1
|
Tebben K, Eng V, Seng D, Tat B, Feufack Donfack LB, Orban A, Yeat R, Salvador J, Sin S, Ko K, Khim N, Flamand C, Sommen C, Lek D, Serre D, Popovici J. Cambodian Plasmodium vivax parasites with reduced hemoglobin digestion display delayed clearance upon artesunate treatment. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.09.25323469. [PMID: 40162245 PMCID: PMC11952599 DOI: 10.1101/2025.03.09.25323469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Artemisinin-based combination therapies are the frontline drugs for the treatment of malaria infections but, for Plasmodium falciparum, the efficacy of artemisinin is threatened by the spread of resistance . P. vivax is the second most common cause of human malaria but we have little information on its susceptibility to artemisinin due to the lack of in vitro cultures. Here, we analyze 161 P. vivax infections from Cambodian patients treated with 2 mg/kg/day of artesunate for seven days. All infections were successfully cleared by day 3. However, one third of the infections displayed a slow clearance after treatment, with nine infections (5.7%) with a parasite clearance time greater than 5 hours, meeting the WHO definition of artemisinin resistance. We observed no significant association between slow clearance and either patient- or infection characteristics (including stage composition). We used RNA-seq to characterize the gene expression of parasites from 15 fast- and 16 slow-clearing infections at baseline and 1, 2 and 4 hours after treatment. While fast-clearing parasites showed significant changes in gene expression immediately upon treatment, slow-clearing parasites displayed a significantly delayed gene expression response, with a downregulation of many genes associated with hemoglobin endocytosis and digestion. Overall, our results indicate that some Cambodian P. vivax parasites clear slowly after artesunate treatment, possibly due to a downregulation of hemoglobin metabolism that may reduce the efficiency of the artesunate. Research in context Evidence before this study: The WHO treatment guidelines recommend artemisinin-combination therapy (ACT) for treatment of blood-stage infections caused by Plasmodium vivax in all areas (with chloroquine recommended only in areas where P. vivax are still chloroquine-sensitive). In P. falciparum , partial resistance to artemisinin derivatives is defined in vivo as either detected parasitemia on day 3 post treatment or as a half-life of the parasite clearance slope of ≥ 5 hours. We searched Pubmed for studies containing the terms "vivax" AND "clearance" AND ("artesunate" OR "dihydroartemisinin" OR "artemether" OR "artemisinin") published between 1990 and February 2025, with no language restrictions. Our search retrieved 102 studies for which title and abstracts were screened to identify 21 studies reporting outcomes of P. vivax treatment with an artemisinin derivative. While all these studies concluded that artemisinin derivatives provided rapid clearance of P. vivax parasites, two studies reported a low frequency of day 3 positivity following artesunate-amodiaquine treatment (2.6% in Brazil) or dihydroartemisinin-piperaquine (0.6% in Indonesia). No study reported clearance slope half-life ≥ 5 hours. Added value of this study: This study used a cohort of Cambodian patients infected by P. vivax to rigorously examine the efficacy of artesunate monotherapy at clearing blood stage infections. Our study showed significant variations in clearance rates among infections, with 5.7% of the infections with a clearance slope half-life ≥ 5 hours, meeting the criteria for artemisinin partial resistance used for P. falciparum . Variations in clearance rate upon artesunate treatment were not associated with patient or infection characteristics. Gene expression analyses revealed that the slow-clearing parasites down-regulated upon treatment many genes involved in hemoglobin endocytosis and digestion, possibly resulting in a lesser activation of artesunate. Implications of all the available evidence: Our results confirm that 2 mg/kg of artesunate per day for seven days is effective at clearing P. vivax blood stage infections. However, a subset of the P. vivax parasites displayed a slow clearance following artesunate treatment meeting artemisinin partial resistance definition in P. falciparum . Gene expression analyses suggest that metabolic variations may underlie slow clearance. Increased monitoring of treatment efficacy and drug resistance in P. vivax is therefore recommended.
Collapse
|
2
|
Tebben K, Yirampo S, Coulibaly D, Koné AK, Laurens MB, Stucke EM, Dembélé A, Tolo Y, Traoré K, Niangaly A, Berry AA, Kouriba B, Plowe CV, Doumbo OK, Lyke KE, Takala-Harrison S, Thera MA, Travassos MA, Serre D. Immune gene expression changes more during a malaria transmission season than between consecutive seasons. Microbiol Spectr 2024; 12:e0096024. [PMID: 39162546 PMCID: PMC11448414 DOI: 10.1128/spectrum.00960-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024] Open
Abstract
Plasmodium parasites, the causative organism of malaria, caused over 600,000 deaths in 2022. In Mali, Plasmodium falciparum causes the majority of malaria cases and deaths and is transmitted seasonally. Anti-malarial immunity develops slowly over repeated exposures to P. falciparum and some aspects of this immunity (e.g., antibody titers) wane during the non-transmission, dry season. Here, we sequenced RNA from 33 pediatric blood samples collected during P. falciparum infections at the beginning or end of a transmission season, and characterized the host and parasite gene expression profiles for paired, consecutive infections. We found that human gene expression changes more over the course of one transmission season than between seasons, with signatures of partial development of an adaptive immune response during one transmission season and stability in gene expression during the dry season. Additionally, we found that P. falciparum gene expression did not vary with timing during the season and remained stable both across and between seasons, despite varying human immune pressures. Our results provide insights into the dynamics of anti-malarial immune response development over short time frames that could be exploited by future vaccine and prevention efforts. IMPORTANCE Our work seeks to understand how the immune response to Plasmodium falciparum malaria changes between infections that occur during low and high malaria transmission seasons, and highlights that immune gene expression changes more during the high transmission season. This provides important insight into the dynamics of the anti-malarial immune response that are important to characterize over these short time frames to better understand how to exploit this immune response with future vaccine efforts.
Collapse
Affiliation(s)
- Kieran Tebben
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Salif Yirampo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Abdoulaye K. Koné
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Matthew B. Laurens
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Emily M. Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ahmadou Dembélé
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Youssouf Tolo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Karim Traoré
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Andrea A. Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bourèma Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Christopher V. Plowe
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Kirsten E. Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mahamadou A. Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Mark A. Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Siegel SV, Trimarsanto H, Amato R, Murie K, Taylor AR, Sutanto E, Kleinecke M, Whitton G, Watson JA, Imwong M, Assefa A, Rahim AG, Nguyen HC, Tran TH, Green JA, Koh GCKW, White NJ, Day N, Kwiatkowski DP, Rayner JC, Price RN, Auburn S. Lineage-informative microhaplotypes for recurrence classification and spatio-temporal surveillance of Plasmodium vivax malaria parasites. Nat Commun 2024; 15:6757. [PMID: 39117628 PMCID: PMC11310204 DOI: 10.1038/s41467-024-51015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Challenges in classifying recurrent Plasmodium vivax infections constrain surveillance of antimalarial efficacy and transmission. Recurrent infections may arise from activation of dormant liver stages (relapse), blood-stage treatment failure (recrudescence) or reinfection. Molecular inference of familial relatedness (identity-by-descent or IBD) can help resolve the probable origin of recurrences. As whole genome sequencing of P. vivax remains challenging, targeted genotyping methods are needed for scalability. We describe a P. vivax marker discovery framework to identify and select panels of microhaplotypes (multi-allelic markers within small, amplifiable segments of the genome) that can accurately capture IBD. We evaluate panels of 50-250 microhaplotypes discovered in a global set of 615 P. vivax genomes. A candidate global 100-microhaplotype panel exhibits high marker diversity in the Asia-Pacific, Latin America and horn of Africa (median HE = 0.70-0.81) and identifies 89% of the polyclonal infections detected with genome-wide datasets. Data simulations reveal lower error in estimating pairwise IBD using microhaplotypes relative to traditional biallelic SNP barcodes. The candidate global panel also exhibits high accuracy in predicting geographic origin and captures local infection outbreak and bottlenecking events. Our framework is open-source enabling customised microhaplotype discovery and selection, with potential for porting to other species or data resources.
