1
|
Hernández-Flores A, Elías-Díaz D, Cubillo-Cervantes B, Ibarra-Cerdeña CN, Morán D, Arnal A, Chaves A. Fighting Strategies Against Chagas' Disease: A Review. Pathogens 2025; 14:183. [PMID: 40005558 PMCID: PMC11858460 DOI: 10.3390/pathogens14020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, remains a significant public health challenge, particularly in Latin America, where it is one of the most neglected diseases and is primarily transmitted by triatomine insects. The disease exhibits complexity due to its diverse transmission routes, including vectorial and non-vectorial mechanisms such as blood transfusions and congenital transmission. Effective monitoring and control strategies are critical to mitigating its impact. This review focuses on current monitoring and control efforts, emphasizing the importance of enhanced surveillance systems, improved risk assessments, and integrated vector control programs. Surveillance plays a pivotal role in early detection and timely intervention, particularly in endemic regions, while vector control remains central to reducing transmission. Moreover, the development of novel diagnostic tools, treatments, and vaccines is a crucial step in advancing control efforts. This review also highlights the involvement of local governments, international organizations, and civil society in executing these strategies, stressing the need for sustained political commitment to ensure the success of public health programs. By addressing key challenges in monitoring, control, and prevention, this review aims to provide insights and recommendations to further global efforts in reducing the burden of Chagas disease.
Collapse
Affiliation(s)
- Andrea Hernández-Flores
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Av. Universidad #3000, Mexico City 04510, Mexico; (A.H.-F.); (A.A.)
| | - Debora Elías-Díaz
- Sistema de Estudios de Posgrado Posgrado en Biología, Universidad de Costa Rica, San José 11501-206, Costa Rica; (D.E.-D.); (B.C.-C.)
| | - Bernadeth Cubillo-Cervantes
- Sistema de Estudios de Posgrado Posgrado en Biología, Universidad de Costa Rica, San José 11501-206, Costa Rica; (D.E.-D.); (B.C.-C.)
| | - Carlos N. Ibarra-Cerdeña
- Departamento de Ecología Humana, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Mérida, Merida 97205, Mexico;
| | - David Morán
- Unidad de Ecología y Epidemiología, Programa Arbovirus y Zoonoses, Centro para Estudios de Salud, Universidad del Valle de Guatemala, Guatemala City 01015, Guatemala;
| | - Audrey Arnal
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Av. Universidad #3000, Mexico City 04510, Mexico; (A.H.-F.); (A.A.)
- MIVEGEC, IRD, CNRS, Université de Montpellier, 34394 Montpellier, France
- International Joint Laboratory IRD/UNAM ELDORADO, Merida 97205, Mexico
| | - Andrea Chaves
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT, Conare, San José 1174-1200, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San José 11501-206, Costa Rica
| |
Collapse
|
2
|
Garg NJ. An Update on Vaccines Against Trypanosoma cruzi and Chagas Disease. Pathogens 2025; 14:124. [PMID: 40005501 PMCID: PMC11857938 DOI: 10.3390/pathogens14020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Chagas disease (CD) is a global health concern, with no existing therapies to prophylactically treat adults traveling to endemic countries or those who may already be infected with Trypanosoma cruzi. The economic burden of Chagas cardiomyopathy and heart failure, due to healthcare costs and lost productivity from premature deaths, provides a strong rationale for investment in the development of immune therapies against CD. Vaccine efficacy is proposed to depend heavily on the induction of a robust Th1 response for the clearance of intracellular pathogens like T. cruzi. In this review, updated information on the efforts for vaccine development against CD is provided.
Collapse
Affiliation(s)
- Nisha J. Garg
- Department of Microbiology & Immunology, University of Texas Medical Branch (UTMB), Galveston, TX 77555-1070, USA;
- Institute for Human Infections and Immunity, University of Texas Medical Branch (UTMB), Galveston, TX 77555-1070, USA
| |
Collapse
|
3
|
Goodarzi MM, Mosayebi G, Ganji A, Raoufi E, Sadelaji S, Babaei S, Abtahi H. HPV16 mutant E6/E7 construct is protective in mouse model. BMC Biotechnol 2024; 24:71. [PMID: 39350162 PMCID: PMC11443707 DOI: 10.1186/s12896-024-00893-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Human papillomavirus type 16 (HPV-16) infection is strongly associated with considerable parts of cervical, neck, and head cancers. Performed investigations have had moderate clinical success, so research to reach an efficient vaccine has been of great interest. In the present study, the immunization potential of a newly designed HPV-16 construct was evaluated in a mouse model. RESULTS Initially, a construct containing HPV-16 mutant (m) E6/E7 fusion gene was designed and antigen produced in two platforms (i.e., DNA vaccine and recombinant protein). Subsequently, the immunogenicity of these platforms was investigated in five mice) C57BL/6 (groups based on several administration strategies. Three mice groups were immunized recombinant protein, DNA vaccine, and a combination of them, and two other groups were negative controls. The peripheral blood mononuclear cells (PBMCs) proliferation, Interleukin-5 (IL-5) and interferon-γ (IFN-γ) cytokines, IgG1 and IgG2a antibody levels were measured. After two weeks, TC-1 tumor cells were injected into all mice groups, and subsequently further analysis of tumor growth and metastasis and mice survival were performed according to the schedule. Overall, the results obtained from in vitro immunology and tumor cells challenging assays indicated the potential of the mE6/E7 construct as an HPV16 therapeutic vaccine candidate. The results demonstrated a significant increase in IFN-γ cytokine (P value < 0.05) in the Protein/Protein (D) and DNA/Protein (E) groups. This finding was in agreement with in vivo assays. Control groups show a 10.5-fold increase (P value < 0.001) and (C) DNA/DNA group shows a 2.5-fold increase (P value < 0.01) in tumor growth compared to D and E groups. Also, a significant increase in survival of D and E (P value < 0.001) and C (P value < 0.01) groups were observed. CONCLUSIONS So, according to the findings, the recombinant protein could induce stronger protection compared to the DNA vaccine form. Protein/Protein and DNA/Protein are promising administration strategies for presenting this construct to develop an HPV-16 therapeutic vaccine candidate.
Collapse
Affiliation(s)
- Maryam Moazami Goodarzi
- Department of Medical Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ghasem Mosayebi
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ali Ganji
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ehsan Raoufi
- Vaccine research center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Sadelaji
- Department of Microbiology and Immunology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Saeid Babaei
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
4
|
Farani PSG, Jones KM, Poveda C. Treatments and the Perspectives of Developing a Vaccine for Chagas Disease. Vaccines (Basel) 2024; 12:870. [PMID: 39203996 PMCID: PMC11359273 DOI: 10.3390/vaccines12080870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Chagas disease (CD) treatment and vaccine development are critical due to the significant health burden caused by the disease, especially in Latin America. Current treatments include benznidazole and nifurtimox, which are most effective in the acute phase of the disease but less so in the chronic phase, often with significant side effects. Here, using the available literature, we summarize the progress in vaccine development and new treatments that promise to reduce CD incidence and improve the quality of life for those at risk, particularly in endemic regions. New treatment options, such as posaconazole and fexinidazole, are being explored to improve efficacy and reduce adverse effects. Vaccine development for CD remains a high priority. The complex life stages and genetic diversity of Trypanosoma cruzi present challenges, but several promising vaccine candidates are under investigation. These efforts focus on stimulating a protective immune response through various innovative approaches.
Collapse
Affiliation(s)
- Priscila Silva Grijó Farani
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Kathryn Marie Jones
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristina Poveda
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Rios LE, Lokugamage N, Choudhuri S, Chowdhury IH, Garg NJ. Subunit nanovaccine elicited T cell functional activation controls Trypanosoma cruzi mediated maternal and placental tissue damage and improves pregnancy outcomes in mice. NPJ Vaccines 2023; 8:188. [PMID: 38104118 PMCID: PMC10725459 DOI: 10.1038/s41541-023-00782-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023] Open
Abstract
This study investigated a candidate vaccine effect against maternal Trypanosoma cruzi (Tc) infection and improved pregnancy outcomes. For this, TcG2 and TcG4 were cloned in a nanoplasmid optimized for delivery, antigen expression, and regulatory compliance (nano2/4 vaccine). Female C57BL/6 mice were immunized with nano2/4, infected (Tc SylvioX10), and mated 7-days post-infection to enable fetal development during the maternal acute parasitemia phase. Females were euthanized at E12-E17 (gestation) days. Splenic and placental T-cell responses were monitored by flow cytometry. Maternal and placental/fetal tissues were examined for parasites by qPCR and inflammatory infiltrate by histology. Controls included age/immunization-matched non-pregnant females. Nano2/4 exhibited no toxicity and elicited protective IgG2a/IgG1 response in mice. Nano2/4 signaled a splenic expansion of functionally active CD4+ effector/effector memory (Tem) and central memory (Tcm) cells in pregnant mice. Upon challenge infection, nano2/4 increased the splenic CD4+ and CD8+T cells in all mice and increased the proliferation of CD4+Tem, CD4+Tcm, and CD8+Tcm subsets producing IFNγ and cytolytic molecules (PRF1, GZB) in pregnant mice. A balanced serum cytokines/chemokines response and placental immune characteristics indicated that pregnancy prevented the overwhelming damaging immune response in mice. Importantly, pregnancy itself resulted in a significant reduction of parasites in maternal and fetal tissues. Nano2/4 was effective in arresting the Tc-induced tissue inflammatory infiltrate, necrosis, and fibrosis in maternal and placental tissues and improving maternal fertility, placental efficiency, and fetal survival. In conclusion, we show that maternal nano2/4 vaccination is beneficial in controlling the adverse effects of Tc infection on maternal health, fetal survival, and pregnancy outcomes.
Collapse
Affiliation(s)
- Lizette Elaine Rios
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
- Department of Biochemistry and Molecular Biology, UTMB, Galveston, TX, USA
| | - Nandadeva Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Subhadip Choudhuri
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Imran Hussain Chowdhury
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA.
- Institute for Human Infections and Immunity (IHII), UTMB, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences (SIVS), UTMB, Galveston, TX, USA.
| |
Collapse
|
6
|
Clímaco MDC, de Figueiredo LA, Lucas RC, Pinheiro GRG, Dias Magalhães LM, Oliveira ALGD, Almeida RM, Barbosa FS, Castanheira Bartholomeu D, Bueno LL, Mendes TA, Zhan B, Jones KM, Hotez P, Bottazzi ME, Oliveira FMS, Fujiwara RT. Development of chimeric protein as a multivalent vaccine for human Kinetoplastid infections: Chagas disease and leishmaniasis. Vaccine 2023; 41:5400-5411. [PMID: 37479612 DOI: 10.1016/j.vaccine.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Leishmania spp. and Trypanosoma cruzi are parasitic kinetoplastids of great medical and epidemiological importance since they are responsible for thousands of deaths and disability-adjusted life-years annually, especially in low- and middle-income countries. Despite efforts to minimize their impact, current prevention measures have failed to fully control their spread. There are still no vaccines available. Taking into account the genetic similarity within the Class Kinetoplastida, we selected CD8+ T cell epitopes preserved among Leishmania spp. and T. cruzi to construct a multivalent and broad-spectrum chimeric polyprotein vaccine. In addition to inducing specific IgG production, immunization with the vaccine was able to significantly reduce parasite burden in the colon, liver and skin lesions from T. cruzi, L. infantum and L. mexicana challenged mice, respectively. These findings were supported by histopathological analysis, which revealed decreased inflammation in the colon, a reduced number of degenerated hepatocytes and an increased proliferation of connective tissue in the skin lesions of the corresponding T. cruzi, L. infantum and L. mexicana vaccinated and challenged mice. Collectively, our results support the protective effect of a polyprotein vaccine approach and further studies will elucidate the immune profile associated with this protection. Noteworthy, our results act as conceptual proof that a single multi-kinetoplastida vaccine can be used effectively to control different infectious etiologies, which in turn can have a profound impact on the development of a new generation of vaccines.
Collapse
Affiliation(s)
- Marianna de Carvalho Clímaco
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiza Almeida de Figueiredo
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rayane Cristina Lucas
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Luísa Mourão Dias Magalhães
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Laura Grossi de Oliveira
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raquel Martins Almeida
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Lilian Lacerda Bueno
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tiago Antonio Mendes
- Department of Biochemistry and Molecular Biology, Institute of Biotechnology Applied to Agropecuaria, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Bin Zhan
- National School of Tropical Medicine, Departments of Pediatrics and Molecular Virology & Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | - Kathryn Marie Jones
- National School of Tropical Medicine, Departments of Pediatrics and Molecular Virology & Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | - Peter Hotez
- National School of Tropical Medicine, Departments of Pediatrics and Molecular Virology & Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | - Maria Elena Bottazzi
- National School of Tropical Medicine, Departments of Pediatrics and Molecular Virology & Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | - Fabrício Marcus Silva Oliveira
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
7
|
Rial MS, Reigada C, Prado N, Bua J, Esteva M, Pereira CA, Fichera LE. Effectiveness of the repurposed drug isotretinoin in an experimental murine model of Chagas disease. Acta Trop 2023; 242:106920. [PMID: 37028584 DOI: 10.1016/j.actatropica.2023.106920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Benznidazole and nifurtimox are the drugs currently used for the treatment of Chagas disease, however its side effects may affect patient adherence. In the search for new alternative therapies, we previously identified isotretinoin (ISO), an FDA-approved drug widely used for the treatment of severe acne through a drug repurposing strategy. ISO shows a strong activity against Trypanosoma cruzi parasites in the nanomolar range, and its mechanism of action is through the inhibition of T. cruzi polyamine and amino acid transporters from the Amino Acid/Auxin Permeases (AAAP) family. In this work, a murine model of chronic Chagas disease (C57BL/6 J mice), intraperitoneally infected with T. cruzi Nicaragua isolate (DTU TcI), were treated with different oral administrations of ISO: daily doses of 5 mg/kg/day for 30 days and weekly doses of 10 mg/kg during 13 weeks. The efficacy of the treatments was evaluated by monitoring blood parasitemia by qPCR, anti-T. cruzi antibodies by ELISA, and cardiac abnormalities by electrocardiography. No parasites were detected in blood after any of the ISO treatments. The electrocardiographic study of the untreated chronic mice showed a significant decrease in heart rate, while in the treated mice this negative chronotropic effect was not observed. Atrioventricular nodal conduction time in untreated mice was significantly longer than in treated animals. Mice treated even with ISO 10 mg/kg dose every 7 days, showed a significant reduction in anti-T. cruzi IgG levels. In conclusion, the intermittent administration of ISO 10 mg/kg would improve myocardial compromise during the chronic stage.
