1
|
Silva TA, Thomas D, Siqueira-Neto JL, Calvet CM. Pirfenidone Prevents Heart Fibrosis during Chronic Chagas Disease Cardiomyopathy. Int J Mol Sci 2024; 25:7302. [PMID: 39000409 PMCID: PMC11242150 DOI: 10.3390/ijms25137302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 07/16/2024] Open
Abstract
Cardiac fibrosis is a severe outcome of Chagas disease (CD), caused by the protozoan Trypanosoma cruzi. Clinical evidence revealed a correlation between fibrosis levels with impaired cardiac performance in CD patients. Therefore, we sought to analyze the effect of inhibitors of TGF-β (pirfenidone), p38-MAPK (losmapimod) and c-Jun (SP600125) on the modulation of collagen deposition in cardiac fibroblasts (CF) and in vivo models of T. cruzi chronic infection. Sirius Red/Fast Green dye was used to quantify both collagen expression and total protein amount, assessing cytotoxicity. The compounds were also used to treat C57/Bl6 mice chronically infected with T. cruzi, Brazil strain. We identified an anti-fibrotic effect in vitro for pirfenidone (TGF-β inhibitor, IC50 114.3 μM), losmapimod (p38 inhibitor, IC50 17.6 μM) and SP600125 (c-Jun inhibitor, IC50 3.9 μM). This effect was independent of CF proliferation since these compounds do not affect T. cruzi-induced host cell multiplication as measured by BrdU incorporation. Assays of chronic infection of mice with T. cruzi have shown a reduction in heart collagen by pirfenidone. These results propose a novel approach to fibrosis therapy in CD, with the prospect of repurposing pirfenidone to prevent the onset of ECM accumulation in the hearts of the patients.
Collapse
Affiliation(s)
- Tatiana Araújo Silva
- Cellular Ultrastructure Laboratory, Oswaldo Cruz Institute (IOC), FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Diane Thomas
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (D.T.); (J.L.S.-N.)
| | - Jair L. Siqueira-Neto
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (D.T.); (J.L.S.-N.)
| | - Claudia Magalhaes Calvet
- Cellular Ultrastructure Laboratory, Oswaldo Cruz Institute (IOC), FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil;
| |
Collapse
|
2
|
Fatehi Hassanabad A, Zarzycki AN, Fedak PWM. Cellular and molecular mechanisms driving cardiac tissue fibrosis: On the precipice of personalized and precision medicine. Cardiovasc Pathol 2024; 71:107635. [PMID: 38508436 DOI: 10.1016/j.carpath.2024.107635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Cardiac fibrosis is a significant contributor to heart failure, a condition that continues to affect a growing number of patients worldwide. Various cardiovascular comorbidities can exacerbate cardiac fibrosis. While fibroblasts are believed to be the primary cell type underlying fibrosis, recent and emerging data suggest that other cell types can also potentiate or expedite fibrotic processes. Over the past few decades, clinicians have developed therapeutics that can blunt the development and progression of cardiac fibrosis. While these strategies have yielded positive results, overall clinical outcomes for patients suffering from heart failure continue to be dire. Herein, we overview the molecular and cellular mechanisms underlying cardiac tissue fibrosis. To do so, we establish the known mechanisms that drive fibrosis in the heart, outline the diagnostic tools available, and summarize the treatment options used in contemporary clinical practice. Finally, we underscore the critical role the immune microenvironment plays in the pathogenesis of cardiac fibrosis.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Anna N Zarzycki
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
Retraction: Oral Administration of GW788388, an Inhibitor of Transforming Growth Factor Beta Signaling, Prevents Heart Fibrosis in Chagas Disease. PLoS Negl Trop Dis 2024; 18:e0012360. [PMID: 39042593 PMCID: PMC11265650 DOI: 10.1371/journal.pntd.0012360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
|
4
|
Lei M, Salvage SC, Jackson AP, Huang CLH. Cardiac arrhythmogenesis: roles of ion channels and their functional modification. Front Physiol 2024; 15:1342761. [PMID: 38505707 PMCID: PMC10949183 DOI: 10.3389/fphys.2024.1342761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 03/21/2024] Open
Abstract
Cardiac arrhythmias cause significant morbidity and mortality and pose a major public health problem. They arise from disruptions in the normally orderly propagation of cardiac electrophysiological activation and recovery through successive cardiomyocytes in the heart. They reflect abnormalities in automaticity, initiation, conduction, or recovery in cardiomyocyte excitation. The latter properties are dependent on surface membrane electrophysiological mechanisms underlying the cardiac action potential. Their disruption results from spatial or temporal instabilities and heterogeneities in the generation and propagation of cellular excitation. These arise from abnormal function in their underlying surface membrane, ion channels, and transporters, as well as the interactions between them. The latter, in turn, form common regulatory targets for the hierarchical network of diverse signaling mechanisms reviewed here. In addition to direct molecular-level pharmacological or physiological actions on these surface membrane biomolecules, accessory, adhesion, signal transduction, and cytoskeletal anchoring proteins modify both their properties and localization. At the cellular level of excitation-contraction coupling processes, Ca2+ homeostatic and phosphorylation processes affect channel activity and membrane excitability directly or through intermediate signaling. Systems-level autonomic cellular signaling exerts both acute channel and longer-term actions on channel expression. Further upstream intermediaries from metabolic changes modulate the channels both themselves and through modifying Ca2+ homeostasis. Finally, longer-term organ-level inflammatory and structural changes, such as fibrotic and hypertrophic remodeling, similarly can influence all these physiological processes with potential pro-arrhythmic consequences. These normal physiological processes may target either individual or groups of ionic channel species and alter with particular pathological conditions. They are also potentially alterable by direct pharmacological action, or effects on longer-term targets modifying protein or cofactor structure, expression, or localization. Their participating specific biomolecules, often clarified in experimental genetically modified models, thus constitute potential therapeutic targets. The insights clarified by the physiological and pharmacological framework outlined here provide a basis for a recent modernized drug classification. Together, they offer a translational framework for current drug understanding. This would facilitate future mechanistically directed therapeutic advances, for which a number of examples are considered here. The latter are potentially useful for treating cardiac, in particular arrhythmic, disease.
Collapse
Affiliation(s)
- Ming Lei
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Samantha C. Salvage
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Antony P. Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Christopher L.-H. Huang
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Dufeys C, Bodart J, Bertrand L, Beauloye C, Horman S. Fibroblasts and platelets: a face-to-face dialogue at the heart of cardiac fibrosis. Am J Physiol Heart Circ Physiol 2024; 326:H655-H669. [PMID: 38241009 DOI: 10.1152/ajpheart.00559.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 02/23/2024]
Abstract
Myocardial fibrosis is a feature found in most cardiac diseases and a key element contributing to heart failure and its progression. It has therefore become a subject of particular interest in cardiac research. Mechanisms leading to pathological cardiac remodeling and heart failure are diverse, including effects on cardiac fibroblasts, the main players in cardiac extracellular matrix synthesis, but also on cardiomyocytes, immune cells, endothelial cells, and more recently, platelets. Although transforming growth factor-β (TGF-β) is a primary regulator of fibrosis development, the cellular and molecular mechanisms that trigger its activation after cardiac injury remain poorly understood. Different types of anti-TGF-β drugs have been tested for the treatment of cardiac fibrosis and have been associated with side effects. Therefore, a better understanding of these mechanisms is of great clinical relevance and could allow us to identify new therapeutic targets. Interestingly, it has been shown that platelets infiltrate the myocardium at an early stage after cardiac injury, producing large amounts of cytokines and growth factors. These molecules can directly or indirectly regulate cells involved in the fibrotic response, including cardiac fibroblasts and immune cells. In particular, platelets are known to be a major source of TGF-β1. In this review, we have provided an overview of the classical cellular effectors involved in the pathogenesis of cardiac fibrosis, focusing on the emergent role of platelets, while discussing opportunities for novel therapeutic interventions.
Collapse
Affiliation(s)
- Cécile Dufeys
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Julie Bodart
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Division of Cardiology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
6
|
Osuna-Gómez R, Barril S, Mulet M, Zamora Atenza C, Millan-Billi P, Pardessus A, Brough DE, Sabzevari H, Semnani RT, Castillo D, Vidal S. The immunoregulatory role of IL-35 in patients with interstitial lung disease. Immunology 2023; 168:610-621. [PMID: 36273280 DOI: 10.1111/imm.13596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/20/2022] [Indexed: 11/29/2022] Open
Abstract
Pulmonary fibrosis involves various types of immune cells and soluble mediators, including TGF-β and IL-35, a recently identified heterodimeric cytokine that belongs to the IL-12 cytokine family. However, the effect of regulatory IL-35 may play an important role in fibrotic diseases. The aim of this paper is to explore the immunoregulatory role of IL-35 in the development of fibrosis in interstitial lung disease (ILD). To gain a better understanding of this issue, the concentrations of IL-35 and different profibrotic cytokines in fibrotic (F-ILD) and non-fibrotic (NF-ILD) patients by ELISA were compared to that of intracellular IL-35 and IL-17 on CD4+ T cells stimulated in the presence of BAL or with different ratios of recombinant IL-35 (rIL-35) and TGF-β (rTGF-β), which were evaluated by flow cytometry. We observed that BAL concentration of IL-35 was lower in F patients (p < 0.001) and was negatively correlated with concentrations of TGF-β (p < 0.001) and IL-17 (p < 0.001). In supplemented cell cultures, BAL from NF but not F patients enhanced the percentage of IL-35 + CD4+ T (p < 0.001) cells and decreased the percentage of IL-17 + CD4+ T cells (p < 0.001). The percentage of IL-35 + CD4+ T cells correlated positively with BAL concentration of IL-35 (p = 0.02), but correlated negatively with BAL concentrations of IL-17 (p = 0.007) and TGF-β (p = 0.01). After adjusting the concentrations of recombinant cytokines to establish a TGF-β: IL-35 ratio of 1:4, an enhanced percentage of IL-35 + CD4+ T cells (p < 0.001) but a decreased percentage of IL-17 + CD4+ T cells (p < 0.001) was observed. After adding recombinant IL-35 to the BAL from F patients until a 1:4 ratio of TGF-β: IL-35 was reached, a significantly increased percentage of IL-35 + CD4+ T cells (p < 0.001) and a decreased percentage of IL-17 + CD4+ T cells (p = 0.003) was found. These results suggest that IL-35 may induce an anti-fibrotic response, regulating the effect of TGF-β and the inflammatory response on CD4+ T cells. In addition, the TGF-β: IL-35 ratio in BAL has been shown to be a potential biomarker to predict the outcome of F patients with ILD.
Collapse
Affiliation(s)
- Rubén Osuna-Gómez
- Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Silvia Barril
- Respiratory Department, Institut de Recerca Biomèdica de Lleida (IRBLleida), Hospital Universitari Arnau de Vilanova-Santa María, Translational Research in Respiratory Medicine, Universitat de Lleida (UdL), Lleida, Spain
- Respiratory Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Maria Mulet
- Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Carlos Zamora Atenza
- Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Paloma Millan-Billi
- Respiratory Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Respiratory Department, Hospital Universitario Germans Trias i Pujol, Barcelona, Spain
| | - Ana Pardessus
- Respiratory Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | - Diego Castillo
- Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- Respiratory Department, Institut de Recerca Biomèdica de Lleida (IRBLleida), Hospital Universitari Arnau de Vilanova-Santa María, Translational Research in Respiratory Medicine, Universitat de Lleida (UdL), Lleida, Spain
- Respiratory Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Silvia Vidal
- Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| |
Collapse
|
7
|
Jones KM, Mangin EN, Reynolds CL, Villanueva LE, Cruz JV, Versteeg L, Keegan B, Kendricks A, Pollet J, Gusovsky F, Bottazzi ME, Hotez PJ. Vaccine-linked chemotherapy improves cardiac structure and function in a mouse model of chronic Chagas disease. Front Cell Infect Microbiol 2023; 13:1106315. [PMID: 36844399 PMCID: PMC9947347 DOI: 10.3389/fcimb.2023.1106315] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Chagas disease, caused by chronic infection with the protozoan parasite Trypanosoma cruzi, affects 6-7 million people worldwide. The major clinical manifestation of Chagas disease is chronic Chagasic cardiomyopathy (CCC), which encompasses a spectrum of symptoms including arrhythmias, hypertrophy, dilated cardiomyopathy, heart failure, and sudden death. Current treatment is limited to two antiparasitic drugs, benznidazole (BNZ) and nifurtimox, but both have limited efficacy to halt the progression of CCC. We developed a vaccine-linked chemotherapy strategy using our vaccine consisting of recombinant Tc24-C4 protein and a TLR-4 agonist adjuvant in a stable squalene emulsion, in combination with low dose benznidazole treatment. We previously demonstrated in acute infection models that this strategy parasite specific immune responses, and reduced parasite burdens and cardiac pathology. Here, we tested our vaccine-linked chemotherapy strategy in a mouse model of chronic T. cruzi infection to evaluate the effect on cardiac function. Methods Female BALB/c mice infected with 500 blood form T. cruzi H1 strain trypomastigotes were treated beginning 70 days after infection with a low dose of BNZ and either low or high dose of vaccine, in both sequential and concurrent treatments streams. Control mice were untreated, or administered only one treatment. Cardiac health was monitored throughout the course of treatment by echocardiography and electrocardiograms. Approximately 8 months after infection, endpoint histopathology was performed to measure cardiac fibrosis and cellular infiltration. Results Vaccine-linked chemotherapy improved cardiac function as evidenced by amelioration of altered left ventricular wall thickness, left ventricular diameter, as well as ejection fraction and fractional shortening by approximately 4 months of infection, corresponding to two months after treatment was initiated. At study endpoint, vaccine-linked chemotherapy reduced cardiac cellular infiltration, and induced significantly increased antigen specific IFN-γ and IL-10 release from splenocytes, as well as a trend toward increased IL-17A. Discussion These data suggest that vaccine-linked chemotherapy ameliorates changes in cardiac structure and function induced by infection with T. cruzi. Importantly, similar to our acute model, the vaccine-linked chemotherapy strategy induced durable antigen specific immune responses, suggesting the potential for a long lasting protective effect. Future studies will evaluate additional treatments that can further improve cardiac function during chronic infection.