Collapse
Affiliation(s)
- Sasha V Siegel
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, 0811, Australia
| | - Hidayat Trimarsanto
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, 0811, Australia
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Jakarta, 10430, Indonesia
| | - Roberto Amato
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Kathryn Murie
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Aimee R Taylor
- Institut Pasteur, University de Paris, Infectious Disease Epidemiology and Analytics Unit, Paris, France
| | - Edwin Sutanto
- Exeins Health Initiative, Jakarta Selatan, 12870, Indonesia
| | - Mariana Kleinecke
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, 0811, Australia
| | | | - James A Watson
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LJ, UK
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 764 Vo Van Kiet, W.1, Dist.5, Ho Chi Minh City, Vietnam
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ashenafi Assefa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Awab Ghulam Rahim
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Afghan International Islamic University, Kabul, Afghanistan
| | - Hoang Chau Nguyen
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 764 Vo Van Kiet, W.1, Dist.5, Ho Chi Minh City, Vietnam
| | - Tinh Hien Tran
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 764 Vo Van Kiet, W.1, Dist.5, Ho Chi Minh City, Vietnam
| | | | - Gavin C K W Koh
- Department of Infectious Diseases, Northwick Park Hospital, Harrow, UK
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LJ, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Nicholas Day
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LJ, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | | | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Ric N Price
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, 0811, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LJ, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Sarah Auburn
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, 0811, Australia.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LJ, UK.
| |
Collapse
|
4
|
Kattenberg JH, Monsieurs P, De Meyer J, De Meulenaere K, Sauve E, de Oliveira TC, Ferreira MU, Gamboa D, Rosanas‐Urgell A. Population genomic evidence of structured and connected Plasmodium vivax populations under host selection in Latin America. Ecol Evol 2024; 14:e11103. [PMID: 38529021 PMCID: PMC10961478 DOI: 10.1002/ece3.11103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
Pathogen genomic epidemiology has the potential to provide a deep understanding of population dynamics, facilitating strategic planning of interventions, monitoring their impact, and enabling timely responses, and thereby supporting control and elimination efforts of parasitic tropical diseases. Plasmodium vivax, responsible for most malaria cases outside Africa, shows high genetic diversity at the population level, driven by factors like sub-patent infections, a hidden reservoir of hypnozoites, and early transmission to mosquitoes. While Latin America has made significant progress in controlling Plasmodium falciparum, it faces challenges with residual P. vivax. To characterize genetic diversity and population structure and dynamics, we have analyzed the largest collection of P. vivax genomes to date, including 1474 high-quality genomes from 31 countries across Asia, Africa, Oceania, and America. While P. vivax shows high genetic diversity globally, Latin American isolates form a distinctive population, which is further divided into sub-populations and occasional clonal pockets. Genetic diversity within the continent was associated with the intensity of transmission. Population differentiation exists between Central America and the North Coast of South America, vs. the Amazon Basin, with significant gene flow within the Amazon Basin, but limited connectivity between the Northwest Coast and the Amazon Basin. Shared genomic regions in these parasite populations indicate adaptive evolution, particularly in genes related to DNA replication, RNA processing, invasion, and motility - crucial for the parasite's survival in diverse environments. Understanding these population-level adaptations is crucial for effective control efforts, offering insights into potential mechanisms behind drug resistance, immune evasion, and transmission dynamics.
Collapse
Affiliation(s)
| | - Pieter Monsieurs
- Malariology UnitInstitute of Tropical Medicine AntwerpAntwerpBelgium
| | - Julie De Meyer
- Malariology UnitInstitute of Tropical Medicine AntwerpAntwerpBelgium
- Present address:
Integrated Molecular Plant physiology Research (IMPRES) and Plants and Ecosystems (PLECO), Department of BiologyUniversity of AntwerpAntwerpBelgium
| | | | - Erin Sauve
- Malariology UnitInstitute of Tropical Medicine AntwerpAntwerpBelgium
| | - Thaís C. de Oliveira
- Department of Parasitology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical MedicineNova University of LisbonLisbonPortugal
| | - Dionicia Gamboa
- Instituto de Medicina Tropical “Alexander von Humboldt”Universidad Peruana Cayetano HerediaLimaPeru
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias e IngenieríaUniversidad Peruana Cayetano HerediaLimaPeru
| | | |
Collapse
|
5
|
Gartner V, Redelings BD, Gaither C, Parr JB, Kalonji A, Phanzu F, Brazeau NF, Juliano JJ, Wray GA. Genomic insights into Plasmodium vivax population structure and diversity in central Africa. Malar J 2024; 23:27. [PMID: 38238806 PMCID: PMC10797969 DOI: 10.1186/s12936-024-04852-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Though Plasmodium vivax is the second most common malaria species to infect humans, it has not traditionally been considered a major human health concern in central Africa given the high prevalence of the human Duffy-negative phenotype that is believed to prevent infection. Increasing reports of asymptomatic and symptomatic infections in Duffy-negative individuals throughout Africa raise the possibility that P. vivax is evolving to evade host resistance, but there are few parasite samples with genomic data available from this part of the world. METHODS Whole genome sequencing of one new P. vivax isolate from the Democratic Republic of the Congo (DRC) was performed and used in population genomics analyses to assess how this central African isolate fits into the global context of this species. RESULTS Plasmodium vivax from DRC is similar to other African populations and is not closely related to the non-human primate parasite P. vivax-like. Evidence is found for a duplication of the gene PvDBP and a single copy of PvDBP2. CONCLUSION These results suggest an endemic P. vivax population is present in central Africa. Intentional sampling of P. vivax across Africa would further contextualize this sample within African P. vivax diversity and shed light on the mechanisms of infection in Duffy negative individuals. These results are limited by the uncertainty of how representative this single sample is of the larger population of P. vivax in central Africa.