Collapse
Affiliation(s)
- Marcela S Rial
- Instituto Nacional de Parasitología Dr. M Fatala Chaben/ANLIS-Malbrán, Buenos Aires, Argentina
| | - Chantal Reigada
- Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nilda Prado
- Instituto Nacional de Parasitología Dr. M Fatala Chaben/ANLIS-Malbrán, Buenos Aires, Argentina
| | - Jacqueline Bua
- Instituto Nacional de Parasitología Dr. M Fatala Chaben/ANLIS-Malbrán, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mónica Esteva
- Instituto Nacional de Parasitología Dr. M Fatala Chaben/ANLIS-Malbrán, Buenos Aires, Argentina
| | - Claudio A Pereira
- Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Laura E Fichera
- Instituto Nacional de Parasitología Dr. M Fatala Chaben/ANLIS-Malbrán, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
8
|
Zhou P, Zhou Z, Huayu M, Wang L, Feng L, Xiao Y, Dai Y, Xin M, Tang F, Li R. A multi-epitope vaccine GILE against Echinococcus Multilocularis infection in mice. Front Immunol 2023; 13:1091004. [PMID: 36733393 PMCID: PMC9887108 DOI: 10.3389/fimmu.2022.1091004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction The objective of this study is to construct a multi-epitope vaccine GILE containing B-cell and T-cell epitopes against Echinococcus Multilocularis (E. multilocularis) infection based on the dominant epitopes of E. multilocularis EMY162, LAP, and GLUT1. Methods The structure and hydrophobicity of GILE were predicted by SWISSMODEL, pyMOL, SOPMA and VMD, and its sequence was optimized by Optimum™ Codon. The GILE gene was inserted into pCzn1 and transformed into Escherichia coli Arctic express competent cells. IPTG was added to induce the expression of recombinant proteins. High-purity GILE recombinant protein was obtained by Ni-NTA Resin. BALB/c mice were immunized with GILE mixed with Freund's adjuvant, and the antibody levels and dynamic changes in the serum were detected by ELISA. Lymphocyte proliferation was detected by MTS. The levels of IFN-g and IL-4 were detected by ELISpot and flow cytometry (FCM). T cells were detected by FCM. The growth of hepatic cysts was evaluated by Ultrasound and their weights were measured to evaluate the immune protective effect of GILE. Results The SWISS-MODEL analysis showed that the optimal model was EMY162 95-104-LAP464-479-LAP495-510-LAP396-410-LAP504-518-EMY162112-126. The SOPMA results showed that there were Alpha helix (14.88%), Extended strand (26.25%), Beta turn (3.73%) and Random coil (45.82%) in the secondary structure of GILE. The restriction enzyme digestion and sequencing results suggested that the plasmid pCzn1-GILE was successfully constructed. The SDSPAGE results indicated that the recombinant protein was 44.68 KD. The ELISA results indicated that mice immunized with GILE showed higher levels of serum antibodies compared to the PBS group. The FCM and ELISpot results indicated that mice immunized with GILE secreted more IFN-g and IL-4. Immunization with GILE also led to a significant decrease in the maximum diameter and weight of cysts and stimulated the production of CD4+ and CD8+ T Cell. Discussion A multi-epitope vaccine GILE with good immunogenicity and antigenicity has been successfully constructed in this study, which may provide important theoretical and experimental bases for the prevention and treatment of E. multilocularis infection.
Collapse
Affiliation(s)
- Pei Zhou
- Qinghai University Medical College, Xining, Qinghai, China,Research Center for High Altitude Medicine, Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai Provincial Key Laboratory of Plateau Medical Application, Key Laboratory of Ministry of Education, Qinghai University, Xining, Qinghai, China
| | - Zhen Zhou
- Research Center for High Altitude Medicine, Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai Provincial Key Laboratory of Plateau Medical Application, Key Laboratory of Ministry of Education, Qinghai University, Xining, Qinghai, China
| | - Meiduo Huayu
- Research Center for High Altitude Medicine, Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai Provincial Key Laboratory of Plateau Medical Application, Key Laboratory of Ministry of Education, Qinghai University, Xining, Qinghai, China
| | - Lei Wang
- Department of Pathology, The Second Xiangya Hospital DE Central South University, Changsha, Hunan, China
| | - Lin Feng
- Qinghai University Medical College, Xining, Qinghai, China,Research Center for High Altitude Medicine, Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai Provincial Key Laboratory of Plateau Medical Application, Key Laboratory of Ministry of Education, Qinghai University, Xining, Qinghai, China
| | - Yang Xiao
- Qinghai University Medical College, Xining, Qinghai, China,Research Center for High Altitude Medicine, Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai Provincial Key Laboratory of Plateau Medical Application, Key Laboratory of Ministry of Education, Qinghai University, Xining, Qinghai, China
| | - Yao Dai
- Qinghai University Medical College, Xining, Qinghai, China,Research Center for High Altitude Medicine, Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai Provincial Key Laboratory of Plateau Medical Application, Key Laboratory of Ministry of Education, Qinghai University, Xining, Qinghai, China
| | - Mingyuan Xin
- Qinghai University Medical College, Xining, Qinghai, China
| | - Feng Tang
- Research Center for High Altitude Medicine, Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai Provincial Key Laboratory of Plateau Medical Application, Key Laboratory of Ministry of Education, Qinghai University, Xining, Qinghai, China,*Correspondence: Feng Tang, ; Runle Li,
| | - Runle Li
- Qinghai University Medical College, Xining, Qinghai, China,Research Center for High Altitude Medicine, Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai Provincial Key Laboratory of Plateau Medical Application, Key Laboratory of Ministry of Education, Qinghai University, Xining, Qinghai, China,*Correspondence: Feng Tang, ; Runle Li,
| |
Collapse
|
9
|
Jones KM, Poveda C, Versteeg L, Bottazzi ME, Hotez PJ. Preclinical advances and the immunophysiology of a new therapeutic chagas disease vaccine. Expert Rev Vaccines 2022; 21:1185-1203. [PMID: 35735065 DOI: 10.1080/14760584.2022.2093721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Chronic infection with the protozoal parasite Trypanosoma cruzi leads to a progressive cardiac disease, known as chronic Chagasic cardiomyopathy (CCC). A new therapeutic Chagas disease vaccine is in development to augment existing antiparasitic chemotherapy drugs. AREAS COVERED We report on our current understanding of the underlying immunologic and physiologic mechanisms that lead to CCC, including parasite immune escape mechanisms that allow persistence and the subsequent inflammatory and fibrotic processes that lead to clinical disease. We report on vaccine design and the observed immunotherapeutic effects including induction of a balanced TH1/TH2/TH17 immune response that leads to reduced parasite burdens and tissue pathology. Further, we report vaccine-linked chemotherapy, a dose sparing strategy to further reduce parasite burdens and tissue pathology. EXPERT OPINION Our vaccine-linked chemotherapeutic approach is a multimodal treatment strategy, addressing both the parasite persistence and the underlying deleterious host inflammatory and fibrotic responses that lead to cardiac dysfunction. In targeting treatment towards patients with chronic indeterminate or early determinate Chagas disease, this vaccine-linked chemotherapeutic approach will be highly economical and will reduce the global disease burden and deaths due to CCC.
Collapse
Affiliation(s)
- Kathryn M Jones
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Cristina Poveda
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Leroy Versteeg
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America.,Cell Biology and Immunology Group, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Biology, Baylor University, Waco, Texas, United States of America.,James A. Baker III Institute for Public Policy, Rice University, Houston, Texas, United States of America.,Hagler Institute for Advanced Study at Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
10
|
Use of a small molecule integrin activator as a systemically administered vaccine adjuvant in controlling Chagas disease. NPJ Vaccines 2021; 6:114. [PMID: 34497271 PMCID: PMC8426359 DOI: 10.1038/s41541-021-00378-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 08/13/2021] [Indexed: 01/07/2023] Open
Abstract
The development of suitable safe adjuvants to enhance appropriate antigen-driven immune responses remains a challenge. Here we describe the adjuvant properties of a small molecule activator of the integrins αLβ2 and α4β1, named 7HP349, which can be safely delivered systemically independent of antigen. 7HP349 directly activates integrin cell adhesion receptors crucial for the generation of an immune response. When delivered systemically in a model of Chagas disease following immunization with a DNA subunit vaccine encoding candidate T. cruzi antigens, TcG2 and TcG4, 7HP349 enhanced the vaccine efficacy in both prophylactic and therapeutic settings. In a prophylactic setting, mice immunized with 7HP349 adjuvanted vaccine exhibited significantly improved control of acute parasite burden in cardiac and skeletal muscle as compared to vaccination alone. When administered with vaccine therapeutically, parasite burden was again decreased, with the greatest adjuvant effect of 7HP349 being noted in skeletal muscle. In both settings, adjuvantation with 7HP349 was effective in decreasing pathological inflammatory infiltrate, improving the integrity of tissue, and controlling tissue fibrosis in the heart and skeletal muscle of acutely and chronically infected Chagas mice. The positive effects correlated with increased splenic frequencies of CD8+T effector cells and an increase in the production of IFN-γ and cytolytic molecules (perforin and granzyme) by the CD4+ and CD8+ effector and central memory subsets in response to challenge infection. This demonstrates that 7HP349 can serve as a systemically administered adjuvant to enhance T cell-mediated immune responses to vaccines. This approach could be applied to numerous vaccines with no reformulation of existing stockpiles.
Collapse
|
11
|
Rial MS, Seremeta KP, Esteva MI, Búa J, Salomon CJ, Fichera LE. In vitro studies and preclinical evaluation of benznidazole microparticles in the acute Trypanosoma cruzi murine model. Parasitology 2021; 148:566-575. [PMID: 33298212 PMCID: PMC10950374 DOI: 10.1017/s0031182020002310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 01/28/2023]
Abstract
Chagas disease is a serious parasitic infection caused by Trypanosoma cruzi. Unfortunately, the current chemotherapeutic tools are not enough to combat the infection. The aim of this study was to evaluate the trypanocidal activity of benznidazole-loaded microparticles during the acute phase of Chagas infection in an experimental murine model. Microparticles were prepared by spray-drying using copolymers derived from esters of acrylic and methacrylic acids as carriers. Dissolution efficiency of the formulations was up to 3.80-fold greater than that of raw benznidazole. Stability assay showed no significant difference (P > 0.05) in the loading capacity of microparticles for 3 years. Cell cultures showed no visible morphological changes or destabilization of the cell membrane nor haemolysis was observed in defibrinated human blood after microparticles treatment. Mice with acute lethal infection survived 100% after 30 days of treatment with benznidazole microparticles (50 mg kg-1 day-1). Furthermore, no detectable parasite load measured by quantitative polymerase chain reaction and lower levels of T. cruzi-specific antibodies by enzyme-linked immunosorbent assay were found in those mice. A significant decrease in the inflammation of heart tissue after treatment with these microparticles was observed, in comparison with the inflammatory damage observed in both infected mice treated with raw benznidazole and untreated infected mice. Therefore, these polymeric formulations are an attractive approach to treat Chagas disease.
Collapse
Affiliation(s)
- Marcela S. Rial
- Instituto Nacional de Parasitología Dr M. Fatala Chaben, ANLIS CG Malbrán, Ministerio de Salud, Av. Paseo Colón 568, Ciudad de Buenos Aires, Argentina
| | - Katia P. Seremeta
- Departamento de Ciencias Básicas y Aplicadas, Universidad Nacional del Chaco Austral, Cte. Fernández 755, 3700, Pcia. Roque Sáenz Peña, Chaco, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mónica I. Esteva
- Instituto Nacional de Parasitología Dr M. Fatala Chaben, ANLIS CG Malbrán, Ministerio de Salud, Av. Paseo Colón 568, Ciudad de Buenos Aires, Argentina
| | - Jacqueline Búa
- Instituto Nacional de Parasitología Dr M. Fatala Chaben, ANLIS CG Malbrán, Ministerio de Salud, Av. Paseo Colón 568, Ciudad de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Claudio J. Salomon
- Instituto de Química Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIR-CONICET), Suipacha 531, 2000, Rosario, Argentina
- Área Técnica Farmacéutica, Departamento de Farmacia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Laura E. Fichera
- Instituto Nacional de Parasitología Dr M. Fatala Chaben, ANLIS CG Malbrán, Ministerio de Salud, Av. Paseo Colón 568, Ciudad de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
12
|
Vergni D, Gaudio R, Santoni D. The farther the better: Investigating how distance from human self affects the propensity of a peptide to be presented on cell surface by MHC class I molecules, the case of Trypanosoma cruzi. PLoS One 2020; 15:e0243285. [PMID: 33284846 PMCID: PMC7721184 DOI: 10.1371/journal.pone.0243285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 11/19/2020] [Indexed: 12/04/2022] Open
Abstract
More than twenty years ago the reverse vaccinology paradigm came to light trying to design new vaccines based on the analysis of genomic information in order to select those pathogen peptides able to trigger an immune response. In this context, focusing on the proteome of Trypanosoma cruzi, we investigated the link between the probabilities for pathogen peptides to be presented on a cell surface and their distance from human self. We found a reasonable but, as far as we know, undiscovered property: the farther the distance between a peptide and the human-self the higher the probability for that peptide to be presented on a cell surface. We also found that the most distant peptides from human self bind, on average, a broader collection of HLAs than expected, implying a potential immunological role in a large portion of individuals. Finally, introducing a novel quantitative indicator for a peptide to measure its potential immunological role, we proposed a pool of peptides that could be potential epitopes and that can be suitable for experimental testing. The software to compute peptide classes according to the distance from human self is free available at http://www.iasi.cnr.it/~dsantoni/nullomers.
Collapse
Affiliation(s)
- Davide Vergni
- Istituto per le Applicazioni del Calcolo “Mauro Picone” - CNR, Rome, Italy
| | - Rosanna Gaudio
- Department of Biology, University Tor Vergata, Rome, Italy
| | - Daniele Santoni
- Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti” - CNR, Rome, Italy
- * E-mail:
| |
Collapse
|
13
|
Rodríguez-Morales O, Cabrera-Mata JJ, Carrillo-Sánchez SDC, Gutiérrez-Ocejo RA, Baylón-Pacheco L, Pérez-Reyes OL, Rosales-Encina JL, Aranda-Fraustro A, Hernández-García S, Arce-Fonseca M. Electrolyzed Oxidizing Water Modulates the Immune Response in BALB/c Mice Experimentally Infected with Trypanosoma cruzi. Pathogens 2020; 9:E974. [PMID: 33238401 PMCID: PMC7700191 DOI: 10.3390/pathogens9110974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 12/02/2022] Open
Abstract
Chagas disease is a major public health problem in Latin America. The mixed Th1/Th2 immune response is required against Trypanosoma cruzi. Electrolyzed oxidizing water (EOW) has been shown to have germicidal efficacy. The objective of this study was to evaluate the EOW effectiveness in T. cruzi-infected BALB/c mice clinically, immunologically, and histologically. The severity of the infection was assessed by parasitaemia, general health condition, mortality, mega syndromes, and histological lesions. IgG, TNF-alpha, IFN-gamma, and IL-1 beta levels were quantified. The EOW administration showed a beneficial effect on parasitaemia, general physical condition, and mortality. High levels of IgG1 at 50 days postinfection were observed. Prophylactic EOW treatment was able to induce a predominantly TH1 immune response based on an IgG2a levels increase at the late acute phase, and a 10-fold increase of INF-gamma in whole acute phase. EOW was able to control the acute phase infection as effectively as benznidazole. Splenomegaly was caused by EOW treatment and lymphadenopathy was stimulated by T. cruzi infection in all groups. Severe tissue damage was not prevented by EOW treatments. Moderate efficacy may be due to immunomodulatory properties and not to a direct toxic effect on the parasite.