Collapse
Affiliation(s)
- Kathryn M. Jones
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Elise N. Mangin
- Department of Molecular Physiology, Baylor College of Medicine, Houston, TX, United States
| | - Corey L. Reynolds
- Department of Molecular Physiology, Baylor College of Medicine, Houston, TX, United States
| | - Liliana E. Villanueva
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Julio Vladimir Cruz
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Leroy Versteeg
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Brian Keegan
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - April Kendricks
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Jeroen Pollet
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Fabian Gusovsky
- Global Health Research, Eisai, Inc., Cambridge, MA, United States
| | - Maria Elena Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Department of Biology, Baylor University, Waco, TX, United States
| | - Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Department of Biology, Baylor University, Waco, TX, United States
- James A. Baker III Institute for Public Policy, Rice University, Houston, TX, United States
- Hagler Institute for Advanced Study at Texas A&M University, College Station, TX, United States
| |
Collapse
|
8
|
Rojas M, Prado Y, Tapia P, Carreño LJ, Cabello-Verrugio C, Simon F. Oxidized High-Density Lipoprotein Induces Endothelial Fibrosis Promoting Hyperpermeability, Hypotension, and Increased Mortality. Antioxidants (Basel) 2022; 11:2469. [PMID: 36552677 PMCID: PMC9774523 DOI: 10.3390/antiox11122469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
During systemic inflammation, reactive oxygen species (ROS) are generated in the bloodstream, producing large amounts of oxidized HDL (oxHDL). OxHDL loses the vascular protective features of native HDL, acquiring detrimental actions. Systemic inflammation promotes endothelial fibrosis, characterized by adhesion protein downregulation and fibrotic-specific gene upregulation, disrupting endothelial monolayer integrity. Severe systemic inflammatory conditions, as found in critically ill patients in the intensive care unit (ICU), exhibit endothelial hyperpermeability, hypotension, and organ hypoperfusion, promoting organ dysfunction and increased mortality. Because endothelial fibrosis disturbs the endothelium, it is proposed that it is the cellular and molecular origin of endothelial hyperpermeability and the subsequent deleterious consequences. However, whether oxHDL is involved in this process is unknown. The aim of this study was to investigate the fibrotic effect of oxHDL on the endothelium, to elucidate the underlying molecular and cellular mechanism, and to determine its effects on vascular permeability, blood pressure, and mortality. The results showed that oxHDL induces endothelial fibrosis through the LOX-1/NOX-2/ROS/NF-κB pathway, TGF-β secretion, and ALK-5/Smad activation. OxHDL-treated rats showed endothelial hyperpermeability, hypotension, and an enhanced risk of death and mortality, which was prevented using an ALK-5 inhibitor and antioxidant diet consumption. Additionally, the ICU patients showed fibrotic endothelial cells, and the resuscitation fluid volume administered correlated with the plasma oxHDL levels associated with an elevated risk of death and mortality. We conclude that oxHDL generates endothelial fibrosis, impacting blood pressure regulation and survival.
Collapse
Affiliation(s)
- Macarena Rojas
- Laboratory of Integrative Physiopathology, Faculty of Life Science, Universidad Andres Bello, Santiago 8370186, Chile
| | - Yolanda Prado
- Laboratory of Integrative Physiopathology, Faculty of Life Science, Universidad Andres Bello, Santiago 8370186, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
| | - Pablo Tapia
- Unidad de Paciente Crítico Adulto, Hospital Clínico La Florida, La Florida, Santiago 8242238, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Claudio Cabello-Verrugio
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Science, Universidad Andres Bello, Santiago 8370186, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Faculty of Life Science, Universidad Andres Bello, Santiago 8370186, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago 8380453, Chile
| |
Collapse
|
9
|
Ferreira RR, de Souza EM, Vilar-Pereira G, Degrave WMS, Abreu RDS, Meuser-Batista M, Ferreira NVC, Ledbeter S, Barker RH, Bailly S, Feige JJ, Lannes-Vieira J, de Araújo-Jorge TC, Waghabi MC. In Chagas disease, transforming growth factor beta neutralization reduces Trypanosoma cruzi infection and improves cardiac performance. Front Cell Infect Microbiol 2022; 12:1017040. [PMID: 36530434 PMCID: PMC9748701 DOI: 10.3389/fcimb.2022.1017040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
Chronic Chagasic cardiomyopathy (CCC), a progressive inflammatory and fibrosing disease, is the most prominent clinical form of Chagas disease, a neglected tropical disease caused by Trypanosoma cruzi infection. During CCC, the parasite remains inside the cardiac cells, leading to tissue damage, involving extensive inflammatory response and irregular fibrosis. Among the fibrogenic factors is transforming growth factor-β (TGF-β), a key cytokine controlling extracellular matrix synthesis and degradation. TGF-β is involved in CCC onset and progression, with increased serum levels and activation of its signaling pathways in the cardiac tissue, which crucially contributes to fibrosis. Inhibition of the TGF-β signaling pathway attenuates T. cruzi infection and prevents cardiac damage in an experimental model of acute Chagas disease. The aim of this study was to investigate the effect of TGF-β neutralization on T. cruzi infection in both in vitro and in vivo pre-clinical models, using the 1D11 monoclonal antibody. To this end, primary cultures of cardiac cells were infected with T. cruzi trypomastigote forms and treated with 1D11. For in vivo studies, 1D11 was administered in different schemes for acute and chronic phase models (Swiss mice infected with 104 parasites from the Y strain and C57BL/6 mice infected with 102 parasites from the Colombian strain, respectively). Here we show that the addition of 1D11 to cardiac cells greatly reduces cardiomyocyte invasion by T. cruzi and the number of parasites per infected cell. In both acute and chronic experimental models, T. cruzi infection altered the electrical conduction, decreasing the heart rate, increasing the PR interval and the P wave duration. The treatment with 1D11 reduced cardiac fibrosis and reversed electrical abnormalities improving cardiac performance. Taken together, these data further support the major role of the TGF-β signaling pathways in T. cruzi-infection and their biological consequences on parasite/host interactions. The therapeutic effects of the 1D11 antibody are promising and suggest a new possibility to treat cardiac fibrosis in the chronic phase of Chagas' heart disease by TGF-β neutralization.
Collapse
Affiliation(s)
- Roberto Rodrigues Ferreira
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil,Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil,*Correspondence: Roberto Rodrigues Ferreira, ; Mariana Caldas Waghabi,
| | - Elen Mello de Souza
- Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Glaucia Vilar-Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Wim M. S. Degrave
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Rayane da Silva Abreu
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Marcelo Meuser-Batista
- Departamento de Anatomia Patológica e Citopatologia, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Nilma Valéria Caldeira Ferreira
- Departamento de Anatomia Patológica e Citopatologia, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Steve Ledbeter
- Tissue Protection and Repair, Sanofi-Genzyme R&D Center, Framingham, MA, United States
| | - Robert H. Barker
- Tissue Protection and Repair, Sanofi-Genzyme R&D Center, Framingham, MA, United States
| | - Sabine Bailly
- Laboratory BioSanté, Université Grenoble Alpes, INSERM, CEA, Grenoble, France
| | - Jean-Jacques Feige
- Laboratory BioSanté, Université Grenoble Alpes, INSERM, CEA, Grenoble, France
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Tania C. de Araújo-Jorge
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Mariana Caldas Waghabi
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil,*Correspondence: Roberto Rodrigues Ferreira, ; Mariana Caldas Waghabi,
| |
Collapse
|
10
|
Genetic Disruption of Guanylyl Cyclase/Natriuretic Peptide Receptor-A Triggers Differential Cardiac Fibrosis and Disorders in Male and Female Mutant Mice: Role of TGF-β1/SMAD Signaling Pathway. Int J Mol Sci 2022; 23:ijms231911487. [PMID: 36232788 PMCID: PMC9569686 DOI: 10.3390/ijms231911487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 01/01/2023] Open
Abstract
The global targeted disruption of the natriuretic peptide receptor-A (NPRA) gene (Npr1) in mice provokes hypertension and cardiovascular dysfunction. The objective of this study was to determine the mechanisms regulating the development of cardiac fibrosis and dysfunction in Npr1 mutant mice. Npr1 knockout (Npr1-/-, 0-copy), heterozygous (Npr1+/-, 1-copy), and wild-type (Npr1+/+, 2-copy) mice were treated with the transforming growth factor (TGF)-β1 receptor (TGF-β1R) antagonist GW788388 (2 µg/g body weight/day; ip) for 28 days. Hearts were isolated and used for real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot, and immunohistochemical analyses. The Npr1-/- (0-copy) mice showed a 6-fold induction of cardiac fibrosis and dysfunction with markedly induced expressions of collagen-1α (3.8-fold), monocyte chemoattractant protein (3.7-fold), connective tissue growth factor (CTGF, 5.3-fold), α-smooth muscle actin (α-SMA, 6.1-fold), TGF-βRI (4.3-fold), TGF-βRII (4.7-fold), and phosphorylated small mothers against decapentaplegic (pSMAD) proteins, including pSMAD-2 (3.2-fold) and pSMAD-3 (3.7-fold), compared with wild-type mice. The expressions of phosphorylated extracellular-regulated kinase ERK1/2 (pERK1/2), matrix metalloproteinases-2, -9, (MMP-2, -9), and proliferating cell nuclear antigen (PCNA) were also significantly upregulated in Npr1 0-copy mice. The treatment of mutant mice with GW788388 significantly blocked the expression of fibrotic markers, SMAD proteins, MMPs, and PCNA compared with the vehicle-treated control mice. The treatment with GW788388 significantly prevented cardiac dysfunctions in a sex-dependent manner in Npr1 0-copy and 1-copy mutant mice. The results suggest that the development of cardiac fibrosis and dysfunction in mutant mice is predominantly regulated through the TGF-β1-mediated SMAD-dependent pathway.
Collapse
|
11
|
Neuroprotective Treatments for Digestive Forms of Chagas Disease in Experimental Models: A Systematic Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9397290. [PMID: 36199427 PMCID: PMC9527410 DOI: 10.1155/2022/9397290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/12/2022] [Indexed: 12/09/2022]
Abstract
Chagas disease is an anthropozoonosis caused by the protozoan Trypanosoma cruzi and is characterized as a neglected disease. It is currently endemic in 21 countries on the Latin American continent, including Bolivia, Argentina, and Paraguay. Unfortunately, there are no optimally effective treatments that can reduce the damage caused in the digestive form of the disease, such as the neuronal destruction of the myenteric plexus of both the esophagus and the colon. Therefore, the objective of this systematic review was to report the possible pharmacological neuroprotective agents that were tested in murine models of the digestive form of Chagas disease. Inclusion criteria are in vivo experimental studies that used different murine models for digestive forms of Chagas disease related to pharmacological interventions with neuroprotective potential, without year and language restriction. On the other hand, the exclusion criteria were studies that did not approach murine models with the digestive form of the disease or did not use neuroprotective treatments, among others. The search in the PubMed, Web of Science, Embase, and LILACS databases was performed on September 4, 2021. In addition, a manual search was performed using the references of the included articles. The risk of bias assessment of the studies was performed based on the SYRCLE tool guidelines, and the data from the selected articles are presented in this review as a narrative description and in tables. Eight articles were included, 4 of which addressed treatment with acetylsalicylic acid, 3 with cyclophosphamide, and 1 with Lycopodium clavatum 13c. In view of the results of the studies, most of them show neuroprotective activity of the treatments, with the potential to reduce the number of damaged neurons, as well as positive changes in the structure of these cells. However, more studies are needed to understand the mechanisms triggered by each drug, as well as their safety and immunogenicity. Systematic review registration is as follows: PROSPERO database (CRD42022289746).
Collapse
|
12
|
Cunha PS, Laranjo S, Heijman J, Oliveira MM. The Atrium in Atrial Fibrillation - A Clinical Review on How to Manage Atrial Fibrotic Substrates. Front Cardiovasc Med 2022; 9:879984. [PMID: 35859594 PMCID: PMC9289204 DOI: 10.3389/fcvm.2022.879984] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/03/2022] [Indexed: 12/27/2022] Open
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia in the population and is associated with a significant clinical and economic burden. Rigorous assessment of the presence and degree of an atrial arrhythmic substrate is essential for determining treatment options, predicting long-term success after catheter ablation, and as a substrate critical in the pathophysiology of atrial thrombogenesis. Catheter ablation of AF has developed into an essential rhythm-control strategy. Nowadays is one of the most common cardiac ablation procedures performed worldwide, with its success inversely related to the extent of atrial structural disease. Although atrial substrate evaluation remains complex, several diagnostic resources allow for a more comprehensive assessment and quantification of the extent of left atrial structural remodeling and the presence of atrial fibrosis. In this review, we summarize the current knowledge on the pathophysiology, etiology, and electrophysiological aspects of atrial substrates promoting the development of AF. We also describe the risk factors for its development and how to diagnose its presence using imaging, electrocardiograms, and electroanatomic voltage mapping. Finally, we discuss recent data regarding fibrosis biomarkers that could help diagnose atrial fibrotic substrates.
