review evidence for peptide-specific NK cell receptors (PSNKRs) and discuss their potential roles in immunity.
Collapse
Affiliation(s)
- Malcolm J W Sim
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Beining Li
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, United States of America
| |
Collapse
|
2
|
Bilev E, Wild N, Momayyezi P, Sala BM, Sun R, Sandalova T, Marquardt N, Ljunggren HG, Achour A, Hammer Q. Emerging mutation in SARS-CoV-2 facilitates escape from NK cell recognition and associates with enhanced viral fitness. PLoS Pathog 2024; 20:e1012755. [PMID: 39652590 DOI: 10.1371/journal.ppat.1012755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 12/19/2024] [Accepted: 11/08/2024] [Indexed: 12/21/2024] Open
Abstract
In addition to adaptive immunity, natural killer (NK) cells of the innate immune system contribute to the control of viral infections. The HLA-E-restricted SARS-CoV-2 Nsp13232-240 epitope VMPLSAPTL renders infected cells susceptible to NK cells by preventing binding to the inhibitory receptor NKG2A. Here, we report that a recently emerged methionine to isoleucine substitution at position 2 (pM2I) of Nsp13232-240 impairs binding of the mutated epitope to HLA-E and diminishes HLA-E/peptide complex stability. Structural analyses revealed altered occupancy of the HLA-E B-pocket as the underlying cause for reduced presentation and stability of the mutated epitope. Functionally, the reduced presentation of the mutated epitope correlated with elevated binding to NKG2A as well as with increased NK cell inhibition. Moreover, the pM2I mutation associated with enhanced estimated viral fitness and was transmitted to descendants of the SARS-CoV-2 BQ.1 variant. Interestingly, the mutated epitope resembles sequences of related peptides found in endemic common cold-causing human coronaviruses. Altogether, these findings indicate compromised peptide presentation as a viral adaptation to evade NK cell-mediated immunosurveillance by enabling enhanced presentation of self-peptide and restoring NKG2A-dependent inhibition of NK cells.
Collapse
Affiliation(s)
- Eleni Bilev
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Nicole Wild
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Pouria Momayyezi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Benedetta Maria Sala
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet & Division of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Renhua Sun
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet & Division of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet & Division of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Nicole Marquardt
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet & Division of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
3
|
Sim MJW, Long EO. The peptide selectivity model: Interpreting NK cell KIR-HLA-I binding interactions and their associations to human diseases. Trends Immunol 2024; 45:959-970. [PMID: 39578117 DOI: 10.1016/j.it.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/24/2024]
Abstract
Combinations of the highly polymorphic KIR and HLA-I genes are associated with numerous human diseases. Interpreting these associations requires a molecular understanding of the multiple killer-cell immunoglobulin-like receptor (KIR)-human leukocyte antigen-1 (HLA-I) receptor-ligand interactions on natural killer (NK) cells and identifying the salient features that underlie disease risk. We hypothesize that a critical discriminating factor in KIR-HLA-I interactions is the selective detection of HLA-I-bound peptides by KIRs. We propose a 'peptide selectivity model', where high-avidity KIR-HLA-I interactions reflect low selectivity for peptides conferring consistent NK cell inhibition across different tissue immunopeptidomes. Conversely, lower-avidity interactions (including those with activating KIRs) are more dependent on HLA-I-bound peptide sequence, requiring an appreciation of how HLA-I immunopeptidomes influence KIR binding and regulate NK cell function. Relevant to understanding NK cell function and pathology, we interpret known KIR-HLA-I combinations and their associations with certain human diseases in the context of this 'peptide selectivity model'.
Collapse
Affiliation(s)
- Malcolm J W Sim
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, OX3 7DQ, UK.
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, 20852, USA
| |
Collapse
|
4
|
Olp MD, Laufer VA, Valesano AL, Zimmerman A, Woodside KJ, Lu Y, Lauring AS, Cusick MF. HLA-C Peptide Repertoires as Predictors of Clinical Response during Early SARS-CoV-2 Infection. Life (Basel) 2024; 14:1181. [PMID: 39337964 PMCID: PMC11433606 DOI: 10.3390/life14091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The human leukocyte antigen (HLA) system plays a pivotal role in the immune response to viral infections, mediating the presentation of viral peptides to T cells and influencing both the strength and specificity of the host immune response. Variations in HLA genotypes across individuals lead to differences in susceptibility to viral infection and severity of illness. This study uses observations from the early phase of the COVID-19 pandemic to explore how specific HLA class I molecules affect clinical responses to SARS-CoV-2 infection. By analyzing paired high-resolution HLA types and viral genomic sequences from 60 patients, we assess the relationship between predicted HLA class I peptide binding repertoires and infection severity as measured by the sequential organ failure assessment score. This approach leverages functional convergence across HLA-C alleles to identify relationships that may otherwise be inaccessible due to allelic diversity and limitations in sample size. Surprisingly, our findings show that severely symptomatic infection in this cohort is associated with disproportionately abundant binding of SARS-CoV-2 structural and non-structural protein epitopes by patient HLA-C molecules. In addition, the extent of overlap between a given patient's predicted HLA-C and HLA-A peptide binding repertoires correlates with worse prognoses in this cohort. The findings highlight immunologic mechanisms linking HLA-C molecules with the human response to viral pathogens that warrant further investigation.
Collapse
Affiliation(s)
- Michael D Olp
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Vincent A Laufer
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Andrew L Valesano
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Andrea Zimmerman
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Kenneth J Woodside
- Sharing Hope of South Carolina, Charleston, SC 29414, USA
- Gift of Life Michigan, Ann Arbor, MI 48108, USA
- Academia Invisus LLC, Ann Arbor, MI 48107, USA
| | - Yee Lu
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam S Lauring
- Division of Infectious Diseases, Department of Internal Medicine and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew F Cusick
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Pesini C, Artal L, Paúl Bernal J, Sánchez Martinez D, Pardo J, Ramírez-Labrada A. In-depth analysis of the interplay between oncogenic mutations and NK cell-mediated cancer surveillance in solid tumors. Oncoimmunology 2024; 13:2379062. [PMID: 39036370 PMCID: PMC11259085 DOI: 10.1080/2162402x.2024.2379062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
Natural killer (NK) cells play a crucial role in antitumoral and antiviral responses. Yet, cancer cells can alter themselves or the microenvironment through the secretion of cytokines or other factors, hindering NK cell activation and promoting a less cytotoxic phenotype. These resistance mechanisms, often referred to as the "hallmarks of cancer" are significantly influenced by the activation of oncogenes, impacting most, if not all, of the described hallmarks. Along with oncogenes, other types of genes, the tumor suppressor genes are frequently mutated or modified during cancer. Traditionally, these genes have been associated with uncontrollable tumor growth and apoptosis resistance. Recent evidence suggests oncogenic mutations extend beyond modulating cell death/proliferation programs, influencing cancer immunosurveillance. While T cells have been more studied, the results obtained highlight NK cells as emerging key protagonists for enhancing tumor cell elimination by modulating oncogenic activity. A few recent studies highlight the crucial role of oncogenic mutations in NK cell-mediated cancer recognition, impacting angiogenesis, stress ligands, and signaling balance within the tumor microenvironment. This review will critically examine recent discoveries correlating oncogenic mutations to NK cell-mediated cancer immunosurveillance, a relatively underexplored area, particularly in the era dominated by immune checkpoint inhibitors and CAR-T cells. Building on these insights, we will explore opportunities to improve NK cell-based immunotherapies, which are increasingly recognized as promising alternatives for treating low-antigenic tumors, offering significant advantages in terms of safety and manufacturing suitability.
Collapse
Affiliation(s)
- Cecilia Pesini
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Laura Artal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Institute of Carbochemistry (ICB-CSIC), Zaragoza, Spain
| | - Jorge Paúl Bernal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Diego Sánchez Martinez
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Aragón I + D Foundation (ARAID), Government of Aragon, Zaragoza, Spain
| | - Julián Pardo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Ariel Ramírez-Labrada
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
| |
Collapse
|
6
|
Santiago-Lamelas L, Castro-Santos P, Carracedo Á, Olloquequi J, Díaz-Peña R. Unveiling the Significance of HLA and KIR Diversity in Underrepresented Populations. Biomedicines 2024; 12:1333. [PMID: 38927540 PMCID: PMC11202227 DOI: 10.3390/biomedicines12061333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Human leukocyte antigen (HLA) molecules and their relationships with natural killer (NK) cells, specifically through their interaction with killer-cell immunoglobulin-like receptors (KIRs), exhibit robust associations with the outcomes of diverse diseases. Moreover, genetic variations in HLA and KIR immune system genes offer limitless depths of complexity. In recent years, a surge of high-powered genome-wide association studies (GWASs) utilizing single nucleotide polymorphism (SNP) arrays has occurred, significantly advancing our understanding of disease pathogenesis. Additionally, advances in HLA reference panels have enabled higher resolution and more reliable imputation, allowing for finer-grained evaluation of the association between sequence variations and disease risk. However, it is essential to note that the majority of these GWASs have focused primarily on populations of Caucasian and Asian origins, neglecting underrepresented populations in Latin America and Africa. This omission not only leads to disparities in health care access but also restricts our knowledge of novel genetic variants involved in disease pathogenesis within these overlooked populations. Since the KIR and HLA haplotypes prevalent in each population are clearly modelled by the specific environment, the aim of this review is to encourage studies investigating HLA/KIR involvement in infection and autoimmune diseases, reproduction, and transplantation in underrepresented populations.
Collapse
Affiliation(s)
- Lucía Santiago-Lamelas
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenomica-USC, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (L.S.-L.); (P.C.-S.); (Á.C.)
| | - Patricia Castro-Santos
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenomica-USC, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (L.S.-L.); (P.C.-S.); (Á.C.)
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Ángel Carracedo
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenomica-USC, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (L.S.-L.); (P.C.-S.); (Á.C.)
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jordi Olloquequi
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Roberto Díaz-Peña
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenomica-USC, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (L.S.-L.); (P.C.-S.); (Á.C.)
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
| |
Collapse
|
7
|
Bjorgen JC, Dick JK, Cromarty R, Hart GT, Rhein J. NK cell subsets and dysfunction during viral infection: a new avenue for therapeutics? Front Immunol 2023; 14:1267774. [PMID: 37928543 PMCID: PMC10620977 DOI: 10.3389/fimmu.2023.1267774] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
In the setting of viral challenge, natural killer (NK) cells play an important role as an early immune responder against infection. During this response, significant changes in the NK cell population occur, particularly in terms of their frequency, location, and subtype prevalence. In this review, changes in the NK cell repertoire associated with several pathogenic viral infections are summarized, with a particular focus placed on changes that contribute to NK cell dysregulation in these settings. This dysregulation, in turn, can contribute to host pathology either by causing NK cells to be hyperresponsive or hyporesponsive. Hyperresponsive NK cells mediate significant host cell death and contribute to generating a hyperinflammatory environment. Hyporesponsive NK cell populations shift toward exhaustion and often fail to limit viral pathogenesis, possibly enabling viral persistence. Several emerging therapeutic approaches aimed at addressing NK cell dysregulation have arisen in the last three decades in the setting of cancer and may prove to hold promise in treating viral diseases. However, the application of such therapeutics to treat viral infections remains critically underexplored. This review briefly explores several therapeutic approaches, including the administration of TGF-β inhibitors, immune checkpoint inhibitors, adoptive NK cell therapies, CAR NK cells, and NK cell engagers among other therapeutics.
Collapse
Affiliation(s)
- Jacob C. Bjorgen
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jenna K. Dick
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Ross Cromarty
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Geoffrey T. Hart
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Joshua Rhein
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
8
|
Herbert NG, Goulder PJR. Impact of early antiretroviral therapy, early life immunity and immune sex differences on HIV disease and posttreatment control in children. Curr Opin HIV AIDS 2023; 18:229-236. [PMID: 37421384 PMCID: PMC10399946 DOI: 10.1097/coh.0000000000000807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
PURPOSE OF REVIEW To review recent insights into the factors affecting HIV disease progression in children living with HIV, contrasting outcomes: following early ART initiation with those in natural, antiretroviral therapy (ART)-naive infection; in children versus adults; and in female individuals versus male individuals. RECENT FINDINGS Early life immune polarization and several factors associated with mother-to-child transmission of HIV result in an ineffective HIV-specific CD8+ T-cell response and rapid disease progression in most children living with HIV. However, the same factors result in low immune activation and antiviral efficacy mediated mainly through natural killer cell responses in children and are central features of posttreatment control. By contrast, rapid activation of the immune system and generation of a broad HIV-specific CD8+ T-cell response in adults, especially in the context of 'protective' HLA class I molecules, are associated with superior disease outcomes in ART-naive infection but not with posttreatment control. The higher levels of immune activation in female individuals versus male individuals from intrauterine life onwards increase HIV infection susceptibility in females in utero and may favour ART-naive disease outcomes rather than posttreatment control. SUMMARY Early-life immunity and factors associated with mother-to-child transmission typically result in rapid HIV disease progression in ART-naive infection but favour posttreatment control in children following early ART initiation.