Collapse
Affiliation(s)
- Olivia Rodríguez-Morales
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (O.R.-M.); (J.J.C.-M.); (S.d.C.C.-S.); (R.A.G.-O.)
| | - Juan José Cabrera-Mata
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (O.R.-M.); (J.J.C.-M.); (S.d.C.C.-S.); (R.A.G.-O.)
| | - Silvia del C. Carrillo-Sánchez
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (O.R.-M.); (J.J.C.-M.); (S.d.C.C.-S.); (R.A.G.-O.)
| | - Rodolfo A. Gutiérrez-Ocejo
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (O.R.-M.); (J.J.C.-M.); (S.d.C.C.-S.); (R.A.G.-O.)
| | - Lidia Baylón-Pacheco
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (L.B.-P.); (J.L.R.-E.)
| | - Olga L. Pérez-Reyes
- Department of Pathology, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (O.L.P.-R.); (A.A.-F.)
| | - José Luis Rosales-Encina
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (L.B.-P.); (J.L.R.-E.)
| | - Alberto Aranda-Fraustro
- Department of Pathology, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (O.L.P.-R.); (A.A.-F.)
| | - Sergio Hernández-García
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico;
| | - Minerva Arce-Fonseca
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (O.R.-M.); (J.J.C.-M.); (S.d.C.C.-S.); (R.A.G.-O.)
| |
Collapse
|
14
|
DNA Vaccine Treatment in Dogs Experimentally Infected with Trypanosoma cruzi. J Immunol Res 2020; 2020:9794575. [PMID: 32455143 PMCID: PMC7222601 DOI: 10.1155/2020/9794575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/08/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023] Open
Abstract
Chagas disease is a chronic and potentially lethal disorder caused by the parasite Trypanosoma cruzi, and an effective treatment has not been developed for chronic Chagas disease. The objective of this study was to determine the effectiveness of a therapeutic DNA vaccine containing T. cruzi genes in dogs with experimentally induced Chagas disease through clinical, pathological, and immunological analyses. Infection of Beagle dogs with the H8 T. cruzi strain was performed intraperitoneally with 3500 metacyclic trypomastigotes/kg body weight. Two weeks after infection, plasmid DNA immunotherapy was administered thrice at 15-day intervals. The clinical (physical and cabinet studies), immunological (antibody and cytokine profiles and lymphoproliferation), and macro- and microscopic pathological findings were described. A significant increase in IgG and cell proliferation was recorded after immunotherapy, and the highest stimulation index (3.02) was observed in dogs treated with the pBCSSP4 plasmid. The second treatment with both plasmids induced an increase in IL-1, and the third treatment with the pBCSSP4 plasmid induced an increase in IL-6. The pBCSP plasmid had a good Th1 response regulated by high levels of IFN-gamma and TNF-alpha, whereas the combination of the two plasmids did not have a synergistic effect. Electrocardiographic studies registered lower abnormalities and the lowest number of individuals with abnormalities in each group treated with the therapeutic vaccine. Echocardiograms showed that the pBCSSP4 plasmid immunotherapy preserved cardiac structure and function to a greater extent and prevented cardiomegaly. The two plasmids alone controlled the infection moderately by a reduction in the inflammatory infiltrates in heart tissue. The immunotherapy was able to reduce the magnitude of cardiac lesions and modulate the cellular immune response; the pBCSP treatment showed a clear Th1 response; and pBCSSP4 induced a balanced Th1/Th2 immune response that prevented severe cardiac involvement. The pBCSSP4 plasmid had a better effect on most of the parameters evaluated in this study; therefore, this plasmid can be considered an optional treatment against Chagas disease in naturally infected dogs.
Collapse
|
15
|
Drug-cured experimental Trypanosoma cruzi infections confer long-lasting and cross-strain protection. PLoS Negl Trop Dis 2020; 14:e0007717. [PMID: 32302312 PMCID: PMC7190179 DOI: 10.1371/journal.pntd.0007717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 04/29/2020] [Accepted: 02/11/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The long term and complex nature of Chagas disease in humans has restricted studies on vaccine feasibility. Animal models also have limitations due to technical difficulties in monitoring the extremely low parasite burden that is characteristic of chronic stage infections. Advances in imaging technology offer alternative approaches that circumvent these problems. Here, we describe the use of highly sensitive whole body in vivo imaging to assess the efficacy of recombinant viral vector vaccines and benznidazole-cured infections to protect mice from challenge with Trypanosoma cruzi. METHODOLOGY/PRINCIPAL FINDINGS Mice were infected with T. cruzi strains modified to express a red-shifted luciferase reporter. Using bioluminescence imaging, we assessed the degree of immunity to re-infection conferred after benznidazole-cure. Those infected for 14 days or more, prior to the onset of benznidazole treatment, were highly protected from challenge with both homologous and heterologous strains. There was a >99% reduction in parasite burden, with parasites frequently undetectable after homologous challenge. This level of protection was considerably greater than that achieved with recombinant vaccines. It was also independent of the route of infection or size of the challenge inoculum, and was long-lasting, with no significant diminution in immunity after almost a year. When the primary infection was benznidazole-treated after 4 days (before completion of the first cycle of intracellular infection), the degree of protection was much reduced, an outcome associated with a minimal T. cruzi-specific IFN-γ+ T cell response. CONCLUSIONS/SIGNIFICANCE Our findings suggest that a protective Chagas disease vaccine must have the ability to eliminate parasites before they reach organs/tissues, such as the GI tract, where once established, they become largely refractory to the induced immune response.
Collapse
|
16
|
Rial MS, Arrúa EC, Natale MA, Bua J, Esteva MI, Prado NG, Laucella SA, Salomon CJ, Fichera LE. Efficacy of continuous versus intermittent administration of nanoformulated benznidazole during the chronic phase of Trypanosoma cruzi Nicaragua infection in mice. J Antimicrob Chemother 2020; 75:1906-1916. [DOI: 10.1093/jac/dkaa101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/10/2020] [Accepted: 02/20/2020] [Indexed: 12/30/2022] Open
Abstract
Abstract
Background
Benznidazole and nifurtimox are effective drugs used to treat Chagas’ disease; however, their administration in patients in the chronic phase of the disease is still limited, mainly due to their limited efficacy in the later chronic stage of the disease and to the adverse effects related to these drugs.
Objectives
To evaluate the effect of low doses of nanoformulated benznidazole using a chronic model of Trypanosoma cruzi Nicaragua infection in C57BL/6J mice.
Methods
Nanoformulations were administered in two different schemes: one daily dose for 30 days or one dose every 7 days, 13 times.
Results
Both treatment schemes showed promising outcomes, such as the elimination of parasitaemia, a reduction in the levels of T. cruzi-specific antibodies and a reduction in T. cruzi-specific IFN-γ-producing cells, as well as an improvement in electrocardiographic alterations and a reduction in inflammation and fibrosis in the heart compared with untreated T. cruzi-infected animals. These results were also compared with those from our previous work on benznidazole administration, which was shown to be effective in the same chronic model.
Conclusions
In this experimental model, intermittently administered benznidazole nanoformulations were as effective as those administered continuously; however, the total dose administered in the intermittent scheme was lower, indicating a promising therapeutic approach to Chagas’ disease.
Collapse
Affiliation(s)
- M S Rial
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, ANLIS “Dr. Carlos G. Malbrán”, Ministerio de Salud de la Nación, Buenos Aires, Argentina
| | - E C Arrúa
- Area Técnica Farmacéutica, Departamento de Farmacia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - M A Natale
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, ANLIS “Dr. Carlos G. Malbrán”, Ministerio de Salud de la Nación, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - J Bua
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, ANLIS “Dr. Carlos G. Malbrán”, Ministerio de Salud de la Nación, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - M I Esteva
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, ANLIS “Dr. Carlos G. Malbrán”, Ministerio de Salud de la Nación, Buenos Aires, Argentina
| | - N G Prado
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, ANLIS “Dr. Carlos G. Malbrán”, Ministerio de Salud de la Nación, Buenos Aires, Argentina
| | - S A Laucella
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, ANLIS “Dr. Carlos G. Malbrán”, Ministerio de Salud de la Nación, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - C J Salomon
- Area Técnica Farmacéutica, Departamento de Farmacia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - L E Fichera
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, ANLIS “Dr. Carlos G. Malbrán”, Ministerio de Salud de la Nación, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
17
|
Choudhuri S, Garg NJ. PARP1-cGAS-NF-κB pathway of proinflammatory macrophage activation by extracellular vesicles released during Trypanosoma cruzi infection and Chagas disease. PLoS Pathog 2020; 16:e1008474. [PMID: 32315358 PMCID: PMC7173744 DOI: 10.1371/journal.ppat.1008474] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Trypanosoma cruzi (T. cruzi) is the etiological agent of Chagas cardiomyopathy. In the present study, we investigated the role of extracellular vesicles (Ev) in shaping the macrophage (Mφ) response in progressive Chagas disease (CD). We purified T. cruzi Ev (TcEv) from axenic parasite cultures, and T. cruzi-induced Ev (TEv) from the supernatants of infected cells and plasma of acutely and chronically infected wild-type and Parp1-/- mice. Cultured (Raw 264.7) and bone-marrow Mφ responded to TcEV and TEv with a profound increase in the expression and release of TNF-α, IL-6, and IL-1β cytokines. TEv produced by both immune (Mφ) and non-immune (muscle) cells were proinflammatory. Chemical inhibition or genetic deletion of PARP1 (a DNA repair enzyme) significantly depressed the TEv-induced transcriptional and translational activation of proinflammatory Mφ response. Oxidized DNA encapsulated by TEv was necessary for PARP1-dependent proinflammatory Mφ response. Inhibition studies suggested that DNA-sensing innate immune receptors (cGAS>>TLR9) synergized with PARP1 in signaling the NFκB activation, and inhibition of PARP1 and cGAS resulted in >80% inhibition of TEv-induced NFκB activity. Histochemical studies showed intense inflammatory infiltrate associated with profound increase in CD11b+CD68+TNF-α+ Mφ in the myocardium of CD wild-type mice. In comparison, chronically infected Parp1-/- mice exhibited low-to-moderate tissue inflammation, >80% decline in myocardial infiltration of TNF-α+ Mφ, and no change in immunoregulatory IL-10+ Mφ. We conclude that oxidized DNA released with TEv signal the PARP1-cGAS-NF-κB pathway of proinflammatory Mφ activation and worsens the chronic inflammatory pathology in CD. Small molecule antagonists of PARP1-cGAS signaling pathway would potentially be useful in reprogramming the Mφ activation and controlling the chronic inflammation in CD.
Collapse
Affiliation(s)
- Subhadip Choudhuri
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
- Institute for Human Infections and Immunity (IHII), UTMB, Galveston, Texas, United States of America
| |
Collapse
|
18
|
Induction of Effective Immunity against Trypanosoma cruzi. Infect Immun 2020; 88:IAI.00908-19. [PMID: 31907197 DOI: 10.1128/iai.00908-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/22/2019] [Indexed: 12/17/2022] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, is a major public health issue. Limitations in immune responses to natural T. cruzi infection usually result in parasite persistence with significant complications. A safe, effective, and reliable vaccine would reduce the threat of T. cruzi infections; however, no suitable vaccine is currently available due to a lack of understanding of the requirements for induction of fully protective immunity. We established a T. cruzi strain expressing green fluorescent protein (GFP) under the control of dihydrofolate reductase degradation domain (DDD) with a hemagglutinin (HA) tag, GFP-DDDHA, which was induced by trimethoprim-lactate (TMP-lactate), which results in the death of intracellular parasites. This attenuated strain induces very strong protection against reinfection. Using this GFP-DDDHA strain, we investigated the mechanisms underlying the protective immune response in mice. Immunization with this strain led to a response that included high levels of gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α), as well as a rapid expansion of effector and memory T cells in the spleen. More CD8+ T cells differentiate to memory cells following GFP-DDDHA infection than after infection with a wild-type (WT) strain. The GFP-DDDHA strain also provides cross-protection against another T. cruzi isolate. IFN-γ is important in mediating the protection, as IFN-γ knockout (KO) mice failed to acquire protection when infected with the GFP-DDDHA strain. Immune cells demonstrated earlier and stronger protective responses in immunized mice after reinfection with T. cruzi than those in naive mice. Adoptive transfers with several types of immune cells or with serum revealed that several branches of the immune system mediated protection. A combination of serum and natural killer cells provided the most effective protection against infection in these transfer experiments.
Collapse
|
19
|
Rios L, Campos EE, Menon R, Zago MP, Garg NJ. Epidemiology and pathogenesis of maternal-fetal transmission of Trypanosoma cruzi and a case for vaccine development against congenital Chagas disease. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165591. [PMID: 31678160 PMCID: PMC6954953 DOI: 10.1016/j.bbadis.2019.165591] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/12/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
Trypanos o ma cruzi (T. cruzi or Tc) is the causative agent of Chagas disease (CD). It is common for patients to suffer from non-specific symptoms or be clinically asymptomatic with acute and chronic conditions acquired through various routes of transmission. The expecting women and their fetuses are vulnerable to congenital transmission of Tc. Pregnant women face formidable health challenges because the frontline antiparasitic drugs, benznidazole and nifurtimox, are contraindicated during pregnancy. However, it is worthwhile to highlight that newborns can be cured if they are diagnosed and given treatment in a timely manner. In this review, we discuss the pathogenesis of maternal-fetal transmission of Tc and provide a justification for the investment in the development of vaccines against congenital CD.