Collapse
Affiliation(s)
- Pedro Silva Cunha
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Central Lisbon Hospital University Center, Lisbon, Portugal
- Lisbon School of Medicine, Universidade de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Center, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Sérgio Laranjo
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Central Lisbon Hospital University Center, Lisbon, Portugal
- Lisbon School of Medicine, Universidade de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Center, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Mário Martins Oliveira
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Central Lisbon Hospital University Center, Lisbon, Portugal
- Lisbon School of Medicine, Universidade de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Center, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
13
|
Gs T, Aa A, Lr T, D CL, Oc M, Rs A, Mc W, Em DS. Suppression of TGF-β/Smad2 signaling by GW788388 enhances DENV-2 clearance in macrophages. J Med Virol 2022; 94:4359-4368. [PMID: 35596058 PMCID: PMC9544077 DOI: 10.1002/jmv.27879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/05/2022]
Abstract
Dengue fever, caused by the dengue virus (DENV‐1, −2, −3, and −4), affects millions of people in the tropical and subtropical regions worldwide. Severe dengue is correlated with high viraemia and cytokine storm, such as high levels of transforming growth factor‐β1 (TGF‐β1) in the patient's serum. Here, the TGF‐β1 signaling was investigated in the context of in vitro viral clearance. Macrophages were infected with DENV‐2 at MOI 5 and treated with the TGF‐β receptor 1 and 2 inhibitor, GW788388. TGF‐β1 expression, signal transduction and viral load were evaluated 48 h after DENV‐2 infection by enzyme‐linked immunoassay, immunofluorescence, and RT‐qPCR assays. Total TGF‐β1 level was reduced in 15% after DENV‐2 infection, but the secretion of its biologically active form increased threefold during infection, which was followed by the phosphorylation of Smad2 protein. Phosphorylation of Smad2 was reduced by treatment with GW788388 and it was correlated with reduced cytokine production. Importantly, treatment led to a dose‐dependent reduction in viral load, ranging from 6.6 × 105 RNA copies/ml in untreated cultures to 2.3 × 103 RNA copies/ml in cultures treated with 2 ng/ml of GW788388. The anti‐TGF‐β1 antibody treatment also induced a significant reduction in viral load to 1.6 × 103 RNA copies/ml. On the other hand, the addition of recombinant TGF‐β1 in infected cultures promoted an increase in viral load to 7.0 × 106 RNA copies/ml. These results support that TGF‐β1 plays a significant role in DENV‐2 replication into macrophages and suggest that targeting TGF‐β1 may represent an alternative therapeutic strategy to be explored in dengue infection.
Collapse
Affiliation(s)
- Teixeira Gs
- Laboratório de Morfologia e Morfogênese Viral
| | | | | | - Couto-Lima D
- Laboratório de Mosquitos Transmissores de Hematozoário
| | - Moreira Oc
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Biologia Molecular e Doenças Endêmicas
| | - Abreu Rs
- Laboratório de Genômica Funcional e Bioinformática; Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Waghabi Mc
- Laboratório de Genômica Funcional e Bioinformática; Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - de Souza Em
- Laboratório de Morfologia e Morfogênese Viral.,Laboratório de Virologia Molecular
| |
Collapse
|
14
|
Emerging Antiarrhythmic Drugs for Atrial Fibrillation. Int J Mol Sci 2022; 23:ijms23084096. [PMID: 35456912 PMCID: PMC9029767 DOI: 10.3390/ijms23084096] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF), the most common cardiac arrhythmia worldwide, is driven by complex mechanisms that differ between subgroups of patients. This complexity is apparent from the different forms in which AF presents itself (post-operative, paroxysmal and persistent), each with heterogeneous patterns and variable progression. Our current understanding of the mechanisms responsible for initiation, maintenance and progression of the different forms of AF has increased significantly in recent years. Nevertheless, antiarrhythmic drugs for the management of AF have not been developed based on the underlying arrhythmia mechanisms and none of the currently used drugs were specifically developed to target AF. With the increased knowledge on the mechanisms underlying different forms of AF, new opportunities for developing more effective and safer AF therapies are emerging. In this review, we provide an overview of potential novel antiarrhythmic approaches based on the underlying mechanisms of AF, focusing both on the development of novel antiarrhythmic agents and on the possibility of repurposing already marketed drugs. In addition, we discuss the opportunity of targeting some of the key players involved in the underlying AF mechanisms, such as ryanodine receptor type-2 (RyR2) channels and atrial-selective K+-currents (IK2P and ISK) for antiarrhythmic therapy. In addition, we highlight the opportunities for targeting components of inflammatory signaling (e.g., the NLRP3-inflammasome) and upstream mechanisms targeting fibroblast function to prevent structural remodeling and progression of AF. Finally, we critically appraise emerging antiarrhythmic drug principles and future directions for antiarrhythmic drug development, as well as their potential for improving AF management.
Collapse
|
15
|
Sulaiman A, Chambers J, Chilumula SC, Vinod V, Kandunuri R, McGarry S, Kim S. At the Intersection of Cardiology and Oncology: TGFβ as a Clinically Translatable Therapy for TNBC Treatment and as a Major Regulator of Post-Chemotherapy Cardiomyopathy. Cancers (Basel) 2022; 14:1577. [PMID: 35326728 PMCID: PMC8946238 DOI: 10.3390/cancers14061577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that accounts for the majority of breast cancer-related deaths due to the lack of specific targets for effective treatments. While there is immense focus on the development of novel therapies for TNBC treatment, a persistent and critical issue is the rate of heart failure and cardiomyopathy, which is a leading cause of mortality and morbidity amongst cancer survivors. In this review, we highlight mechanisms of post-chemotherapeutic cardiotoxicity exposure, evaluate how this is assessed clinically and highlight the transforming growth factor-beta family (TGF-β) pathway and its significance as a mediator of cardiomyopathy. We also highlight recent findings demonstrating TGF-β inhibition as a potent method to prevent cardiac remodeling, fibrosis and cardiomyopathy. We describe how dysregulation of the TGF-β pathway is associated with negative patient outcomes across 32 types of cancer, including TNBC. We then highlight how TGF-β modulation may be a potent method to target mesenchymal (CD44+/CD24-) and epithelial (ALDHhigh) cancer stem cell (CSC) populations in TNBC models. CSCs are associated with tumorigenesis, metastasis, relapse, resistance and diminished patient prognosis; however, due to plasticity and differential regulation, these populations remain difficult to target and continue to present a major barrier to successful therapy. TGF-β inhibition represents an intersection of two fields: cardiology and oncology. Through the inhibition of cardiomyopathy, cardiac damage and heart failure may be prevented, and through CSC targeting, patient prognoses may be improved. Together, both approaches, if successfully implemented, would target the two greatest causes of cancer-related morbidity in patients and potentially lead to a breakthrough therapy.
Collapse
Affiliation(s)
- Andrew Sulaiman
- Department of Basic Science, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (S.C.C.); (V.V.); (R.K.); (S.K.)
| | - Jason Chambers
- Schulich School of Medicine, Western University, London, ON N6A5C1, Canada;
| | - Sai Charan Chilumula
- Department of Basic Science, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (S.C.C.); (V.V.); (R.K.); (S.K.)
| | - Vishak Vinod
- Department of Basic Science, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (S.C.C.); (V.V.); (R.K.); (S.K.)
| | - Rohith Kandunuri
- Department of Basic Science, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (S.C.C.); (V.V.); (R.K.); (S.K.)
| | - Sarah McGarry
- Children’s Mercy Hospital Kansas City, 2401 Gillham Rd, Kansas City, MO 64108, USA;
| | - Sung Kim
- Department of Basic Science, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (S.C.C.); (V.V.); (R.K.); (S.K.)
| |
Collapse
|
16
|
Ferreira RR, Waghabi MC, Bailly S, Feige JJ, Hasslocher-Moreno AM, Saraiva RM, Araujo-Jorge TC. The Search for Biomarkers and Treatments in Chagas Disease: Insights From TGF-Beta Studies and Immunogenetics. Front Cell Infect Microbiol 2022; 11:767576. [PMID: 35186778 PMCID: PMC8847772 DOI: 10.3389/fcimb.2021.767576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/03/2021] [Indexed: 11/23/2022] Open
Abstract
The anti-inflammatory cytokine transforming growth factor beta (TGF-β) plays an important role in Chagas disease (CD), a potentially life-threatening illness caused by Trypanosoma cruzi. In this review we revisited clinical studies in CD patients combined with in vitro and in vivo experiments, presenting three main sections: an overview of epidemiological, economic, and clinical aspects of CD and the need for new biomarkers and treatment; a brief panorama of TGF-β roles and its intracellular signaling pathways, and an update of what is known about TGF-β and Chagas disease. In in vitro assays, TGF-β increases during T. cruzi infection and modulates heart cells invasion by the parasite fostering its intracellular parasite cycle. TGF-β modulates host immune response and inflammation, increases heart fibrosis, stimulates remodeling, and slows heart conduction via gap junction modulation. TGF-β signaling inhibitors reverts these effects opening a promising therapeutic approach in pre-clinical studies. CD patients with higher TGF-β1 serum level show a worse clinical outcome, implicating a predictive value of serum TGF-β as a surrogate biomarker of clinical relevance. Moreover, pre-clinical studies in chronic T. cruzi infected mice proved that inhibition of TGF-β pathway improved several cardiac electric parameters, reversed the loss of connexin-43 enriched intercellular plaques, reduced fibrosis of the cardiac tissue, restored GATA-6 and Tbox-5 transcription, supporting cardiac recovery. Finally, TGF-β polymorphisms indicate that CD immunogenetics is at the base of this phenomenon. We searched in a Brazilian population five single-nucleotide polymorphisms (-800 G>A rs1800468, -509 C>T rs1800469, +10 T>C rs1800470, +25 G>C rs1800471, and +263 C>T rs1800472), showing that CD patients frequently express the TGF-β1 gene genotypes CT and TT at position -509, as compared to noninfected persons; similar results were observed with genotypes TC and CC at codon +10 of the TGF-β1 gene, leading to the conclusion that 509 C>T and +10 T>C TGF-β1 polymorphisms are associated with Chagas disease susceptibility. Studies in genetically different populations susceptible to CD will help to gather new insights and encourage the use of TGF-β as a CD biomarker.
Collapse
Affiliation(s)
- Roberto Rodrigues Ferreira
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute (LAGFB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Mariana Caldas Waghabi
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute (LAGFB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Sabine Bailly
- Laboratory Biology of Cancer and Infection, Université Grenoble Alpes, Inserm, Commissariat à l’Energie Atomique, Grenoble, France
| | - Jean-Jacques Feige
- Laboratory Biology of Cancer and Infection, Université Grenoble Alpes, Inserm, Commissariat à l’Energie Atomique, Grenoble, France
| | - Alejandro M. Hasslocher-Moreno
- Clinical Research Laboratory of Chagas Disease, Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberto M. Saraiva
- Clinical Research Laboratory of Chagas Disease, Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Tania C. Araujo-Jorge
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Waghabi MC, Ferreira RR, Abreu RDS, Degrave W, de Souza EM, Bailly S, Feige JJ, de Araújo-Jorge TC. Transforming growth factor-ß as a therapeutic target for the cardiac damage of Chagas disease. Mem Inst Oswaldo Cruz 2022; 117:e210395. [PMID: 35239842 PMCID: PMC8896758 DOI: 10.1590/0074-02760210395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/05/2022] Open
Abstract
Transforming growth factor beta (TGF-β) is deeply involved on the pathogenesis of Chagas disease. Our group has been investigating the participation of this pleiotropic cytokine in different aspects of Chagas disease over the last 20 years. Important observations have been made, such as: (i) the ability of Trypanosoma cruzi in activating latent TGF-β; (ii) the potential involvement of TGF-β pathway on T. cruzi invasion of host cells; (iii) association of TGF-β with parasite intracellular replication; (iv) cardiac fibrosis development and maintenance; (v) disruption of Connexin-43 plaque structures and (vi) inflammation and immune response. In this perspective article we intend to discuss the advances of the potential use of new therapies targeting TGF-β to treat the cardiac alterations of Chagas disease-affected patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Sabine Bailly
- Institut National de la Santé et de la Recherche Médicale, France
| | | | | |
Collapse
|
18
|
Abstract
Transforming Growth Factor-β is a potent regulator of the immune system, acting at every stage from thymic differentiation, population of the periphery, control of responsiveness, tissue repair and generation of memory. It is therefore a central player in the immune response to infectious pathogens, but its contribution is often clouded by multiple roles acting on different cells in time and space. Hence, context is all-important in understanding when TGF-β is beneficial or detrimental to the outcome of infection. In this review, a full range of infectious agents from viruses to helminth parasites are explored within this framework, drawing contrasts and general conclusions about the importance of TGF-β in these diseases.
Collapse
Affiliation(s)
- Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
19
|
Hoffman K, Liu Z, Hossain E, Bottazzi ME, Hotez PJ, Jones KM, McCall LI. Alterations to the Cardiac Metabolome Induced by Chronic T. cruzi Infection Relate to the Degree of Cardiac Pathology. ACS Infect Dis 2021; 7:1638-1649. [PMID: 33843195 PMCID: PMC8588157 DOI: 10.1021/acsinfecdis.0c00816] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic Chagasic cardiomyopathy (CCC) is a Neglected Tropical Disease caused by the parasite Trypanosoma cruzi. The pathognomonic findings in symptomatic CCC patients and animal models includes diffuse cardiac fibrosis and inflammation with persistent parasite presence in the heart. This study investigated chemical alterations in different regions of the heart in relation to cardiac pathology indicators to better understand the long-term pathogenesis of this neglected disease. We used data from echocardiography, fibrosis biomarkers, and histopathological analysis to fully evaluate cardiac pathology. Metabolites isolated from the pericardial and endocardial sides of the right ventricular myocardium were analyzed by liquid chromatography tandem mass spectrometry. The endocardial sections contained significantly less cardiac inflammation and fibrosis than the pericardial sections. Cardiac levels of acylcarnitines, phosphocholines, and other metabolites were significantly disrupted in accordance with cardiac fibrosis, inflammation, and serum fibrosis biomarker levels. These findings have potential implications in treatment and monitoring for CCC patients.