Collapse
Affiliation(s)
- Valerie Gartner
- Biology Department, Duke University, Durham, NC, 27708, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, 27708, USA
| | - Benjamin D Redelings
- Biology Department, Duke University, Durham, NC, 27708, USA
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
- Ronin Institute, Durham, NC, 27705, USA
| | | | | | - Albert Kalonji
- SANRU Asbl, 149 A/B, Boulevard du 30 Juin, Kinshasa, Gombe, Democratic Republic of Congo
| | - Fernandine Phanzu
- SANRU Asbl, 149 A/B, Boulevard du 30 Juin, Kinshasa, Gombe, Democratic Republic of Congo
| | | | | | - Gregory A Wray
- Biology Department, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
6
|
De Meulenaere K, Cuypers B, Gamboa D, Laukens K, Rosanas-Urgell A. A new Plasmodium vivax reference genome for South American isolates. BMC Genomics 2023; 24:606. [PMID: 37821878 PMCID: PMC10568799 DOI: 10.1186/s12864-023-09707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Plasmodium vivax is the second most important cause of human malaria worldwide, and accounts for the majority of malaria cases in South America. A high-quality reference genome exists for Papua Indonesia (PvP01) and Thailand (PvW1), but is lacking for South America. A reference genome specifically for South America would be beneficial though, as P. vivax is a genetically diverse parasite with geographical clustering. RESULTS This study presents a new high-quality assembly of a South American P. vivax isolate, referred to as PvPAM (P. vivax Peruvian AMazon). The genome was obtained from a low input patient sample from the Peruvian Amazon and sequenced using PacBio technology, resulting in a highly complete assembly with 6497 functional genes. Telomeric ends were present in 17 out of 28 chromosomal ends, and additional (sub)telomeric regions are present in 12 unassigned contigs. A comparison of multigene families between PvPAM and the PvP01 genome revealed remarkable variation in vir genes, and the presence of merozoite surface proteins (MSP) 3.6 and 3.7. Three dhfr and dhps drug resistance associated mutations are present in PvPAM, similar to those found in other Peruvian isolates. Mapping of publicly available South American whole genome sequencing (WGS) data to PvPAM resulted in significantly fewer variants and truncated reads compared to the use of PvP01 or PvW1 as reference genomes. To minimize the number of core genome variants in non-South American samples, PvW1 is most suited for Southeast Asian isolates, both PvPAM and PvW1 are suited for South Asian isolates, and PvPAM is recommended for African isolates. Interestingly, non-South American samples still contained the least subtelomeric variants when mapped to PvPAM, indicating high quality of the PvPAM subtelomeric regions. CONCLUSIONS Our findings show that the PvPAM reference genome more accurately represents South American P. vivax isolates in comparison to PvP01 and PvW1. In addition, PvPAM has a high level of completeness, and contains a similar number of annotated genes as PvP01 or PvW1. The PvPAM genome therefore will be a valuable resource to improve future genomic analyses on P. vivax isolates from the South American continent.
Collapse
Affiliation(s)
- Katlijn De Meulenaere
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
- Department of Computer Science, University of Antwerp, Antwerp, Belgium.
| | - Bart Cuypers
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kris Laukens
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
| |
Collapse
|
7
|
Liu Y, Zhang T, Chen SB, Cui YB, Wang SQ, Zhang HW, Shen HM, Chen JH. Retrospective analysis of Plasmodium vivax genomes from a pre-elimination China inland population in the 2010s. Front Microbiol 2023; 14:1071689. [PMID: 36846776 PMCID: PMC9948256 DOI: 10.3389/fmicb.2023.1071689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction In malaria-free countries, imported cases are challenging because interconnections with neighboring countries with higher transmission rates increase the risk of parasite reintroduction. Establishing a genetic database for rapidly identifying malaria importation or reintroduction is crucial in addressing these challenges. This study aimed to examine genomic epidemiology during the pre-elimination stage by retrospectively reporting whole-genome sequence variation of 10 Plasmodium vivax isolates from inland China. Methods The samples were collected during the last few inland outbreaks from 2011 to 2012 when China implemented a malaria control plan. After next-generation sequencing, we completed a genetic analysis of the population, explored the geographic specificity of the samples, and examined clustering of selection pressures. We also scanned genes for signals of positive selection. Results China's inland populations were highly structured compared to the surrounding area, with a single potential ancestor. Additionally, we identified genes under selection and evaluated the selection pressure on drug-resistance genes. In the inland population, positive selection was detected in some critical gene families, including sera, msp3, and vir. Meanwhile, we identified selection signatures in drug resistance, such as ugt, krs1, and crt, and noticed that the ratio of wild-type dhps and dhfr-ts increased after China banned sulfadoxine-pyrimethamine (SP) for decades. Discussion Our data provides an opportunity to investigate the molecular epidemiology of pre-elimination inland malaria populations, which exhibited lower selection pressure on invasion and immune evasion genes than neighbouring areas, but increased drug resistance in low transmission settings. Our results revealed that the inland population was severely fragmented with low relatedness among infections, despite a higher incidence of multiclonal infections, suggesting that superinfection or co-transmission events are rare in low-endemic circumstances. We identified selective signatures of resistance and found that the proportion of susceptible isolates fluctuated in response to the prohibition of specific drugs. This finding is consistent with the alterations in medication strategies during the malaria elimination campaign in inland China. Such findings could provide a genetic basis for future population studies, assessing changes in other pre-elimination countries.
Collapse
Affiliation(s)
- Ying Liu
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
- Henan Provincial Center for Disease Control and Prevention, Zhengzhou, China
| | - Tao Zhang
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
| | - Yan-Bing Cui
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
| | - Shu-Qi Wang
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Hong-Wei Zhang
- Henan Provincial Center for Disease Control and Prevention, Zhengzhou, China
| | - Hai-Mo Shen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Xu Y, Dong Y, Deng Y, Huang H, Chen M, Liu Y, Wu J, Zhang C, Zheng W. Molecular identification of vivax malaria relapse patients in the Yunnan Province based on homology analysis of the Plasmodium vivax circumsporozoite protein gene. Parasitol Res 2023; 122:85-96. [PMID: 36334150 PMCID: PMC9816221 DOI: 10.1007/s00436-022-07700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
More than 85% of the malaria burden in the Yunnan Province is caused by imported vivax malaria, and Yunnan is also where the majority of vivax malaria patients are diagnosed in China. Timely removal of the infection sources of Plasmodium vivax and its breeding environment remains the key to eliminating the secondary transmission of imported malaria. To that end, blood samples were collected from cases diagnosed and revalidated as single species infection with P. vivax in the Yunnan Province from 2013 to 2020. Specifically, samples from vivax malaria patients with suspected relapses episodes were subjected to PCR amplification, product sequencing, and analysis of the P. vivax circumsporozoite protein (pvcsp) gene. In total, 77 suspected relapse patients were identified out of 2484 cases infected with P. vivax, with a total of 81 recurrent episodes. A total of 156 CDS (coding DNA sequence) chains were obtained through PCR amplification and sequencing of the pvcsp gene from 159 blood samples, 121 of which can be matched to the paired sequences of 59 vivax malaria patients with both primary attack and recurrent experience. Of the 59 pairs of pvcsp gene sequences, every one of 31 pairs showed only one haplotype and no variant sites (VS), meaning every two paired sequence was completely homologous. Every one of the remaining 28 paired sequences had two haplotypes but no length polymorphism, indicating that the paired sequences was "weakly heterologous" with no fragment insertions (or deletions). All 59 vivax malaria patients with recurrences were caused by the activation of P. vivax hypnozoites originated from the same population as the primary infection. The paired analysis of the similarity between high variant genes allowed the identification of relapse episodes caused by P. vivax homologous hypnozoites and also demonstrated pvcsp gene as one of the candidate molecular markers for tracing infection origin.