Collapse
Affiliation(s)
- Nicholas G Herbert
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
9
|
Kim JT, Bresson-Tan G, Zack JA. Current Advances in Humanized Mouse Models for Studying NK Cells and HIV Infection. Microorganisms 2023; 11:1984. [PMID: 37630544 PMCID: PMC10458594 DOI: 10.3390/microorganisms11081984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Human immunodeficiency virus (HIV) has infected millions of people worldwide and continues to be a major global health problem. Scientists required a small animal model to study HIV pathogenesis and immune responses. To this end, humanized mice were created by transplanting human cells and/or tissues into immunodeficient mice to reconstitute a human immune system. Thus, humanized mice have become a critical animal model for HIV researchers, but with some limitations. Current conventional humanized mice are prone to death by graft versus host disease induced by the mouse signal regulatory protein α and CD47 signaling pathway. In addition, commonly used humanized mice generate low levels of human cytokines required for robust myeloid and natural killer cell development and function. Here, we describe recent advances in humanization procedures and transgenic and knock-in immunodeficient mice to address these limitations.
Collapse
Affiliation(s)
- Jocelyn T. Kim
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.T.K.)
| | - Gabrielle Bresson-Tan
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.T.K.)
| | - Jerome A. Zack
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Dyal J, Kofman A, Kollie JZ, Fankhauser J, Orone R, Soka MJ, Glaybo U, Kiawu A, Freeman E, Giah G, Tony HD, Faikai M, Jawara M, Kamara K, Kamara S, Flowers B, Kromah ML, Desamu-Thorpe R, Graziano J, Brown S, Morales-Betoulle ME, Cannon DL, Su K, Linderman SL, Plucinski M, Rogier E, Bradbury RS, Secor WE, Bowden KE, Phillips C, Carrington MN, Park YH, Martin MP, Aguinaga MDP, Mushi R, Haberling DL, Ervin ED, Klena JD, Massaquoi M, Nyenswah T, Nichol ST, Chiriboga DE, Williams DE, Hinrichs SH, Ahmed R, Vonhm BT, Rollin PE, Purpura LJ, Choi MJ. Risk Factors for Ebola Virus Persistence in Semen of Survivors in Liberia. Clin Infect Dis 2023; 76:e849-e856. [PMID: 35639875 PMCID: PMC10169428 DOI: 10.1093/cid/ciac424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/08/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Long-term persistence of Ebola virus (EBOV) in immunologically privileged sites has been implicated in recent outbreaks of Ebola virus disease (EVD) in Guinea and the Democratic Republic of Congo. This study was designed to understand how the acute course of EVD, convalescence, and host immune and genetic factors may play a role in prolonged viral persistence in semen. METHODS A cohort of 131 male EVD survivors in Liberia were enrolled in a case-case study. "Early clearers" were defined as those with 2 consecutive negative EBOV semen test results by real-time reverse-transcription polymerase chain reaction (rRT-PCR) ≥2 weeks apart within 1 year after discharge from the Ebola treatment unit or acute EVD. "Late clearers" had detectable EBOV RNA by rRT-PCR >1 year after discharge from the Ebola treatment unit or acute EVD. Retrospective histories of their EVD clinical course were collected by questionnaire, followed by complete physical examinations and blood work. RESULTS Compared with early clearers, late clearers were older (median, 42.5 years; P < .001) and experienced fewer severe clinical symptoms (median 2, P = .006). Late clearers had more lens opacifications (odds ratio, 3.9 [95% confidence interval, 1.1-13.3]; P = .03), after accounting for age, higher total serum immunoglobulin G3 (IgG3) titers (P = .005), and increased expression of the HLA-C*03:04 allele (0.14 [.02-.70]; P = .007). CONCLUSIONS Older age, decreased illness severity, elevated total serum IgG3 and HLA-C*03:04 allele expression may be risk factors for the persistence of EBOV in the semen of EVD survivors. EBOV persistence in semen may also be associated with its persistence in other immunologically protected sites, such as the eye.
Collapse
Affiliation(s)
- Jonathan Dyal
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Aaron Kofman
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | - Romeo Orone
- ELWA Hospital, Samaritan’s Purse, Monrovia, Liberia
| | - Moses J Soka
- ELWA Hospital, Samaritan’s Purse, Monrovia, Liberia
| | - Uriah Glaybo
- Men’s Health Screening Program, Monrovia, Liberia
| | - Armah Kiawu
- Men’s Health Screening Program, Monrovia, Liberia
| | - Edna Freeman
- Men’s Health Screening Program, Monrovia, Liberia
| | | | - Henry D Tony
- Men’s Health Screening Program, Monrovia, Liberia
| | | | - Mary Jawara
- Men’s Health Screening Program, Monrovia, Liberia
| | - Kuku Kamara
- Men’s Health Screening Program, Monrovia, Liberia
| | | | | | | | - Rodel Desamu-Thorpe
- Office of Public Health Preparedness and Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - James Graziano
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Shelley Brown
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Maria E Morales-Betoulle
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Deborah L Cannon
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kaihong Su
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | - Mateusz Plucinski
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Eric Rogier
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Richard S Bradbury
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - W Evan Secor
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Katherine E Bowden
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christi Phillips
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mary N Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Ragon Institute of MGH, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Yeon-Hwa Park
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Maureen P Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Maria del Pilar Aguinaga
- Department of Internal Medicine, Meharry Sickle Cell Center, Meharry Medical College, Nashville, Tennessee, USA
- Department of Obstetrics and Gynecology, Meharry Sickle Cell Center, Nashville, Tennessee, USA
| | - Robert Mushi
- Department of Internal Medicine, Meharry Sickle Cell Center, Meharry Medical College, Nashville, Tennessee, USA
| | - Dana L Haberling
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Elizabeth D Ervin
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John D Klena
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | - Stuart T Nichol
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David E Chiriboga
- University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Desmond E Williams
- Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Steven H Hinrichs
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | | | - Pierre E Rollin
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lawrence J Purpura
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mary J Choi
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Kim JT, Zack JA. A humanized mouse model to study NK cell biology during HIV infection. J Clin Invest 2022; 132:e165620. [PMID: 36519544 PMCID: PMC9753985 DOI: 10.1172/jci165620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
NK cells are an important subset of innate immune effectors with antiviral activity. However, NK cell development and immune responses in different tissues during acute and chronic HIV infection in vivo have been difficult to study due to the impaired development and function of NK cells in conventional humanized mouse models. In this issue of the JCI, Sangur et al. report on a transgenic MISTRG-6-15 mouse model with human IL-6 and IL-15 knocked into the previously constructed MISTRG mice. The predecessor model was deficient in Rag2 and γ chain (γc) with knock-in expression of human M-CSF, IL-3, GM-CSF, and TPO, and transgenic expression of human SIRPα. The researchers studied tissue-specific NK cell immune responses during HIV infection and clearly show that the endogenous human NK cells in the humanized mouse model suppressed HIV-1 replication in vivo. These findings provide insight into harnessing the innate immune response for clinical antiviral therapies.
Collapse
Affiliation(s)
| | - Jerome A. Zack
- Department of Microbiology, Immunology, and Molecular Genetics, and
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
12
|
Höfle J, Trenkner T, Kleist N, Schwane V, Vollmers S, Barcelona B, Niehrs A, Fittje P, Huynh‐Tran VH, Sauter J, Schmidt AH, Peine S, Hoelzemer A, Richert L, Altfeld M, Körner C. Engagement of TRAIL triggers degranulation and IFNγ production in human natural killer cells. EMBO Rep 2022; 23:e54133. [PMID: 35758160 PMCID: PMC9346491 DOI: 10.15252/embr.202154133] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
NK cells utilize a large array of receptors to screen their surroundings for aberrant or virus‐infected cells. Given the vast diversity of receptors expressed on NK cells we seek to identify receptors involved in the recognition of HIV‐1‐infected cells. By combining an unbiased large‐scale screening approach with a functional assay, we identify TRAIL to be associated with NK cell degranulation against HIV‐1‐infected target cells. Further investigating the underlying mechanisms, we demonstrate that TRAIL is able to elicit multiple effector functions in human NK cells independent of receptor‐mediated induction of apoptosis. Direct engagement of TRAIL not only results in degranulation but also IFNγ production. Moreover, TRAIL‐mediated NK cell activation is not limited to its cognate death receptors but also decoy receptor I, adding a new perspective to the perceived regulatory role of decoy receptors in TRAIL‐mediated cytotoxicity. Based on these findings, we propose that TRAIL not only contributes to the anti‐HIV‐1 activity of NK cells but also possesses a multifunctional role beyond receptor‐mediated induction of apoptosis, acting as a regulator for the induction of different effector functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pia Fittje
- Leibniz Institute of Virology Hamburg Germany
| | - Van Hung Huynh‐Tran
- Inserm, Bordeaux Population Health Research Center UMR1219 and Inria, team SISTM University of Bordeaux Bordeaux France
| | | | | | - Sven Peine
- Institute of Transfusion Medicine University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Angelique Hoelzemer
- Leibniz Institute of Virology Hamburg Germany
- German Center for Infection Research (DZIF) Partner Site Hamburg‐Lübeck‐Borstel‐Riems Hamburg Germany
- First Department of Medicine Division of Infectious Diseases University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Laura Richert
- Inserm, Bordeaux Population Health Research Center UMR1219 and Inria, team SISTM University of Bordeaux Bordeaux France
| | - Marcus Altfeld
- Leibniz Institute of Virology Hamburg Germany
- Institute of Immunology University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | | |
Collapse
|
13
|
Vollmers S, Lobermeyer A, Niehrs A, Fittje P, Indenbirken D, Nakel J, Virdi S, Brias S, Trenkner T, Sauer G, Peine S, Behrens GM, Lehmann C, Meurer A, Pauli R, Postel N, Roider J, Scholten S, Spinner CD, Stephan C, Wolf E, Wyen C, Richert L, Norman PJ, Sauter J, Schmidt AH, Hoelzemer A, Altfeld M, Körner C. Host KIR/HLA-C Genotypes Determine HIV-Mediated Changes of the NK Cell Repertoire and Are Associated With Vpu Sequence Variations Impacting Downmodulation of HLA-C. Front Immunol 2022; 13:922252. [PMID: 35911762 PMCID: PMC9334850 DOI: 10.3389/fimmu.2022.922252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/13/2022] [Indexed: 12/29/2022] Open
Abstract
NK cells play a pivotal role in viral immunity, utilizing a large array of activating and inhibitory receptors to identify and eliminate virus-infected cells. Killer-cell immunoglobulin-like receptors (KIRs) represent a highly polymorphic receptor family, regulating NK cell activity and determining the ability to recognize target cells. Human leukocyte antigen (HLA) class I molecules serve as the primary ligand for KIRs. Herein, HLA-C stands out as being the dominant ligand for the majority of KIRs. Accumulating evidence indicated that interactions between HLA-C and its inhibitory KIR2DL receptors (KIR2DL1/L2/L3) can drive HIV-1-mediated immune evasion and thus may contribute to the intrinsic control of HIV-1 infection. Of particular interest in this context is the recent observation that HIV-1 is able to adapt to host HLA-C genotypes through Vpu-mediated downmodulation of HLA-C. However, our understanding of the complex interplay between KIR/HLA immunogenetics, NK cell-mediated immune pressure and HIV-1 immune escape is still limited. Therefore, we investigated the impact of specific KIR/HLA-C combinations on the NK cell receptor repertoire and HIV-1 Vpu protein sequence variations of 122 viremic, untreated HIV-1+ individuals. Compared to 60 HIV-1- controls, HIV-1 infection was associated with significant changes within the NK cell receptor repertoire, including reduced percentages of NK cells expressing NKG2A, CD8, and KIR2DS4. In contrast, the NKG2C+ and KIR3DL2+ NK cell sub-populations from HIV-1+ individuals was enlarged compared to HIV-1- controls. Stratification along KIR/HLA-C genotypes revealed a genotype-dependent expansion of KIR2DL1+ NK cells that was ultimately associated with increased binding affinities between KIR2DL1 and HLA-C allotypes. Lastly, our data hinted to a preferential selection of Vpu sequence variants that were associated with HLA-C downmodulation in individuals with high KIR2DL/HLA-C binding affinities. Altogether, our study provides evidence that HIV-1-associated changes in the KIR repertoire of NK cells are to some extent predetermined by host KIR2DL/HLA-C genotypes. Furthermore, analysis of Vpu sequence polymorphisms indicates that differential KIR2DL/HLA-C binding affinities may serve as an additional mechanism how host genetics impact immune evasion by HIV-1.