Collapse
Affiliation(s)
- Kristyn Hoffman
- Department of Molecular Virology and Microbiology and Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Zongyuan Liu
- Department of Chemistry and Biochemistry and Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ekram Hossain
- Department of Chemistry and Biochemistry and Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Maria Elena Bottazzi
- Department of Molecular Virology and Microbiology and Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States; Texas Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States; Department of Biology, Baylor University, Waco, Texas 76798, United States
| | - Peter J. Hotez
- Department of Molecular Virology and Microbiology and Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States; Texas Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States; Department of Biology, Baylor University, Waco, Texas 76798, United States
| | - Kathryn M. Jones
- Department of Molecular Virology and Microbiology and Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States; Texas Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, Laboratories of Molecular Anthropology and Microbiome Research, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
20
|
TGF-β Pathway in Salivary Gland Fibrosis. Int J Mol Sci 2020; 21:ijms21239138. [PMID: 33266300 PMCID: PMC7730716 DOI: 10.3390/ijms21239138] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
Fibrosis is presented in various physiologic and pathologic conditions of the salivary gland. Transforming growth factor beta (TGF-β) pathway has a pivotal role in the pathogenesis of fibrosis in several organs, including the salivary glands. Among the TGF-β superfamily members, TGF-β1 and 2 are pro-fibrotic ligands, whereas TGF-β3 and some bone morphogenetic proteins (BMPs) are anti-fibrotic ligands. TGF-β1 is thought to be associated with the pro-fibrotic pathogenesis of sialadenitis, post-radiation salivary gland dysfunction, and Sjögren’s syndrome. Potential therapeutic strategies that target multiple levels in the TGF-β pathway are under preclinical and clinical research for fibrosis. Despite the anti-fibrotic effect of BMPs, their in vivo delivery poses a challenge in terms of adequate clinical efficacy. In this article, we will review the relevance of TGF-β signaling in salivary gland fibrosis and advances of potential therapeutic options in the field.
Collapse
|
21
|
Development of a ultra-performance LC-MS/MS method for quantification of GW788388 and its applications in pharmacokinetic study in rats. Bioanalysis 2020; 12:1681-1688. [PMID: 33179532 DOI: 10.4155/bio-2020-0249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: GW788388 is a selective and orally active TGF-β1 receptor inhibitor that shows potent activity in renal fibrosis. We aimed to establish and validate a simple and sensitive ultra-performance LC-MS/MS method for the determination of GW788388 in plasma samples. Methodology & results: GW788388 in rat plasma was processed with protein precipitation method and then separated on a C18 column. The calibration curve presented a good linearity in the range of 1.0-1200 ng/ml, with satisfactory accuracy (relative error, [-17.5% < relative error <11.7%) and precision (CV <8.9%) for all quality control samples. After oral administration, GW788388 was absorbed quickly and reached a peak concentration of 595.3 ± 60.2 ng/ml after 20 min. Conclusion: The validated method provides a quantification method of GW788388 in rat plasma in detail, and can be utilized to successfully describe the pharmacokinetic profile of GW788388.
Collapse
|
22
|
Nisimura LM, Ferrão PM, Nogueira ADR, Waghabi MC, Meuser-Batista M, Moreira OC, Urbina JA, Garzoni LR. Effect of Posaconazole in an in vitro model of cardiac fibrosis induced by Trypanosoma cruzi. Mol Biochem Parasitol 2020; 238:111283. [PMID: 32564978 DOI: 10.1016/j.molbiopara.2020.111283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/31/2022]
Abstract
Posaconazole (POS) is an inhibitor of ergosterol biosynthesis in clinical use for treating invasive fungal infections. POS has potent and selective anti-Trypanosoma cruzi activity and has been evaluated as a possible treatment for Chagas disease. Microtissues are a 3D culture system that has been shown to reproduce better tissue architecture and functionality than cell cultures in monolayer (2D). It has been used to evaluate chemotropic response as in vitro disease models. We previously developed an in vitro model that reproduces aspects of cardiac fibrosis observed in Chagas cardiomyopathy, using microtissues formed by primary cardiac cells infected by the T. cruzi, here called T. cruzi fibrotic cardiac microtissue (TCFCM). We also showed that the treatment of TCFCM with a TGF-β pathway inhibitor reduces fibrosis. Here, we aimed to evaluate the effect of POS in TCFCM, observing parasite load and molecules involved in fibrosis. To choose the concentration of POS to be used in TCFCM we first performed experiments in a monolayer of primary cardiac cell cultures and, based on the results, TCFCM was treated with 5 nM of POS for 96 h, starting at 144 h post-infection. Our previous studies showed that at this time the TCFCM had established fibrosis, resulting from T. cruzi infection. Treatment with POS of TCFCM reduced 50 % of parasite load as observed by real-time PCR and reduced markedly the fibrosis as observed by western blot and immunofluorescence, associated with a strong reduction in the expression of fibronectin and laminin (45 % and 54 %, respectively). POS treatment also changed the expression of proteins involved in the regulation of extracellular matrix proteins (TGF-β and TIMP-4, increased by 50 % and decreased by 58 %, respectively) in TCFCM. In conclusion, POS presented a potent trypanocidal effect both in 2D and in TCFCM, and the reduction of the parasite load was associated with a reduction of fibrosis in the absence of external immunological effectors.
Collapse
Affiliation(s)
- Lindice Mitie Nisimura
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Patrícia Mello Ferrão
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Alanderson da Rocha Nogueira
- Laboratório de Ultra-estrutura Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Mariana Caldas Waghabi
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Marcelo Meuser-Batista
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Otacílio C Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Julio A Urbina
- Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela
| | - Luciana Ribeiro Garzoni
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
23
|
Parichatikanond W, Luangmonkong T, Mangmool S, Kurose H. Therapeutic Targets for the Treatment of Cardiac Fibrosis and Cancer: Focusing on TGF-β Signaling. Front Cardiovasc Med 2020; 7:34. [PMID: 32211422 PMCID: PMC7075814 DOI: 10.3389/fcvm.2020.00034] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is a common mediator of cancer progression and fibrosis. Fibrosis can be a significant pathology in multiple organs, including the heart. In this review, we explain how inhibitors of TGF-β signaling can work as antifibrotic therapy. After cardiac injury, profibrotic mediators such as TGF-β, angiotensin II, and endothelin-1 simultaneously activate cardiac fibroblasts, resulting in fibroblast proliferation and migration, deposition of extracellular matrix proteins, and myofibroblast differentiation, which ultimately lead to the development of cardiac fibrosis. The consequences of fibrosis include a wide range of cardiac disorders, including contractile dysfunction, distortion of the cardiac structure, cardiac remodeling, and heart failure. Among various molecular contributors, TGF-β and its signaling pathways which play a major role in carcinogenesis are considered master fibrotic mediators. In fact, recently the inhibition of TGF-β signaling pathways using small molecule inhibitors, antibodies, and gene deletion has shown that the progression of several cancer types was suppressed. Therefore, inhibitors of TGF-β signaling are promising targets for the treatment of tissue fibrosis and cancers. In this review, we discuss the molecular mechanisms of TGF-β in the pathogenesis of cardiac fibrosis and cancer. We will review recent in vitro and in vivo evidence regarding antifibrotic and anticancer actions of TGF-β inhibitors. In addition, we also present available clinical data on therapy based on inhibiting TGF-β signaling for the treatment of cancers and cardiac fibrosis.
Collapse
Affiliation(s)
| | - Theerut Luangmonkong
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
24
|
Howe MD, Furr JW, Munshi Y, Roy-O’Reilly MA, Maniskas ME, Koellhoffer EC, d’Aigle J, Sansing LH, McCullough LD, Urayama A. Transforming growth factor-β promotes basement membrane fibrosis, alters perivascular cerebrospinal fluid distribution, and worsens neurological recovery in the aged brain after stroke. GeroScience 2019; 41:543-559. [PMID: 31721012 PMCID: PMC6885082 DOI: 10.1007/s11357-019-00118-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
Aging and stroke alter the composition of the basement membrane and reduce the perivascular distribution of cerebrospinal fluid and solutes, which may contribute to poor functional recovery in elderly patients. Following stroke, TGF-β induces astrocyte activation and subsequent glial scar development. This is dysregulated with aging and could lead to chronic, detrimental changes within the basement membrane. We hypothesized that TGF-β induces basement membrane fibrosis after stroke, leading to impaired perivascular CSF distribution and poor functional recovery in aged animals. We found that CSF entered the aged brain along perivascular tracts; this process was reduced by experimental stroke and was rescued by TGF-β receptor inhibition. Brain fibronectin levels increased with experimental stroke, which was reversed with inhibitor treatment. Exogenous TGF-β stimulation increased fibronectin expression, both in vivo and in primary cultured astrocytes. Oxygen-glucose deprivation of cultured astrocytes induced multiple changes in genes related to astrocyte activation and extracellular matrix production. Finally, in stroke patients, we found that serum TGF-β levels correlated with poorer functional outcomes, suggesting that serum levels may act as a biomarker for functional recovery. These results support a potential new treatment strategy to enhance recovery in elderly stroke patients.
Collapse
Affiliation(s)
- Matthew D. Howe
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030 USA
| | - J. Weldon Furr
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030 USA
| | - Yashasvee Munshi
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030 USA
| | - Meaghan A. Roy-O’Reilly
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030 USA
| | - Michael E. Maniskas
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030 USA
| | - Edward C. Koellhoffer
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030 USA
| | - John d’Aigle
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030 USA
| | - Lauren H. Sansing
- Department of Neurology, Yale University School of Medicine, 1450 Chapel Street, New Haven, CT 06511 USA
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030 USA
| | - Akihiko Urayama
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030 USA
| |
Collapse
|
25
|
Silva TA, Ferreira LFDC, Pereira MCDS, Calvet CM. Differential Role of TGF-β in Extracellular Matrix Regulation During Trypanosoma cruzi-Host Cell Interaction. Int J Mol Sci 2019; 20:E4836. [PMID: 31569452 PMCID: PMC6801917 DOI: 10.3390/ijms20194836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/03/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022] Open
Abstract
Transforming growth factor beta (TGF-β) is a determinant for inflammation and fibrosis in cardiac and skeletal muscle in Chagas disease. To determine its regulatory mechanisms, we investigated the response of Trypanosoma cruzi-infected cardiomyocytes (CM), cardiac fibroblasts (CF), and L6E9 skeletal myoblasts to TGF-β. Cultures of CM, CF, and L6E9 were infected with T. cruzi (Y strain) and treated with TGF-β (1-10 ng/mL, 1 h or 48 h). Fibronectin (FN) distribution was analyzed by immunofluorescence and Western blot (WB). Phosphorylated SMAD2 (PS2), phospho-p38 (p-p38), and phospho-c-Jun (p-c-Jun) signaling were evaluated by WB. CF and L6E9 showed an increase in FN from 1 ng/mL of TGF-β, while CM displayed FN modulation only after 10 ng/mL treatment. CF and L6E9 showed higher PS2 levels than CM, while p38 was less stimulated in CF than CM and L6E9. T. cruzi infection resulted in localized FN disorganization in CF and L6E9. T. cruzi induced an increase in FN in CF cultures, mainly in uninfected cells. Infected CF cultures treated with TGF-β showed a reduction in PS2 and an increase in p-p38 and p-c-Jun levels. Our data suggest that p38 and c-Jun pathways may be participating in the fibrosis regulatory process mediated by TGF-β after T. cruzi infection.
Collapse
Affiliation(s)
- Tatiana Araújo Silva
- Cellular Ultrastructure Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-360, Brazil.
| | | | | | - Claudia Magalhães Calvet
- Cellular Ultrastructure Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-360, Brazil.
| |
Collapse
|
26
|
Ferreira RR, Abreu RDS, Vilar-Pereira G, Degrave W, Meuser-Batista M, Ferreira NVC, da Cruz Moreira O, da Silva Gomes NL, Mello de Souza E, Ramos IP, Bailly S, Feige JJ, Lannes-Vieira J, de Araújo-Jorge TC, Waghabi MC. TGF-β inhibitor therapy decreases fibrosis and stimulates cardiac improvement in a pre-clinical study of chronic Chagas' heart disease. PLoS Negl Trop Dis 2019; 13:e0007602. [PMID: 31365537 PMCID: PMC6690554 DOI: 10.1371/journal.pntd.0007602] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/12/2019] [Accepted: 07/03/2019] [Indexed: 01/11/2023] Open
Abstract
TGF-β involvement in Chagas disease cardiomyopathy has been clearly demonstrated. The TGF-β signaling pathway is activated in the cardiac tissue of chronic phase patients and is associated with an increase in extracellular matrix protein expression. The aim of this study was to investigate the effect of GW788388, a selective inhibitor of TβR1/ALK5, on cardiac function in an experimental model of chronic Chagas' heart disease. To this end, C57BL/6 mice were infected with Trypanosoma cruzi (102 parasites from the Colombian strain) and treated orally with 3mg/kg GW788388 starting at 120 days post-infection (dpi), when 100% of the infected mice show cardiac damage, and following three distinct treatment schedules: i) single dose; ii) one dose per week; or iii) three doses per week during 30 days. The treatment with GW788388 improved several cardiac parameters: reduced the prolonged PR and QTc intervals, increased heart rate, and reversed sinus arrhythmia, and atrial and atrioventricular conduction disorders. At 180 dpi, 30 days after treatment interruption, the GW3x-treated group remained in a better cardiac functional condition. Further, GW788388 treatment reversed the loss of connexin-43 enriched intercellular plaques and reduced fibrosis of the cardiac tissue. Inhibition of the TGF-β signaling pathway reduced TGF-β/pSmad2/3, increased MMP-9 and Sca-1, reduced TIMP-1/TIMP-2/TIMP-4, and partially restored GATA-6 and Tbox-5 transcription, supporting cardiac recovery. Moreover, GW788388 administration did not modify cardiac parasite load during the infection but reduced the migration of CD3+ cells to the heart tissue. Altogether, our data suggested that the single dose schedule was not as effective as the others and treatment three times per week during 30 days seems to be the most effective strategy. The therapeutic effects of GW788388 are promising and suggest a new possibility to treat cardiac fibrosis in the chronic phase of Chagas' heart disease by TGF-β inhibitors.