Collapse
Affiliation(s)
- Yanchun Xu
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Ying Dong
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China.
| | - Yan Deng
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Herong Huang
- Department of Basic Medical Sciences, Clinical College of Anhui Medical University, Hefei, 230031, China
| | - Mengni Chen
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Yan Liu
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Jing Wu
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Canglin Zhang
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Webi Zheng
- Center for Disease Control and Prevention, Baoshan, 678000, China.
| |
Collapse
|
9
|
Brashear AM, Cui L. Population genomics in neglected malaria parasites. Front Microbiol 2022; 13:984394. [PMID: 36160257 PMCID: PMC9493318 DOI: 10.3389/fmicb.2022.984394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria elimination includes neglected human malaria parasites Plasmodium vivax, Plasmodium ovale spp., and Plasmodium malariae. Biological features such as association with low-density infection and the formation of hypnozoites responsible for relapse make their elimination challenging. Studies on these parasites rely primarily on clinical samples due to the lack of long-term culture techniques. With improved methods to enrich parasite DNA from clinical samples, whole-genome sequencing of the neglected malaria parasites has gained increasing popularity. Population genomics of more than 2200 P. vivax global isolates has improved our knowledge of parasite biology and host-parasite interactions, identified vaccine targets and potential drug resistance markers, and provided a new way to track parasite migration and introduction and monitor the evolutionary response of local populations to elimination efforts. Here, we review advances in population genomics for neglected malaria parasites, discuss how the rich genomic information is being used to understand parasite biology and epidemiology, and explore opportunities for the applications of malaria genomic data in malaria elimination practice.
Collapse
|
10
|
Kattenberg JH, Nguyen HV, Nguyen HL, Sauve E, Nguyen NTH, Chopo-Pizarro A, Trimarsanto H, Monsieurs P, Guetens P, Nguyen XX, Esbroeck MV, Auburn S, Nguyen BTH, Rosanas-Urgell A. Novel highly-multiplexed AmpliSeq targeted assay for Plasmodium vivax genetic surveillance use cases at multiple geographical scales. Front Cell Infect Microbiol 2022; 12:953187. [PMID: 36034708 PMCID: PMC9403277 DOI: 10.3389/fcimb.2022.953187] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Although the power of genetic surveillance tools has been acknowledged widely, there is an urgent need in malaria endemic countries for feasible and cost-effective tools to implement in national malaria control programs (NMCPs) that can generate evidence to guide malaria control and elimination strategies, especially in the case of Plasmodium vivax. Several genetic surveillance applications ('use cases') have been identified to align research, technology development, and public health efforts, requiring different types of molecular markers. Here we present a new highly-multiplexed deep sequencing assay (Pv AmpliSeq). The assay targets the 33-SNP vivaxGEN-geo panel for country-level classification, and a newly designed 42-SNP within-country barcode for analysis of parasite dynamics in Vietnam and 11 putative drug resistance genes in a highly multiplexed NGS protocol with easy workflow, applicable for many different genetic surveillance use cases. The Pv AmpliSeq assay was validated using: 1) isolates from travelers and migrants in Belgium, and 2) routine collections of the national malaria control program at sentinel sites in Vietnam. The assay targets 229 amplicons and achieved a high depth of coverage (mean 595.7 ± 481) and high accuracy (mean error-rate of 0.013 ± 0.007). P. vivax parasites could be characterized from dried blood spots with a minimum of 5 parasites/µL and 10% of minority-clones. The assay achieved good spatial specificity for between-country prediction of origin using the 33-SNP vivaxGEN-geo panel that targets rare alleles specific for certain countries and regions. A high resolution for within-country diversity in Vietnam was achieved using the designed 42-SNP within-country barcode that targets common alleles (median MAF 0.34, range 0.01-0.49. Many variants were detected in (putative) drug resistance genes, with different predominant haplotypes in the pvmdr1 and pvcrt genes in different provinces in Vietnam. The capacity of the assay for high resolution identity-by-descent (IBD) analysis was demonstrated and identified a high rate of shared ancestry within Gia Lai Province in the Central Highlands of Vietnam, as well as between the coastal province of Binh Thuan and Lam Dong. Our approach performed well in geographically differentiating isolates at multiple spatial scales, detecting variants in putative resistance genes, and can be easily adjusted to suit the needs in other settings in a country or region. We prioritize making this tool available to researchers and NMCPs in endemic countries to increase ownership and ensure data usage for decision-making and malaria policy.
Collapse
Affiliation(s)
| | - Hong Van Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Hieu Luong Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Erin Sauve
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ngoc Thi Hong Nguyen
- Department of Molecular Biology, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Ana Chopo-Pizarro
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Hidayat Trimarsanto
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Pieter Monsieurs
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Pieter Guetens
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Xa Xuan Nguyen
- Department of Epidemiology, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Marjan Van Esbroeck
- Clinical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Sarah Auburn
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Mahidol‐Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Binh Thi Huong Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Anna Rosanas-Urgell
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
11
|
Akoniyon OP, Adewumi TS, Maharaj L, Oyegoke OO, Roux A, Adeleke MA, Maharaj R, Okpeku M. Whole Genome Sequencing Contributions and Challenges in Disease Reduction Focused on Malaria. BIOLOGY 2022; 11:587. [PMID: 35453786 PMCID: PMC9027812 DOI: 10.3390/biology11040587] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022]
Abstract
Malaria elimination remains an important goal that requires the adoption of sophisticated science and management strategies in the era of the COVID-19 pandemic. The advent of next generation sequencing (NGS) is making whole genome sequencing (WGS) a standard today in the field of life sciences, as PCR genotyping and targeted sequencing provide insufficient information compared to the whole genome. Thus, adapting WGS approaches to malaria parasites is pertinent to studying the epidemiology of the disease, as different regions are at different phases in their malaria elimination agenda. Therefore, this review highlights the applications of WGS in disease management, challenges of WGS in controlling malaria parasites, and in furtherance, provides the roles of WGS in pursuit of malaria reduction and elimination. WGS has invaluable impacts in malaria research and has helped countries to reach elimination phase rapidly by providing required information needed to thwart transmission, pathology, and drug resistance. However, to eliminate malaria in sub-Saharan Africa (SSA), with high malaria transmission, we recommend that WGS machines should be readily available and affordable in the region.