Collapse
Affiliation(s)
| | | | | | - Pia Fittje
- Leibniz Institute of Virology, Hamburg, Germany
| | | | | | | | - Sebastien Brias
- Leibniz Institute of Virology, Hamburg, Germany
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Gabriel Sauer
- Department I for Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Sven Peine
- Institute for Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg M.N. Behrens
- Department for Rheumatology and Clinical Immunology, Hannover Medical School, Hannover, Germany
| | - Clara Lehmann
- Department I for Internal Medicine, Division of Infectious Diseases, University Hospital Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Anja Meurer
- Center for Internal Medicine and Infectiology, Munich, Germany
| | - Ramona Pauli
- Medizinisches Versorgungszentrum (MVZ) am Isartor, Munich, Germany
| | - Nils Postel
- Prinzmed, Practice for Infectious Diseases, Munich, Germany
| | - Julia Roider
- Department of Internal Medicine IV, Department of Infectious Diseases, Ludwig-Maximilians University Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | | | - Christoph D. Spinner
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Technical University of Munich, School of Medicine, University Hospital rechts der Isar, Department of Internal Medicine II, Munich, Germany
| | - Christoph Stephan
- Infectious Diseases Unit, Goethe-University Hospital Frankfurt, Frankfurt, Germany
| | | | - Christoph Wyen
- Department I for Internal Medicine, Division of Infectious Diseases, University Hospital Cologne, Cologne, Germany
- Praxis am Ebertplatz, Cologne, Germany
| | - Laura Richert
- University of Bordeaux, Inserm U1219 Bordeaux Population Health, Inria Sistm, Bordeaux, France
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO, United States
| | | | | | - Angelique Hoelzemer
- Leibniz Institute of Virology, Hamburg, Germany
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Marcus Altfeld
- Leibniz Institute of Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Christian Körner
- Leibniz Institute of Virology, Hamburg, Germany
- *Correspondence: Christian Körner,
| |
Collapse
|
14
|
Fittje P, Hœlzemer A, Garcia-Beltran WF, Vollmers S, Niehrs A, Hagemann K, Martrus G, Körner C, Kirchhoff F, Sauter D, Altfeld M. HIV-1 Nef-mediated downregulation of CD155 results in viral restriction by KIR2DL5+ NK cells. PLoS Pathog 2022; 18:e1010572. [PMID: 35749424 PMCID: PMC9231786 DOI: 10.1371/journal.ppat.1010572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/05/2022] [Indexed: 01/02/2023] Open
Abstract
Antiviral NK cell activity is regulated through the interaction of activating and inhibitory NK cell receptors with their ligands on infected cells. HLA class I molecules serve as ligands for most killer cell immunoglobulin-like receptors (KIRs), but no HLA class I ligands for the inhibitory NK cell receptor KIR2DL5 have been identified to date. Using a NK cell receptor/ligand screening approach, we observed no strong binding of KIR2DL5 to HLA class I or class II molecules, but confirmed that KIR2DL5 binds to the poliovirus receptor (PVR, CD155). Functional studies using primary human NK cells revealed a significantly decreased degranulation of KIR2DL5+ NK cells in response to CD155-expressing target cells. We subsequently investigated the role of KIR2DL5/CD155 interactions in HIV-1 infection, and showed that multiple HIV-1 strains significantly decreased CD155 expression levels on HIV-1-infected primary human CD4+ T cells via a Nef-dependent mechanism. Co-culture of NK cells with HIV-1-infected CD4+ T cells revealed enhanced anti-viral activity of KIR2DL5+ NK cells against wild-type versus Nef-deficient viruses, indicating that HIV-1-mediated downregulation of CD155 renders infected cells more susceptible to recognition by KIR2DL5+ NK cells. These data show that CD155 suppresses the antiviral activity of KIR2DL5+ NK cells and is downmodulated by HIV-1 Nef protein as potential trade-off counteracting activating NK cell ligands, demonstrating the ability of NK cells to counteract immune escape mechanisms employed by HIV-1. HIV infection remains a global health emergency that has caused around 36 million deaths. NK cells play an important role in the control of HIV-1 infections, and are able to detect and destroy infected cells using a large array of activating and inhibitory receptors, including KIRs. Here we demonstrate that CD155 serves as a functional interaction partner for the inhibitory NK cell receptor KIR2DL5, and that KIR2DL5+ NK cells are inhibited by CD155-expressing target cells. CD155 surface expression on HIV-1-infected CD4+ T cells was downregulated by the HIV-1 Nef protein, resulting in increased anti-viral activity of KIR2DL5+ NK cells through the loss of inhibitory signals. Taken together, these studies demonstrate functional consequences of the novel interaction between KIR2DL5 and CD155 for the antiviral activity of KIR2DL5+ NK cells during HIV-1 infection.
Collapse
Affiliation(s)
- Pia Fittje
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Angelique Hœlzemer
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- First Department of Internal Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Wilfredo F. Garcia-Beltran
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Annika Niehrs
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | | | | | | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Marcus Altfeld
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- * E-mail:
| |
Collapse
|
15
|
Hammer Q, Dunst J, Christ W, Picarazzi F, Wendorff M, Momayyezi P, Huhn O, Netskar HK, Maleki KT, García M, Sekine T, Sohlberg E, Azzimato V, Aouadi M, Degenhardt F, Franke A, Spallotta F, Mori M, Michaëlsson J, Björkström NK, Rückert T, Romagnani C, Horowitz A, Klingström J, Ljunggren HG, Malmberg KJ. SARS-CoV-2 Nsp13 encodes for an HLA-E-stabilizing peptide that abrogates inhibition of NKG2A-expressing NK cells. Cell Rep 2022; 38:110503. [PMID: 35235832 PMCID: PMC8858686 DOI: 10.1016/j.celrep.2022.110503] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/12/2022] [Accepted: 02/15/2022] [Indexed: 01/08/2023] Open
Abstract
Natural killer (NK) cells are innate immune cells that contribute to host defense against virus infections. NK cells respond to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro and are activated in patients with acute coronavirus disease 2019 (COVID-19). However, by which mechanisms NK cells detect SARS-CoV-2-infected cells remains largely unknown. Here, we show that the Non-structural protein 13 of SARS-CoV-2 encodes for a peptide that is presented by human leukocyte antigen E (HLA-E). In contrast with self-peptides, the viral peptide prevents binding of HLA-E to the inhibitory receptor NKG2A, thereby rendering target cells susceptible to NK cell attack. In line with these observations, NKG2A-expressing NK cells are particularly activated in patients with COVID-19 and proficiently limit SARS-CoV-2 replication in infected lung epithelial cells in vitro. Thus, these data suggest that a viral peptide presented by HLA-E abrogates inhibition of NKG2A+ NK cells, resulting in missing self-recognition.
Collapse
Affiliation(s)
- Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden.
| | - Josefine Dunst
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Wanda Christ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Francesca Picarazzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Mareike Wendorff
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Pouria Momayyezi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Oisín Huhn
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Herman K Netskar
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kimia T Maleki
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Marina García
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Takuya Sekine
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Ebba Sohlberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Valerio Azzimato
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Myriam Aouadi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Francesco Spallotta
- Institute for Systems Analysis and Computer Science "A. Ruberti," National Research Council (IASI-CNR), Rome, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Timo Rückert
- Innate Immunity, Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Chiara Romagnani
- Innate Immunity, Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany; Division of Gastroenterology, Infectiology and Rheumatology, Medical Department I, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Amir Horowitz
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Karl-Johan Malmberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
16
|
Abstract
Natural killer (NK) cells play an important role in innate immune responses to viral infections. Here, we review recent insights into the role of NK cells in viral infections, with particular emphasis on human studies. We first discuss NK cells in the context of acute viral infections, with flavivirus and influenza virus infections as examples. Questions related to activation of NK cells, homing to infected tissues and the role of tissue-resident NK cells in acute viral infections are also addressed. Next, we discuss NK cells in the context of chronic viral infections with hepatitis C virus and HIV-1. Also covered is the role of adaptive-like NK cell expansions as well as the appearance of CD56- NK cells in the course of chronic infection. Specific emphasis is then placed in viral infections in patients with primary immunodeficiencies affecting NK cells. Not least, studies in this area have revealed an important role for NK cells in controlling several herpesvirus infections. Finally, we address new data with respect to the activation of NK cells and NK cell function in humans infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) giving rise to coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Benedikt Strunz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Kim JT, Zhang TH, Carmona C, Lee B, Seet CS, Kostelny M, Shah N, Chen H, Farrell K, Soliman MSA, Dimapasoc M, Sinani M, Blanco KYR, Bojorquez D, Jiang H, Shi Y, Du Y, Komarova NL, Wodarz D, Wender PA, Marsden MD, Sun R, Zack JA. Latency reversal plus natural killer cells diminish HIV reservoir in vivo. Nat Commun 2022; 13:121. [PMID: 35013215 PMCID: PMC8748509 DOI: 10.1038/s41467-021-27647-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023] Open
Abstract
HIV is difficult to eradicate due to the persistence of a long-lived reservoir of latently infected cells. Previous studies have shown that natural killer cells are important to inhibiting HIV infection, but it is unclear whether the administration of natural killer cells can reduce rebound viremia when anti-retroviral therapy is discontinued. Here we show the administration of allogeneic human peripheral blood natural killer cells delays viral rebound following interruption of anti-retroviral therapy in humanized mice infected with HIV-1. Utilizing genetically barcoded virus technology, we show these natural killer cells efficiently reduced viral clones rebounding from latency. Moreover, a kick and kill strategy comprised of the protein kinase C modulator and latency reversing agent SUW133 and allogeneic human peripheral blood natural killer cells during anti-retroviral therapy eliminated the viral reservoir in a subset of mice. Therefore, combinations utilizing latency reversal agents with targeted cellular killing agents may be an effective approach to eradicating the viral reservoir.
Collapse
Affiliation(s)
- Jocelyn T Kim
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Tian-Hao Zhang
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Camille Carmona
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Bryanna Lee
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Christopher S Seet
- Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Matthew Kostelny
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Nisarg Shah
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Hongying Chen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Kylie Farrell
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Mohamed S A Soliman
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Melanie Dimapasoc
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Michelle Sinani
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Kenia Yazmin Reyna Blanco
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - David Bojorquez
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Hong Jiang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Yuan Shi
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Yushen Du
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Natalia L Komarova
- Department of Mathematics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Dominik Wodarz
- Department of Population Health and Disease Prevention, Program in Public Health Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Paul A Wender
- Department of Chemistry and Department of Chemical and Systems Biology, Stanford University, Stanford, CA, 94305, USA
| | - Matthew D Marsden
- Department of Microbiology and Molecular Genetics and Department of Medicine, Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA.,School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jerome A Zack
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA.,Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
18
|
Vollmers S, Lobermeyer A, Körner C. The New Kid on the Block: HLA-C, a Key Regulator of Natural Killer Cells in Viral Immunity. Cells 2021; 10:cells10113108. [PMID: 34831331 PMCID: PMC8620871 DOI: 10.3390/cells10113108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/01/2022] Open
Abstract
The human leukocyte antigen system (HLA) is a cluster of highly polymorphic genes essential for the proper function of the immune system, and it has been associated with a wide range of diseases. HLA class I molecules present intracellular host- and pathogen-derived peptides to effector cells of the immune system, inducing immune tolerance in healthy conditions or triggering effective immune responses in pathological situations. HLA-C is the most recently evolved HLA class I molecule, only present in humans and great apes. Differentiating from its older siblings, HLA-A and HLA-B, HLA-C exhibits distinctive features in its expression and interaction partners. HLA-C serves as a natural ligand for multiple members of the killer-cell immunoglobulin-like receptor (KIR) family, which are predominately expressed by natural killer (NK) cells. NK cells are crucial for the early control of viral infections and accumulating evidence indicates that interactions between HLA-C and its respective KIR receptors determine the outcome and progression of viral infections. In this review, we focus on the unique role of HLA-C in regulating NK cell functions and its consequences in the setting of viral infections.