Collapse
Affiliation(s)
- Roberto Rodrigues Ferreira
- Laboratório de Genômica Funcional e Bioinformática—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
| | - Rayane da Silva Abreu
- Laboratório de Genômica Funcional e Bioinformática—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
| | - Glaucia Vilar-Pereira
- Laboratório de Biologia das Interações—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
| | - Wim Degrave
- Laboratório de Genômica Funcional e Bioinformática—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
| | - Marcelo Meuser-Batista
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
- Departamento de Anatomia Patológica e Citopatologia, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brasil
| | - Nilma Valéria Caldeira Ferreira
- Departamento de Anatomia Patológica e Citopatologia, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brasil
| | - Otacílio da Cruz Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (FIOCRUZ/RJ), Rio de Janeiro, Brazil
| | - Natália Lins da Silva Gomes
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (FIOCRUZ/RJ), Rio de Janeiro, Brazil
| | - Elen Mello de Souza
- Laboratório de Virologia Molecular—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
| | - Isalira P. Ramos
- UFRJ, Centro Nacional de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Sabine Bailly
- Université Grenoble-Alpes, Inserm, CEA, Biology of Cancer and Infection Laboratory, Grenoble, France
| | - Jean-Jacques Feige
- Université Grenoble-Alpes, Inserm, CEA, Biology of Cancer and Infection Laboratory, Grenoble, France
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
| | - Tania C. de Araújo-Jorge
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
| | - Mariana Caldas Waghabi
- Laboratório de Genômica Funcional e Bioinformática—Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro RJ, Brasil
- * E-mail:
| |
Collapse
|
27
|
Cardiac fibrosis: potential therapeutic targets. Transl Res 2019; 209:121-137. [PMID: 30930180 PMCID: PMC6545256 DOI: 10.1016/j.trsl.2019.03.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 01/14/2023]
Abstract
Cardiovascular disease is a leading cause of mortality in the world and is exacerbated by the presence of cardiac fibrosis, defined by the accumulation of noncontractile extracellular matrix proteins. Cardiac fibrosis is directly linked to cardiac dysfunction and increased risk of arrhythmia. Despite its prevalence, there is a lack of efficacious therapies for inhibiting or reversing cardiac fibrosis, largely due to the complexity of the cell types and signaling pathways involved. Ongoing research has aimed to understand the mechanisms of cardiac fibrosis and develop new therapies for treating scar formation. Major approaches include preventing the formation of scar tissue and replacing fibrous tissue with functional cardiomyocytes. While targeting the renin-angiotensin-aldosterone system is currently used as the standard line of therapy for heart failure, there has been increased interest in inhibiting the transforming growth factor-β signaling pathway due its established role in cardiac fibrosis. Significant advances in cell transplantation therapy and biomaterials engineering have also demonstrated potential in regenerating the myocardium. Novel techniques, such as cellular direct reprogramming, and molecular targets, such as noncoding RNAs and epigenetic modifiers, are uncovering novel therapeutic options targeting fibrosis. This review provides an overview of current approaches and discuss future directions for treating cardiac fibrosis.
Collapse
|
28
|
Endotoxemia-induced endothelial fibrosis inhibition improves hypotension, tachycardia, multiple organ dysfunction syndrome, cytokine response, oxidative stress, and survival. J Transl Med 2019; 99:1173-1192. [PMID: 30911151 DOI: 10.1038/s41374-019-0237-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 11/08/2022] Open
Abstract
Sepsis syndrome is the leading cause of mortality in critically ill patients admitted to intensive care. However, current therapies for sepsis treatment are unsatisfactory, and the mortality rate is still high. The main pathological characteristics observed during sepsis syndrome and endotoxemia include hypotension, tachycardia, multiple organ dysfunction syndrome (MODS), tissue damage, and cytokine and oxidative bursts. These conditions severely decrease the survival rates of endotoxemic patients. As a consequence of endotoxemia, large amounts of endotoxin circulate in the bloodstream throughout the vascular system and interact directly with endothelial cells that cover the inner wall of blood vessels. Endothelial cells exposed to lipopolysaccharides exhibit conversion to activated fibroblasts. By means of endotoxin-induced endothelial fibrosis, endothelial cells downregulate the expression of endothelial proteins and express fibrotic and ECM markers throughout endothelial protein expression reprogramming. Although endotoxin-induced endothelial fibrosis should, in theory, be detrimental to endothelial vascular function, the role of endothelial fibrosis in sepsis syndrome or endotoxemia is not known. Therefore, we employed a rat model to investigate whether the inhibition of endotoxin-induced endothelial fibrosis protects against endotoxemia and whether this inhibition increases survival. Our results show that the inhibition of endotoxin-induced endothelial fibrosis reduced both hypotension and tachycardia. Endotoxemia-induced MODS was also decreased when endothelial fibrosis was inhibited; treated rats showed normal kidney and liver function, inhibition of muscle mass wasting and normal glycemia. Liver and kidney histology was preserved, and organ fibrosis and fibrotic protein expression were reduced. Furthermore, pro-inflammatory cytokine secretion and NOX-2-mediated oxidative stress bursts were decreased when endothelial fibrosis was inhibited. Remarkably, the risk of death associated with sepsis syndrome at early and late time points was decreased when endotoxemia-induced endothelial fibrosis was inhibited, and a significant increase in survival was observed. These results reveal a potential novel treatment strategy to protect against sepsis syndrome and endotoxemia.
Collapse
|
29
|
Hodges MM, Zgheib C, Xu J, Hu J, Dewberry LC, Hilton SA, Allukian MW, Gorman JH, Gorman RC, Liechty KW. Differential Expression of Transforming Growth Factor-β1 Is Associated With Fetal Regeneration After Myocardial Infarction. Ann Thorac Surg 2019; 108:59-66. [PMID: 30690019 DOI: 10.1016/j.athoracsur.2018.12.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/12/2018] [Accepted: 12/17/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Global extracellular matrix (ECM)-related gene expression is decreased after myocardial infarction (MI) in fetal sheep when compared with adult sheep. Transforming growth factor (TGF)-β1 is a key regulator of ECM; therefore we hypothesize that TGF-β1 is differentially expressed in adult and fetal infarcts after MI. METHODS Adult and fetal sheep underwent MI via ligation of the left anterior descending coronary artery. Expression of TGF-β1 and ECM-related genes was evaluated by ovine-specific microarray and quantitative polymerase chain reaction. Fibroblasts from the left ventricle of adult and fetal hearts were treated with TGF-β1 or a TGF-β1 receptor inhibitor (LY36497) to evaluate the effect of TGF-β1 on ECM-related genes. RESULTS Col1a1, col3a1, and MMP9 expression were increased in adult infarcts 3 and 30 days after MI but were upregulated in fetal infarcts only 3 days after MI. Three days after MI elastin expression was increased in adult infarcts. Despite upregulation in adult infarcts both 3 and 30 days after MI, TGF-β1 was not upregulated in fetal infarcts at any time point. Inhibition of the TGF-β1 receptor in adult cardiac fibroblasts decreased expression of col1a1, col3a1, MMP9, elastin, and TIMP1, whereas treatment of fetal cardiac fibroblasts with TGF-β1 increased expression of these genes. CONCLUSIONS TGF-β1 is increased in adult infarcts compared with regenerative, fetal infarcts after MI. Although treatment of fetal cardiac fibroblasts with TGF-β1 conveys an adult phenotype, inhibition of TGF-β1 conveys a fetal phenotype to adult cardiac fibroblasts. Decreasing TGF-β1 after MI may facilitate myocardial regeneration by "fetalizing" the otherwise fibrotic, adult response to MI.
Collapse
Affiliation(s)
- Maggie M Hodges
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, Colorado.
| | - Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, Colorado
| | - Junwang Xu
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, Colorado
| | - Junyi Hu
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, Colorado
| | - Lindel C Dewberry
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, Colorado
| | - Sarah A Hilton
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, Colorado
| | - Myron W Allukian
- Department of Pediatric Surgery, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Joseph H Gorman
- Department of Surgery and Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert C Gorman
- Department of Surgery and Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kenneth W Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, Colorado
| |
Collapse
|
30
|
Dubnika A, Manoukian MA, Mohammadi MR, Parekh MB, Gurjarpadhye AA, Inayathullah M, Dubniks V, Lakey JR, Rajadas J. Cytokines as therapeutic agents and targets in heart disease. Cytokine Growth Factor Rev 2018; 43:54-68. [DOI: 10.1016/j.cytogfr.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/01/2018] [Accepted: 08/13/2018] [Indexed: 02/02/2023]
|
31
|
Shi X, Liu Q, Li N, Tu W, Luo R, Mei X, Ma Y, Xu W, Chu H, Jiang S, Du Z, Zhao H, Zhao L, Jin L, Wu W, Wang J. MiR-3606-3p inhibits systemic sclerosis through targeting TGF-β type II receptor. Cell Cycle 2018; 17:1967-1978. [PMID: 30145936 PMCID: PMC6224271 DOI: 10.1080/15384101.2018.1509621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 12/24/2022] Open
Abstract
Systemic sclerosis (SSc) is a multisystemic fibrotic disease characterized by excessive collagen deposition and extracellular matrix synthesis. Though transforming growth factor-β (TGF-β) plays a fundamental role in the pathogenesis of SSc, the mechanism by which TGF-β signaling acts in SSc remains largely unclear. Here, we showed that TGF-β type II receptor (TGFBR2) was significantly upregulated in both human SSc dermal tissues and primary fibroblasts. In fibroblasts, siRNA-induced knockdown of TGFBR2 resulted in a reduction of p-SMAD2/3 levels and reduced production of type I collagen. Additionally, functional experiments revealed that downregulation of TGFBR2 yielded an anti-growth effect on fibroblasts through inhibiting cell cycle progression. Further studies showed that miR-3606-3p could directly target the 3'-UTR of TGFBR2 and significantly decrease the levels of both TGFBR2 mRNA and protein. Furthermore, SSc dermal tissues and primary fibroblasts contain significantly reduced amounts of miR-3606-3p, and the overexpression of miR-3606-3p in fibroblasts replicates the phenotype of TGFBR2 downregulation. Collectively, our findings demonstrated that increased TGFBR2 could be responsible for the hyperactive TGF-β signaling observed in SSc. Moreover, we identified a pivotal role for miR-3606-3p in SSc, which acts, at least partly, through the attenuation of TGF-β signaling via TGFBR2 repression, suggesting that the regulation of miR-3606-3p/TGFBR2 could be a promising therapeutic target that could improve the treatment strategy for fibrosis.
Collapse
Affiliation(s)
- Xiangguang Shi
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Human Phenome Institute, Fudan University, Shanghai, China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingmei Liu
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Na Li
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Wenzhen Tu
- Division of Rheumatology, Shanghai TCM-Integrated Hospital, Shanghai, China
| | - Ruoyu Luo
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Xueqian Mei
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Yanyun Ma
- Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Weihong Xu
- The Clinical Laboratory of Shanghai Tongren Hosipital, Jiaotong University, Shanghai, China
| | - Haiyan Chu
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Shuai Jiang
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Zhimin Du
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Han Zhao
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Liang Zhao
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Human Phenome Institute, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Curvo EO, Ferreira RR, Madeira FS, Alves GF, Chambela MC, Mendes VG, Sangenis LHC, Waghabi MC, Saraiva RM. Correlation of transforming growth factor-β1 and tumour necrosis factor levels with left ventricular function in Chagas disease. Mem Inst Oswaldo Cruz 2018. [PMID: 29513876 PMCID: PMC5851032 DOI: 10.1590/0074-02760170440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Transforming growth factor β1 (TGF-β1) and tumour necrosis factor (TNF) have been implicated in Chagas disease pathophysiology and may correlate with left ventricular (LV) function. OBJECTIVES We determined whether TGF-β1 and TNF serum levels correlate with LV systolic and diastolic functions and brain natriuretic peptide (BNP) serum levels in chronic Chagas disease. METHODS This cross-sectional study included 152 patients with Chagas disease (43% men; 57 ± 12 years old), classified as 53 patients with indeterminate form and 99 patients with cardiac form (stage A: 24, stage B: 25, stage C: 44, stage D: 6). TGF-β1, TNF, and BNP were determined by enzyme-linked immunosorbent assay ELISA. Echocardiogram was used to determine left atrial and LV diameters, as well as LV ejection fraction and diastolic function. FINDINGS TGF-b1 serum levels were lower in stages B, C, and D, while TNF serum levels were higher in stages C and D of the cardiac form. TGF-β1 presented a weak correlation with LV diastolic function and LV ejection fraction. TNF presented a weak correlation with left atrial and LV diameters and LV ejection fraction. CONCLUSIONS TNF is increased, while TGF-β1 is decreased in the cardiac form of chronic Chagas disease. TNF and TGF-β1 serum levels present a weak correlation with LV systolic and diastolic function in Chagas disease patients.