Collapse
Affiliation(s)
- Olusegun Philip Akoniyon
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Taiye Samson Adewumi
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Olukunle Olugbenle Oyegoke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Alexandra Roux
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Rajendra Maharaj
- Office of Malaria Research, South African Medical Research Council, Cape Town 7505, South Africa;
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| |
Collapse
|
12
|
Daron J, Boissière A, Boundenga L, Ngoubangoye B, Houze S, Arnathau C, Sidobre C, Trape JF, Durand P, Renaud F, Fontaine MC, Prugnolle F, Rougeron V. Population genomic evidence of Plasmodium vivax Southeast Asian origin. SCIENCE ADVANCES 2021; 7:7/18/eabc3713. [PMID: 33910900 PMCID: PMC8081369 DOI: 10.1126/sciadv.abc3713] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 03/10/2021] [Indexed: 05/15/2023]
Abstract
Plasmodium vivax is the most common and widespread human malaria parasite. It was recently proposed that P. vivax originates from sub-Saharan Africa based on the circulation of its closest genetic relatives (P. vivax-like) among African great apes. However, the limited number of genetic markers and samples investigated questions the robustness of this hypothesis. Here, we extensively characterized the genomic variations of 447 human P. vivax strains and 19 ape P. vivax-like strains collected worldwide. Phylogenetic relationships between human and ape Plasmodium strains revealed that P. vivax is a sister clade of P. vivax-like, not included within the radiation of P. vivax-like By investigating various aspects of P. vivax genetic variation, we identified several notable geographical patterns in summary statistics in function of the increasing geographic distance from Southeast Asia, suggesting that P. vivax may have derived from a single area in Asia through serial founder effects.
Collapse
Affiliation(s)
- Josquin Daron
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France.
| | - Anne Boissière
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
| | - Larson Boundenga
- Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | | | - Sandrine Houze
- Service de Parasitologie-mycologie CNR du Paludisme, AP-HP Hôpital Bichat, 46 rue H. Huchard, 75877 Paris Cedex 18, France
| | - Celine Arnathau
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
| | - Christine Sidobre
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
| | - Jean-François Trape
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
| | - Patrick Durand
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
| | - François Renaud
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
| | - Michael C Fontaine
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103 CC, Groningen, Netherlands
| | - Franck Prugnolle
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
| | - Virginie Rougeron
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France.
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
| |
Collapse
|
13
|
Oboh MA, Oyebola KM, Idowu ET, Badiane AS, Otubanjo OA, Ndiaye D. Rising report of Plasmodium vivax in sub-Saharan Africa: Implications for malaria elimination agenda. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
14
|
Siegel SV, Chappell L, Hostetler JB, Amaratunga C, Suon S, Böhme U, Berriman M, Fairhurst RM, Rayner JC. Analysis of Plasmodium vivax schizont transcriptomes from field isolates reveals heterogeneity of expression of genes involved in host-parasite interactions. Sci Rep 2020; 10:16667. [PMID: 33028892 PMCID: PMC7541449 DOI: 10.1038/s41598-020-73562-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/18/2020] [Indexed: 11/28/2022] Open
Abstract
Plasmodium vivax gene regulation remains difficult to study due to the lack of a robust in vitro culture method, low parasite densities in peripheral circulation and asynchronous parasite development. We adapted an RNA-seq protocol “DAFT-seq” to sequence the transcriptome of four P. vivax field isolates that were cultured for a short period ex vivo before using a density gradient for schizont enrichment. Transcription was detected from 78% of the PvP01 reference genome, despite being schizont-enriched samples. This extensive data was used to define thousands of 5′ and 3′ untranslated regions, some of which overlapped with neighbouring transcripts, and to improve the gene models of 352 genes, including identifying 20 novel gene transcripts. This dataset has also significantly increased the known amount of heterogeneity between P. vivax schizont transcriptomes from individual patients. The majority of genes found to be differentially expressed between the isolates lack Plasmodium falciparum homologs and are predicted to be involved in host-parasite interactions, with an enrichment in reticulocyte binding proteins, merozoite surface proteins and exported proteins with unknown function. An improved understanding of the diversity within P. vivax transcriptomes will be essential for the prioritisation of novel vaccine targets.
Collapse
Affiliation(s)
- Sasha V Siegel
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Lia Chappell
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Jessica B Hostetler
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK.,Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.,National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chanaki Amaratunga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bankgok, Thailand.,Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Seila Suon
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Ulrike Böhme
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.,AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Julian C Rayner
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK. .,Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
| |
Collapse
|
15
|
Host and Parasite Transcriptomic Changes upon Successive Plasmodium falciparum Infections in Early Childhood. mSystems 2020; 5:5/4/e00116-20. [PMID: 32636334 PMCID: PMC7343306 DOI: 10.1128/msystems.00116-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We show that dual RNA-seq from patient blood samples allows characterization of host/parasite interactions during malaria infections and can provide a solid framework to study the acquisition of antimalarial immunity, as well as the adaptations of P. falciparum to malaria-experienced hosts. Children are highly susceptible to clinical malaria, and in regions where malaria is endemic, their immune systems must face successive encounters with Plasmodium falciparum parasites before they develop immunity, first against severe disease and later against uncomplicated malaria. Understanding cellular and molecular interactions between host and parasites during an infection could provide insights into the processes underlying this gradual acquisition of immunity, as well as to how parasites adapt to infect hosts that are successively more malaria experienced. Here, we describe methods to analyze the host and parasite gene expression profiles generated simultaneously from blood samples collected from five consecutive symptomatic P. falciparum infections in three Malian children. We show that the data generated enable statistical assessment of the proportions of (i) each white blood cell subset and (ii) the parasite developmental stages, as well as investigations of host-parasite gene coexpression. We also use the sequences generated to analyze allelic variations in transcribed regions and determine the complexity of each infection. While limited by the modest sample size, our analyses suggest that host gene expression profiles primarily clustered by individual, while the parasite gene expression profiles seemed to differentiate early from late infections. Overall, this study provides a solid framework to examine the mechanisms underlying acquisition of immunity to malaria infections using whole-blood transcriptome sequencing (RNA-seq). IMPORTANCE We show that dual RNA-seq from patient blood samples allows characterization of host/parasite interactions during malaria infections and can provide a solid framework to study the acquisition of antimalarial immunity, as well as the adaptations of P. falciparum to malaria-experienced hosts.
Collapse
|
16
|
Sà JM, Cannon MV, Caleon RL, Wellems TE, Serre D. Single-cell transcription analysis of Plasmodium vivax blood-stage parasites identifies stage- and species-specific profiles of expression. PLoS Biol 2020; 18:e3000711. [PMID: 32365102 PMCID: PMC7224573 DOI: 10.1371/journal.pbio.3000711] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 05/14/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022] Open
Abstract
Plasmodium vivax and P. falciparum, the parasites responsible for most human malaria worldwide, exhibit striking biological differences, which have important clinical consequences. Unfortunately, P. vivax, unlike P. falciparum, cannot be cultivated continuously in vitro, which limits our understanding of its biology and, consequently, our ability to effectively control vivax malaria. Here, we describe single-cell gene expression profiles of 9,215 P. vivax parasites from bloodstream infections of Aotus and Saimiri monkeys. Our results show that transcription of most P. vivax genes occurs during short periods of the intraerythrocytic cycle and that this pattern of gene expression is conserved in other Plasmodium species. However, we also identify a strikingly high proportion of species-specific transcripts in late schizonts, possibly associated with the specificity of erythrocyte invasion. Our findings provide new and robust markers of blood-stage parasites, including some that are specific to the elusive P. vivax male gametocytes, and will be useful for analyzing gene expression data from laboratory and field samples. Analysis of individual Plasmodium vivax parasites reveals the tight control of the expression of most genes during the intra-erythrocytic cycle and the differentiation of male and female gametocytes, and highlights differences between the development of P. vivax and P. falciparum.