Collapse
|
19
|
Jung JM, Ching W, Baumdick ME, Hofmann-Sieber H, Bosse JB, Koyro T, Möller KJ, Wegner L, Niehrs A, Russu K, Ohms M, Zhang W, Ehrhardt A, Duisters K, Spierings E, Hölzemer A, Körner C, Jansen SA, Peine S, Königs I, Lütgehetmann M, Perez D, Reinshagen K, Lindemans CA, Altfeld M, Belderbos M, Dobner T, Bunders MJ. KIR3DS1 directs NK cell-mediated protection against human adenovirus infections. Sci Immunol 2021; 6:eabe2942. [PMID: 34533978 DOI: 10.1126/sciimmunol.abe2942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Johannes M Jung
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany.,Research Department Viral Transformation, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Wilhelm Ching
- Research Department Viral Transformation, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Martin E Baumdick
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Helga Hofmann-Sieber
- Research Department Viral Transformation, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Jens B Bosse
- Leibniz Institute for Experimental Virology, Hamburg, Germany.,Centre for Structural Systems Biology, Hamburg, Germany.,Hannover Medical School, Institute of Virology, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Tobias Koyro
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kimberly J Möller
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Lucy Wegner
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Annika Niehrs
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Kristina Russu
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Mareike Ohms
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Wenli Zhang
- Faculty of Health, Centre for Biomedical Education and Research (ZBAF), School of Human Medicine, Institute of Virology and Microbiology, Witten/Herdecke University, Witten, Germany
| | - Anja Ehrhardt
- Faculty of Health, Centre for Biomedical Education and Research (ZBAF), School of Human Medicine, Institute of Virology and Microbiology, Witten/Herdecke University, Witten, Germany
| | - Kevin Duisters
- Mathematical Institute, Leiden University, Leiden, Netherlands
| | - Eric Spierings
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Angelique Hölzemer
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany.,I. Department of Internal Medicine, Division of Infectious Diseases, University Medical Center Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Christian Körner
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Suze A Jansen
- Wilhelmina Children's Hospital/Department of Pediatrics, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands.,Pediatric Blood and Marrow Transplantation Program, Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands.,Regenerative Medicine Center, University Utrecht, Utrecht, Netherlands
| | - Sven Peine
- Institute for Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingo Königs
- Department of Pediatric Surgery, Altona Children's Hospital, Hamburg, Germany
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Perez
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Caroline A Lindemans
- Wilhelmina Children's Hospital/Department of Pediatrics, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands.,Pediatric Blood and Marrow Transplantation Program, Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands.,Regenerative Medicine Center, University Utrecht, Utrecht, Netherlands
| | - Marcus Altfeld
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Mirjam Belderbos
- Pediatric Blood and Marrow Transplantation Program, Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Thomas Dobner
- Research Department Viral Transformation, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Madeleine J Bunders
- Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
20
|
Strumillo ST, Kartavykh D, de Carvalho FF, Cruz NC, de Souza Teodoro AC, Sobhie Diaz R, Curcio MF. Host-virus interaction and viral evasion. Cell Biol Int 2021; 45:1124-1147. [PMID: 33533523 PMCID: PMC8014853 DOI: 10.1002/cbin.11565] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
With each infectious pandemic or outbreak, the medical community feels the need to revisit basic concepts of immunology to understand and overcome the difficult times brought about by these infections. Regarding viruses, they have historically been responsible for many deaths, and such a peculiarity occurs because they are known to be obligate intracellular parasites that depend upon the host's cell machinery for their replication. Successful infection with the production of essential viral components requires constant viral evolution as a strategy to manipulate the cellular environment, including host internal factors, the host's nonspecific and adaptive immune responses to viruses, the metabolic and energetic state of the infected cell, and changes in the intracellular redox environment during the viral infection cycle. Based on this knowledge, it is fundamental to develop new therapeutic strategies for controlling viral dissemination, by means of antiviral therapies, vaccines, or antioxidants, or by targeting the inhibition or activation of cell signaling pathways or metabolic pathways that are altered during infection. The rapid recovery of altered cellular homeostasis during viral infection is still a major challenge. Here, we review the strategies by which viruses evade the host's immune response and potential tools used to develop more specific antiviral therapies to cure, control, or prevent viral diseases.
Collapse
Affiliation(s)
- Scheilla T Strumillo
- Department of Biochemistry, Laboratory of Cell Signaling, Federal University of São Paulo, São Paulo, Brazil
| | - Denis Kartavykh
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Fábio F de Carvalho
- Departament of Educational Development, Getulio Vargas Foundation, São Paulo, Brazil
| | - Nicolly C Cruz
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Ana C de Souza Teodoro
- Department of Biochemistry, Laboratory of Cell Signaling, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Marli F Curcio
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Sugawara S, Manickam C, Reeves K. TRIGGERED: could refocused cell signaling be key to natural killer cell-based HIV immunotherapeutics? AIDS 2021; 35:165-176. [PMID: 33116071 PMCID: PMC7775286 DOI: 10.1097/qad.0000000000002743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Natural killer (NK) cells are one of the critical innate immune effector cells that directly kill tumors and virus-infected cells, and modulate other immune cells including dendritic cells, CD4+ and CD8+ T cells. Signals from activating and inhibitory surface receptors orchestrate the regulatory and cytotoxic functions of NK cells. Although a number of surface receptors are involved, multiple signaling molecules are shared so that NK cell responses are synergistically regulated. Many pathogens and tumors evade NK cell responses by targeting NK cell signaling. Particularly in HIV/simian immunodeficiency virus (SIV) infection, the NK cell repertoire is diminished by changes in subsets of NK cells, expression of activating and inhibitory receptors, and intracellular signaling molecules. However, in-depth studies on intracellular signaling in NK cells in HIV/SIV infections remain limited. Checkpoint blockade and chimeric antigen receptor (CAR)-NK cells have demonstrated enhanced NK cell activities against tumors and viral infections. In addition, targeting intracellular signaling molecules by small molecules could also improve NK cell responses towards HIV/SIV infection in vivo. Therefore, further understanding of NK cell signaling including identification of key signaling molecules is crucial to maximize the efficacy of NK cell-based treatments. Herein, we review the current state of the literature and outline potential future avenues where optimized NK cells could be utilized in HIV-1 cure strategies and other immunotherapeutics in PLWH.
Collapse
Affiliation(s)
- Sho Sugawara
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA
| |
Collapse
|
22
|
Ziegler MC, Naidoo K, Chapel A, Nkotwana S, Mann J, Mncube Z, Ismael N, Goulder P, Ndung’u T, Altfeld M, Thobakgale CF. HIV-1 evades a Gag mutation that abrogates killer cell immunoglobulin-like receptor binding and disinhibits natural killer cells in infected individuals with KIR2DL2+/HLA-C*03: 04+ genotype. AIDS 2021; 35:151-154. [PMID: 33273184 PMCID: PMC7856308 DOI: 10.1097/qad.0000000000002721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
: HIV-1 sequence variations impact binding of inhibitory killer cell immunoglobulin-like receptors (KIRs) to human leukocyte antigen class I (HLA-I) molecules modulating natural killer cell function. HIV-1 strains encoding amino acids that mediate binding of inhibitory KIRs might therefore have a selective benefit in individuals expressing the respective KIR/HLA genotypes. Here, we demonstrate that HIV-1 clade C avoids a p24 Gag mutation that abolishes binding of KIR2DL2 to HLA-C03:04 and disinhibits natural killer cells in individual encoding for this genotype.
Collapse
Affiliation(s)
- Maja C. Ziegler
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Kewreshini Naidoo
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Anais Chapel
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sindiswa Nkotwana
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Jaclyn Mann
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Zenele Mncube
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Nasreen Ismael
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Philip Goulder
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Thumbi Ndung’u
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, USA
- Africa Health Research Institute, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
- Division of Infection and Immunity, University College London, London, UK
| | - Marcus Altfeld
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Christina F. Thobakgale
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- University of the Witwatersrand, Faculty of Health Sciences, Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| |
Collapse
|
23
|
Abstract
Over the past four decades, research on the natural history of HIV infection has described how HIV wreaks havoc on human immunity and causes AIDS. HIV host genomic research, which aims to understand how human genetic variation affects our response to HIV infection, has progressed from early candidate gene studies to recent multi-omic efforts, benefiting from spectacular advances in sequencing technology and data science. In addition to invading cells and co-opting the host machinery for replication, HIV also stably integrates into our own genome. The study of the complex interactions between the human and retroviral genomes has improved our understanding of pathogenic mechanisms and suggested novel preventive and therapeutic approaches against HIV infection.
Collapse
Affiliation(s)
- Paul J. McLaren
- grid.415368.d0000 0001 0805 4386National HIV and Retrovirology Laboratory at the JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB Canada ,grid.21613.370000 0004 1936 9609Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB Canada
| | - Jacques Fellay
- grid.5333.60000000121839049School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland ,grid.419765.80000 0001 2223 3006Swiss Institute of Bioinformatics, Lausanne, Switzerland ,grid.8515.90000 0001 0423 4662Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
24
|
HIV-1 induced changes in HLA-C*03 : 04-presented peptide repertoires lead to reduced engagement of inhibitory natural killer cell receptors. AIDS 2020; 34:1713-1723. [PMID: 32501836 PMCID: PMC8635260 DOI: 10.1097/qad.0000000000002596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Viral infections influence intracellular peptide repertoires available for presentation by HLA-I. Alterations in HLA-I/peptide complexes can modulate binding of killer immunoglobuline-like receptors (KIRs) and thereby the function of natural killer (NK) cells. Although multiple studies have provided evidence that HLA-I/KIR interactions play a role in HIV-1 disease progression, the consequence of HIV-1 infection for HLA-I/KIR interactions remain largely unknown. DESIGN We determined changes in HLA-I presented peptides resulting from HIV-1-infection of primary human CD4 T cells and assessed the impact of changes in peptide repertoires on HLA-I/KIR interactions. METHODS Liquid chromatography-coupled tandem mass spectrometry to identify HLA-I presented peptides, cell-based in-vitro assays to evaluate functional consequences of alterations in immunopeptidome and atomistic molecular dynamics simulations to confirm experimental data. RESULTS A total of 583 peptides exclusively presented on HIV-1-infected cells were identified, of which only 0.2% represented HIV-1 derived peptides. Focusing on HLA-C*03 : 04/KIR2DL3 interactions, we observed that HLA-C*03 : 04-presented peptides derived from noninfected CD4 T cells mediated stronger binding of inhibitory KIR2DL3 than peptides derived from HIV-1-infected cells. Furthermore, the most abundant peptide presented by HLA-C*03 : 04 on noninfected CD4 T cells (VIYPARISL) mediated the strongest KIR2DL3-binding, while the most abundant peptide presented on HIV-1-infected cells (YAIQATETL) did not mediate KIR2DL3-binding. Molecular dynamics simulations of HLA-C*03 : 04/KIR2DL3 interactions in the context of these two peptides revealed that VIYPARISL significantly enhanced the HLA-C*03 : 04/peptide contact area to KIR2DL3 compared with YAIQATETL. CONCLUSION These data demonstrate that HIV-1 infection-induced changes in HLA-I-presented peptides can reduce engagement of inhibitory KIRs, providing a mechanism for enhanced activation of NK cells by virus-infected cells.
Collapse
|
25
|
Hopfensperger K, Richard J, Stürzel CM, Bibollet-Ruche F, Apps R, Leoz M, Plantier JC, Hahn BH, Finzi A, Kirchhoff F, Sauter D. Convergent Evolution of HLA-C Downmodulation in HIV-1 and HIV-2. mBio 2020; 11:e00782-20. [PMID: 32665270 PMCID: PMC7360927 DOI: 10.1128/mbio.00782-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
HLA-C-mediated antigen presentation induces the killing of human immunodeficiency virus (HIV)-infected CD4+ T cells by cytotoxic T lymphocytes (CTLs). To evade killing, many HIV-1 group M strains decrease HLA-C surface levels using their accessory protein Vpu. However, some HIV-1 group M isolates lack this activity, possibly to prevent the activation of natural killer (NK) cells. Analyzing diverse primate lentiviruses, we found that Vpu-mediated HLA-C downregulation is not limited to pandemic group M but is also found in HIV-1 groups O and P as well as several simian immunodeficiency viruses (SIVs). We show that Vpu targets HLA-C primarily at the protein level, independently of its ability to suppress NF-κB-driven gene expression, and that in some viral lineages, HLA-C downregulation may come at the cost of efficient counteraction of the restriction factor tetherin. Remarkably, HIV-2, which does not carry a vpu gene, uses its accessory protein Vif to decrease HLA-C surface expression. This Vif activity requires intact binding sites for the Cullin5/Elongin ubiquitin ligase complex but is separable from its ability to counteract APOBEC3G. Similar to HIV-1 Vpu, the degree of HIV-2 Vif-mediated HLA-C downregulation varies considerably among different virus isolates. In agreement with opposing selection pressures in vivo, we show that the reduction of HLA-C surface levels by HIV-2 Vif is accompanied by increased NK cell-mediated killing. In summary, our results highlight the complex role of HLA-C in lentiviral infections and demonstrate that HIV-1 and HIV-2 have evolved at least two independent mechanisms to decrease HLA-C levels on infected cells.IMPORTANCE Genome-wide association studies suggest that HLA-C expression is a major determinant of viral load set points and CD4+ T cell counts in HIV-infected individuals. On the one hand, efficient HLA-C expression enables the killing of infected cells by cytotoxic T lymphocytes (CTLs). On the other hand, HLA-C sends inhibitory signals to natural killer (NK) cells and enhances the infectivity of newly produced HIV particles. HIV-1 group M viruses modulate HLA-C expression using the accessory protein Vpu, possibly to balance CTL- and NK cell-mediated immune responses. Here, we show that the second human immunodeficiency virus, HIV-2, can use its accessory protein Vif to evade HLA-C-mediated restriction. Furthermore, our mutational analyses provide insights into the underlying molecular mechanisms. In summary, our results reveal how the two human AIDS viruses modulate HLA-C, a key component of the antiviral immune response.