Collapse
Affiliation(s)
- Eduardo Ov Curvo
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, RJ, Brasil
| | - Roberto R Ferreira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Fabiana S Madeira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, RJ, Brasil
| | - Gabriel F Alves
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, RJ, Brasil
| | - Mayara C Chambela
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, RJ, Brasil
| | - Veronica G Mendes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, RJ, Brasil
| | - Luiz Henrique C Sangenis
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, RJ, Brasil
| | - Mariana C Waghabi
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Roberto M Saraiva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
33
|
TGF- β Polymorphisms Are a Risk Factor for Chagas Disease. DISEASE MARKERS 2018; 2018:4579198. [PMID: 29670670 PMCID: PMC5835243 DOI: 10.1155/2018/4579198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 01/01/2023]
Abstract
Transforming growth factor β1 (TGF-β1) is an important mediator in Chagas disease. Furthermore, patients with higher TGF-β1 serum levels show a worse clinical outcome. Gene polymorphism may account for differences in cytokine production during infectious diseases. We tested whether TGFB1 polymorphisms could be associated with Chagas disease susceptibility and severity in a Brazilian population. We investigated five single-nucleotide polymorphisms (-800 G>A, -509 C>T, +10 T>C, +25 G>C, and +263 C>T). 152 patients with Chagas disease (53 with the indeterminate form and 99 with the cardiac form) and 48 noninfected subjects were included. Genotypes CT and TT at position -509 of the TGFB1 gene were more frequent in Chagas disease patients than in noninfected subjects. Genotypes TC and CC at codon +10 of the TGFB1 gene were also more frequent in Chagas disease patients than in noninfected subjects. We found no significant differences in the distribution of the studied TGFB1 polymorphisms between patients with the indeterminate or cardiac form of Chagas disease. Therefore, -509 C>T and +10 T>C TGFB1 polymorphisms are associated with Chagas disease susceptibility in a Brazilian population.
Collapse
|
34
|
M Ferrão P, M Nisimura L, C Moreira O, G Land M, Pereira MC, de Mendonça-Lima L, C Araujo-Jorge T, C Waghabi M, R Garzoni L. Inhibition of TGF-β pathway reverts extracellular matrix remodeling in T. cruzi-infected cardiac spheroids. Exp Cell Res 2017; 362:260-267. [PMID: 29208458 DOI: 10.1016/j.yexcr.2017.11.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/18/2017] [Accepted: 11/21/2017] [Indexed: 11/16/2022]
Abstract
Chagasic cardiomyopathy (CC) is the main manifestation of Chagas Disease (CD). CC is a progressive dysfunctional illness, in which transforming growth factor beta (TGF-β) plays a central role in fibrogenesis and hypertrophy. In the present study, we tested in a three-dimensional (3D) model of cardiac cells culture (named cardiac spheroids), capable of mimicking the aspects of fibrosis and hypertrophy observed in CC, the role of TGF-β pathway inhibition in restoring extracellular matrix (ECM) balance disrupted by T. cruzi infection. Treatment of T. cruzi-infected cardiac spheroids with SB 431542, a selective inhibitor of TGF-β type I receptor, resulted in a reduction in the size of spheroids, which was accompanied by a decrease in parasite load and in fibronectin expression. The inhibition of TGF-β pathway also promoted an increase in the activity of matrix metalloproteinase (MMP)-2 and a decrease in tissue inhibitor of matrix metalloproteinase (TIMP)-1 expression, which may be one of the mechanisms regulating extracellular matrix remodeling. Therefore, our study provides new insights into the molecular mechanisms by which inhibition of TGF-β signaling reverts fibrosis and hypertrophy generated by T. cruzi during CC and also highlights the use of cardiac spheroids as a valuable tool for the study of fibrogenesis and anti-fibrotic compounds.
Collapse
Affiliation(s)
- Patrícia M Ferrão
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil; Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
| | - Líndice M Nisimura
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
| | - Otacílio C Moreira
- Laboratory of Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
| | - Marcelo G Land
- College of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mirian C Pereira
- Laboratory of Cellular Ultrastructure, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
| | - Leila de Mendonça-Lima
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
| | - Tania C Araujo-Jorge
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
| | - Mariana C Waghabi
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
| | - Luciana R Garzoni
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
35
|
Derangeon M, Montnach J, Cerpa CO, Jagu B, Patin J, Toumaniantz G, Girardeau A, Huang CLH, Colledge WH, Grace AA, Baró I, Charpentier F. Transforming growth factor β receptor inhibition prevents ventricular fibrosis in a mouse model of progressive cardiac conduction disease. Cardiovasc Res 2017; 113:464-474. [PMID: 28339646 DOI: 10.1093/cvr/cvx026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/16/2017] [Indexed: 01/12/2023] Open
Abstract
Aims Loss-of-function mutations in SCN5A, the gene encoding NaV1.5 channel, have been associated with inherited progressive cardiac conduction disease (PCCD). We have proposed that Scn5a heterozygous knock-out (Scn5a+/-) mice, which are characterized by ventricular fibrotic remodelling with ageing, represent a model for PCCD. Our objectives were to identify the molecular pathway involved in fibrosis development and prevent its activation. Methods and results Our study shows that myocardial interstitial fibrosis occurred in Scn5a+/- mice only after 45 weeks of age. Fibrosis was triggered by transforming growth factor β (TGF-β) pathway activation. Younger Scn5a+/- mice were characterized by a higher connexin 43 expression than wild-type (WT) mice. After the age of 45 weeks, connexin 43 expression decreased in both WT and Scn5a+/- mice, although the decrease was larger in Scn5a+/- mice. Chronic inhibition of cardiac sodium current with flecainide (50 mg/kg/day p.o) in WT mice from the age of 6 weeks to the age of 60 weeks did not lead to TGF-β pathway activation and fibrosis. Chronic inhibition of TGF-β receptors with GW788388 (5 mg/kg/day p.o.) in Scn5a+/- mice from the age of 45 weeks to the age of 60 weeks prevented the occurrence of fibrosis. However, current data could not detect reduction in QRS duration with GW788388. Conclusion Myocardial fibrosis secondary to a loss of NaV1.5 is triggered by TGF-β signalling pathway. Those events are more likely secondary to the decreased NaV1.5 sarcolemmal expression rather than the decreased Na+ current per se. TGF-β receptor inhibition prevents age-dependent development of ventricular fibrosis in Scn5a+/- mouse.
Collapse
Affiliation(s)
- Mickael Derangeon
- INSERM, UMR1087, l'institut du thorax, quai Moncousu, Nantes F-44000, France.,CNRS, UMR6291, quai Moncousu, Nantes F-44000, France.,Université de Nantes, quai Moncousu, Nantes F-44000, France
| | - Jérôme Montnach
- INSERM, UMR1087, l'institut du thorax, quai Moncousu, Nantes F-44000, France.,CNRS, UMR6291, quai Moncousu, Nantes F-44000, France.,Université de Nantes, quai Moncousu, Nantes F-44000, France
| | - Cynthia Ore Cerpa
- INSERM, UMR1087, l'institut du thorax, quai Moncousu, Nantes F-44000, France.,CNRS, UMR6291, quai Moncousu, Nantes F-44000, France.,Université de Nantes, quai Moncousu, Nantes F-44000, France
| | - Benoit Jagu
- INSERM, UMR1087, l'institut du thorax, quai Moncousu, Nantes F-44000, France.,CNRS, UMR6291, quai Moncousu, Nantes F-44000, France.,Université de Nantes, quai Moncousu, Nantes F-44000, France
| | - Justine Patin
- INSERM, UMR1087, l'institut du thorax, quai Moncousu, Nantes F-44000, France.,CNRS, UMR6291, quai Moncousu, Nantes F-44000, France.,Université de Nantes, quai Moncousu, Nantes F-44000, France
| | - Gilles Toumaniantz
- INSERM, UMR1087, l'institut du thorax, quai Moncousu, Nantes F-44000, France.,CNRS, UMR6291, quai Moncousu, Nantes F-44000, France.,Université de Nantes, quai Moncousu, Nantes F-44000, France
| | - Aurore Girardeau
- INSERM, UMR1087, l'institut du thorax, quai Moncousu, Nantes F-44000, France.,CNRS, UMR6291, quai Moncousu, Nantes F-44000, France.,Université de Nantes, quai Moncousu, Nantes F-44000, France
| | - Christopher L H Huang
- The Section of Cardiovascular Biology, Departments of Biochemistry and Physiology, University of Cambridge, Downing street, Cambridge CB23EG, UK
| | - William H Colledge
- The Section of Cardiovascular Biology, Departments of Biochemistry and Physiology, University of Cambridge, Downing street, Cambridge CB23EG, UK
| | - Andrew A Grace
- The Section of Cardiovascular Biology, Departments of Biochemistry and Physiology, University of Cambridge, Downing street, Cambridge CB23EG, UK
| | - Isabelle Baró
- INSERM, UMR1087, l'institut du thorax, quai Moncousu, Nantes F-44000, France.,CNRS, UMR6291, quai Moncousu, Nantes F-44000, France.,Université de Nantes, quai Moncousu, Nantes F-44000, France
| | - Flavien Charpentier
- INSERM, UMR1087, l'institut du thorax, quai Moncousu, Nantes F-44000, France.,CNRS, UMR6291, quai Moncousu, Nantes F-44000, France.,Université de Nantes, quai Moncousu, Nantes F-44000, France.,CHU Nantes, Alexis Ricordeau, Nantes F-44000, France
| |
Collapse
|
36
|
Cruz JS, Machado FS, Ropert C, Roman-Campos D. Molecular mechanisms of cardiac electromechanical remodeling during Chagas disease: Role of TNF and TGF-β. Trends Cardiovasc Med 2017; 27:81-91. [DOI: 10.1016/j.tcm.2016.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 12/21/2022]
|
37
|
Differential Expression of Matrix Metalloproteinases 2, 9 and Cytokines by Neutrophils and Monocytes in the Clinical Forms of Chagas Disease. PLoS Negl Trop Dis 2017; 11:e0005284. [PMID: 28118356 PMCID: PMC5261563 DOI: 10.1371/journal.pntd.0005284] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/22/2016] [Indexed: 01/08/2023] Open
Abstract
Dilated cardiomyopathy, the most severe manifestation in chronic phase of Chagas disease, affects about 30% of patients and is characterized by myocardial dysfunction and interstitial fibrosis due to extracellular matrix (ECM) remodeling. ECM remodeling is regulated by proteolytic enzymes such as matrix metalloproteinases (MMPs) and cytokines produced by immune cells, including phagocytes. We evaluated by flow cytometry the expression of MMP-2, MMP-9, IL-1β, TNF-α, TGF-β and IL-10 by neutrophils and monocytes from patients with indeterminate (IND) and cardiac (CARD) clinical forms of Chagas disease and non-infected individuals (NI), before and after in vitro stimulation with Trypanosoma cruzi antigens. Our results showed an important contribution of neutrophils for MMPs production, while monocytes seemed to be involved in cytokine production. The results showed that neutrophils and monocytes from IND and CARD patients had higher intracellular levels of MMP-2 and MMP-9 than NI individuals. On the other hand, T. cruzi derived-antigens promote a differential expression of MMP-2 and MMP-9 in patients with Chagas disease and may regulate MMPs expression in neutrophils and monocytes, mainly when a cardiac alteration is not present. Our data also showed that in the presence of T. cruzi derived-antigens the production of cytokines by neutrophils and monocytes, but mainly by monocytes, may be intensified. Correlation analysis demonstrated that MMP-2 had a positive correlation with IL-10 and a negative correlation with IL-1β, whereas MMP-9 showed a negative correlation with IL-10. We also observed that IND patients presented a greater percentage of high producer cells of regulatory molecules when compared to CARD patients, indicating a different pattern in the immune response. Our data suggest that MMPs and cytokines produced by neutrophils and monocytes are important contributors for cardiac remodeling and may be an interesting target for new biomarker research.
Collapse
|
38
|
Peroxisome Proliferator-Activated Receptor Gamma Promotes Mesenchymal Stem Cells to Express Connexin43 via the Inhibition of TGF-β1/Smads Signaling in a Rat Model of Myocardial Infarction. Stem Cell Rev Rep 2016; 11:885-99. [PMID: 26275398 DOI: 10.1007/s12015-015-9615-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND In this study, we hypothesized that activation of PPAR-γ enhanced MSCs survival and their therapeutic efficacy via upregulating the expression of Cx43. METHODS MI was induced in 50 male Sprague-Dawley rats. The rats were randomized into five groups: MI group and four intervention groups, including the MSCs group, combined therapy group (MSCs+ pioglitazone), pioglitazone group and PBS group. Two weeks later, 5 × 10(6) MSCs labeled with PKH26 in PBS were injected into the infarct anterior ventricular free wall in the MSCs and combined therapy groups, and PBS alone was injected into the infarct anterior ventricular free wall in the PBS group. Pioglitazone (3 mg/kg/day) was given to the combined therapy and pioglitazone groups by oral gavage at the same time for another 2 weeks. Myocardial function and relevant signaling molecules involved were all examined thereafter. RESULTS Heart function was enhanced after MSCs treatment for 2 weeks post MI. A significant improvement of heart function was observed in the combined therapy group in contrast to the other three intervention groups. Compared with the MSCs group, there was a higher level of PPAR-γ in the combined therapy group; Cx43 was remarkably increased in different regions of the left ventricle; TGF-β1 was decreased in the infarct zone and border zone. To the downstream signaling molecules, mothers against Smad proteins including Smad2 and Smad3 presented a synchronized alteration with TGF-β1; no differences of the expressions of ERK1/2 and p38 could be discovered in the left ventricular cardiac tissue. CONCLUSIONS MSCs transplantation combined with pioglitazone administration improved cardiac function more effectively after MI. Activation of PPAR-γ could promote MSCs to express Cx43. Inhibition of TGF-β1/Smads signaling pathway might be involved in the process.