Collapse
Affiliation(s)
- Juliana M. Sà
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Matthew V. Cannon
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ramoncito L. Caleon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas E. Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Shah Z, Adams M, Moser KA, Shrestha B, Stucke EM, Laufer MK, Serre D, Silva JC, Takala-Harrison S. Optimization of parasite DNA enrichment approaches to generate whole genome sequencing data for Plasmodium falciparum from low parasitaemia samples. Malar J 2020; 19:135. [PMID: 32228559 PMCID: PMC7106660 DOI: 10.1186/s12936-020-03195-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/20/2020] [Indexed: 12/30/2022] Open
Abstract
Background Owing to the large amount of host DNA in clinical samples, generation of high-quality Plasmodium falciparum whole genome sequencing (WGS) data requires enrichment for parasite DNA. Enrichment is often achieved by leukocyte depletion of infected blood prior to storage. However, leukocyte depletion is difficult in low-resource settings and limits analysis to prospectively-collected samples. As a result, approaches such as selective whole genome amplification (sWGA) are being used to enrich for parasite DNA. However, sWGA has had limited success in generating reliable sequencing data from low parasitaemia samples. In this study, enzymatic digestion with MspJI prior to sWGA and whole genome sequencing was evaluated to determine whether this approach improved genome coverage compared to sWGA alone. The potential of sWGA to cause amplification bias in polyclonal infections was also examined. Methods DNA extracted from laboratory-created dried blood spots was treated with a modification-dependent restriction endonuclease, MspJI, and filtered via vacuum filtration. Samples were then selectively amplified using a previously reported sWGA protocol and subjected to WGS. Genome coverage statistics were compared between the optimized sWGA approach and the previously reported sWGA approach performed in parallel. Differential amplification by sWGA was assessed by comparing WGS data generated from lab-created mixtures of parasite isolates, from the same geographical region, generated with or without sWGA. Results MspJI digestion did not enrich for parasite DNA. Samples that underwent vacuum filtration (without MspJI digestion) prior to sWGA had the highest parasite DNA concentration and displayed greater genome coverage compared to MspJI + sWGA and sWGA alone, particularly for low parasitaemia samples. The optimized sWGA (filtration + sWGA) approach was successfully used to generate WGS data from 218 non-leukocyte depleted field samples from Malawi. Sequences from lab-created mixtures of parasites did not show evidence of differential amplification of parasite strains compared to directly sequenced samples. Conclusion This optimized sWGA approach is a reliable method to obtain WGS data from non-leukocyte depleted, low parasitaemia samples. The absence of amplification bias in data generated from mixtures of isolates from the same geographic region suggests that this approach can be appropriately used for molecular epidemiological studies.
Collapse
Affiliation(s)
- Zalak Shah
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew Adams
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kara A Moser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Biraj Shrestha
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emily M Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Miriam K Laufer
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
18
|
Affiliation(s)
- Peter A Zimmerman
- Professor of International Health, Genetics and Biology, The Center for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
19
|
Kim A, Popovici J, Menard D, Serre D. Plasmodium vivax transcriptomes reveal stage-specific chloroquine response and differential regulation of male and female gametocytes. Nat Commun 2019; 10:371. [PMID: 30670687 PMCID: PMC6342968 DOI: 10.1038/s41467-019-08312-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022] Open
Abstract
Studies of Plasmodium vivax gene expression are complicated by the lack of in vitro culture system and the difficulties associated with studying clinical infections that often contain multiple clones and a mixture of parasite stages. Here, we characterize the transcriptomes of P. vivax parasites from 26 malaria patients. We show that most parasite mRNAs derive from trophozoites and that the asynchronicity of P. vivax infections is therefore unlikely to confound gene expression studies. Analyses of gametocyte genes reveal two distinct clusters of co-regulated genes, suggesting that male and female gametocytes are independently regulated. Finally, we analyze gene expression changes induced by chloroquine and show that this antimalarial drug efficiently eliminates most P. vivax parasite stages but, in contrast to P. falciparum, does not affect trophozoites.
Collapse
Affiliation(s)
- Adam Kim
- Institute for Genome Sciences, University of Maryland School of Medicine, 670 W Baltimore Street, Baltimore, MD, 21201, USA
| | - Jean Popovici
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12 201, Cambodia
| | - Didier Menard
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12 201, Cambodia
- Biology of Host-Parasite Interactions Unit, Institut Pasteur, 25-28 Rue du Dr. Roux, 75724, Paris, France
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, 670 W Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
20
|
In silico analysis of putative dormancy genes in Plasmodium vivax. Acta Trop 2018; 186:24-34. [PMID: 29959903 DOI: 10.1016/j.actatropica.2018.06.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/21/2018] [Accepted: 06/26/2018] [Indexed: 11/23/2022]
Abstract
Plasmodium vivax is the most widely spread species causing human malaria. The control of malaria caused by P. vivax has been largely hampered by its ability to develop a dormant liver stage that can generate a new blood infection at different periods of time. Unfortunately, the mechanisms of dormancy in P. vivax have not been thoroughly elucidated to date. In this study, the putative dormancy genes were analyzed to select genes with less genetic variability to maintain the function of relapsing. Expression data concerning these genes were searched to support the selection. Protein interactions among selected gene products were identified based on known and predicted protein-protein interaction using String database. Potentially interacting proteins (n = 15) were used to propose a mechanism involved in dormancy based on the differential vesicular transport due to the iron available in the hepatocyte.
Collapse
|
21
|
Camargo-Ayala PA, Garzón-Ospina D, Moreno-Pérez DA, Ricaurte-Contreras LA, Noya O, Patarroyo MA. On the Evolution and Function of Plasmodium vivax Reticulocyte Binding Surface Antigen ( pvrbsa). Front Genet 2018; 9:372. [PMID: 30250483 PMCID: PMC6139305 DOI: 10.3389/fgene.2018.00372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/23/2018] [Indexed: 12/28/2022] Open
Abstract
The RBSA protein is encoded by a gene described in Plasmodium species having tropism for reticulocytes. Since this protein is antigenic in natural infections and can bind to target cells, it has been proposed as a potential candidate for an anti-Plasmodium vivax vaccine. However, genetic diversity (a challenge which must be overcome for ensuring fully effective vaccine design) has not been described at this locus. Likewise, the minimum regions mediating specific parasite-host interaction have not been determined. This is why the rbsa gene’s evolutionary history is being here described, as well as the P. vivax rbsa (pvrbsa) genetic diversity and the specific regions mediating parasite adhesion to reticulocytes. Unlike what has previously been reported, rbsa was also present in several parasite species belonging to the monkey-malaria clade; paralogs were also found in Plasmodium parasites invading reticulocytes. The pvrbsa locus had less diversity than other merozoite surface proteins where natural selection and recombination were the main evolutionary forces involved in causing the observed polymorphism. The N-terminal end (PvRBSA-A) was conserved and under functional constraint; consequently, it was expressed as recombinant protein for binding assays. This protein fragment bound to reticulocytes whilst the C-terminus, included in recombinant PvRBSA-B (which was not under functional constraint), did not. Interestingly, two PvRBSA-A-derived peptides were able to inhibit protein binding to reticulocytes. Specific conserved and functionally important peptides within PvRBSA-A could thus be considered when designing a fully-effective vaccine against P. vivax.