Collapse
Affiliation(s)
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Canada
| | - Christina M Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Frederic Bibollet-Ruche
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard Apps
- NIH Center for Human Immunology, National Institutes of Health, Bethesda, Maryland, USA
| | - Marie Leoz
- Normandie Université, UNIROUEN, UNICAEN, GRAM 2.0, Rouen, France
| | - Jean-Christophe Plantier
- Normandie Université, UNIROUEN, UNICAEN, GRAM 2.0, Rouen University Hospital, Department of Virology, Laboratory Associated with the National Reference Center on HIV, Rouen, France
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
26
|
Bessell CA, Isser A, Havel JJ, Lee S, Bell DR, Hickey JW, Chaisawangwong W, Glick Bieler J, Srivastava R, Kuo F, Purohit T, Zhou R, Chan TA, Schneck JP. Commensal bacteria stimulate antitumor responses via T cell cross-reactivity. JCI Insight 2020; 5:135597. [PMID: 32324171 DOI: 10.1172/jci.insight.135597] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/25/2020] [Indexed: 12/15/2022] Open
Abstract
Recent studies show gut microbiota modulate antitumor immune responses; one proposed mechanism is cross-reactivity between antigens expressed in commensal bacteria and neoepitopes. We found that T cells targeting an epitope called SVYRYYGL (SVY), expressed in the commensal bacterium Bifidobacterium breve (B. breve), cross-react with a model neoantigen, SIYRYYGL (SIY). Mice lacking B. breve had decreased SVY-reactive T cells compared with B. breve-colonized mice, and the T cell response was transferable by SVY immunization or by cohousing mice without Bifidobacterium with ones colonized with Bifidobacterium. Tumors expressing the model SIY neoantigen also grew faster in mice lacking B. breve compared with Bifidobacterium-colonized animals. B. breve colonization also shaped the SVY-reactive TCR repertoire. Finally, SVY-specific T cells recognized SIY-expressing melanomas in vivo and led to decreased tumor growth and extended survival. Our work demonstrates that commensal bacteria can stimulate antitumor immune responses via cross-reactivity and how bacterial antigens affect the T cell landscape.
Collapse
Affiliation(s)
| | - Ariel Isser
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jonathan J Havel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sangyun Lee
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA
| | - David R Bell
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA
| | - John W Hickey
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Worarat Chaisawangwong
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joan Glick Bieler
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Raghvendra Srivastava
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Fengshen Kuo
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Tanaya Purohit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ruhong Zhou
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA.,Department of Chemistry, Columbia University, New York, New York, USA
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jonathan P Schneck
- Graduate Program in Immunology and.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Institute of Cellular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
27
|
Ahmed R, Omidian Z, Giwa A, Cornwell B, Majety N, Bell DR, Lee S, Zhang H, Michels A, Desiderio S, Sadegh-Nasseri S, Rabb H, Gritsch S, Suva ML, Cahan P, Zhou R, Jie C, Donner T, Hamad ARA. A Public BCR Present in a Unique Dual-Receptor-Expressing Lymphocyte from Type 1 Diabetes Patients Encodes a Potent T Cell Autoantigen. Cell 2020; 177:1583-1599.e16. [PMID: 31150624 DOI: 10.1016/j.cell.2019.05.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/10/2018] [Accepted: 05/02/2019] [Indexed: 12/17/2022]
Abstract
T and B cells are the two known lineages of adaptive immune cells. Here, we describe a previously unknown lymphocyte that is a dual expresser (DE) of TCR and BCR and key lineage markers of both B and T cells. In type 1 diabetes (T1D), DEs are predominated by one clonotype that encodes a potent CD4 T cell autoantigen in its antigen binding site. Molecular dynamics simulations revealed that this peptide has an optimal binding register for diabetogenic HLA-DQ8. In concordance, a synthetic version of the peptide forms stable DQ8 complexes and potently stimulates autoreactive CD4 T cells from T1D patients, but not healthy controls. Moreover, mAbs bearing this clonotype are autoreactive against CD4 T cells and inhibit insulin tetramer binding to CD4 T cells. Thus, compartmentalization of adaptive immune cells into T and B cells is not absolute, and violators of this paradigm are likely key drivers of autoimmune diseases.
Collapse
Affiliation(s)
- Rizwan Ahmed
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zahra Omidian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Adebola Giwa
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin Cornwell
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Neha Majety
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David R Bell
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
| | - Sangyun Lee
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Aaron Michels
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO 80045, USA
| | - Stephen Desiderio
- Department of Molecular Biology and Genetics and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Hamid Rabb
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Simon Gritsch
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Mario L Suva
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Patrick Cahan
- Department of Molecular Biology and Genetics and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ruhong Zhou
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA; Department of Chemistry, Columbia University, New York, NY 10027, USA.
| | - Chunfa Jie
- Department of Biochemistry and Nutrition, Des Moines University, Des Moines, IA 50312, USA
| | - Thomas Donner
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Abdel Rahim A Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
28
|
Niehrs A, Altfeld M. Regulation of NK-Cell Function by HLA Class II. Front Cell Infect Microbiol 2020; 10:55. [PMID: 32133304 PMCID: PMC7040486 DOI: 10.3389/fcimb.2020.00055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
Natural Killer (NK) cells were initially described as part of the innate immune system and characterized by their ability to lyse malignant and virus-infected cells. The cytolytic function of NK cells is tightly controlled by activating and inhibitory receptors expressed on the cell surface. Ligands that interact with a variety of NK-cell receptors include the human leukocyte antigen (HLA) molecules, and the regulation of NK-cell function by HLA class I molecules is well-established. Earlier studies also suggested a role of HLA class II molecules in regulating NK cell activity; yet, interactions between HLA class II molecules and NK cell receptors have not been well-characterized. We recently identified a subset of HLA-DP molecules that can serve as ligands for the natural cytotoxicity receptor NKp44 and activate NK cells. This novel receptor-ligand interaction provides a potential mechanism to explain the strong associations of HLA-DP molecules with HBV infection outcomes, graft-vs.-host disease and inflammatory bowel disease. Furthermore, it adds a new mechanism for NK-cell crosstalk with immune cells expressing HLA class II molecules. In this perspective article, we discuss the potential implications of NK cell receptor interactions with HLA class II molecules for the regulation of immune responses.
Collapse
Affiliation(s)
- Annika Niehrs
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Marcus Altfeld
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.,Institute for Immunology, Universitätsklinikum Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
29
|
van Stigt Thans T, Akko JI, Niehrs A, Garcia-Beltran WF, Richert L, Stürzel CM, Ford CT, Li H, Ochsenbauer C, Kappes JC, Hahn BH, Kirchhoff F, Martrus G, Sauter D, Altfeld M, Hölzemer A. Primary HIV-1 Strains Use Nef To Downmodulate HLA-E Surface Expression. J Virol 2019; 93:e00719-19. [PMID: 31375574 PMCID: PMC6798123 DOI: 10.1128/jvi.00719-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) has evolved elaborate ways to evade immune cell recognition, including downregulation of classical HLA class I (HLA-I) from the surfaces of infected cells. Recent evidence identified HLA-E, a nonclassical HLA-I, as an important part of the antiviral immune response to HIV-1. Changes in HLA-E surface levels and peptide presentation can prompt both CD8+ T-cell and natural killer (NK) cell responses to viral infections. Previous studies reported unchanged or increased HLA-E levels on HIV-1-infected cells. Here, we examined HLA-E surface levels following infection of CD4+ T cells with primary HIV-1 strains and observed that a subset downregulated HLA-E. Two primary strains of HIV-1 that induced the strongest reduction in surface HLA-E expression were chosen for further testing. Expression of single Nef or Vpu proteins in a T-cell line, as well as tail swap experiments exchanging the cytoplasmic tail of HLA-A2 with that of HLA-E, demonstrated that Nef modulated HLA-E surface levels and targeted the cytoplasmic tail of HLA-E. Furthermore, infection of primary CD4+ T cells with HIV-1 mutants showed that a lack of functional Nef (and Vpu to some extent) impaired HLA-E downmodulation. Taken together, the results of this study demonstrate for the first time that HIV-1 can downregulate HLA-E surface levels on infected primary CD4+ T cells, potentially rendering them less vulnerable to CD8+ T-cell recognition but at increased risk of NKG2A+ NK cell killing.IMPORTANCE For almost two decades, it was thought that HIV-1 selectively downregulated the highly expressed HLA-I molecules HLA-A and HLA-B from the cell surface in order to evade cytotoxic-T-cell recognition, while leaving HLA-C and HLA-E molecules unaltered. It was stipulated that HIV-1 infection thereby maintained inhibition of NK cells via inhibitory receptors that bind HLA-C and HLA-E. This concept was recently revised when a study showed that primary HIV-1 strains reduce HLA-C surface levels, whereas the cell line-adapted HIV-1 strain NL4-3 lacks this ability. Here, we demonstrate that infection with distinct primary HIV-1 strains results in significant downregulation of surface HLA-E levels. Given the increasing evidence for HLA-E as an important modulator of CD8+ T-cell and NKG2A+ NK cell functions, this finding has substantial implications for future immunomodulatory approaches aimed at harnessing cytotoxic cellular immunity against HIV.
Collapse
Affiliation(s)
| | - Janet I Akko
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Annika Niehrs
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Germany
| | | | - Laura Richert
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Université Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Inria SISTM, Bordeaux, France
| | - Christina M Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Christopher T Ford
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Hui Li
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christina Ochsenbauer
- Department of Medicine, Division of Hematology and Oncology, and CFAR, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John C Kappes
- Department of Medicine, Division of Hematology and Oncology, and CFAR, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Glòria Martrus
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Marcus Altfeld
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Germany
- Institute for Immunology, University Medical Center Eppendorf, Hamburg, Germany
| | - Angelique Hölzemer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Germany
- First Department of Internal Medicine, University Medical Center Eppendorf, Hamburg, Germany
| |
Collapse
|
30
|
Abstract
BACKGROUND Class I human leukocyte antigen (HLA) molecules contribute to HIV control through antigen presentation to both cytotoxic T lymphocytes and natural killer cells. Contribution of cytotoxic T lymphocytes to HIV clinical outcome by HLA alleles has been well studied. However, reports about the role of natural killer cells in HIV clinical outcome, particularly, about the effect of HLA-killer immunoglobulin-like receptor (KIR) pairs, remain incomplete. METHODS The effects of HLA allele-KIR pairs on HIV clinical outcome were statistically analyzed in a Thai cohort of treatment-naive chronically infected population (n = 209). RESULTS Five HLA allele-KIR pairs scored significantly in viral load (VL) differences. Among them, opposing effects on VL were identified among subjects expressing KIR2DL2 ligands within the HLA-C1 group: higher VL in individuals expressing HLA-B*46:01+KIR2DL2+ compared with individuals without KIR (HLA-B*46:01+KIR2DL2-) (5.0 vs 4.6 log10 copies/mL, P = 0.02), in HLA-C*01:02+KIR2DL2+ (5.0 vs 4.6 log10 copies/mL; P = 0.02), and lower VL in HLA-C*12:03+KIR2DL2+ (4.3 vs 5.6 log10 copies/mL; P = 0.01). In the longitudinal analysis of a ten-year follow-up, HLA-B*46:01+KIR2DL2+ve subjects also had a higher mortality rate compared with the subjects without that pair, independent of variables including antiretroviral treatment, as well as CD4 T-cell count, sex, and age (adjusted hazard ratio 5.9, P = 0.02). CONCLUSION We identified several HLA allele-KIR pairs associated with clinical outcome differences including opposing effects on VL within 1 HLA group with the same KIR. Among them, HLA-B*46:01 emerged in Southeast Asia about 50,000 years ago and is now the most prevalent HLA-B allele in that area. These findings highlight that each endemic area has unique features of anti-HIV innate immunity that impact clinical outcome.
Collapse
|
31
|
Niehrs A, Garcia-Beltran WF, Norman PJ, Watson GM, Hölzemer A, Chapel A, Richert L, Pommerening-Röser A, Körner C, Ozawa M, Martrus G, Rossjohn J, Lee JH, Berry R, Carrington M, Altfeld M. A subset of HLA-DP molecules serve as ligands for the natural cytotoxicity receptor NKp44. Nat Immunol 2019; 20:1129-1137. [PMID: 31358998 PMCID: PMC8370669 DOI: 10.1038/s41590-019-0448-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 06/06/2019] [Indexed: 01/25/2023]
Abstract
Natural killer (NK) cells can recognize virus-infected and stressed cells1 using activating and inhibitory receptors, many of which interact with HLA class I. Although early studies also suggested a functional impact of HLA class II on NK cell activity2,3, the NK cell receptors that specifically recognize HLA class II molecules have never been identified. We investigated whether two major families of NK cell receptors, killer-cell immunoglobulin-like receptors (KIRs) and natural cytotoxicity receptors (NCRs), contained receptors that bound to HLA class II, and identified a direct interaction between the NK cell receptor NKp44 and a subset of HLA-DP molecules, including HLA-DP401, one of the most frequent class II allotypes in white populations4. Using NKp44ζ+ reporter cells and primary human NKp44+ NK cells, we demonstrated that interactions between NKp44 and HLA-DP401 trigger functional NK cell responses. This interaction between a subset of HLA-DP molecules and NKp44 implicates HLA class II as a component of the innate immune response, much like HLA class I. It also provides a potential mechanism for the described associations between HLA-DP subtypes and several disease outcomes, including hepatitis B virus infection5-7, graft-versus-host disease8 and inflammatory bowel disease9,10.