Collapse
|
39
|
Pinho RT, Waghabi MC, Cardillo F, Mengel J, Antas PRZ. Scrutinizing the Biomarkers for the Neglected Chagas Disease: How Remarkable! Front Immunol 2016; 7:306. [PMID: 27563302 PMCID: PMC4980390 DOI: 10.3389/fimmu.2016.00306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 07/28/2016] [Indexed: 12/16/2022] Open
Abstract
Biomarkers or biosignature profiles have become accessible over time in population-based studies for Chagas disease. Thus, the identification of consistent and reliable indicators of the diagnosis and prognosis of patients with heart failure might facilitate the prioritization of therapeutic management to those with the highest chance of contracting this disease. The purpose of this paper is to review the recent state and the upcoming trends in biomarkers for human Chagas disease. As an emerging concept, we propose a classification of biomarkers based on plasmatic-, phenotype-, antigenic-, genetic-, and management-related candidates. The available data revisited here reveal the lessons learned thus far and the existing challenges that still lie ahead to enable biomarkers to be employed consistently in risk evaluation for this disease. There is a strong need for biomarker validation, particularly for biomarkers that are specific to the clinical forms of Chagas disease. The current failure to achieve the eradication of the transmission of this disease has produced determination to solve this validation issue. Finally, it would be strategic to develop a wide variety of biomarkers and to test them in both preclinical and clinical trials.
Collapse
Affiliation(s)
- Rosa T Pinho
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, FIOCRUZ , Rio de Janeiro , Brazil
| | - Mariana C Waghabi
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, FIOCRUZ , Rio de Janeiro , Brazil
| | | | - José Mengel
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil; Faculdade de Medicina de Petropolis (FMP-FASE), Petrópolis, Brazil
| | - Paulo R Z Antas
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, FIOCRUZ , Rio de Janeiro , Brazil
| |
Collapse
|
40
|
Proteins involved on TGF-β pathway are up-regulated during the acute phase of experimental Chagas disease. Immunobiology 2016; 221:587-94. [DOI: 10.1016/j.imbio.2016.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 12/30/2022]
|
41
|
Campos JDS, Hoppe LY, Duque TLA, de Castro SL, Oliveira GM. Use of Noninvasive Parameters to Evaluate Swiss Webster Mice DuringTrypanosoma cruziExperimental Acute Infection. J Parasitol 2016; 102:280-5. [DOI: 10.1645/15-884] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
42
|
TGF-β receptor type II costameric localization in cardiomyocytes and host cell TGF-β response is disrupted by Trypanosoma cruzi infection. Parasitology 2016; 143:704-15. [DOI: 10.1017/s0031182016000299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYTransforming growth factor beta (TGF-β) cytokine is involved in Chagas disease establishment and progression. Since Trypanosoma cruzi can modulate host cell receptors, we analysed the TGF-β receptor type II (TβRII) expression and distribution during T. cruzi – cardiomyocyte interaction. TβRII immunofluorescent staining revealed a striated organization in cardiomyocytes, which was co-localized with vinculin costameres and enhanced (38%) after TGF-β treatment. Cytochalasin D induced a decrease of 45·3% in the ratio of cardiomyocytes presenting TβRII striations, demonstrating an association of TβRII with the cytoskeleton. Western blot analysis showed that cytochalasin D significantly inhibited Smad 2 phosphorylation and fibronectin stimulation after TGF-β treatment in cardiomyocytes. Trypanosoma cruzi infection elicited a decrease of 79·8% in the frequency of cardiomyocytes presenting TβRII striations, but did not interfere significantly in its expression. In addition, T. cruzi-infected cardiomyocytes present a lower response to exogenous TGF-β, showing no enhancement of TβRII striations and a reduction of phosphorylated Smad 2, with no significant difference in TβRII expression when compared to uninfected cells. Together, these results suggest that the co-localization of TβRII with costameres is important in activating the TGF-β signalling cascade, and that T. cruzi-derived cytoskeleton disorganization could result in altered or low TGF-β response in infected cardiomyocytes.
Collapse
|
43
|
Tanowitz HB, Machado FS, Spray DC, Friedman JM, Weiss OS, Lora JN, Nagajyothi J, Moraes DN, Garg NJ, Nunes MCP, Ribeiro ALP. Developments in the management of Chagas cardiomyopathy. Expert Rev Cardiovasc Ther 2015; 13:1393-409. [PMID: 26496376 DOI: 10.1586/14779072.2015.1103648] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over 100 years have elapsed since the discovery of Chagas disease and there is still much to learn regarding pathogenesis and treatment. Although there are antiparasitic drugs available, such as benznidazole and nifurtimox, they are not totally reliable and often toxic. A recently released negative clinical trial with benznidazole in patients with chronic Chagas cardiomyopathy further reinforces the concerns regarding its effectiveness. New drugs and new delivery systems, including those based on nanotechnology, are being sought. Although vaccine development is still in its infancy, the reality of a therapeutic vaccine remains a challenge. New ECG methods may help to recognize patients prone to developing malignant ventricular arrhythmias. The management of heart failure, stroke and arrhythmias also remains a challenge. Although animal experiments have suggested that stem cell based therapy may be therapeutic in the management of heart failure in Chagas cardiomyopathy, clinical trials have not been promising.
Collapse
Affiliation(s)
- Herbert B Tanowitz
- a Department of Pathology , Albert Einstein College of Medicine , Bronx , NY , USA.,b Department of Medicine , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Fabiana S Machado
- c Department of Biochemistry and Immunology, Institute of Biological Science , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,d Program in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - David C Spray
- b Department of Medicine , Albert Einstein College of Medicine , Bronx , NY , USA.,e Dominick P. Purpura Department of Neuroscience , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Joel M Friedman
- f Department of Physiology & Biophysics , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Oren S Weiss
- a Department of Pathology , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Jose N Lora
- a Department of Pathology , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Jyothi Nagajyothi
- g Public Health Research Institute, New Jersey Medical School , Rutgers University , Newark , NJ , USA
| | - Diego N Moraes
- d Program in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,h Department of Internal Medicine and University Hospital , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Nisha Jain Garg
- i Department of Microbiology & Immunology and Institute for Human Infections and Immunity , University of Texas Medical Branch , Galveston , TX , USA
| | - Maria Carmo P Nunes
- d Program in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,h Department of Internal Medicine and University Hospital , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Antonio Luiz P Ribeiro
- d Program in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,h Department of Internal Medicine and University Hospital , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
44
|
Muñoz-Félix JM, González-Núñez M, Martínez-Salgado C, López-Novoa JM. TGF-β/BMP proteins as therapeutic targets in renal fibrosis. Where have we arrived after 25 years of trials and tribulations? Pharmacol Ther 2015; 156:44-58. [PMID: 26493350 DOI: 10.1016/j.pharmthera.2015.10.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The understanding of renal fibrosis in chronic kidney disease (CKD) remains as a challenge. More than 10% of the population of developed countries suffer from CKD. Proliferation and activation of myofibroblasts and accumulation of extracellular matrix proteins are the main features of kidney fibrosis, a process in which a large number of cytokines are involved. Targeting cytokines responsible for kidney fibrosis development might be an important strategy to face the problem of CKD. The increasing knowledge of the signaling pathway network of the transforming growth factor beta (TGF-β) superfamily members, such as the profibrotic cytokine TGF-β1 or the bone morphogenetic proteins (BMPs), and their involvement in the regulation of kidney fibrosis, has stimulated numerous research teams to look for potential strategies to inhibit profibrotic cytokines or to enhance the anti-fibrotic actions of other cytokines. The consequence of all these studies is a better understanding of all these canonical (Smad-mediated) and non-canonical signaling pathways. In addition, the different receptors involved for signaling of each cytokine, the different combinations of type I-type II receptors, and the presence and function of co-receptors that can influence the biological response have been also described. However, are these studies leading to suitable strategies to block the appearance and progression of kidney fibrosis? In this review, we offer a critical perspective analyzing the achievements using the most important strategies developed up till now: TGF-β antibodies, chemical inhibitors of TGF-β receptors, miRNAs and signaling pathways and BMP agonists with a potential role as therapeutic molecules against kidney fibrosis.
Collapse
Affiliation(s)
- José M Muñoz-Félix
- Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - María González-Núñez
- Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Carlos Martínez-Salgado
- Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - José M López-Novoa
- Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
| |
Collapse
|
45
|
Kovacs RJ, Maldonado G, Azaro A, Fernández MS, Romero FL, Sepulveda-Sánchez JM, Corretti M, Carducci M, Dolan M, Gueorguieva I, Cleverly AL, Pillay NS, Baselga J, Lahn MM. Cardiac Safety of TGF-β Receptor I Kinase Inhibitor LY2157299 Monohydrate in Cancer Patients in a First-in-Human Dose Study. Cardiovasc Toxicol 2015; 15:309-23. [PMID: 25488804 PMCID: PMC4575352 DOI: 10.1007/s12012-014-9297-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Transforming growth factor-beta (TGF-β) signaling plays an important role in the fetal development of cardiovascular organs and in the repair mechanisms of the heart. Hence, inhibitors of the TGF-β signaling pathway require a careful identification of a safe therapeutic window and a comprehensive monitoring of the cardiovascular system. Seventy-nine cancer patients (67 glioma and 12 solid tumor) enrolled in a first-in-human dose study and received the TGF-β inhibitor LY2157299 monohydrate (LY2157299) as monotherapy (n = 53) or in combination with lomustine (n = 26). All patients were monitored using 2D echocardiography/color and Spectral Doppler (2D Echo with Doppler) every 2 months, monthly electrocardiograms, thorax computer tomography scans every 6 months, and monthly serum brain natriuretic peptide (BNP), troponin I, cystatin C, high-sensitivity C-reactive protein (hs-CRP). Administration of LY2157299 was not associated with medically relevant cardiovascular toxicities, including patients treated ≥6 months (n = 13). There were no increases of troponin I, BNP, or hs-CRP or reduction in cystatin C levels, which may have been considered as signs of cardiovascular injury. Blood pressure was generally stable during treatment. Imaging with echocardiography/Doppler showed an increase in mitral and tricuspid valve regurgitation by two grades of severity in only one patient with no concurrent clinical symptoms of cardiovascular injury. Overall, this comprehensive cardiovascular monitoring for the TGF-β inhibitor LY2157299 did not detect medically relevant cardiac toxicity and hence supports the evaluation of LY2157299 in future clinical trials.
Collapse
Affiliation(s)
- Richard J Kovacs
- Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | | | - Analia Azaro
- Medical Oncology, Vall d'Hebron, Barcelona, Spain.
| | - Maria S Fernández
- Department of Cardiology, Hospital Universitario 12 de Octubre, Madrid, Spain.
| | - Federico L Romero
- Department of Cardiology, Hospital Universitario 12 de Octubre, Madrid, Spain.
| | | | - Mary Corretti
- Division of Cardiology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | | | - Melda Dolan
- Department of Cardiology and Cardiovascular Disease, Saint Louis University Hospital, St. Louis, MO, 63103, USA.
| | | | | | - N Sokalingum Pillay
- Eli Lilly and Company, Building 31/4, 893 S. Delaware St., Indianapolis, IN, 46285, USA.
| | - Jose Baselga
- Medical Oncology, Vall d'Hebron, Barcelona, Spain.
| | - Michael M Lahn
- Eli Lilly and Company, Building 31/4, 893 S. Delaware St., Indianapolis, IN, 46285, USA.
| |
Collapse
|
46
|
Ferrão PM, d'Avila-Levy CM, Araujo-Jorge TC, Degrave WM, Gonçalves ADS, Garzoni LR, Lima AP, Feige JJ, Bailly S, Mendonça-Lima L, Waghabi MC. Cruzipain Activates Latent TGF-β from Host Cells during T. cruzi Invasion. PLoS One 2015; 10:e0124832. [PMID: 25938232 PMCID: PMC4418758 DOI: 10.1371/journal.pone.0124832] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/17/2015] [Indexed: 11/28/2022] Open
Abstract
Several studies indicate that the activity of cruzipain, the main lysosomal cysteine peptidase of Trypanosoma cruzi, contributes to parasite infectivity. In addition, the parasitic invasion process of mammalian host cells is described to be dependent on the activation of the host TGF-β signaling pathway by T. cruzi. Here, we tested the hypothesis that cruzipain could be an important activator of latent TGF-β and thereby trigger TGF-β-mediated events crucial for the development of Chagas disease. We found that live epimastigotes of T. cruzi, parasite lysates and purified cruzipain were able to activate latent TGF-β in vitro. This activation could be inhibited by the cysteine peptidase inhibitor Z-Phe-Ala-FMK. Moreover, transfected parasites overexpressing chagasin, a potent endogenous cruzipain inhibitor, prevented latent TGF-β activation. We also observed that T. cruzi invasion, as well as parasite intracellular growth, were inhibited by the administration of Z-Phe-Ala-FMK or anti-TGF-β neutralizing antibody to Vero cell cultures. We further demonstrated that addition of purified cruzipain enhanced the invasive activity of trypomastigotes and that this effect could be completely inhibited by addition of a neutralizing anti-TGF-β antibody. Taken together, these results demonstrate that the activities of cruzipain and TGF-β in the process of cell invasion are functionally linked. Our data suggest that cruzipain inhibition is an interesting chemotherapeutic approach for Chagas disease not only because of its trypanocidal activity, but also due to the inhibitory effect on TGF-β activation.