Collapse
Affiliation(s)
- Paola Andrea Camargo-Ayala
- Department of Molecular Biology and Immunology, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,Microbiology Postgraduate Programme, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diego Garzón-Ospina
- Department of Molecular Biology and Immunology, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Darwin Andrés Moreno-Pérez
- Department of Molecular Biology and Immunology, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,Livestock Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales, Bogotá, Colombia
| | | | - Oscar Noya
- Instituto de Medicina Tropical, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | - Manuel A Patarroyo
- Department of Molecular Biology and Immunology, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
22
|
Gilabert A, Otto TD, Rutledge GG, Franzon B, Ollomo B, Arnathau C, Durand P, Moukodoum ND, Okouga AP, Ngoubangoye B, Makanga B, Boundenga L, Paupy C, Renaud F, Prugnolle F, Rougeron V. Plasmodium vivax-like genome sequences shed new insights into Plasmodium vivax biology and evolution. PLoS Biol 2018; 16:e2006035. [PMID: 30142149 PMCID: PMC6130868 DOI: 10.1371/journal.pbio.2006035] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 09/10/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022] Open
Abstract
Although Plasmodium vivax is responsible for the majority of malaria infections outside Africa, little is known about its evolution and pathway to humans. Its closest genetic relative, P. vivax-like, was discovered in African great apes and is hypothesized to have given rise to P. vivax in humans. To unravel the evolutionary history and adaptation of P. vivax to different host environments, we generated using long- and short-read sequence technologies 2 new P. vivax-like reference genomes and 9 additional P. vivax-like genotypes. Analyses show that the genomes of P. vivax and P. vivax-like are highly similar and colinear within the core regions. Phylogenetic analyses clearly show that P. vivax-like parasites form a genetically distinct clade from P. vivax. Concerning the relative divergence dating, we show that the evolution of P. vivax in humans did not occur at the same time as the other agents of human malaria, thus suggesting that the transfer of Plasmodium parasites to humans happened several times independently over the history of the Homo genus. We further identify several key genes that exhibit signatures of positive selection exclusively in the human P. vivax parasites. Two of these genes have been identified to also be under positive selection in the other main human malaria agent, P. falciparum, thus suggesting their key role in the evolution of the ability of these parasites to infect humans or their anthropophilic vectors. Finally, we demonstrate that some gene families important for red blood cell (RBC) invasion (a key step of the life cycle of these parasites) have undergone lineage-specific evolution in the human parasite (e.g., reticulocyte-binding proteins [RBPs]).
Collapse
Affiliation(s)
- Aude Gilabert
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Thomas D. Otto
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- Institute of Infection, Immunity and Inflammation, University of Glasgow, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - Gavin G. Rutledge
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Blaise Franzon
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Benjamin Ollomo
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Céline Arnathau
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Patrick Durand
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Nancy D. Moukodoum
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Alain-Prince Okouga
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | | | - Boris Makanga
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Larson Boundenga
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Christophe Paupy
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - François Renaud
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Franck Prugnolle
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Virginie Rougeron
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| |
Collapse
|
23
|
Bourgard C, Albrecht L, Kayano ACAV, Sunnerhagen P, Costa FTM. Plasmodium vivax Biology: Insights Provided by Genomics, Transcriptomics and Proteomics. Front Cell Infect Microbiol 2018; 8:34. [PMID: 29473024 PMCID: PMC5809496 DOI: 10.3389/fcimb.2018.00034] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/25/2018] [Indexed: 12/17/2022] Open
Abstract
During the last decade, the vast omics field has revolutionized biological research, especially the genomics, transcriptomics and proteomics branches, as technological tools become available to the field researcher and allow difficult question-driven studies to be addressed. Parasitology has greatly benefited from next generation sequencing (NGS) projects, which have resulted in a broadened comprehension of basic parasite molecular biology, ecology and epidemiology. Malariology is one example where application of this technology has greatly contributed to a better understanding of Plasmodium spp. biology and host-parasite interactions. Among the several parasite species that cause human malaria, the neglected Plasmodium vivax presents great research challenges, as in vitro culturing is not yet feasible and functional assays are heavily limited. Therefore, there are gaps in our P. vivax biology knowledge that affect decisions for control policies aiming to eradicate vivax malaria in the near future. In this review, we provide a snapshot of key discoveries already achieved in P. vivax sequencing projects, focusing on developments, hurdles, and limitations currently faced by the research community, as well as perspectives on future vivax malaria research.
Collapse
Affiliation(s)
- Catarina Bourgard
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Letusa Albrecht
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil.,Laboratory of Regulation of Gene Expression, Instituto Carlos Chagas, Curitiba, Brazil
| | - Ana C A V Kayano
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Fabio T M Costa
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil
| |
Collapse
|
24
|
Pirahmadi S, Zakeri S, Mehrizi AA, Djadid ND. Analysis of genetic diversity and population structure of gene encoding cell-traversal protein for ookinetes and sporozoites (CelTOS) vaccine candidate antigen in global Plasmodium falciparum populations. INFECTION GENETICS AND EVOLUTION 2018; 59:113-125. [PMID: 29391203 DOI: 10.1016/j.meegid.2018.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/24/2017] [Accepted: 01/25/2018] [Indexed: 10/18/2022]
Abstract
Plasmodium falciparum cell-traversal protein for ookinetes and sporozoites (PfCelTOS) has been reported as one of the most attractive malaria vaccine candidate antigens. To design a broadly effective malaria vaccine based on this antigen, it is crucial to have adequate information on genetic diversity in global PfCelTOS. Therefore, the extent of sequence diversity at the full-length of the pfceltos was assessed among both natural P. falciparum isolates collected from Iran (n = 93) and from available global pfceltos sequence data retrieved from PlasmoDB database (n = 159). Also, recombination, natural selection, the degree of genetic differentiation as well as the predicted immunodominant regions in PfCelTOS were analyzed. In total, 40 SNPs (including 1 synonymous and 39 non-synonymous) were detected in 34 positions, as compared to 3D7 sequence, which led to 66 distinct haplotypes with different frequencies. Among those haplotypes, 34 (51.5%, excluded from further analysis) were singleton haplotype and mostly detected among Senegalese parasite isolates. PfCelt-1 was found as predominant haplotype (32.6% total frequency) that was only detected in Iranian P. falciparum isolates. Nucleotide diversity was low in French Guiana (0.00236 ± 0.00203) and Iranian (0.00259 ± 0.00048) P. falciparum isolates in comparison with African populations. Evidence for positive selection by host immunity and intragenic recombination were detected that are two key factors responsible for gene evolution and genetic diversity of pfceltos gene. The results of Fst analysis and haplotype network revealed that PfCelTOS antigen displayed evident genetic structure between geographical parasite populations. In conclusion, the present analysis demonstrates that there is a limited antigenic diversity and geographic variation in global PfCelTOS, and this finding may be associated with the critical function of this antigen in cell traversal of the parasite in sporozoite and ookinete. Besides, most of the predicted B- and T-cell epitopes were located in the conserved region of the gene, but most of the amino acid replacements were located at the C-terminal region of PfCelTOS. The obtained results in this investigation could provide knowledge for better design of PfCelTOS-based malaria vaccine.