Collapse
Affiliation(s)
- Annika Niehrs
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Wilfredo F Garcia-Beltran
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Gabrielle M Watson
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Angelique Hölzemer
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- First Department of Internal Medicine, University Medical Center Eppendorf, Hamburg, Germany
| | - Anaïs Chapel
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Unité HIV Inflammation et Persistance, Institut Pasteur, Paris, France
| | - Laura Richert
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Inserm Inria SISTM Bordeaux Population Health Research Center UMR 1219, Univ. Bordeaux, Bordeaux, France
| | | | - Christian Körner
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - Glòria Martrus
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | | - Richard Berry
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Mary Carrington
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Basic Science Program, HLA Immunogenetics Section, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Marcus Altfeld
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.
| |
Collapse
|
32
|
Manickam C, Shah SV, Nohara J, Ferrari G, Reeves RK. Monkeying Around: Using Non-human Primate Models to Study NK Cell Biology in HIV Infections. Front Immunol 2019; 10:1124. [PMID: 31191520 PMCID: PMC6540610 DOI: 10.3389/fimmu.2019.01124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/03/2019] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells are the major innate effectors primed to eliminate virus-infected and tumor or neoplastic cells. Recent studies also suggest nuances in phenotypic and functional characteristics among NK cell subsets may further permit execution of regulatory and adaptive roles. Animal models, particularly non-human primate (NHP) models, are critical for characterizing NK cell biology in disease and under homeostatic conditions. In HIV infection, NK cells mediate multiple antiviral functions via upregulation of activating receptors, inflammatory cytokine secretion, and antibody dependent cell cytotoxicity through antibody Fc-FcR interaction and others. However, HIV infection can also reciprocally modulate NK cells directly or indirectly, leading to impaired/ineffective NK cell responses. In this review, we will describe multiple aspects of NK cell biology in HIV/SIV infections and their association with viral control and disease progression, and how NHP models were critical in detailing each finding. Further, we will discuss the effect of NK cell depletion in SIV-infected NHP and the characteristics of newly described memory NK cells in NHP models and different mouse strains. Overall, we propose that the role of NK cells in controlling viral infections remains incompletely understood and that NHP models are indispensable in order to efficiently address these deficits.
Collapse
Affiliation(s)
- Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Spandan V. Shah
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Junsuke Nohara
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Guido Ferrari
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - R. Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA, United States
| |
Collapse
|
33
|
Mori M, Leitman E, Walker B, Ndung’u T, Carrington M, Goulder P. Impact of HLA Allele-KIR Pairs on HIV Clinical Outcome in South Africa. J Infect Dis 2019; 219:1456-1463. [PMID: 30520960 PMCID: PMC6467198 DOI: 10.1093/infdis/jiy692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/30/2018] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND HLA class I contributes to HIV immune control through antigen presentation to cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. In contrast to investigations of CTL, studies of NK cells in HIV control through HLA-killer immunoglobulin-like receptor (KIR) interactions remain sparse in African cohorts. METHODS Treatment-naive, chronically HIV-infected adults (N = 312) were recruited from South Africa, and the effects of HLA-KIR pairs on clinical outcome were analyzed. RESULTS There was no significant difference in viral load among all subjects with HLA alleles from the HLA-C1 group (P = .1). However, differences in HLA-C type significantly influenced viremia among 247 KIR2DL3 positives (P = .04), suggesting that specific HLA-KIR interactions contribute to immune control. Higher viral load (P = .02) and lower CD4+ T-cell counts (P = .008) were observed in subjects with HLA-C*16:01+KIR2DL3+. Longitudinal analysis showed more rapid progression to AIDS among HLA-C*16:01+KIR2DL3+ subjects (adjusted hazard ratio 1.9, P = .03) than those without this genotype, independent of CD4+ T-cell count and viral load. CONCLUSIONS These results highlight the existence of unique anti-HIV innate immunity within distinct populations and the contribution of KIR on NK cells and some CTLs to the well-described HLA-mediated impact on HIV disease progression.
Collapse
Affiliation(s)
- Masahiko Mori
- Department of Paediatrics, University of Oxford
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Japan
| | | | - Bruce Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge
| | - Thumbi Ndung’u
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal
- Africa Health Research Institute, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Mary Carrington
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge
- Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Maryland
| | - Philip Goulder
- Department of Paediatrics, University of Oxford
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal
| |
Collapse
|
34
|
Ali A, Gyurova IE, Waggoner SN. Mutually assured destruction: the cold war between viruses and natural killer cells. Curr Opin Virol 2019; 34:130-139. [PMID: 30877885 DOI: 10.1016/j.coviro.2019.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 12/22/2022]
Abstract
Natural killer (NK) cells play a multitude of antiviral roles that are significant enough to provoke viral counterefforts to subvert their activity. As innate lymphocytes, NK cells provide a rapid source of pro-inflammatory antiviral cytokines and bring to bear cytolytic activities that are collectively meant to constrain viral replication and dissemination. Additionally, NK cells participate in adaptive immunity both by shaping virus-specific T-cell responses and by developing adaptive features themselves, including enhanced antibody-dependent effector functions. The relative importance of different functional activities of NK cells are poorly understood, thereby obfuscating clinical use of these cells. Here we focus on opposing efforts of NK cells and viruses to gain tactical superiority during infection.
Collapse
Affiliation(s)
- Ayad Ali
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, United States; Medical Scientist Training Program, University of Cincinnati College of Medicine, United States; Immunology Graduate Training Program, University of Cincinnati College of Medicine, United States
| | - Ivayla E Gyurova
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, United States; Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati College of Medicine, United States
| | - Stephen N Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, United States; Medical Scientist Training Program, University of Cincinnati College of Medicine, United States; Immunology Graduate Training Program, University of Cincinnati College of Medicine, United States; Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati College of Medicine, United States; Department of Pediatrics, University of Cincinnati College of Medicine, United States.
| |
Collapse
|
35
|
Wauquier N, Petitdemange C, Tarantino N, Maucourant C, Coomber M, Lungay V, Bangura J, Debré P, Vieillard V. HLA-C-restricted viral epitopes are associated with an escape mechanism from KIR2DL2 + NK cells in Lassa virus infection. EBioMedicine 2019; 40:605-613. [PMID: 30711514 PMCID: PMC6413685 DOI: 10.1016/j.ebiom.2019.01.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/31/2022] Open
Abstract
Background Lassa virus (LASV) is the etiologic agent of an acute hemorrhagic fever endemic in West Africa. Natural killer (NK) cells control viral infections in part through the interaction between killer cell immunoglobulin-like receptors (KIRs) and their ligands. LASV infection is associated with defective immune responses, including inhibition of NK cell activity in the presence of MHC-class 1+-infected target cells. Methods We compared individual KIR and HLA-class 1 genotypes of 68 healthy volunteers to 51 patients infected with LASV in Sierra Leone, including 37 survivors and 14 fatalities. Next, potential HLA-C1, HLA-C2, and HLA-Bw4 binding epitopes were in silico screened among LASV nucleoprotein (NP) and envelope glycoprotein (GP). Selected 10-mer peptides were then tested in peptide-HLA stabilization, KIR binding and polyfunction assays. Findings LASV-infected patients were similar to healthy controls, except for the inhibitory KIR2DL2 gene. We found a specific increase in the HLA-C1:KIR2DL2 interaction in fatalities (10/11) as compared to survivors (12/19) and controls (19/29). We also identified that strong of NP and GP viral epitopes was only observed with HLA-C molecules, and associated with strong inhibition of degranulation in the presence of KIR2DL+ NK cells. This inhibitory effect significantly increased in the presence of the vGP420 variant, detected in 28.1% of LASV sequences. Interpretation Our finding suggests that presentation of specific LASV epitopes by HLA-C alleles to the inhibitory KIR2DL2 receptor on NK cells could potentially prevent the killing of infected cells and provides insights into the mechanisms by which LASV can escape NK-cell-mediated immune pressure.
Collapse
Affiliation(s)
- Nadia Wauquier
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France; Metabiota, San Francisco, CA, USA
| | - Caroline Petitdemange
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Nadine Tarantino
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Christopher Maucourant
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | | | | | | | - Patrice Debré
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Vincent Vieillard
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France.
| |
Collapse
|
36
|
Kennedy PR, Barthen C, Williamson DJ, Davis DM. HLA-B and HLA-C Differ in Their Nanoscale Organization at Cell Surfaces. Front Immunol 2019; 10:61. [PMID: 30761133 PMCID: PMC6362897 DOI: 10.3389/fimmu.2019.00061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/11/2019] [Indexed: 12/30/2022] Open
Abstract
The particular HLA class I variants an individual carries influences their resistance and susceptibility to a multitude of diseases. Expression level and variation in the peptide binding region correlates with, for example, a person's progression to AIDS after HIV infection. One factor which has not yet been addressed is whether or not different HLA class I proteins organize differently in the cell membrane on a nanoscale. Here, we examined the organization of three HLA-B allotypes (B*2705, B*5301, and B*5701) and two HLA-C allotypes (C*0602 and C*0702) in the membrane of 721.221 cells which otherwise lack expression of HLA-B or HLA-C. All these allotypes are ligands for the T cell receptor and leukocyte immunoglobulin-like receptors, but additionally, the HLA-B allotypes are ligands for the killer-cell immunoglobulin-like receptor family member KIR3DL1, HLA-C*0602 is a ligand for KIR2DL1, and HLA-C*0702 is a ligand for KIR2DL2/3. Using super-resolution microscopy, we found that both HLA-B and HLA-C formed more clusters and a greater proportion of HLA contributed to clusters, when expressed at lower levels. Thus, HLA class I organization is a covariate in genetic association studies of HLA class I expression level with disease progression. Surprisingly, we also found that HLA-C was more clustered than HLA-B when expression level was controlled. HLA-C consistently formed larger and more numerous clusters than HLA-B and a greater proportion of HLA-C contributed to clusters than for HLA-B. We also found that the organization of HLA class I proteins varied with cell type. T cells exhibited a particularly clustered organization of HLA class I while B cells expressed a more uniform distribution. In summary, HLA class I variants are organized differently in the cell surface membrane which may impact their functions.
Collapse
Affiliation(s)
- Philippa R Kennedy
- Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom
| | - Charlotte Barthen
- Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom.,Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
| | - David J Williamson
- Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom
| | - Daniel M Davis
- Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
37
|
Ziegler MC, Grañana FB, Garcia-Beltran WF, Schulze Zur Wiesch J, Hoffmann C, Rechtien A, Lunemann S, Altfeld M. Stable Frequencies of HLA-C *03:04/Peptide-Binding KIR2DL2/3 + Natural Killer Cells Following Vaccination. Front Immunol 2018; 9:2361. [PMID: 30386333 PMCID: PMC6199360 DOI: 10.3389/fimmu.2018.02361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/24/2018] [Indexed: 11/30/2022] Open
Abstract
Inhibitory KIRs play a central role in regulating NK cell activity. KIR2DL2/3 bind to HLA-C molecules, but the modulation of these interactions by viral infections and presentation of viral epitopes is not well-understood. We investigated whether the frequencies of KIR2DL2/3+ NK cells recognizing HLA-C*03:04/viral peptide complexes were impacted by YFV vaccination or HIV-1 and HCV infection. Ex vivo HLA class I tetramer staining of primary human NK cells derived from YFV-vaccinated individuals, or HIV-1- or HCV-infected individuals revealed that the YFV/HLA-C*03:04-NS2A4−13-tetramer bound to a larger proportion of KIR2DL2/3+ NK cells compared to HIV-1/HLA-C*03:04-Gag296−304- or HCV/HLA-C*03:04-Core136−144-tetramers. The YFV/HLA-C*03:04-NS2A4−13-tetramer also exhibited a stronger avidity to KIR2DL2/3 compared to the other tested tetramers. The proportional frequencies of KIR2DL2/3+ NK cells binding to the three tested HLA-C*03:04 tetramers were identical between YFV-vaccinated individuals or HIV-1- or HCV-infected individuals, and remained stable following YFV vaccination. These data demonstrate consistent hierarchies in the frequency of primary KIR2DL2/3+ NK cells binding HLA-C*03:04/peptide complexes that were determined by the HLA-C-presented peptide and not modulated by the underlying viral infection or vaccination.