Collapse
Affiliation(s)
- Patrícia Mello Ferrão
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Laboratório de Investigação Cardiovascular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Claudia Masini d'Avila-Levy
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Tania Cremonini Araujo-Jorge
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Wim Maurits Degrave
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Antônio da Silva Gonçalves
- Laboratório de Biotecnologia e Fisiologia de Infecções Virais, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Luciana Ribeiro Garzoni
- Laboratório de Investigação Cardiovascular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Programa Integrado de doença de Chagas, Fiocruz, Rio de Janeiro, Brazil
| | - Ana Paula Lima
- Laboratório de Bioquímica e Biologia Molecular de Peptidases, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Jean Jacques Feige
- INSERM, Unité 1036, Grenoble, F-38054, France
- Université Grenoble-Alpes—Grenoble, F-38041, France
- CEA, DSV,iRTSV, Laboratory of Biology of Cancer and Infection, Grenoble, F-38054, France
| | - Sabine Bailly
- INSERM, Unité 1036, Grenoble, F-38054, France
- Université Grenoble-Alpes—Grenoble, F-38041, France
- CEA, DSV,iRTSV, Laboratory of Biology of Cancer and Infection, Grenoble, F-38054, France
| | - Leila Mendonça-Lima
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Mariana Caldas Waghabi
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Programa Integrado de doença de Chagas, Fiocruz, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
47
|
Clark EH, Marks MA, Gilman RH, Fernandez AB, Crawford TC, Samuels AM, Hidron AI, Galdos-Cardenas G, Menacho-Mendez GS, Bozo-Gutierrez RW, Martin DL, Bern C. Circulating serum markers and QRS scar score in Chagas cardiomyopathy. Am J Trop Med Hyg 2015; 92:39-44. [PMID: 25385865 PMCID: PMC4347387 DOI: 10.4269/ajtmh.14-0246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 09/06/2014] [Indexed: 01/19/2023] Open
Abstract
Approximately 8 million people have Trypanosoma cruzi infection, and nearly 30% will manifest Chagas cardiomyopathy (CC). Identification of reliable early indicators of CC risk would enable prioritization of treatment to those with the highest probability of future disease. Serum markers and electrocardiogram (EKG) changes were measured in 68 T. cruzi-infected individuals in various stages of cardiac disease and 17 individuals without T. cruzi infection or cardiac disease. T. cruzi-infected individuals were assigned to stage A (normal EKG/chest x-ray [CXR]), B (abnormal EKG/normal CXR), or C (abnormal EKG/cardiac structural changes). Ten serum markers were measured using enzyme-linked immunosorbent assay (ELISA)/Luminex, and QRS scores were calculated. Higher concentrations of transforming growth factor-β1 (TGFβ1), and TGFβ2 were associated with stage B compared with stage A. Matrix Metalloproteinase 2 (MMP2), Tissue Inhibitors of MMP 1, QRS score, and Brain Natriuretic Protein rose progressively with increasing CC severity. Elevated levels of several markers of cardiac damage and inflammation are seen in early CC and warrant additional evaluation in longitudinal studies.
Collapse
Affiliation(s)
- Eva H Clark
- University of Alabama at Birmingham, Birmingham, Alabama; Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Medicine, Division of Cardiology, Hartford Hospital, Hartford, Connecticut; Department of Cardiology, University of Michigan Health System, Ann Arbor, Michigan; Centers for Disease Control and Prevention, Atlanta, Georgia; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Hospital Universitario Japones, Santa Cruz, Bolivia; Centro de Salud Eiti, Gutierrez, Bolivia; Hospital Municipal Camiri, Camiri, Bolivia; University of California San Francisco, San Francisco, California
| | - Morgan A Marks
- University of Alabama at Birmingham, Birmingham, Alabama; Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Medicine, Division of Cardiology, Hartford Hospital, Hartford, Connecticut; Department of Cardiology, University of Michigan Health System, Ann Arbor, Michigan; Centers for Disease Control and Prevention, Atlanta, Georgia; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Hospital Universitario Japones, Santa Cruz, Bolivia; Centro de Salud Eiti, Gutierrez, Bolivia; Hospital Municipal Camiri, Camiri, Bolivia; University of California San Francisco, San Francisco, California
| | - Robert H Gilman
- University of Alabama at Birmingham, Birmingham, Alabama; Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Medicine, Division of Cardiology, Hartford Hospital, Hartford, Connecticut; Department of Cardiology, University of Michigan Health System, Ann Arbor, Michigan; Centers for Disease Control and Prevention, Atlanta, Georgia; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Hospital Universitario Japones, Santa Cruz, Bolivia; Centro de Salud Eiti, Gutierrez, Bolivia; Hospital Municipal Camiri, Camiri, Bolivia; University of California San Francisco, San Francisco, California
| | - Antonio B Fernandez
- University of Alabama at Birmingham, Birmingham, Alabama; Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Medicine, Division of Cardiology, Hartford Hospital, Hartford, Connecticut; Department of Cardiology, University of Michigan Health System, Ann Arbor, Michigan; Centers for Disease Control and Prevention, Atlanta, Georgia; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Hospital Universitario Japones, Santa Cruz, Bolivia; Centro de Salud Eiti, Gutierrez, Bolivia; Hospital Municipal Camiri, Camiri, Bolivia; University of California San Francisco, San Francisco, California
| | - Thomas C Crawford
- University of Alabama at Birmingham, Birmingham, Alabama; Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Medicine, Division of Cardiology, Hartford Hospital, Hartford, Connecticut; Department of Cardiology, University of Michigan Health System, Ann Arbor, Michigan; Centers for Disease Control and Prevention, Atlanta, Georgia; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Hospital Universitario Japones, Santa Cruz, Bolivia; Centro de Salud Eiti, Gutierrez, Bolivia; Hospital Municipal Camiri, Camiri, Bolivia; University of California San Francisco, San Francisco, California
| | - Aaron M Samuels
- University of Alabama at Birmingham, Birmingham, Alabama; Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Medicine, Division of Cardiology, Hartford Hospital, Hartford, Connecticut; Department of Cardiology, University of Michigan Health System, Ann Arbor, Michigan; Centers for Disease Control and Prevention, Atlanta, Georgia; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Hospital Universitario Japones, Santa Cruz, Bolivia; Centro de Salud Eiti, Gutierrez, Bolivia; Hospital Municipal Camiri, Camiri, Bolivia; University of California San Francisco, San Francisco, California
| | - Alicia I Hidron
- University of Alabama at Birmingham, Birmingham, Alabama; Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Medicine, Division of Cardiology, Hartford Hospital, Hartford, Connecticut; Department of Cardiology, University of Michigan Health System, Ann Arbor, Michigan; Centers for Disease Control and Prevention, Atlanta, Georgia; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Hospital Universitario Japones, Santa Cruz, Bolivia; Centro de Salud Eiti, Gutierrez, Bolivia; Hospital Municipal Camiri, Camiri, Bolivia; University of California San Francisco, San Francisco, California
| | - Gerson Galdos-Cardenas
- University of Alabama at Birmingham, Birmingham, Alabama; Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Medicine, Division of Cardiology, Hartford Hospital, Hartford, Connecticut; Department of Cardiology, University of Michigan Health System, Ann Arbor, Michigan; Centers for Disease Control and Prevention, Atlanta, Georgia; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Hospital Universitario Japones, Santa Cruz, Bolivia; Centro de Salud Eiti, Gutierrez, Bolivia; Hospital Municipal Camiri, Camiri, Bolivia; University of California San Francisco, San Francisco, California
| | - Gilberto Silvio Menacho-Mendez
- University of Alabama at Birmingham, Birmingham, Alabama; Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Medicine, Division of Cardiology, Hartford Hospital, Hartford, Connecticut; Department of Cardiology, University of Michigan Health System, Ann Arbor, Michigan; Centers for Disease Control and Prevention, Atlanta, Georgia; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Hospital Universitario Japones, Santa Cruz, Bolivia; Centro de Salud Eiti, Gutierrez, Bolivia; Hospital Municipal Camiri, Camiri, Bolivia; University of California San Francisco, San Francisco, California
| | - Ricardo W Bozo-Gutierrez
- University of Alabama at Birmingham, Birmingham, Alabama; Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Medicine, Division of Cardiology, Hartford Hospital, Hartford, Connecticut; Department of Cardiology, University of Michigan Health System, Ann Arbor, Michigan; Centers for Disease Control and Prevention, Atlanta, Georgia; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Hospital Universitario Japones, Santa Cruz, Bolivia; Centro de Salud Eiti, Gutierrez, Bolivia; Hospital Municipal Camiri, Camiri, Bolivia; University of California San Francisco, San Francisco, California
| | - Diana L Martin
- University of Alabama at Birmingham, Birmingham, Alabama; Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Medicine, Division of Cardiology, Hartford Hospital, Hartford, Connecticut; Department of Cardiology, University of Michigan Health System, Ann Arbor, Michigan; Centers for Disease Control and Prevention, Atlanta, Georgia; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Hospital Universitario Japones, Santa Cruz, Bolivia; Centro de Salud Eiti, Gutierrez, Bolivia; Hospital Municipal Camiri, Camiri, Bolivia; University of California San Francisco, San Francisco, California
| | - Caryn Bern
- University of Alabama at Birmingham, Birmingham, Alabama; Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Medicine, Division of Cardiology, Hartford Hospital, Hartford, Connecticut; Department of Cardiology, University of Michigan Health System, Ann Arbor, Michigan; Centers for Disease Control and Prevention, Atlanta, Georgia; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Hospital Universitario Japones, Santa Cruz, Bolivia; Centro de Salud Eiti, Gutierrez, Bolivia; Hospital Municipal Camiri, Camiri, Bolivia; University of California San Francisco, San Francisco, California
| |
Collapse
|
48
|
Kothari AN, Mi Z, Zapf M, Kuo PC. Novel clinical therapeutics targeting the epithelial to mesenchymal transition. Clin Transl Med 2014; 3:35. [PMID: 25343018 PMCID: PMC4198571 DOI: 10.1186/s40169-014-0035-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/25/2014] [Indexed: 01/25/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) is implicated in many processes, ranging from tissue and organogenesis to cancer and metastatic spread. Understanding the key regulatory mechanisms and mediators within this process offers the opportunity to develop novel therapeutics with broad clinical applicability. To date, several components of EMT already are targeted using pharmacologic agents in fibrosis and cancer. As our knowledge of EMT continues to grow, the potential for novel therapeutics will also increase. This review focuses on the role of EMT both as a necessary part of development and a key player in disease progression, specifically the similarity in pathways used during both processes as targets for drug development. Also, the key role of the tumor microenvironment with EMT is outlined, focusing on both co-factors and cell types with the ability to modulate the progression of EMT in cancer and metastatic disease. Lastly, we discuss the current status of clinical therapies both in development and those progressed to clinical trial specifically targeting pathologic EMTs including small molecule inhibitors, non-coding RNAs, exogenous co-factors, and adjunctive therapies to current chemotherapeutics.
Collapse
Affiliation(s)
- Anai N Kothari
- Department of Surgery, Oncology Institute, Loyola University Medical Center, 2160 South First Ave, EMS Bldg, Rm 3244, Maywood 60153, IL, USA
| | - Zhiyong Mi
- Department of Surgery, Oncology Institute, Loyola University Medical Center, 2160 South First Ave, EMS Bldg, Rm 3244, Maywood 60153, IL, USA
| | - Matthew Zapf
- Department of Surgery, Oncology Institute, Loyola University Medical Center, 2160 South First Ave, EMS Bldg, Rm 3244, Maywood 60153, IL, USA
| | - Paul C Kuo
- Department of Surgery, Oncology Institute, Loyola University Medical Center, 2160 South First Ave, EMS Bldg, Rm 3244, Maywood 60153, IL, USA
| |
Collapse
|
49
|
Matrix metalloproteinases 2 and 9 are differentially expressed in patients with indeterminate and cardiac clinical forms of Chagas disease. Infect Immun 2013; 81:3600-8. [PMID: 23856618 DOI: 10.1128/iai.00153-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dilated chronic cardiomyopathy (DCC) from Chagas disease is associated with myocardial remodeling and interstitial fibrosis, resulting in extracellular matrix (ECM) changes. In this study, we characterized for the first time the serum matrix metalloproteinase 2 (MMP-2) and MMP-9 levels, as well as their main cell sources in peripheral blood mononuclear cells from patients presenting with the indeterminate (IND) or cardiac (CARD) clinical form of Chagas disease. Our results showed that serum levels of MMP-9 are associated with the severity of Chagas disease. The analysis of MMP production by T lymphocytes showed that CD8(+) T cells are the main mononuclear leukocyte source of both MMP-2 and MMP-9 molecules. Using a new 3-dimensional model of fibrosis, we observed that sera from patients with Chagas disease induced an increase in the extracellular matrix components in cardiac spheroids. Furthermore, MMP-2 and MMP-9 showed different correlations with matrix proteins and inflammatory cytokines in patients with Chagas disease. Our results suggest that MMP-2 and MMP-9 show distinct activities in Chagas disease pathogenesis. While MMP-9 seems to be involved in the inflammation and cardiac remodeling of Chagas disease, MMP-2 does not correlate with inflammatory molecules.
Collapse
|
50
|
Saraiva RM, Waghabi MC, Vilela MF, Madeira FS, Sperandio da Silva GM, Xavier SS, Feige JJ, Hasslocher-Moreno AM, Araujo-Jorge TC. Predictive value of transforming growth factor-β1in Chagas disease: towards a biomarker surrogate of clinical outcome. Trans R Soc Trop Med Hyg 2013; 107:518-25. [PMID: 23787193 DOI: 10.1093/trstmh/trt050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Transforming growth factor-β1 (TGF-β1) may be implicated in the development of Chagas heart disease. However, the clinical value of TGF-β1 measurement is yet to be determined. METHODS We retrospectively analyzed the outcome of 54 Chagas disease patients without heart failure and with left ventricular (LV) ejection fraction >45% whose TGF-β1 serum values were determined between January 1998 and December 1999. Primary end point was all-cause mortality and secondary end point was the combination of all-cause mortality or hospitalization due to worsening heart failure or cardiac arrhythmias. RESULTS TGF-β1 was independently associated with the occurrence of the primary and secondary end points. The optimal cutoff for TGF-β1 to identify the primary end point was 12.9 ng/ml (area under the curve = 0.82, p = 0.004, sensitivity 100%, and specificity 57%) and to identify the secondary end point was 30.8 ng/ml (area under the curve = 0.72, p = 0.03, sensitivity 60%, and specificity 86%). LV ejection fraction and LV end-diastolic diameter were also independent predictors of the primary and secondary endpoints, respectively. CONCLUSION The described association between TGF-β1 and clinical outcome provides evidence towards the clinical value of TGF-β1 in Chagas disease.
Collapse
|