Collapse
Affiliation(s)
- Lizette Rios
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - E Emanuel Campos
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - M Paola Zago
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina.
| | - Nisha J Garg
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
20
|
Lokugamage N, Choudhuri S, Davies C, Chowdhury IH, Garg NJ. Antigen-Based Nano-Immunotherapy Controls Parasite Persistence, Inflammatory and Oxidative Stress, and Cardiac Fibrosis, the Hallmarks of Chronic Chagas Cardiomyopathy, in A Mouse Model of Trypanosoma cruzi Infection. Vaccines (Basel) 2020; 8:vaccines8010096. [PMID: 32098116 PMCID: PMC7157635 DOI: 10.3390/vaccines8010096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Chagas cardiomyopathy is caused by Trypanosoma cruzi (Tc). We identified two candidate antigens (TcG2 and TcG4) that elicit antibodies and T cell responses in naturally infected diverse hosts. In this study, we cloned TcG2 and TcG4 in a nanovector and evaluated whether nano-immunotherapy (referred as nano2/4) offers resistance to chronic Chagas disease. For this, C57BL/6 mice were infected with Tc and given nano2/4 at 21 and 42 days post-infection (pi). Non-infected, infected, and infected mice treated with pcDNA3.1 expression plasmid encoding TcG2/TcG4 (referred as p2/4) were used as controls. All mice responded to Tc infection with expansion and functional activation of splenic lymphocytes. Flow cytometry showed that frequency of splenic, poly-functional CD4+ and CD8+ T cells expressing interferon-γ, perforin, and granzyme B were increased by immunotherapy (Tc.nano2/4 > Tc.p2/4) and associated with 88%–99.7% decline in cardiac and skeletal (SK) tissue levels of parasite burden (Tc.nano2/4 > Tc.p2/4) in Chagas mice. Subsequently, Tc.nano2/4 mice exhibited a significant decline in peripheral and tissues levels of oxidative stress (e.g., 4-hydroxynonenal, protein carbonyls) and inflammatory infiltrate that otherwise were pronounced in Chagas mice. Further, nano2/4 therapy was effective in controlling the tissue infiltration of pro-fibrotic macrophages and established a balanced environment controlling the expression of collagens, metalloproteinases, and other markers of cardiomyopathy and improving the expression of Myh7 (encodes β myosin heavy chain) and Gsk3b (encodes glycogen synthase kinase 3) required for maintaining cardiac contractility in Chagas heart. We conclude that nano2/4 enhances the systemic T cell immunity that improves the host’s ability to control chronic parasite persistence and Chagas cardiomyopathy.
Collapse
Affiliation(s)
- Nandadeva Lokugamage
- Department of Microbiology and Immunology, The University of Texas Medical Branch (UTMB), Galveston, TX 77555-1070, USA; (N.L.); (S.C.); (I.H.C.)
| | - Subhadip Choudhuri
- Department of Microbiology and Immunology, The University of Texas Medical Branch (UTMB), Galveston, TX 77555-1070, USA; (N.L.); (S.C.); (I.H.C.)
| | - Carolina Davies
- Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta 4400, Argentina;
| | - Imran Hussain Chowdhury
- Department of Microbiology and Immunology, The University of Texas Medical Branch (UTMB), Galveston, TX 77555-1070, USA; (N.L.); (S.C.); (I.H.C.)
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, The University of Texas Medical Branch (UTMB), Galveston, TX 77555-1070, USA; (N.L.); (S.C.); (I.H.C.)
- Institute for Human Infections and Immunity, UTMB, Galveston, TX 77555, USA
- Correspondence: ; Tel.: +1-409-747-6865
| |
Collapse
|
21
|
Rios LE, Vázquez-Chagoyán JC, Pacheco AO, Zago MP, Garg NJ. Immunity and vaccine development efforts against Trypanosoma cruzi. Acta Trop 2019; 200:105168. [PMID: 31513763 PMCID: PMC7409534 DOI: 10.1016/j.actatropica.2019.105168] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/27/2019] [Accepted: 09/07/2019] [Indexed: 12/28/2022]
Abstract
Trypanosoma cruzi (T. cruzi) is the causative agent for Chagas disease (CD). There is a critical lack of methods for prevention of infection or treatment of acute infection and chronic disease. Studies in experimental models have suggested that the protective immunity against T. cruzi infection requires the elicitation of Th1 cytokines, lytic antibodies and the concerted activities of macrophages, T helper cells, and cytotoxic T lymphocytes (CTLs). In this review, we summarize the research efforts in vaccine development to date and the challenges faced in achieving an efficient prophylactic or therapeutic vaccine against human CD.
Collapse
Affiliation(s)
- Lizette E Rios
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Juan Carlos Vázquez-Chagoyán
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
| | - Antonio Ortega Pacheco
- Departamento de Salud Animal y Medicina Preventiva, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - M Paola Zago
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | - Nisha J Garg
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX.
| |
Collapse
|
22
|
Gupta S, Salgado-Jiménez B, Lokugamage N, Vázquez-Chagoyán JC, Garg NJ. TcG2/TcG4 DNA Vaccine Induces Th1 Immunity Against Acute Trypanosoma cruzi Infection: Adjuvant and Antigenic Effects of Heterologous T. rangeli Booster Immunization. Front Immunol 2019; 10:1456. [PMID: 31293599 PMCID: PMC6606718 DOI: 10.3389/fimmu.2019.01456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/10/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Chagas cardiomyopathy is caused by Trypanosoma cruzi (Tc). Two antigenic candidates, TcG2 and TcG4, are recognized by antibodies in naturally infected dogs and humans; and these vaccine candidates provided protection from Tc infection in mice and dogs. Trypanosoma rangeli (Tr) is non-pathogenic to mammals and shown to elicit cross-reactive anti-Tc antibodies. In this study, we investigated if fixed Tr (fTr) can further enhance the efficacy of the TcG2/TcG4 DNA vaccine. Methods and Results: C57BL/6 mice were immunized with TcG2/TcG4 DNA vaccine and fTr (delivered as an adjuvant or in prime-boost approach), and challenged with Tc. Serology studies showed that fTr (±quil-A) elicited Tc- and Tr-reactive IgGs that otherwise were not stimulated by TcG2/TcG4 vaccine only, and quil-A had suppressive effects on fTr-induced IgGs. After challenge infection, TcG2/TcG4-vaccinated mice exhibited potent expansion of antigen- and Tc-specific IgGs that were not boosted by fTr±quil-A. Flow cytometry analysis showed that TcG2/TcG4-induced dendritic cells (DC) and macrophages (Mφ) responded to challenge infection by expression of markers of antigen uptake, processing, and presentation, and production of pro-inflammatory cytokines. TcG2/TcG4-induced CD4+T cells acquired Th1 phenotype and expressed markers that orchestrate adaptive immunity. A fraction of vaccine-induced CD4+T cells exhibited iTreg phenotype responsible for aversion of self-injurious immune responses. Further, TcG2/TcG4-vaccinated mice exhibited potent expansion of poly-functional CD8+T cells with TNF-α/IFN-γ production and cytolytic phenotype post-infection. Subsequently, tissue parasites and pathology were hardly detectable in TcG2/TcG4-vaccinated/infected mice. Inclusion of fTr±quil-A had no clear additive effects in improving the Tc-specific adaptive immunity and parasite control than was noted in mice vaccinated with TcG2/TcG4 alone. Non-vaccinated mice lacked sufficient activation of Th1 CD4+/CD8+T cells, and exhibited >10-fold higher levels of tissue parasite burden than was noted in vaccinated/infected mice. Conclusion:TcG2/TcG4 vaccine elicits highly effective immunity, and inclusion of fTr is not required to improve the efficacy of DNA vaccine against acute Tc infection in mice.
Collapse
Affiliation(s)
- Shivali Gupta
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Berenice Salgado-Jiménez
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Nandadeva Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Juan Carlos Vázquez-Chagoyán
- Facultad de Medicina Veterinaria y Zootecnia, Centro de Investigación y Estudios Avanzados en Salud Animal, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
23
|
Hegazy-Hassan W, Zepeda-Escobar JA, Ochoa-García L, Contreras-Ortíz JME, Tenorio-Borroto E, Barbabosa-Pliego A, Aparicio-Burgos JE, Oros-Pantoja R, Rivas-Santiago B, Díaz-Albiter H, Garg NJ, Vázquez-Chagoyán JC. TcVac1 vaccine delivery by intradermal electroporation enhances vaccine induced immune protection against Trypanosoma cruzi infection in mice. Vaccine 2018; 37:248-257. [PMID: 30497833 DOI: 10.1016/j.vaccine.2018.11.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
The efforts for the development and testing of vaccines against Trypanosoma cruzi infection have increased during the past years. We have designed a TcVac series of vaccines composed of T. cruzi derived, GPI-anchored membrane antigens. The TcVac vaccines have been shown to elicit humoral and cellular mediated immune responses and provide significant (but not complete) control of experimental infection in mice and dogs. Herein, we aimed to test two immunization protocols for the delivery of DNA-prime/DNA-boost vaccine (TcVac1) composed of TcG2 and TcG4 antigens in a BALB/c mouse model. Mice were immunized with TcVac1 through intradermal/electroporation (IDE) or intramuscular (IM) routes, challenged with T. cruzi, and evaluated during acute phase of infection. The humoral immune response was evaluated through the assessment of anti-TcG2 and anti-TcG4 IgG subtypes by using an ELISA. Cellular immune response was assessed through a lymphocyte proliferation assay. Finally, clinical and morphopathological aspects were evaluated for all experimental animals. Our results demonstrated that when comparing TcVac1 IDE delivery vs IM delivery, the former induced significantly higher level of antigen-specific antibody response (IgG2a + IgG2b > IgG1) and lymphocyte proliferation, which expanded in response to challenge infection. Histological evaluation after challenge infection showed infiltration of inflammatory cells (macrophages and lymphocytes) in the heart and skeletal tissue of all infected mice. However, the largest increase in inflammatory infiltrate was observed in TcVac1_IDE/Tc mice when compared with TcVac1_IM/Tc or non-vaccinated/infected mice. The extent of tissue inflammatory infiltrate was directly associated with the control of tissue amastigote nests in vaccinated/infected (vs. non-vaccinated/infected) mice. Our results suggest that IDE delivery improves the protective efficacy of TcVac1 vaccine against T. cruzi infection in mice when compared with IM delivery of the vaccine.
Collapse
Affiliation(s)
- Wael Hegazy-Hassan
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Km 15.5 Carretera Panamericana Toluca-Atlacomulco, Toluca, Estado de México C.P. 50200, Mexico
| | - José Antonio Zepeda-Escobar
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Km 15.5 Carretera Panamericana Toluca-Atlacomulco, Toluca, Estado de México C.P. 50200, Mexico
| | - Laucel Ochoa-García
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Km 15.5 Carretera Panamericana Toluca-Atlacomulco, Toluca, Estado de México C.P. 50200, Mexico; Laboratorio Estatal de Salud Pública del Instituto de Salud del Estado de México, Independencia Oriente #1310 Colonia: Reforma y FFCC, CP. 50070 Toluca, Estado de México, Mexico
| | - J M Eloy Contreras-Ortíz
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Km 15.5 Carretera Panamericana Toluca-Atlacomulco, Toluca, Estado de México C.P. 50200, Mexico
| | - Esvieta Tenorio-Borroto
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Km 15.5 Carretera Panamericana Toluca-Atlacomulco, Toluca, Estado de México C.P. 50200, Mexico
| | - Alberto Barbabosa-Pliego
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Km 15.5 Carretera Panamericana Toluca-Atlacomulco, Toluca, Estado de México C.P. 50200, Mexico
| | - José Esteban Aparicio-Burgos
- Universidad Autónoma del Estado de Hidalgo, Escuela Superior de Apan, Carretera Apan-Calpulalpan, Km. 8, Chimalpa Tlalayote S/N, Colonia Chimalpa, Apan, C.P. 43920 Hidalgo, Mexico
| | - Rigoberto Oros-Pantoja
- Facultad de Medicina, Universidad Autónoma del Estado de México, Departamento de Neurociencias, Tollocan esq. Jesus Carranza S/N, Colonia Moderna de la Cruz, C.P. 50180 Estado de México, Toluca, Mexico
| | - Bruno Rivas-Santiago
- Unidad de Investigación Médica Zacatecas-IMSS, Interior de la Alameda, 45, Centro, C.P. 98000 Zacatecas, Mexico
| | - Héctor Díaz-Albiter
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, University Place, Glasgow G12 8TA, United Kingdom; El Colegio de la Frontera Sur, Carretera Villahermosa-Reforma Km 15.5, Ranchería Guineo, sección II, CP 86280 Villahermosa, Tabasco, Mexico
| | - Nisha Jain Garg
- Departments of Microbiology & Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1070, United States; Departments of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1070, United States
| | - Juan Carlos Vázquez-Chagoyán
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Km 15.5 Carretera Panamericana Toluca-Atlacomulco, Toluca, Estado de México C.P. 50200, Mexico.
| |
Collapse
|
24
|
Experimental combination therapy using low doses of benznidazole and allopurinol in mouse models of Trypanosoma cruzi chronic infection. Parasitology 2018; 146:305-313. [PMID: 30301480 DOI: 10.1017/s0031182018001567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study evaluated the effectiveness of low doses of benznidazole (BNZ) on continuous administration (BNZc), combined with allopurinol (ALO), in C57BL/6J and C3H/HeN mice infected with Trypanosoma cruzi Nicaragua strain and T. cruzi Sylvio-X10/4 clone. TcN-C57BL/6J was also treated with intermittent doses of BNZ (BNZit). The drug therapy started 3 months post infection (pi) in the chronic phase of mice with heart disease progression, followed-up at 6 months pi. TcN-C57BL/6J treated with BNZc was also monitored up to 12 months pi by serology and electrocardiogram. These mice showed severe electrical abnormalities, which were not observed after BNZc or BNZit. ALO only showed positive interaction with the lowest dose of BNZ. A clear parasitic effect, with significant reductions in antibody titres and parasitic loads, was achieved in all models with low doses of BNZ, and a 25% reduction of the conventional dose showed more efficacy to inhibit the development of the pathology. However, BNZ 75 showed partial efficacy in the TcSylvio-X10/4-C3H/HeN model. In our experimental designs, C57BL/6J allowed to clearly define a chronic phase, and through reproducible efficacy indicators, it can be considered a good preclinical model.
Collapse
|
25
|
Vaccine-Linked Chemotherapy Improves Benznidazole Efficacy for Acute Chagas Disease. Infect Immun 2018; 86:IAI.00876-17. [PMID: 29311242 DOI: 10.1128/iai.00876-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/02/2018] [Indexed: 12/14/2022] Open
Abstract
Chagas disease affects 6 to 7 million people worldwide, resulting in significant disease burdens and health care costs in countries of endemicity. Chemotherapeutic treatment is restricted to two parasiticidal drugs, benznidazole and nifurtimox. Both drugs are highly effective during acute disease but are only minimally effective during chronic disease and fraught with significant adverse clinical effects. In experimental models, vaccines can be used to induce parasite-specific balanced TH1/TH2 immune responses that effectively reduce parasite burdens and associated inflammation while minimizing adverse effects. The objective of this study was to determine the feasibility of vaccine-linked chemotherapy for reducing the amount of benznidazole required to significantly reduce blood and tissue parasite burdens. In this study, we were able to achieve a 4-fold reduction in the amount of benznidazole required to significantly reduce blood and tissue parasite burdens by combining the low-dose benznidazole with a recombinant vaccine candidate, Tc24 C4, formulated with a synthetic Toll-like 4 receptor agonist, E6020, in a squalene oil-in-water emulsion. Additionally, vaccination induced a robust parasite-specific balanced TH1/TH2 immune response. We concluded that vaccine-linked chemotherapy is a feasible option for advancement to clinical use for improving the tolerability and efficacy of benznidazole.