Collapse
Affiliation(s)
- Maja Christiane Ziegler
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ferran Borràs Grañana
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Wilfredo F Garcia-Beltran
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | | | - Christian Hoffmann
- ICH Study Center, Infektionsmedizinisches Centrum Hamburg, Hamburg, Germany
| | - Anne Rechtien
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.,First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Partner Site Hamburg-Lübeck-Borstel-Riems, German Center for Infection Research, Hamburg, Germany
| | - Sebastian Lunemann
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Marcus Altfeld
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.,Partner Site Hamburg-Lübeck-Borstel-Riems, German Center for Infection Research, Hamburg, Germany
| |
Collapse
|
38
|
Littwitz-Salomon E, Nguyen T, Schimmer S, Dittmer U. Friend retrovirus infection induces the development of memory-like natural killer cells. Retrovirology 2018; 15:68. [PMID: 30292240 PMCID: PMC6174066 DOI: 10.1186/s12977-018-0450-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
Traditionally, NK cells belong to the innate immune system and eliminate virus-infected cells through their germline-encoded receptors. However, NK cells were recently reported to possess memory-like functions that were predominantly provided by hepatic NK cells. Memory properties were mainly documented in contact hypersensitivity models or during cytomegalovirus infections. However, the precise role and the physiologic importance of memory-like NK cells during retroviral infections are still under investigation. Here, we show that Friend retrovirus (FV) infection of mice induced a population of phenotypically memory-like NK cells at 28 days post infection. Upon secondary antigen encounter, these NK cells showed an increased production of the pro-inflammatory cytokines IFNγ and TNFα as well as the death ligand FasL in comparison to naïve NK cells. Furthermore, we found an augmented elimination of antigen-matched but not antigen-mismatched target cells by these memory-like NK cells. In adoptive cell transfer experiments, equal antiviral activities of splenic and hepatic memory-like NK cells during the late phase of acute FV infection were found. Our results strongly imply the existence and antiviral activity of spleen and liver memory-like NK cells in FV infection, which efficiently respond upon secondary exposure to retroviral antigens.
Collapse
Affiliation(s)
| | | | - Simone Schimmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
39
|
Kronstad LM, Seiler C, Vergara R, Holmes SP, Blish CA. Differential Induction of IFN-α and Modulation of CD112 and CD54 Expression Govern the Magnitude of NK Cell IFN-γ Response to Influenza A Viruses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:2117-2131. [PMID: 30143589 PMCID: PMC6143432 DOI: 10.4049/jimmunol.1800161] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/19/2018] [Indexed: 01/22/2023]
Abstract
In human and murine studies, IFN-γ is a critical mediator immunity to influenza. IFN-γ production is critical for viral clearance and the development of adaptive immune responses, yet excessive production of IFN-γ and other cytokines as part of a cytokine storm is associated with poor outcomes of influenza infection in humans. As NK cells are the main population of lung innate immune cells capable of producing IFN-γ early in infection, we set out to identify the drivers of the human NK cell IFN-γ response to influenza A viruses. We found that influenza triggers NK cells to secrete IFN-γ in the absence of T cells and in a manner dependent upon signaling from both cytokines and receptor-ligand interactions. Further, we discovered that the pandemic A/California/07/2009 (H1N1) strain elicits a seven-fold greater IFN-γ response than other strains tested, including a seasonal A/Victoria/361/2011 (H3N2) strain. These differential responses were independent of memory NK cells. Instead, we discovered that the A/Victoria/361/2011 influenza strain suppresses the NK cell IFN-γ response by downregulating NK-activating ligands CD112 and CD54 and by repressing the type I IFN response in a viral replication-dependent manner. In contrast, the A/California/07/2009 strain fails to repress the type I IFN response or to downregulate CD54 and CD112 to the same extent, which leads to the enhanced NK cell IFN-γ response. Our results indicate that influenza implements a strain-specific mechanism governing NK cell production of IFN-γ and identifies a previously unrecognized influenza innate immune evasion strategy.
Collapse
Affiliation(s)
- Lisa M Kronstad
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305
| | - Christof Seiler
- Department of Statistics, Stanford University, Stanford, CA 94305
| | - Rosemary Vergara
- Immunology Program, School of Medicine, Stanford University Stanford, CA 94305; and
| | - Susan P Holmes
- Department of Statistics, Stanford University, Stanford, CA 94305
| | - Catherine A Blish
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305;
- Immunology Program, School of Medicine, Stanford University Stanford, CA 94305; and
- Chan Zuckerberg BioHub, San Francisco, CA 94158
| |
Collapse
|
40
|
Hammer Q, Rückert T, Romagnani C. Natural killer cell specificity for viral infections. Nat Immunol 2018; 19:800-808. [PMID: 30026479 DOI: 10.1038/s41590-018-0163-6] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022]
Abstract
Natural killer (NK) cells are lymphocytes that contribute to the early immune responses to viruses. NK cells are innate immune cells that do not express rearranged antigen receptors but sense their environment via receptors for pro-inflammatory cytokines, as well as via germline-encoded activating receptors specific for danger or pathogen signals. A group of such activating receptors is stochastically expressed by certain subsets within the NK cell compartment. After engagement of the cognate viral ligand, these receptors contribute to the specific activation and 'preferential' population expansion of defined NK cell subsets, which partially recapitulate some features of adaptive lymphocytes. In this Review, we discuss the numerous modes for the specific recognition of viral antigens and peptides by NK cells and the implications of this for the composition of the NK cell repertoire as well as for the the selection of viral variants.
Collapse
Affiliation(s)
- Quirin Hammer
- Innate Immunity, German Rheumatism Research Center, Leibniz Association, Berlin, Germany.,Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Timo Rückert
- Innate Immunity, German Rheumatism Research Center, Leibniz Association, Berlin, Germany
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center, Leibniz Association, Berlin, Germany. .,Medical Department I, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
41
|
Hilton HG, McMurtrey CP, Han AS, Djaoud Z, Guethlein LA, Blokhuis JH, Pugh JL, Goyos A, Horowitz A, Buchli R, Jackson KW, Bardet W, Bushnell DA, Robinson PJ, Mendoza JL, Birnbaum ME, Nielsen M, Garcia KC, Hildebrand WH, Parham P. The Intergenic Recombinant HLA-B∗46:01 Has a Distinctive Peptidome that Includes KIR2DL3 Ligands. Cell Rep 2018; 19:1394-1405. [PMID: 28514659 PMCID: PMC5510751 DOI: 10.1016/j.celrep.2017.04.059] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/07/2017] [Accepted: 04/20/2017] [Indexed: 01/26/2023] Open
Abstract
HLA-B∗46:01 was formed by an intergenic mini-conversion, between HLA-B∗15:01 and HLA-C∗01:02, in Southeast Asia during the last 50,000 years, and it has since become the most common HLA-B allele in the region. A functional effect of the mini-conversion was introduction of the C1 epitope into HLA-B∗46:01, making it an exceptional HLA-B allotype that is recognized by the C1-specific natural killer (NK) cell receptor KIR2DL3. High-resolution mass spectrometry showed that HLA-B∗46:01 has a low-diversity peptidome that is distinct from those of its parents. A minority (21%) of HLA-B∗46:01 peptides, with common C-terminal characteristics, form ligands for KIR2DL3. The HLA-B∗46:01 peptidome is predicted to be enriched for peptide antigens derived from Mycobacterium leprae. Overall, the results indicate that the distinctive peptidome and functions of HLA-B∗46:01 provide carriers with resistance to leprosy, which drove its rapid rise in frequency in Southeast Asia. The interlocus recombinant HLA-B∗46:01 is found at high frequency in Southeast Asia HLA-B∗46:01 has a low-diversity peptidome that is distinct from both its parents A subset of HLA-B∗46:01 peptides provides ligands for the NK cell receptor KIR2DL3 The unique features of HLA-B∗46:01 correlate with protection against leprosy
Collapse
Affiliation(s)
- Hugo G Hilton
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Curtis P McMurtrey
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alex S Han
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Zakia Djaoud
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Lisbeth A Guethlein
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jeroen H Blokhuis
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jason L Pugh
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ana Goyos
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Amir Horowitz
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Rico Buchli
- Pure Protein LLC, Oklahoma City, OK 73104, USA
| | - Ken W Jackson
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Wilfred Bardet
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - David A Bushnell
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Philip J Robinson
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Juan L Mendoza
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Molecular & Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Michael E Birnbaum
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Molecular & Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Morten Nielsen
- Department of Bio and Health Informatics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - K Christopher Garcia
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Molecular & Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - William H Hildebrand
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Peter Parham
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
42
|
Zulu MZ, Naidoo KK, Mncube Z, Jaggernath M, Goulder PJ, Ndung'u T, Altfeld M, Thobakgale CF. Reduced Expression of Siglec-7, NKG2A, and CD57 on Terminally Differentiated CD56 -CD16 + Natural Killer Cell Subset Is Associated with Natural Killer Cell Dysfunction in Chronic HIV-1 Clade C Infection. AIDS Res Hum Retroviruses 2017; 33:1205-1213. [PMID: 28810810 DOI: 10.1089/aid.2017.0095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
HIV-1 viremia has been shown to induce several phenotypic and functional abnormalities in natural killer (NK) cells. To assess immune defects associated with HIV viremia, we examined NK cell function, differentiation status, and phenotypic alterations based on expression of inhibitory and activating receptors on NK cells in HIV-1 subtype C chronically infected participants from Durban, South Africa. NK cell phenotypic profiles were characterized by assessing sialic acid-binding immunoglobulin-like lectin-7 (Siglec-7), NKG2A, and NKG2C markers on frozen peripheral blood mononuclear cells from viremic, antiretroviral therapy (ART)-naive HIV-1 chronically infected participants (n = 23), HIV-1 chronically infected participants who had been on combination antiretroviral therapy (cART) for at least 12 months (n = 23) compared with healthy donors (n = 23). NK cell differentiation was assessed by measurement of killer immunoglobulin receptor (KIR) and NKG2A expression; CD57 and CD107a measurements were carried out in HIV viremic and healthy donors. All phenotypic and functional assessments were analyzed by using multicolor flow cytometry. HIV-1-infected participants displayed greater frequencies of the CD56-CD16+ (CD56negative) NK cell subset compared with healthy donors (p < .0001). Downregulation of Siglec-7 and NKG2A and upregulation of NKG2C were more pronounced in the CD56negative NK cell subset of viremic participants. The CD56negative subset demonstrated a differentiated (KIR+NKG2A-) phenotype with reduced CD57 expression and lower degranulation capacity in HIV-1-infected participants compared with healthy donors. HIV-1 infection induces the expansion of the CD56negative NK cell subset marked by altered receptor expression profiles that are indicative of impaired function and may explain the overall NK cell dysfunction observed in chronic HIV-1 infection.
Collapse
Affiliation(s)
- Michael Z. Zulu
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Kewreshini K. Naidoo
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Zenele Mncube
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Manjeetha Jaggernath
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Philip J.R. Goulder
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Marcus Altfeld
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts
- Department of Viral Immunology, Heinrich-Pette-Institut, Hamburg, Germany
| | - Christina F. Thobakgale
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
43
|
Hölzemer A, Garcia-Beltran WF, Altfeld M. Natural Killer Cell Interactions with Classical and Non-Classical Human Leukocyte Antigen Class I in HIV-1 Infection. Front Immunol 2017; 8:1496. [PMID: 29184550 PMCID: PMC5694438 DOI: 10.3389/fimmu.2017.01496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
Natural killer (NK) cells are effector lymphocytes of the innate immune system that are able to mount a multifaceted antiviral response within hours following infection. This is achieved through an array of cell surface receptors surveilling host cells for alterations in human leukocyte antigen class I (HLA-I) expression and other ligands as signs of viral infection, malignant transformation, and cellular stress. This interaction between HLA-I ligands and NK-cell receptor is not only important for recognition of diseased cells but also mediates tuning of NK-cell-effector functions. HIV-1 alters the expression of HLA-I ligands on infected cells, rendering them susceptible to NK cell-mediated killing. However, over the past years, various HIV-1 evasion strategies have been discovered to target NK-cell-receptor ligands and allow the virus to escape from NK cell-mediated immunity. While studies have been mainly focusing on the role of polymorphic HLA-A, -B, and -C molecules, less is known about how HIV-1 affects the more conserved, non-classical HLA-I molecules HLA-E, -G, and -F. In this review, we will focus on the recent progress in understanding the role of non-classical HLA-I ligands in NK cell-mediated recognition of HIV-1-infected cells.
Collapse
Affiliation(s)
- Angelique Hölzemer
- First Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | | | - Marcus Altfeld
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
44
|
Wang B, Kang W, Zuo J, Kang W, Sun Y. The Significance of Type-I Interferons in the Pathogenesis and Therapy of Human Immunodeficiency Virus 1 Infection. Front Immunol 2017; 8:1431. [PMID: 29163506 PMCID: PMC5671973 DOI: 10.3389/fimmu.2017.01431] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/13/2017] [Indexed: 01/25/2023] Open
Abstract
Type-I interferons (IFN-I) are a widely expressed family that could promote antivirus immunity in the process of pathogens invasion. In a human immunodeficiency virus 1 (HIV-1)-infected individual, the production of IFN-I can be detected as early as the acute phase and will persist throughout the course of infection. However, sustained stimulation of immune system by IFN-I also contributes greatly to host-mediated immunopathology and diseases progression. Although the protective effects of IFN-I in the acute phase of HIV-1 infection have been observed, more studies recently focus on their detrimental role in the chronic stage. Inhibition of IFN-I signaling may reverse HIV-1-induced immune hyperactivation and furthermore reduce HIV-1 reservoirs, which suggest this strategy may provide a potential way to enhance the therapeutic effect of antiretroviral therapy. Therefore, we review the role of IFN-I in HIV-1 progression, their effects on different immunocytes, and therapeutic prospects targeting the IFN-I system.