Collapse
|
26
|
Elucidating the impact of low doses of nano-formulated benznidazole in acute experimental Chagas disease. PLoS Negl Trop Dis 2017; 11:e0006119. [PMID: 29267280 PMCID: PMC5755931 DOI: 10.1371/journal.pntd.0006119] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/05/2018] [Accepted: 11/17/2017] [Indexed: 01/05/2023] Open
Abstract
Background Chagas disease is a neglected parasitic infection caused by the protozoan Trypanosoma cruzi (T. cruzi) that affects more than 6 million people, mainly in Latin America. Benznidazole is still the drug of choice in many countries to treat it in spite of its dosage regimen and adverse side effects such as such as allergic dermatitis, peripheral neuropathy and anorexia. Thus, novel, safer, and more efficacious treatments for such neglected infection are urgently required. Methodology In this study, the efficacy of orally administered low doses of benznidazole (BNZ) nanoparticles was evaluated during the acute phase in mice infected with T. cruzi Nicaragua (TcN) that were immunosuppressed during the chronic stage of the disease. Moreover, the production of T. cruzi-specific antibodies, cardiac tissue inflammation and reactive oxygen species generation by Vero cells treated with both BNZ nanoparticles (BNZ-nps) and raw BNZ (R-BNZ) were also evaluated. Principal findings T. cruzi infected mice treated with 10, 25 or 50 mg/kg/day of BNZ-nps survived until euthanasia (92 days post infection (dpi)), while only 15% of infected untreated mice survived until the end of the experiment. PCR analysis of blood samples taken after induction of immunosuppression showed that a dosage of 25 mg/kg/day rendered 40% of the mice PCR-negative. The histological analysis of heart tissue showed a significant decrease in inflammation after treatments with 25 and 50 mg/kg/day, while a similar inflammatory damage was observed in both infected mice treated with R-BNZ (50 mg/kg/day) and untreated mice. In addition, only BNZ-nps treated mice led to lower levels of T. cruzi-specific antibodies to 50–100%. Finally, mammalian Vero cells treated with BNZ-nps or R-BNZ lead to a significant increase in ROS production. Conclusions Based on these findings, this research highlights the in-vitro/in-vivo efficacy of nanoformulated BNZ against T. cruzi acute infections in immunosuppressed and non-immunosuppressed mice and provides further evidence for the optimization of dosage regimens to treat Chagas disease. Chagas disease is a neglected parasitic infection caused by the protozoan Trypanosoma cruzi (T. cruzi) that affects more than 6 million people, mainly in Latin America. Benznidazole is still the drug of choice in many countries to treat it in spite of its dosage regimen and adverse side effects such as such as allergic dermatitis, peripheral neuropathy and anorexia. In this study, the efficacy of low doses of benznidazole, formulated as nanoparticles, against T. cruzi acute infections in immunosuppressed and non-immunosuppressed mice was investigated in order to establish future treatment strategies. In-vivo experiments showed that all infected mice treated with low doses of nanoformulated benznidazole survived until the end of the assay (92 dpi), while only 15% of infected untreated mice survived to the end of the same period of time. Moreover, such novel formulation was able to decrease the parasite burden and, consequently, heart inflammation and lesions were significantly reduced. Clearly, low doses of benznidazole exhibited, at least, the same efficacy in infected mice as the usual dose, confirming the usefulness of nanoformulated benznidazole for an improved treatment of Chagas disease.
Collapse
|
27
|
Chowdhury IH, Koo SJ, Gupta S, Liang LY, Bahar B, Silla L, Nuñez-Burgos J, Barrientos N, Zago MP, Garg NJ. Gene Expression Profiling and Functional Characterization of Macrophages in Response to Circulatory Microparticles Produced during Trypanosoma cruzi Infection and Chagas Disease. J Innate Immun 2016; 9:203-216. [PMID: 27902980 DOI: 10.1159/000451055] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chronic inflammation and oxidative stress are hallmarks of chagasic cardiomyopathy (CCM). In this study, we determined if microparticles (MPs) generated during Trypanosoma cruzi (Tc) infection carry the host's signature of the inflammatory/oxidative state and provide information regarding the progression of clinical disease. METHODS MPs were harvested from supernatants of human peripheral blood mononuclear cells in vitro incubated with Tc (control: LPS treated), plasma of seropositive humans with a clinically asymptomatic (CA) or symptomatic (CS) disease state (vs. normal/healthy [NH] controls), and plasma of mice immunized with a protective vaccine before challenge infection (control: unvaccinated/infected). Macrophages (mφs) were incubated with MPs, and we probed the gene expression profile using the inflammatory signaling cascade and cytokine/chemokine arrays, phenotypic markers of mφ activation by flow cytometry, cytokine profile by means of an ELISA and Bioplex assay, and oxidative/nitrosative stress and mitotoxicity by means of colorimetric and fluorometric assays. RESULTS Tc- and LPS-induced MPs stimulated proliferation, inflammatory gene expression profile, and nitric oxide (∙NO) release in human THP-1 mφs. LPS-MPs were more immunostimulatory than Tc-MPs. Endothelial cells, T lymphocytes, and mφs were the major source of MPs shed in the plasma of chagasic humans and experimentally infected mice. The CS and CA (vs. NH) MPs elicited >2-fold increase in NO and mitochondrial oxidative stress in THP-1 mφs; however, CS (vs. CA) MPs elicited a more pronounced and disease-state-specific inflammatory gene expression profile (IKBKB, NR3C1, and TIRAP vs. CCR4, EGR2, and CCL3), cytokine release (IL-2 + IFN-γ > GCSF), and surface markers of mφ activation (CD14 and CD16). The circulatory MPs of nonvaccinated/infected mice induced 7.5-fold and 40% increases in ∙NO and IFN-γ production, respectively, while these responses were abolished when RAW264.7 mφs were incubated with circulatory MPs of vaccinated/infected mice. CONCLUSION Circulating MPs reflect in vivo levels of an oxidative, nitrosative, and inflammatory state, and have potential utility in evaluating disease severity and the efficacy of vaccines and drug therapies against CCM.
Collapse
Affiliation(s)
- Imran H Chowdhury
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Seid CA, Jones KM, Pollet J, Keegan B, Hudspeth E, Hammond M, Wei J, McAtee CP, Versteeg L, Gutierrez A, Liu Z, Zhan B, Respress JL, Strych U, Bottazzi ME, Hotez PJ. Cysteine mutagenesis improves the production without abrogating antigenicity of a recombinant protein vaccine candidate for human chagas disease. Hum Vaccin Immunother 2016; 13:621-633. [PMID: 27737611 DOI: 10.1080/21645515.2016.1242540] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
A therapeutic vaccine for human Chagas disease is under development by the Sabin Vaccine Institute Product Development Partnership. The aim of the vaccine is to significantly reduce the parasite burden of Trypanosoma cruzi in humans, either as a standalone product or in combination with conventional chemotherapy. Vaccination of mice with Tc24 formulated with monophosphoryl-lipid A (MPLA) adjuvant results in a Th1 skewed immune response with elevated IgG2a and IFNγ levels and a statistically significant decrease in parasitemia following T. cruzi challenge. Tc24 was therefore selected for scale-up and further evaluation. During scale up and downstream process development, significant protein aggregation was observed due to intermolecular disulfide bond formation. To prevent protein aggregation, cysteine codons were replaced with serine codons which resulted in the production of a non-aggregated and soluble recombinant protein, Tc24-C4. No changes to the secondary structure of the modified molecule were detected by circular dichroism. Immunization of mice with wild-type Tc24 or Tc24-C4, formulated with E6020 (TLR4 agonist analog to MPLA) emulsified in a squalene-oil-in-water emulsion, resulted in IgG2a and antigen specific IFNγ production levels from splenocytes that were not significantly different, indicating that eliminating putative intermolecular disulfide bonds had no significant impact on the immunogenicity of the molecule. In addition, vaccination with either formulated wild type Tc24 or Tc24-C4 antigen also significantly increased survival and reduced cardiac parasite burden in mice. Investigations are now underway to examine the efficacy of Tc24-C4 formulated with other adjuvants to reduce parasite burden and increase survival in pre-clinical studies.
Collapse
Affiliation(s)
- Christopher A Seid
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Kathryn M Jones
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA.,b Departments of Pediatrics and Molecular Virology and Microbiology , National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Jeroen Pollet
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA.,b Departments of Pediatrics and Molecular Virology and Microbiology , National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Brian Keegan
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Elissa Hudspeth
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Molly Hammond
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Junfei Wei
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - C Patrick McAtee
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Leroy Versteeg
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Amanda Gutierrez
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Zhuyun Liu
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Bin Zhan
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA.,b Departments of Pediatrics and Molecular Virology and Microbiology , National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Jonathan L Respress
- d Southwest Electronic Energy Medical Research Institute (SWEMRI) , Missouri City , TX , USA
| | - Ulrich Strych
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA.,b Departments of Pediatrics and Molecular Virology and Microbiology , National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Maria Elena Bottazzi
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA.,b Departments of Pediatrics and Molecular Virology and Microbiology , National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Peter J Hotez
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA.,b Departments of Pediatrics and Molecular Virology and Microbiology , National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA.,c James A. Baker III Institute for Public Policy , Rice University , Houston , TX , USA
| |
Collapse
|
29
|
Status of vaccine research and development of vaccines for Chagas disease. Vaccine 2016; 34:2996-3000. [DOI: 10.1016/j.vaccine.2016.03.074] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 03/09/2016] [Indexed: 12/12/2022]
|
30
|
Barry MA, Wang Q, Jones KM, Heffernan MJ, Buhaya MH, Beaumier CM, Keegan BP, Zhan B, Dumonteil E, Bottazzi ME, Hotez PJ. A therapeutic nanoparticle vaccine against Trypanosoma cruzi in a BALB/c mouse model of Chagas disease. Hum Vaccin Immunother 2016; 12:976-87. [PMID: 26890466 DOI: 10.1080/21645515.2015.1119346] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, results in an acute febrile illness that progresses to chronic chagasic cardiomyopathy in 30% of patients. Current treatments have significant side effects and poor efficacy during the chronic phase; therefore, there is an urgent need for new treatment modalities. A robust TH1-mediated immune response correlates with favorable clinical outcomes. A therapeutic vaccine administered to infected individuals could bolster the immune response, thereby slowing or stopping the progression of chagasic cardiomyopathy. Prior work in mice has identified an efficacious T. cruzi DNA vaccine encoding Tc24. To elicit a similar protective cell-mediated immune response to a Tc24 recombinant protein, we utilized a poly(lactic-co-glycolic acid) nanoparticle delivery system in conjunction with CpG motif-containing oligodeoxynucleotides as an immunomodulatory adjuvant. In a BALB/c mouse model, the vaccine produced a TH1-biased immune response, as demonstrated by a significant increase in antigen-specific IFNγ-producing splenocytes, IgG2a titers, and proliferative capacity of CD8(+) T cells. When tested for therapeutic efficacy, significantly reduced systemic parasitemia was seen during peak parasitemia. Additionally, there was a significant reduction in cardiac parasite burden and inflammatory cell infiltrate. This is the first study demonstrating immunogenicity and efficacy of a therapeutic Chagas vaccine using a nanoparticle delivery system.
Collapse
Affiliation(s)
- Meagan A Barry
- a Interdepartmental Program in Translational Biology and Molecular Medicine , Baylor College of Medicine , Houston , TX , USA.,b Medical Scientist Training Program, Baylor College of Medicine , Houston , TX , USA.,c Department of Pediatrics , Section of Pediatric Tropical Medicine, Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine , Houston , TX , USA
| | - Qian Wang
- c Department of Pediatrics , Section of Pediatric Tropical Medicine, Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine , Houston , TX , USA
| | - Kathryn M Jones
- c Department of Pediatrics , Section of Pediatric Tropical Medicine, Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine , Houston , TX , USA.,d National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Michael J Heffernan
- a Interdepartmental Program in Translational Biology and Molecular Medicine , Baylor College of Medicine , Houston , TX , USA.,c Department of Pediatrics , Section of Pediatric Tropical Medicine, Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine , Houston , TX , USA.,d National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA.,h Department of Molecular Virology and Microbiology , Baylor College of Medicine , Houston , TX , USA
| | - Munir H Buhaya
- e Summer Medical and Research Training Program, Baylor College of Medicine , Houston , TX , USA
| | - Coreen M Beaumier
- c Department of Pediatrics , Section of Pediatric Tropical Medicine, Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine , Houston , TX , USA
| | - Brian P Keegan
- c Department of Pediatrics , Section of Pediatric Tropical Medicine, Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine , Houston , TX , USA
| | - Bin Zhan
- c Department of Pediatrics , Section of Pediatric Tropical Medicine, Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine , Houston , TX , USA
| | - Eric Dumonteil
- f Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán , Mérida , Mexico.,g Department of Tropical Medicine , School of Public Health and Tropical Medicine, Tulane University , New Orleans , LA , USA
| | - Maria Elena Bottazzi
- a Interdepartmental Program in Translational Biology and Molecular Medicine , Baylor College of Medicine , Houston , TX , USA.,c Department of Pediatrics , Section of Pediatric Tropical Medicine, Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine , Houston , TX , USA.,d National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA.,h Department of Molecular Virology and Microbiology , Baylor College of Medicine , Houston , TX , USA
| | - Peter J Hotez
- a Interdepartmental Program in Translational Biology and Molecular Medicine , Baylor College of Medicine , Houston , TX , USA.,c Department of Pediatrics , Section of Pediatric Tropical Medicine, Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine , Houston , TX , USA.,d National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA.,h Department of Molecular Virology and Microbiology , Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
31
|
Tanowitz HB, Machado FS, Spray DC, Friedman JM, Weiss OS, Lora JN, Nagajyothi J, Moraes DN, Garg NJ, Nunes MCP, Ribeiro ALP. Developments in the management of Chagas cardiomyopathy. Expert Rev Cardiovasc Ther 2015; 13:1393-409. [PMID: 26496376 DOI: 10.1586/14779072.2015.1103648] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over 100 years have elapsed since the discovery of Chagas disease and there is still much to learn regarding pathogenesis and treatment. Although there are antiparasitic drugs available, such as benznidazole and nifurtimox, they are not totally reliable and often toxic. A recently released negative clinical trial with benznidazole in patients with chronic Chagas cardiomyopathy further reinforces the concerns regarding its effectiveness. New drugs and new delivery systems, including those based on nanotechnology, are being sought. Although vaccine development is still in its infancy, the reality of a therapeutic vaccine remains a challenge. New ECG methods may help to recognize patients prone to developing malignant ventricular arrhythmias. The management of heart failure, stroke and arrhythmias also remains a challenge. Although animal experiments have suggested that stem cell based therapy may be therapeutic in the management of heart failure in Chagas cardiomyopathy, clinical trials have not been promising.
Collapse
Affiliation(s)
- Herbert B Tanowitz
- a Department of Pathology , Albert Einstein College of Medicine , Bronx , NY , USA.,b Department of Medicine , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Fabiana S Machado
- c Department of Biochemistry and Immunology, Institute of Biological Science , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,d Program in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - David C Spray
- b Department of Medicine , Albert Einstein College of Medicine , Bronx , NY , USA.,e Dominick P. Purpura Department of Neuroscience , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Joel M Friedman
- f Department of Physiology & Biophysics , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Oren S Weiss
- a Department of Pathology , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Jose N Lora
- a Department of Pathology , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Jyothi Nagajyothi
- g Public Health Research Institute, New Jersey Medical School , Rutgers University , Newark , NJ , USA
| | - Diego N Moraes
- d Program in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,h Department of Internal Medicine and University Hospital , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Nisha Jain Garg
- i Department of Microbiology & Immunology and Institute for Human Infections and Immunity , University of Texas Medical Branch , Galveston , TX , USA
| | - Maria Carmo P Nunes
- d Program in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,h Department of Internal Medicine and University Hospital , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Antonio Luiz P Ribeiro
- d Program in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,h Department of Internal Medicine and University Hospital , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
32
|
Martinez-Campos V, Martinez-Vega P, Ramirez-Sierra MJ, Rosado-Vallado M, Seid CA, Hudspeth EM, Wei J, Liu Z, Kwityn C, Hammond M, Ortega-López J, Zhan B, Hotez PJ, Bottazzi ME, Dumonteil E. Expression, purification, immunogenicity, and protective efficacy of a recombinant Tc24 antigen as a vaccine against Trypanosoma cruzi infection in mice. Vaccine 2015; 33:4505-12. [PMID: 26192358 DOI: 10.1016/j.vaccine.2015.07.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/12/2015] [Accepted: 07/07/2015] [Indexed: 12/22/2022]
Abstract
The Tc24 calcium binding protein from the flagellar pocket of Trypanosoma cruzi is under evaluation as a candidate vaccine antigen against Chagas disease. Previously, a DNA vaccine encoding Tc24 was shown to be an effective vaccine (both as a preventive and therapeutic intervention) in mice and dogs, as evidenced by reductions in T. cruzi parasitemia and cardiac amastigotes, as well as reduced cardiac inflammation and increased host survival. Here we developed a suitable platform for the large scale production of recombinant Tc24 (rTc24) and show that when rTc24 is combined with a monophosphoryl-lipid A (MPLA) adjuvant, the formulated vaccine induces a Th1-biased immune response in mice, comprised of elevated IgG2a antibody levels and interferon-gamma levels from splenocytes, compared to controls. These immune responses also resulted in statistically significant decreased T. cruzi parasitemia and cardiac amastigotes, as well as increased survival following T. cruzi challenge infections, compared to controls. Partial protective efficacy was shown regardless of whether the antigen was expressed in Escherichia coli or in yeast (Pichia pastoris). While mouse vaccinations will require further modifications in order to optimize protective efficacy, such studies provide a basis for further evaluations of vaccines comprised of rTc24, together with alternative adjuvants and additional recombinant antigens.
Collapse
Affiliation(s)
- Viridiana Martinez-Campos
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, 97000 Mérida, Yucatán, Mexico
| | - Pedro Martinez-Vega
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, 97000 Mérida, Yucatán, Mexico
| | - Maria Jesus Ramirez-Sierra
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, 97000 Mérida, Yucatán, Mexico
| | - Miguel Rosado-Vallado
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, 97000 Mérida, Yucatán, Mexico
| | - Christopher A Seid
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elissa M Hudspeth
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junfei Wei
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhuyun Liu
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cliff Kwityn
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Molly Hammond
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jaime Ortega-López
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. IPN 2508 Col., San Pedro Zacatenco 07360, Mexico D.F., Mexico
| | - Bin Zhan
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter J Hotez
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Maria Elena Bottazzi
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Eric Dumonteil
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, 97000 Mérida, Yucatán, Mexico.
| |
Collapse
|
33
|
Gupta S, Smith C, Auclair S, Delgadillo ADJ, Garg NJ. Therapeutic Efficacy of a Subunit Vaccine in Controlling Chronic Trypanosoma cruzi Infection and Chagas Disease Is Enhanced by Glutathione Peroxidase Over-Expression. PLoS One 2015; 10:e0130562. [PMID: 26075398 PMCID: PMC4468200 DOI: 10.1371/journal.pone.0130562] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/22/2015] [Indexed: 12/15/2022] Open
Abstract
Trypanosoma cruzi-induced oxidative and inflammatory responses are implicated in chagasic cardiomyopathy. In this study, we examined the therapeutic utility of a subunit vaccine against T. cruzi and determined if glutathione peroxidase (GPx1, antioxidant) protects the heart from chagasic pathogenesis. C57BL/6 mice (wild-type (WT) and GPx1 transgenic (GPxtg) were infected with T. cruzi and at 45 days post-infection (dpi), immunized with TcG2/TcG4 vaccine delivered by a DNA-prime/Protein-boost (D/P) approach. The plasma and tissue-sections were analyzed on 150 dpi for parasite burden, inflammatory and oxidative stress markers, inflammatory infiltrate and fibrosis. WT mice infected with T. cruzi had significantly more blood and tissue parasite burden compared with infected/GPxtg mice (n = 5-8, p<0.01). Therapeutic vaccination provided >15-fold reduction in blood and tissue parasites in both WT and GPxtg mice. The increase in plasma levels of myeloperoxidase (MPO, 24.7%) and nitrite (iNOS activity, 45%) was associated with myocardial increase in oxidant levels (3-4-fold) and non-responsive antioxidant status in chagasic/WT mice; and these responses were not controlled after vaccination (n = 5-7). The GPxtg mice were better equipped than the WT mice in controlling T. cruzi-induced inflammatory and oxidative stress markers. Extensive myocardial and skeletal tissue inflammation noted in chagasic/WT mice, was significantly more compared with chagasic/GPxtg mice (n = 4-6, p<0.05). Vaccination was equally effective in reducing the chronic inflammatory infiltrate in the heart and skeletal tissue of infected WT and GPxtg mice (n = 6, p<0.05). Hypertrophy (increased BNP and ANP mRNA) and fibrosis (increased collagen) of the heart were extensively present in chronically-infected WT and GPxtg mice and notably decreased after therapeutic vaccination. We conclude the therapeutic delivery of D/P vaccine was effective in arresting the chronic parasite persistence and chagasic pathology; and GPx1 over-expression provided additive benefits in reducing the parasite burden, inflammatory/oxidative stress and cardiac remodeling in Chagas disease.
Collapse
Affiliation(s)
- Shivali Gupta
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (SG); (NG)
| | - Charity Smith
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sarah Auclair
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Anahi De Jesus Delgadillo
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity and the Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Galveston, Texas, United States of America
- * E-mail: (SG); (NG)
| |
Collapse
|
34
|
Gupta S, Garg NJ. A Two-Component DNA-Prime/Protein-Boost Vaccination Strategy for Eliciting Long-Term, Protective T Cell Immunity against Trypanosoma cruzi. PLoS Pathog 2015; 11:e1004828. [PMID: 25951312 PMCID: PMC4423834 DOI: 10.1371/journal.ppat.1004828] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/23/2015] [Indexed: 12/15/2022] Open
Abstract
In this study, we evaluated the long-term efficacy of a two-component subunit vaccine against Trypanosoma cruzi infection. C57BL/6 mice were immunized with TcG2/TcG4 vaccine delivered by a DNA-prime/Protein-boost (D/P) approach and challenged with T. cruzi at 120 or 180 days post-vaccination (dpv). We examined whether vaccine-primed T cell immunity was capable of rapid expansion and intercepting the infecting T. cruzi. Our data showed that D/P vaccine elicited CD4+ (30-38%) and CD8+ (22-42%) T cells maintained an effector phenotype up to 180 dpv, and were capable of responding to antigenic stimulus or challenge infection by a rapid expansion (CD8>CD4) with type 1 cytokine (IFNγ+ and TFNα+) production and cytolytic T lymphocyte (CTL) activity. Subsequently, challenge infection at 120 or 180 dpv, resulted in 2-3-fold lower parasite burden in vaccinated mice than was noted in unvaccinated/infected mice. Co-delivery of IL-12- and GMCSF-encoding expression plasmids provided no significant benefits in enhancing the anti-parasite efficacy of the vaccine-induced T cell immunity. Booster immunization (bi) with recombinant TcG2/TcG4 proteins 3-months after primary vaccine enhanced the protective efficacy, evidenced by an enhanced expansion (1.2-2.8-fold increase) of parasite-specific, type 1 CD4+ and CD8+ T cells and a potent CTL response capable of providing significantly improved (3-4.5-fold) control of infecting T. cruzi. Further, CD8+T cells in vaccinated/bi mice were predominantly of central memory phenotype, and capable of responding to challenge infection 4-6-months post bi by a rapid expansion to a poly-functional effector phenotype, and providing a 1.5-2.3-fold reduction in tissue parasite replication. We conclude that the TcG2/TcG4 D/P vaccine provided long-term anti-T. cruzi T cell immunity, and bi would be an effective strategy to maintain or enhance the vaccine-induced protective immunity against T. cruzi infection and Chagas disease. Chagas disease, caused by Trypanosoma cruzi infection, represents the third greatest tropical disease burden in the world. No vaccine or suitable treatment is available for control of this infection. Based upon several studies we have conducted, we believe that TcG2 and TcG4 candidate antigens that are highly conserved in T. cruzi, expressed in clinically relevant forms of the parasite, and recognized by both B and T cell responses in multiple hosts, are an excellent choice for subunit vaccine development. In this study, we demonstrate that the delivery of TcG2 and TcG4 as a DNA-prime/protein-boost vaccine provided long-term protection from challenge infection, and this protection was associated with elicitation of long-lived CD8+ effector T cells. The longevity and efficacy of vaccine could be enhanced by booster immunization. We believe that this is the first report demonstrating a) a subunit vaccine can be useful in achieving long-term protection against T. cruzi infection and Chagas disease, and b) the effector T cells can be long-lived and play a role in vaccine elicited protection from parasitic infection.
Collapse
Affiliation(s)
- Shivali Gupta
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
- * E-mail: (SG); (NJG)
| | - Nisha J. Garg
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
- Department of Pathology, School of Medicine, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
- Institute for Human Infections and Immunity and the Sealy Center for Vaccine Development, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
- * E-mail: (SG); (NJG)
| |
Collapse
|
35
|
Aparicio-Burgos JE, Zepeda-Escobar JA, de Oca-Jimenez RM, Estrada-Franco JG, Barbabosa-Pliego A, Ochoa-García L, Alejandre-Aguilar R, Rivas N, Peñuelas-Rivas G, Val-Arreola M, Gupta S, Salazar-García F, Garg NJ, Vázquez-Chagoyán JC. Immune protection against Trypanosoma cruzi induced by TcVac4 in a canine model. PLoS Negl Trop Dis 2015; 9:e0003625. [PMID: 25853654 PMCID: PMC4390229 DOI: 10.1371/journal.pntd.0003625] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/16/2015] [Indexed: 12/02/2022] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, is endemic in southern parts of the American continent. Herein, we have tested the protective efficacy of a DNA-prime/T. rangeli-boost (TcVac4) vaccine in a dog (Canis familiaris) model. Dogs were immunized with two-doses of DNA vaccine (pcDNA3.1 encoding TcG1, TcG2, and TcG4 antigens plus IL-12- and GM-CSF-encoding plasmids) followed by two doses of glutaraldehyde-inactivated T. rangeli epimastigotes (TrIE); and challenged with highly pathogenic T. cruzi (SylvioX10/4) isolate. Dogs given TrIE or empty pcDNA3.1 were used as controls. We monitored post-vaccination and post-challenge infection antibody response by an ELISA, parasitemia by blood analysis and xenodiagnosis, and heart function by electrocardiography. Post-mortem anatomic and pathologic evaluation of the heart was conducted. TcVac4 induced a strong IgG response (IgG2>IgG1) that was significantly expanded post-infection, and moved to a nearly balanced IgG2/IgG1 response in chronic phase. In comparison, dogs given TrIE or empty plasmid DNA only developed high IgG titers with IgG2 predominance in response to T. cruzi infection. Blood parasitemia, tissue parasite foci, parasite transmission to triatomines, electrocardiographic abnormalities were significantly lower in TcVac4-vaccinated dogs than was observed in dogs given TrIE or empty plasmid DNA only. Macroscopic and microscopic alterations, the hallmarks of chronic Chagas disease, were significantly decreased in the myocardium of TcVac4-vaccinated dogs. We conclude that TcVac4 induced immunity was beneficial in providing resistance to T. cruzi infection, evidenced by control of chronic pathology of the heart and preservation of cardiac function in dogs. Additionally, TcVac4 vaccination decreased the transmission of parasites from vaccinated/infected animals to triatomines.
Collapse
Affiliation(s)
| | - José A. Zepeda-Escobar
- Centro de Investigación y Estudios Avanzados en Salud Animal, Universidad Autónoma de Estado de México, Toluca, México
| | - Roberto Montes de Oca-Jimenez
- Centro de Investigación y Estudios Avanzados en Salud Animal, Universidad Autónoma de Estado de México, Toluca, México
| | - José G. Estrada-Franco
- Centro de Investigación y Estudios Avanzados en Salud Animal, Universidad Autónoma de Estado de México, Toluca, México
| | - Alberto Barbabosa-Pliego
- Centro de Investigación y Estudios Avanzados en Salud Animal, Universidad Autónoma de Estado de México, Toluca, México
| | - Laucel Ochoa-García
- Laboratorio Estatal de Salud Pública del Instituto Salud del Estado de México, Toluca, México
| | - Ricardo Alejandre-Aguilar
- Laboratorio de Entomología, Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, México City, México
| | - Nancy Rivas
- Laboratorio de Entomología, Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, México City, México
| | - Giovanna Peñuelas-Rivas
- Centro de Investigación y Estudios Avanzados en Salud Animal, Universidad Autónoma de Estado de México, Toluca, México
| | - Margarita Val-Arreola
- Hospital General de Zona No. 2, Instituto Mexicano del Seguro Social, Irapuato, México
| | - Shivali Gupta
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
| | - Felix Salazar-García
- Centro de Investigación y Estudios Avanzados en Salud Animal, Universidad Autónoma de Estado de México, Toluca, México
| | - Nisha J. Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
- Department of Pathology, and Faculty of the Institute for Human Infection and Immunity, and the Sealy Center for Vaccine Development, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
| | - Juan C. Vázquez-Chagoyán
- Centro de Investigación y Estudios Avanzados en Salud Animal, Universidad Autónoma de Estado de México, Toluca, México
| |
Collapse
|
36
|
Sánchez-Valdéz FJ, Pérez Brandán C, Ferreira A, Basombrío MÁ. Gene-deleted live-attenuated Trypanosoma cruzi parasites as vaccines to protect against Chagas disease. Expert Rev Vaccines 2014; 14:681-97. [PMID: 25496192 DOI: 10.1586/14760584.2015.989989] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. This illness is now becoming global, mainly due to congenital transmission, and so far, there are no prophylactic or therapeutic vaccines available to either prevent or treat Chagas disease. Therefore, different approaches aimed at identifying new protective immunogens are urgently needed. Live vaccines are likely to be more efficient in inducing protection, but safety issues linked with their use have been raised. The development of improved protozoan genetic manipulation tools and genomic and biological information has helped to increase the safety of live vaccines. These advances have generated a renewed interest in the use of genetically attenuated parasites as vaccines against Chagas disease. This review discusses the protective capacity of genetically attenuated parasite vaccines and the challenges and perspectives for the development of an effective whole-parasite Chagas disease vaccine.