Collapse
Affiliation(s)
- Bowen Wang
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wen Kang
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiahui Zuo
- Clinical Laboratory, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenzhen Kang
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yongtao Sun
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
45
|
Liu D, Wang C, Hora B, Zuo T, Goonetilleke N, Liu MKP, Berrong M, Ferrari G, McMichael AJ, Bhattacharya T, Perelson AS, Gao F. A strongly selected mutation in the HIV-1 genome is independent of T cell responses and neutralizing antibodies. Retrovirology 2017; 14:46. [PMID: 29017536 PMCID: PMC5634943 DOI: 10.1186/s12977-017-0371-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/03/2017] [Indexed: 01/19/2023] Open
Abstract
Background Mutations rapidly accumulate in the HIV-1 genome after infection. Some of those mutations are selected by host immune responses and often cause viral fitness losses. This study is to investigate whether strongly selected mutations that are not associated with immune responses result in fitness losses. Results Strongly selected mutations were identified by analyzing 5′-half HIV-1 genome (gag/pol) sequences from longitudinal samples of subject CH0131. The K43R mutation in the gag gene was first detected at day 91 post screening and was fixed in the viral population at day 273 while the synonymous N323tc mutation was first detected at day 177 and fixed at day 670. No conventional or cryptic T cell responses were detected against either mutation sites by ELISpot analysis. However, when fitness costs of both mutations were measured by introducing each mutation into their cognate transmitted/founder (T/F) viral genome, the K43R mutation caused a significant fitness loss while the N323tc mutation had little impact on viral fitness. Conclusions The rapid fixation, the lack of detectable immune responses and the significant fitness cost of the K43R mutation suggests that it was strongly selected by host factors other than T cell responses and neutralizing antibodies.
Collapse
Affiliation(s)
- Donglai Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China.,Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, 303 Research Dr., 244 Sands Building, DUMC 102359, Durham, NC, 27710, USA.,Division II of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing, China
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China.,Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, 303 Research Dr., 244 Sands Building, DUMC 102359, Durham, NC, 27710, USA
| | - Bhavna Hora
- Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, 303 Research Dr., 244 Sands Building, DUMC 102359, Durham, NC, 27710, USA
| | - Tao Zuo
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China.,Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, 303 Research Dr., 244 Sands Building, DUMC 102359, Durham, NC, 27710, USA
| | - Nilu Goonetilleke
- Department of Microbiology, Immunology and Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael K P Liu
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, UK
| | - Mark Berrong
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Andrew J McMichael
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, UK
| | | | - Alan S Perelson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China. .,Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, 303 Research Dr., 244 Sands Building, DUMC 102359, Durham, NC, 27710, USA.
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW The purpose of this article is to review recent advances in immunotherapeutic approaches aiming at reducing the latent HIV reservoir. RECENT FINDINGS HIV-1 establishes early during infection a pool of latently infected cells that persist long term and are largely undetectable to the immune system. Highly active antiretroviral therapy has dramatically improved the life expectancy and life quality of HIV-1-infected individuals, but is incapable of eliminating the pool of latently HIV-1-infected cells. Recent studies have started to test immunotherapeutic interventions in combination with latency reversing agents to reduce the latent HIV-1 reservoir, including approaches aimed at enhancing antiviral T-cell immunity, innate immunity, and virus-specific antibodies. SUMMARY The better understanding of virus-specific immunity and the pathways used by HIV-1 to evade host immune responses have enabled the development of new strategies focusing on targeting latently HIV-1-infected cells, with the goal to reduce the HIV-1 reservoir. Here, we will review recent advances in harnessing effector cells of the immune system, including CD8 T cells and natural killer cells, antiviral antibodies and new immunomodulatory molecules, to target HIV-1 persistence.
Collapse
|
47
|
Naranbhai V, Carrington M. Host genetic variation and HIV disease: from mapping to mechanism. Immunogenetics 2017; 69:489-498. [PMID: 28695282 PMCID: PMC5537324 DOI: 10.1007/s00251-017-1000-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 12/12/2022]
Abstract
This review aims to provide a summary of current knowledge of host genetic effects on human immunodeficiency virus (HIV) disease. Mapping of simple single nucleotide polymorphisms (SNP) has been largely successful in HIV, but more complex genetic associations involving haplotypic or epigenetic variation, for example, remain elusive. Mechanistic insights explaining SNP associations are incomplete, but continue to be forthcoming. The number of robust immunogenetic correlates of HIV is modest and their discovery mostly predates the genome-wide era. Nevertheless, genome-wide evaluations have nicely validated the impact of HLA and CCR5 variants on HIV disease, and importantly, made clear the many false positive associations that were previously suggested by studies using the candidate gene approach. We describe how multiple HIV outcome measures such as acquisition, viral control, and immune decline have been studied in adults and in children, but that collectively these identify only the two replicable loci responsible for modifying HIV disease, CCR5, and HLA. Recent heritability estimates in this disease corroborate the modest impact of genetic determinants and their oligogenic nature. While the mechanism of protection afforded by genetic variants that diminish CCR5 expression is clear, new aspects of HLA class I-mediated protection continue to be uncovered. We describe how these genetic findings have enhanced insights into immunobiology, been clinically translated into CCR5 antagonists, allowed prioritization of antigens for vaccination efforts, and identified targets for genome-editing interventions. Finally, we describe how studies of genetically complex parts of the genome using new tools may begin revealing additional correlates.
Collapse
Affiliation(s)
- Vivek Naranbhai
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA.
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| |
Collapse
|
48
|
Martins MA, Tully DC, Shin YC, Gonzalez-Nieto L, Weisgrau KL, Bean DJ, Gadgil R, Gutman MJ, Domingues A, Maxwell HS, Magnani DM, Ricciardi M, Pedreño-Lopez N, Bailey V, Cruz MA, Lima NS, Bonaldo MC, Altman JD, Rakasz E, Capuano S, Reimann KA, Piatak M, Lifson JD, Desrosiers RC, Allen TM, Watkins DI. Rare Control of SIVmac239 Infection in a Vaccinated Rhesus Macaque. AIDS Res Hum Retroviruses 2017; 33:843-858. [PMID: 28503929 DOI: 10.1089/aid.2017.0046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Effector memory T cell (TEM) responses display potent antiviral properties and have been linked to stringent control of simian immunodeficiency virus (SIV) replication. Since recurrent antigen stimulation drives the differentiation of CD8+ T cells toward the TEM phenotype, in this study we incorporated a persistent herpesviral vector into a heterologous prime/boost/boost vaccine approach to maximize the induction of TEM responses. This new regimen resulted in CD8+ TEM-biased responses in four rhesus macaques, three of which controlled viral replication to <1,000 viral RNA copies/ml of plasma for more than 6 months after infection with SIVmac239. Over the course of this study, we made a series of interesting observations in one of these successful controller animals. Indeed, in vivo elimination of CD8αβ+ T cells using a new CD8β-depleting antibody did not abrogate virologic control in this monkey. Only after its CD8α+ lymphocytes were depleted did SIV rebound, suggesting that CD8αα+ but not CD8αβ+ cells were controlling viral replication. By 2 weeks postinfection (PI), the only SIV sequences that could be detected in this animal harbored a small in-frame deletion in nef affecting six amino acids. Deep sequencing of the SIVmac239 challenge stock revealed no evidence of this polymorphism. However, sequencing of the rebound virus following CD8α depletion at week 38.4 PI again revealed only the six-amino acid deletion in nef. While any role for immunological pressure on the selection of this deleted variant remains uncertain, our data provide anecdotal evidence that control of SIV replication can be maintained without an intact CD8αβ+ T cell compartment.
Collapse
Affiliation(s)
| | - Damien C. Tully
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | - Young C. Shin
- Department of Pathology, University of Miami, Miami, Florida
| | | | - Kim L. Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin—Madison, Madison, Wisconsin
| | - David J. Bean
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | - Rujuta Gadgil
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | | | - Aline Domingues
- Department of Pathology, University of Miami, Miami, Florida
| | | | | | | | | | - Varian Bailey
- Department of Pathology, University of Miami, Miami, Florida
| | - Michael A. Cruz
- Department of Pathology, University of Miami, Miami, Florida
| | - Noemia S. Lima
- Laboratório de Biologia Molecular de Flavivirus, Instituto Oswaldo Cruz–FIOCRUZ, Rio de Janeiro, Brazil
| | - Myrna C. Bonaldo
- Laboratório de Biologia Molecular de Flavivirus, Instituto Oswaldo Cruz–FIOCRUZ, Rio de Janeiro, Brazil
| | - John D. Altman
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia
| | - Eva Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin—Madison, Madison, Wisconsin
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin—Madison, Madison, Wisconsin
| | - Keith A. Reimann
- MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Todd M. Allen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | | |
Collapse
|
49
|
Körner C, Simoneau CR, Schommers P, Granoff M, Ziegler M, Hölzemer A, Lunemann S, Chukwukelu J, Corleis B, Naranbhai V, Kwon DS, Scully EP, Jost S, Kirchhoff F, Carrington M, Altfeld M. HIV-1-Mediated Downmodulation of HLA-C Impacts Target Cell Recognition and Antiviral Activity of NK Cells. Cell Host Microbe 2017; 22:111-119.e4. [PMID: 28704647 PMCID: PMC5565794 DOI: 10.1016/j.chom.2017.06.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/03/2017] [Accepted: 06/16/2017] [Indexed: 11/24/2022]
Abstract
It was widely accepted that HIV-1 downregulates HLA-A/B to avoid CTL recognition while leaving HLA-C unaltered in order to prevent NK cell activation by engaging inhibitory NK cell receptors, but it was recently observed that most primary isolates of HIV-1 can mediate HLA-C downmodulation. Now we report that HIV-1-mediated downmodulation of HLA-C was associated with reduced binding to its respective inhibitory receptors. Despite this, HLA-C-licensed NK cells displayed reduced antiviral activity compared to their unlicensed counterparts, potentially due to residual binding to the respective inhibitory receptors. Nevertheless, NK cells were able to sense alterations of HLA-C expression demonstrated by increased antiviral activity when exposed to viral strains with differential abilities to downmodulate HLA-C. These results suggest that the capability of HLA-C-licensed NK cells to control HIV-1 replication is determined by the strength of KIR/HLA-C interactions and is thus dependent on both host genetics and the extent of virus-mediated HLA-C downregulation.
Collapse
Affiliation(s)
- Christian Körner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Department of Virus Immunology, 20251 Hamburg, Germany.
| | | | - Philipp Schommers
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Department of Virus Immunology, 20251 Hamburg, Germany; Department I of Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany; German Center for Infection Research (DZIF), Cologne, Germany
| | - Mitchell Granoff
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Maja Ziegler
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Department of Virus Immunology, 20251 Hamburg, Germany
| | - Angelique Hölzemer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Department of Virus Immunology, 20251 Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg, Germany; I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sebastian Lunemann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Department of Virus Immunology, 20251 Hamburg, Germany
| | - Janet Chukwukelu
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Department of Virus Immunology, 20251 Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg, Germany
| | - Björn Corleis
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Vivek Naranbhai
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Douglas S Kwon
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eileen P Scully
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephanie Jost
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Mary Carrington
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Marcus Altfeld
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Department of Virus Immunology, 20251 Hamburg, Germany
| |
Collapse
|
50
|
Hilton HG, Parham P. Missing or altered self: human NK cell receptors that recognize HLA-C. Immunogenetics 2017; 69:567-579. [PMID: 28695291 DOI: 10.1007/s00251-017-1001-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cells are fast-acting and versatile lymphocytes that are critical effectors of innate immunity, adaptive immunity, and placental development. Controlling NK cell function are the interactions between killer-cell immunoglobulin-like receptors (KIRs) and their HLA-A, HLA-B and HLA-C ligands. Due to the extensive polymorphism of both KIR and HLA class I, these interactions are highly diversified and specific combinations correlate with protection or susceptibility to a range of infectious, autoimmune, and reproductive disorders. Evolutionary, genetic, and functional studies are consistent with the interactions between KIR and HLA-C being the dominant control mechanism of human NK cells. In addition to their recognition of the C1 and C2 epitopes, increasing evidence points to KIR having a previously unrecognized selectivity for the peptide presented by HLA-C. This selectivity appears to be a conserved feature of activating KIR and may partly explain the slow progress made in identifying their HLA class I ligands. The peptide selectivity of KIR allows NK cells to respond, not only to changes in the surface expression of HLA-C, but also to the more subtle changes in the HLA-C peptidome, such as occur during viral infection and malignant transformation. Here, we review recent advances in understanding of human-specific KIR evolution and how the inhibitory and activating HLA-C receptors allow NK cells to respond to healthy cells, diseased cells, and the semi-allogeneic cells of the fetus.
Collapse
Affiliation(s)
- Hugo G Hilton
- Departments of Structural Biology and Microbiology & Immunology, Stanford University, Fairchild D-159, 299 Campus Drive West, Stanford, CA, 94305, USA
| | - Peter Parham
- Departments of Structural Biology and Microbiology & Immunology, Stanford University, Fairchild D-159, 299 Campus Drive West, Stanford, CA, 94305, USA.
| |
Collapse
|