Collapse
|
37
|
Teh-Poot C, Tzec-Arjona E, Martínez-Vega P, Ramirez-Sierra MJ, Rosado-Vallado M, Dumonteil E. From genome screening to creation of vaccine against Trypanosoma cruzi by use of immunoinformatics. J Infect Dis 2014; 211:258-66. [PMID: 25070943 DOI: 10.1093/infdis/jiu418] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi, and activation of CD8(+) T cells is crucial for a protective immune response. Therefore, the identification of antigens with major histocompatibility complex class I epitopes is a crucial step for vaccine development against T. cruzi. Our aim was to identify novel antigens and epitopes by immunoinformatics analysis of the parasite proteome (12 969 proteins) and to validate their immunotherapeutic potential in infected mice. We identified 172 predicted epitopes, using NetMHC and RANKPEP. The corresponding protein sequences were reanalyzed to generate a consensus prediction, and 26 epitopes were selected for in vivo validation. The interferon γ (IFN-γ) recall response of splenocytes from T. cruzi-infected mice confirmed that 10 of 26 epitopes (38%) induced IFN-γ production. The immunotherapeutic potential of a mixture of all 10 peptides was evaluated in infected mice. The therapeutic vaccine was able to control T. cruzi infection, as evidenced by reduced parasitemia, cardiac tissue inflammation, and parasite burden and increased survival. These findings illustrate the benefits of this approach for the rapid development of a vaccine against pathogens with large genomes. The identified peptides and the proteins from which they are derived are excellent candidates for the development of a vaccine against T. cruzi.
Collapse
Affiliation(s)
- Christian Teh-Poot
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Evelyn Tzec-Arjona
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Pedro Martínez-Vega
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Maria Jesus Ramirez-Sierra
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Miguel Rosado-Vallado
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Eric Dumonteil
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Mexico Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
38
|
Serum-mediated activation of macrophages reflects TcVac2 vaccine efficacy against Chagas disease. Infect Immun 2014; 82:1382-9. [PMID: 24421046 DOI: 10.1128/iai.01186-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chagas disease is endemic in Latin America and an emerging infectious disease in the United States. No effective treatments are available. The TcG1, TcG2, and TcG4 antigens are highly conserved in clinically relevant Trypanosoma cruzi isolates and are recognized by B and T cells in infected hosts. Delivery of these antigens as a DNA prime/protein boost vaccine (TcVac2) elicited lytic antibodies and type 1 CD8(+) T cells that expanded upon challenge infection and provided >90% control of parasite burden and myocarditis in chagasic mice. Here we determined if peripheral blood can be utilized to capture the TcVac2-induced protection from Chagas disease. We evaluated the serum levels of T. cruzi kinetoplast DNA (TckDNA), T. cruzi 18S ribosomal DNA (Tc18SrDNA), and murine mitochondrial DNA (mtDNA) as indicators of parasite persistence and tissue damage and monitored the effect of sera on macrophage phenotype. Circulating TckDNA/Tc18SrDNA and mtDNA were decreased by >3- to 5-fold and 2-fold, respectively, in vaccinated infected mice compared to nonvaccinated infected mice. Macrophages incubated with sera from vaccinated infected mice exhibited M2 surface markers (CD16, CD32, CD200, and CD206), moderate proliferation, a low oxidative/nitrosative burst, and a regulatory/anti-inflammatory cytokine response (interleukin-4 [IL-4] plus IL-10 > tumor necrosis factor alpha [TNF-α]). In comparison, macrophages incubated with sera from nonvaccinated infected mice exhibited M1 surface markers, vigorous proliferation, a substantial oxidative/nitrosative burst, and a proinflammatory cytokine response (TNF-α ≫ IL-4 plus IL-10). Cardiac infiltration of macrophages and TNF-α and oxidant levels were significantly reduced in TcVac2-immunized chagasic mice. We conclude that circulating TcDNA and mtDNA levels and macrophage phenotype mediated by serum constituents reflect in vivo levels of parasite persistence, tissue damage, and inflammatory/anti-inflammatory state and have potential utility in evaluating disease severity and efficacy of vaccines and drug therapies.
Collapse
|
39
|
Dhiman M, Wan X, Popov VL, Vargas G, Garg NJ. MnSODtg mice control myocardial inflammatory and oxidative stress and remodeling responses elicited in chronic Chagas disease. J Am Heart Assoc 2013; 2:e000302. [PMID: 24136392 PMCID: PMC3835234 DOI: 10.1161/jaha.113.000302] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background We utilized genetically modified mice equipped with a variable capacity to scavenge mitochondrial and cellular reactive oxygen species to investigate the pathological significance of oxidative stress in Chagas disease. Methods and Results C57BL/6 mice (wild type, MnSODtg, MnSOD+/−, GPx1−/−) were infected with Trypanosoma cruzi and harvested during the chronic disease phase. Chronically infected mice exhibited a substantial increase in plasma levels of inflammatory markers (nitric oxide, myeloperoxidase), lactate dehydrogenase, and myocardial levels of inflammatory infiltrate and oxidative adducts (malondialdehyde, carbonyls, 3‐nitrotyrosine) in the order of wild type=MnSOD+/−>GPx1−/−>MnSODtg. Myocardial mitochondrial damage was pronounced and associated with a >50% decline in mitochondrial DNA content in chronically infected wild‐type and GPx1−/− mice. Imaging of intact heart for cardiomyocytes and collagen by the nonlinear optical microscopy techniques of multiphoton fluorescence/second harmonic generation showed a significant increase in collagen (>10‐fold) in chronically infected wild‐type mice, whereas GPx1−/− mice exhibited a basal increase in collagen that did not change during the chronic phase. Chronically infected MnSODtg mice exhibited a marginal decline in mitochondrial DNA content and no changes in collagen signal in the myocardium. P47phox−/− mice lacking phagocyte‐generated reactive oxygen species sustained a low level of myocardial oxidative stress and mitochondrial DNA damage in response to Trypanosoma cruzi infection. Yet chronically infected p47phox−/− mice exhibited increase in myocardial inflammatory and remodeling responses, similar to that noted in chronically infected wild‐type mice. Conclusions Inhibition of oxidative burst of phagocytes was not sufficient to prevent pathological cardiac remodeling in Chagas disease. Instead, enhancing the mitochondrial reactive oxygen species scavenging capacity was beneficial in controlling the inflammatory and oxidative pathology and the cardiac remodeling responses that are hallmarks of chronic Chagas disease.
Collapse
Affiliation(s)
- Monisha Dhiman
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | | | | | | | | |
Collapse
|
40
|
Salgado-Jiménez B, Arce-Fonseca M, Baylón-Pacheco L, Talamás-Rohana P, Rosales-Encina JL. Differential immune response in mice immunized with the A, R or C domain from TcSP protein of Trypanosoma cruzi or with the coding DNAs. Parasite Immunol 2013; 35:32-41. [PMID: 23106492 DOI: 10.1111/pim.12017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 10/17/2012] [Indexed: 11/26/2022]
Abstract
In a murine model of experimental Trypanosoma cruzi (H8 strain) infection, we investigated the induction of protective immunity against the domains [amino (A), repeats (R) and carboxyl (C)] of the surface protein (SP), a member of the trans-sialidase (TS) superfamily. Recombinant proteins and plasmid DNA coding for the respective proteins were used to immunize BALB/c mice, and the humoral response and cytokine levels were analysed. Immunization with the recombinant proteins induced higher levels of anti-TcSP antibodies than immunization with the corresponding DNAs, and analysis of serum cytokines showed that immunization with both recombinant proteins and naked DNA resulted in a Th1-Th2 mixed T-cell response. Mice immunized with either recombinant proteins or plasmid DNA were infected with blood trypomastigotes. The recombinant protein-immunized mice showed a variable reduction in peak parasitemia, and most died by day 60. Only the pBKTcSPR-immunized mice exhibited a significant reduction in peak parasitemia and survived the lethal challenge. DNA-based immunization with DNA coding for the repeats domain of TcSP is a good candidate for the development of a vaccine against experimental T. cruzi infection.
Collapse
Affiliation(s)
- B Salgado-Jiménez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, D.F, México
| | | | | | | | | |
Collapse
|
41
|
Quijano-Hernández IA, Castro-Barcena A, Vázquez-Chagoyán JC, Bolio-González ME, Ortega-López J, Dumonteil E. Preventive and therapeutic DNA vaccination partially protect dogs against an infectious challenge with Trypanosoma cruzi. Vaccine 2013; 31:2246-52. [DOI: 10.1016/j.vaccine.2013.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/06/2013] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
|
42
|
Gupta S, Garg NJ. TcVac3 induced control of Trypanosoma cruzi infection and chronic myocarditis in mice. PLoS One 2013; 8:e59434. [PMID: 23555672 PMCID: PMC3608676 DOI: 10.1371/journal.pone.0059434] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/14/2013] [Indexed: 11/19/2022] Open
Abstract
We characterized the immune responses elicited by a DNA-prime/MVA-boost vaccine (TcVac3) constituted of antigenic candidates (TcG2 and TcG4), shown to be recognized by B and T cell responses in Trypanosoma cruzi (Tc) infected multiple hosts. C57BL/6 mice immunized with TcVac3 elicited a strong antigen-specific, high-avidity, trypanolytic antibody response (IgG2b>IgG1); and a robust antigen- and Tc-specific CD8+T cell response with type-1 cytokine (IFN-γ+TNF-α>IL-4+IL-10) and cytolytic effector (CD8+CD107a+IFN-γ+Perforin+) phenotype. The vaccine-induced effector T cells significantly expanded upon challenge infection and provided >92% control of T. cruzi. Co-delivery of IL-12 and GMCSF cytokine adjuvants didn’t enhance the TcVac3-induced resistance to T. cruzi. In chronic phase, vaccinated/infected mice exhibited a significant decline (up to 70%) in IFN-γ+CD8+T cells, a predominance of immunoregulatory IL-10+/CD4+T and IL10+/CD8+T cells, and presented undetectable tissue parasitism, inflammatory infiltrate, and fibrosis in vaccinated/infected mice. In comparison, control mice responded to challenge infection by a low antibody response, mixed cytokine profile, and consistent activation of pro-inflammatory CD8+T cells associated with parasite persistence and pathologic damage in the heart. We conclude that TcVac3 elicited type-1 effector T cell immunity that effectively controlled T. cruzi infection, and subsequently, predominance of anti-inflammatory responses prevented chronic inflammation and myocarditis in chagasic mice.
Collapse
Affiliation(s)
- Shivali Gupta
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Faculty of the Institute for Human Infections and Immunity, Center for Tropical Diseases, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
43
|
Combined treatment with benznidazole and allopurinol in mice infected with a virulentTrypanosoma cruziisolate from Nicaragua. Parasitology 2013; 140:1225-33. [DOI: 10.1017/s0031182013000176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SUMMARYWe evaluated the effect of chemotherapy with a sequential combined treatment of a low dose of benznidazole and allopurinol, in different schedules of administration, in experimental models of acute and chronicTrypanosoma cruziinfection. Mice were infected with NicaraguaT. cruziisolate, a virulent parasite from an endemic area of Nicaragua, genotyped asTcI (Grossoet al. 2010). We assessed survival rate, IgG levels, histopathological studies and quantified parasitaemia. A 15% survival rate was recorded in untreated mice during the acute phase ofT. cruziinfection. Allopurinol administered immediately after benznidazole treatment was able to reduce parasitaemia and attenuate tissue damage by reducing inflammation.Trypanosoma cruzi-specific antibodies also decreased in 40–50% of the treated mice. The addition of allopurinol during the chronic phase showed the highest beneficial effect, not only by reducing parasitaemia but also by lowering the degree of inflammation and fibrosis.
Collapse
|
44
|
Gupta S, Wan X, Zago MP, Sellers VCM, Silva TS, Assiah D, Dhiman M, Nuñez S, Petersen JR, Vázquez-Chagoyán JC, Estrada-Franco JG, Garg NJ. Antigenicity and diagnostic potential of vaccine candidates in human Chagas disease. PLoS Negl Trop Dis 2013; 7:e2018. [PMID: 23350012 PMCID: PMC3547861 DOI: 10.1371/journal.pntd.0002018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/04/2012] [Indexed: 12/15/2022] Open
Abstract
Background Chagas disease, caused by Trypanosoma cruzi, is endemic in Latin America and an emerging infectious disease in the US and Europe. We have shown TcG1, TcG2, and TcG4 antigens elicit protective immunity to T. cruzi in mice and dogs. Herein, we investigated antigenicity of the recombinant proteins in humans to determine their potential utility for the development of next generation diagnostics for screening of T. cruzi infection and Chagas disease. Methods and Results Sera samples from inhabitants of the endemic areas of Argentina-Bolivia and Mexico-Guatemala were analyzed in 1st-phase for anti-T. cruzi antibody response by traditional serology tests; and in 2nd-phase for antibody response to the recombinant antigens (individually or mixed) by an ELISA. We noted similar antibody response to candidate antigens in sera samples from inhabitants of Argentina and Mexico (n = 175). The IgG antibodies to TcG1, TcG2, and TcG4 (individually) and TcGmix were present in 62–71%, 65–78% and 72–82%, and 89–93% of the subjects, respectively, identified to be seropositive by traditional serology. Recombinant TcG1- (93.6%), TcG2- (96%), TcG4- (94.6%) and TcGmix- (98%) based ELISA exhibited significantly higher specificity compared to that noted for T. cruzi trypomastigote-based ELISA (77.8%) in diagnosing T. cruzi-infection and avoiding cross-reactivity to Leishmania spp. No significant correlation was noted in the sera levels of antibody response and clinical severity of Chagas disease in seropositive subjects. Conclusions Three candidate antigens were recognized by antibody response in chagasic patients from two distinct study sites and expressed in diverse strains of the circulating parasites. A multiplex ELISA detecting antibody response to three antigens was highly sensitive and specific in diagnosing T. cruzi infection in humans, suggesting that a diagnostic kit based on TcG1, TcG2 and TcG4 recombinant proteins will be useful in diverse situations. Chagas disease is the most common cause of congestive heart failure related deaths among young adults in the endemic areas of South and Central America and Mexico. Diagnosis and treatment of T. cruzi infection has remained difficult and challenging after 100 years of its identification. In >95% of human cases, T. cruzi infection remains undiagnosed until several years later when chronic evolution of progressive disease results in clinical symptoms associated with cardiac damage. Diagnosis generally depends on the measurement of T. cruzi–specific antibodies that can result in false positives. A conclusive diagnosis of T. cruzi infection thus often requires multiple serological tests, in combination with epidemiological data and clinical symptoms. In this study, we investigated the antibody response to TcG1, TcG2, and TcG4 in clinically characterized chagasic patients. These antigens were identified as vaccine candidates and shown to elicit protective immunity to T. cruzi and Chagas disease in experimental animals. Our data show the serology test developed using the TcGmix (multiplex ELISA) is a significantly better alternative to epimastigote extracts currently used in T. cruzi serodiagnosis or the trypomastigote lysate used in this study for comparison purposes.
Collapse
Affiliation(s)
- Shivali Gupta
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hotez PJ, Bethony JM. Parasitic disease vaccines. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
46
|
Santamaría MH, Corral RS. Osteopontin-dependent regulation of Th1 and Th17 cytokine responses in Trypanosoma cruzi-infected C57BL/6 mice. Cytokine 2012. [PMID: 23199812 DOI: 10.1016/j.cyto.2012.10.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Osteopontin (OPN) is a multifunctional protein participating in the regulation of different Th cell lineages and critically involved in the initiation of immune responses to diverse pathogens. Our study goal was to verify whether OPN helps modulate the protective Th1 and Th17 cytokine responses in C57BL/6 mice infected with Trypanosoma cruzi, the etiological agent of Chagas disease. Parasite infection induced OPN release from murine macrophages in vitro and acute Chagas mice displayed enhanced serum levels of this cytokine at the peak of parasitemia. Upon administration of a neutralizing anti-OPN antibody, recently infected mice presented lower Th1 and Th17 responses, increased parasitemia and succumbed earlier and at higher rates to infection than non-immune IgG-receiving controls. The anti-OPN therapy also resulted in reduced circulating levels of IL-12 p70, IFN-γ, IL-17A and specific IgG(2a) antibodies. Furthermore, antibody-mediated blockade of OPN activity abrogated the ex vivo production of IL-12 p70, IFN-γ and IL-17A, while promoting IL-10 secretion, by spleen macrophages and CD4(+) T cells from T. cruzi-infected mice. Th1 and Th17 cytokine release induced by OPN preferentially involved the α(v)β(3) integrin OPN receptor, whereas concomitant down-modulation of IL-10 production would mostly depend on OPN interaction with CD44. Our findings suggest that, in resistant C57BL/6 mice, elicitation of protective Th1 and Th17 cytokine responses to T. cruzi infection is likely to be regulated by endogenous OPN.
Collapse
Affiliation(s)
- Miguel H Santamaría
- Laboratorio de Biología Experimental, Centro de Estudios Metabólicos, CP 39005 Santander, Spain
| | | |
Collapse
|
47
|
Gupta S, Garg NJ. Delivery of antigenic candidates by a DNA/MVA heterologous approach elicits effector CD8(+)T cell mediated immunity against Trypanosoma cruzi. Vaccine 2012; 30:7179-86. [PMID: 23079191 DOI: 10.1016/j.vaccine.2012.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/05/2012] [Indexed: 01/22/2023]
Abstract
In this study, we have characterized the immune mechanisms elicited by antigenic candidates, TcG2 and TcG4, delivered by a DNA-prime/MVA-boost approach, and evaluated the host responses to Trypanosoma cruzi infection in C57BL/6 mice. Immunization of mice with antigenic candidates elicited antigen-specific, high-avidity, trypanolytic antibody response (IgG2b>IgG1) and CD8(+)T cells that exhibited type-1 cytolytic effector (CD8(+)CD107a(+)IFN-γ(+)Perforin(+)) phenotype. The extent of TcG2-dependent type 1 B and T cell immunity was higher than that noted in TcG4-immunized mice, and expanded accordingly in response to challenge infection with T. cruzi. The progression of chronic phase in immunized mice was associated with persistence of IgGs, 55-90% reduction in the frequency of proinflammatory (IFN-γ(+) or TNF-α(+)) CD8(+)T cells, and an increase or emergence of immunoregulatory (IL-10(+)) CD4/CD8 T cells. The tissue parasitism, infiltration of inflammatory infiltrate, parasite persistence, and fibrosis were decreased by 82-92% in heart and skeletal muscle of immunized/chronically infected mice. Control mice exhibited a significantly low antibody response, consistent activation of effector CD8(+)T cells dominated by pro-inflammatory phenotype and mixed cytokine profile (IFN-γ+TNF-α>IL-4+IL-10), parasite persistence and pathologic damage in chagasic hearts. We conclude that delivery of TcG2 or TcG4 by DNA-rMVA approach elicits effective antibody and CD8(+)T cell mediated immunity against T. cruzi and Chagas disease. The emergence of type 2 cytokine and T cell response in chronic phase was indicative of prevention of clinical disease.
Collapse
Affiliation(s)
- Shivali Gupta
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, United States
| | | |
Collapse
|
48
|
Dumonteil E, Bottazzi ME, Zhan B, Heffernan MJ, Jones K, Valenzuela JG, Kamhawi S, Ortega J, de Leon Rosales SP, Lee BY, Bacon KM, Fleischer B, Slingsby BT, Cravioto MB, Tapia-Conyer R, Hotez PJ. Accelerating the development of a therapeutic vaccine for human Chagas disease: rationale and prospects. Expert Rev Vaccines 2012; 11:1043-55. [PMID: 23151163 PMCID: PMC3819810 DOI: 10.1586/erv.12.85] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chagas disease is a leading cause of heart disease affecting approximately 10 million people in Latin America and elsewhere worldwide. The two major drugs available for the treatment of Chagas disease have limited efficacy in Trypanosoma cruzi-infected adults with indeterminate (patients who have seroconverted but do not yet show signs or symptoms) and determinate (patients who have both seroconverted and have clinical disease) status; they require prolonged treatment courses and are poorly tolerated and expensive. As an alternative to chemotherapy, an injectable therapeutic Chagas disease vaccine is under development to prevent or delay Chagasic cardiomyopathy in patients with indeterminate or determinate status. The bivalent vaccine will be comprised of two recombinant T. cruzi antigens, Tc24 and TSA-1, formulated on alum together with the Toll-like receptor 4 agonist, E6020. Proof-of-concept for the efficacy of these antigens was obtained in preclinical testing at the Autonomous University of Yucatan. Here the authors discuss the potential for a therapeutic Chagas vaccine as well as the progress made towards such a vaccine, and the authors articulate a roadmap for the development of the vaccine as planned by the nonprofit Sabin Vaccine Institute Product Development Partnership and Texas Children's Hospital Center for Vaccine Development in collaboration with an international consortium of academic and industrial partners in Mexico, Germany, Japan, and the USA.
Collapse
Affiliation(s)
- Eric Dumonteil
- Laboratorio de Parasitología Centro De Investigaciones Regional, “Dr. Hideo Noguchi” Autonomous University of Yucatan (UADY), Merida, Mexico
| | - Maria Elena Bottazzi
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatrics (Section of Pediatric Tropical Medicine) and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Bin Zhan
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics (Section of Pediatric Tropical Medicine), National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Michael J Heffernan
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics (Section of Pediatric Tropical Medicine), National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Kathryn Jones
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatrics (Section of Pediatric Tropical Medicine) and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Jaime Ortega
- Departamento de Biotecnología y Bioingeniería, Centro de Investigacion y de Estudios Avanzados - Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | | | - Bruce Y Lee
- Public Health Computational and Operations Research (PHICOR), University of Pittsburgh, Pittsburgh PA, USA
| | - Kristina M Bacon
- Public Health Computational and Operations Research (PHICOR), University of Pittsburgh, Pittsburgh PA, USA
| | | | | | | | | | - Peter J Hotez
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatrics (Section of Pediatric Tropical Medicine) and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
49
|
Dang Z, Yagi K, Oku Y, Kouguchi H, Kajino K, Matsumoto J, Nakao R, Wakaguri H, Toyoda A, Yin H, Sugimoto C. A pilot study on developing mucosal vaccine against alveolar echinococcosis (AE) using recombinant tetraspanin 3: Vaccine efficacy and immunology. PLoS Negl Trop Dis 2012; 6:e1570. [PMID: 22479658 PMCID: PMC3313938 DOI: 10.1371/journal.pntd.0001570] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/05/2012] [Indexed: 12/13/2022] Open
Abstract
Background We have previously evaluated the vaccine efficacies of seven tetraspanins of Echinococcus multilocularis (Em-TSP1–7) against alveolar echinococcosis (AE) by subcutaneous (s.c.) administration with Freund's adjuvant. Over 85% of liver cyst lesion number reductions (CLNR) were achieved by recombinant Em-TSP1 (rEm-TSP1) and -TSP3 (rEm-TSP3). However, to develop an efficient and safe human vaccine, the efficacy of TSP mucosal vaccines must be thoroughly evaluated. Methodology/Principal Findings rEm-TSP1 and -TSP3 along with nontoxic CpG ODN (CpG oligodeoxynucleotides) adjuvant were intranasally (i.n.) immunized to BALB/c mice and their vaccine efficacies were evaluated by counting liver CLNR (experiment I). 37.1% (p<0.05) and 62.1% (p<0.001) of CLNR were achieved by these two proteins, respectively. To study the protection-associated immune responses induced by rEm-TSP3 via different immunization routes (i.n. administration with CpG or s.c. immunization with Freund's adjuvant), the systemic and mucosal antibody responses were detected by ELISA (experiment II). S.c. and i.n. administration of rEm-TSP3 achieved 81.9% (p<0.001) and 62.8% (p<0.01) CLNR in the liver, respectively. Both the immunization routes evoked strong serum IgG, IgG1 and IgG2α responses; i.n. immunization induced significantly higher IgA responses in nasal cavity and intestine compared with s.c. immunization (p<0.001). Both immunization routes induced extremely strong liver IgA antibody responses (p<0.001). The Th1 and Th2 cell responses were assessed by examining the IgG1/IgG2α ratio at two and three weeks post-immunization. S.c. immunization resulted in a reduction in the IgG1/IgG2α ratio (Th1 tendency), whereas i.n. immunization caused a shift from Th1 to Th2. Moreover, immunohistochemistry showed that Em-TSP1 and -TSP3 were extensively located on the surface of E. multilocularis cysts, protoscoleces and adult worms with additional expression of Em-TSP3 in the inner part of protoscoleces and oncospheres. Conclusions Our study indicated that i.n. administration of rEm-TSP3 with CpG is able to induce both systemic and local immune responses and thus provides significant protection against AE. Humans and rodents become infected with E. multilocularis by oral ingesting of the eggs, which then develop into cysts in the liver and progress an endless proliferation. Untreated AE has a fatality rate of >90% in humans. Tetraspanins have been identified in Schistosoma and showed potential as the prospective vaccine candidates. In our recent study, we first identified seven tetraspanins in E. multilocularis and evaluated their protective efficacies as vaccines against AE when subcutaneously administered to BALB/c mice. Mucosal immunization of protective proteins is able to induce strong local and systemic immune responses, which might play a crucial role in protecting humans against E. multilocularis infection via the intestine, blood and liver. We focused on Em-TSP3, which achieved significant vaccine efficacy via both s.c. and i.n. routes. The adjuvanticity of nontoxic CpG OND as i.n. vaccine adjuvant was evaluated. The widespread expression of Em-TSP3 in all the developmental stages of E. multilocularis, and the strong local and systemic immune responses evoked by i.n. administration of rEm-TSP3 with CpG OND adjuvant suggest that this study might open the way for developing efficient, nontoxic human mucosal vaccines against AE.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Helminth/blood
- Antigens, Helminth/genetics
- Antigens, Helminth/immunology
- Echinococcosis
- Echinococcosis, Hepatic/prevention & control
- Echinococcus multilocularis/isolation & purification
- Enzyme-Linked Immunosorbent Assay
- Freund's Adjuvant/administration & dosage
- Glycoproteins/genetics
- Glycoproteins/immunology
- Immunity, Mucosal
- Immunoglobulin A/analysis
- Immunoglobulin G/blood
- Intestinal Mucosa/immunology
- Liver/parasitology
- Male
- Mice
- Mice, Inbred BALB C
- Nasal Mucosa/immunology
- Oligodeoxyribonucleotides/administration & dosage
- Pilot Projects
- Tetraspanins/genetics
- Tetraspanins/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Zhisheng Dang
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases MOA, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu, People's Republic of China
| | - Kinpei Yagi
- Department of Biological Science, Hokkaido Institute of Public Health, Sapporo, Hokkaido, Japan
| | - Yuzaburo Oku
- Parasitology Laboratory, School of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Hirokazu Kouguchi
- Department of Biological Science, Hokkaido Institute of Public Health, Sapporo, Hokkaido, Japan
| | - Kiichi Kajino
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Jun Matsumoto
- Laboratory of Medical Zoology, Nihon University College of Bioresource Sciences, Fujisawa, Japan
| | - Ryo Nakao
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroyuki Wakaguri
- Department of Medical Genome Science, Graduate School of Frontier Science, The University of Tokyo, Tokyo, Japan
| | - Atsushi Toyoda
- RIKEN Genomic Sciences Center, Yokohama, Kanagawa, Japan
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases MOA, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu, People's Republic of China
| | - Chihiro Sugimoto
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
50
|
Vázquez-Chagoyán JC, Gupta S, Garg NJ. Vaccine development against Trypanosoma cruzi and Chagas disease. ADVANCES IN PARASITOLOGY 2011; 75:121-46. [PMID: 21820554 DOI: 10.1016/b978-0-12-385863-4.00006-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The pathology of Chagas disease presents a complicated and diverse picture in humans. The major complications and destructive evolutionary outcomes of chronic infection by Trypanosoma cruzi in humans include ventricular fibrillation, thromboembolism and congestive heart failure. Studies in animal models and human patients have revealed the pathogenic mechanisms during disease progression, pathology of disease and features of protective immunity. Accordingly, several antigens, antigen-delivery vehicles and adjuvants have been tested to elicit immune protection to T. cruzi in experimental animals. This review summarizes the research efforts in vaccine development against Chagas disease during the past decade.
Collapse
Affiliation(s)
- Juan C Vázquez-Chagoyán
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Estado de México, Toluca, Mexico
| | | | | |
Collapse
|