Collapse
Affiliation(s)
- Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran.
| | - Akram Abouie Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran
| |
Collapse
|
25
|
Garzón-Ospina D, Buitrago SP, Ramos AE, Patarroyo MA. Identifying Potential Plasmodium vivax Sporozoite Stage Vaccine Candidates: An Analysis of Genetic Diversity and Natural Selection. Front Genet 2018; 9:10. [PMID: 29422913 PMCID: PMC5788960 DOI: 10.3389/fgene.2018.00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/09/2018] [Indexed: 11/30/2022] Open
Abstract
Parasite antigen genetic diversity represents a great obstacle when designing a vaccine against malaria caused by Plasmodium vivax. Selecting vaccine candidate antigens has been focused on those fulfilling a role in invasion and which are conserved, thus avoiding specific-allele immune responses. Most antigens described to date belong to the blood stage, thereby blocking parasite development within red blood cells, whilst studying antigens from other stages has been quite restricted. Antigens from different parasite stages are required for developing a completely effective vaccine; thus, pre-erythrocyte stage antigens able to block the first line of infection becoming established should also be taken into account. However, few antigens from this stage have been studied to date. Several P. falciparum sporozoite antigens are involved in invasion. Since 77% of genes are orthologous amongst Plasmodium parasites, P. vivax sporozoite antigen orthologs to those of P. falciparum might be present in its genome. Although these genes might have high genetic diversity, conserved functionally-relevant regions (ideal for vaccine development) could be predicted by comparing genetic diversity patterns and evolutionary rates. This study was thus aimed at searching for putative P. vivax sporozoite genes so as to analyse their genetic diversity for determining their potential as vaccine candidates. Several DNA sequence polymorphism estimators were computed at each locus. The evolutionary force (drift, selection and recombination) drawing the genetic diversity pattern observed was also determined by using tests based on polymorphism frequency spectrum as well as the type of intra- and inter-species substitutions. Likewise, recombination was assessed both indirectly and directly. The results showed that sporozoite genes were more conserved than merozoite genes evaluated to date. Putative domains implied in cell traversal, gliding motility and hepatocyte interaction had a negative selection signal, being conserved amongst different species in the genus. PvP52, PvP36, PvSPATR, PvPLP1, PvMCP1, PvTLP, PvCelTOS, and PvMB2 antigens or functionally restricted regions within them would thus seem promising vaccine candidates and could be used when designing a pre-erythrocyte and/or multi-stage vaccine against P. vivax to avoid allele-specific immune responses that could reduce vaccine efficacy.
Collapse
Affiliation(s)
- Diego Garzón-Ospina
- Molecular Biology and Immunology Laboratory, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,PhD Programme in Biomedical and Biological Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Sindy P Buitrago
- Molecular Biology and Immunology Laboratory, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia
| | - Andrea E Ramos
- Molecular Biology and Immunology Laboratory, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Laboratory, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
26
|
Genomic Analyses Reveal the Common Occurrence and Complexity of Plasmodium vivax Relapses in Cambodia. mBio 2018; 9:mBio.01888-17. [PMID: 29362233 PMCID: PMC5784252 DOI: 10.1128/mbio.01888-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmodium vivax parasites have a unique dormant stage that can cause relapses weeks or months after the initial infection. These dormant parasites are among the main challenges of vivax malaria control as they constitute a reservoir that is difficult to eliminate. Since field studies are confounded by reinfections and possible recrudescence of drug-resistant parasites, most analyses of P. vivax relapses have focused on travelers returning from regions of malaria endemicity. However, it is not clear whether these individuals accurately recapitulate the relapse patterns of repeatedly infected individuals residing in areas of endemicity. Here, we present analyses of vivax malaria patients enrolled in a tightly controlled field study in Cambodia. After antimalarial drug treatment was administered, we relocated 20 individuals to a nontransmission area and followed them for 60 days, with blood collection performed every second day. Our analyses reveal that 60% of the patients relapsed during the monitoring period. Using whole-genome sequencing and high-throughput genotyping, we showed that relapses in Cambodia are often polyclonal and that the relapsing parasites harbor various degrees of relatedness to the parasites present in the initial infection. Our analyses also showed that clone populations differed dynamically, with new clones emerging during the course of the relapsing infections. Overall, our study data show that it is possible to investigate the patterns, dynamics, and diversity of P. vivax relapses of individuals living in a region of malaria endemicity and reveal that P. vivax relapses are much more pervasive and complex than previously considered. (This study has been registered at ClinicalTrials.gov under registration no. NCT02118090)IMPORTANCEP. vivax parasites can remain dormant in the liver and relapse weeks or months after the initial infection, greatly complicating malaria control and elimination efforts. The few investigations of this dormant stage have relied on travelers and military personnel returning from areas of malaria endemicity. However, it is not clear whether these individuals, exposed to a limited number of infections, accurately represent the patterns of relapses of individuals living in areas of endemicity, who are repeatedly infected by P. vivax parasites. Our study combined tightly controlled fieldwork with comprehensive genomic analyses, and our report provides a first opportunity to investigate the patterns, dynamics, and diversity of P. vivax relapses directly with individuals living in areas of endemicity.
Collapse
|
27
|
Armistead JS, Adams JH. Advancing Research Models and Technologies to Overcome Biological Barriers to Plasmodium vivax Control. Trends Parasitol 2017; 34:114-126. [PMID: 29153587 DOI: 10.1016/j.pt.2017.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 02/06/2023]
Abstract
Malaria prevalence has declined in the past 10 years, especially outside of sub-Saharan Africa. However, the proportion of cases due to Plasmodium vivax is increasing, accounting for up to 90-100% of the malaria burden in endemic regions. Nonetheless, investments in malaria research and control still prioritize Plasmodium falciparum while largely neglecting P. vivax. Specific biological features of P. vivax, particularly invasion of reticulocytes, occurrence of dormant liver forms of the parasite, and the potential for transmission of sexual-stage parasites prior to onset of clinical illness, promote its persistence and hinder development of research tools and interventions. This review discusses recent advances in P. vivax research, current knowledge of its unique biology, and proposes priorities for P. vivax research and control efforts.
Collapse
Affiliation(s)
- Jennifer S Armistead
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
28
|
Malaria Epidemiology at the Clone Level. Trends Parasitol 2017; 33:974-985. [PMID: 28966050 DOI: 10.1016/j.pt.2017.08.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/14/2017] [Accepted: 08/30/2017] [Indexed: 01/08/2023]
Abstract
Genotyping to distinguish between parasite clones is nowadays a standard in many molecular epidemiological studies of malaria. It has become crucial in drug trials and to follow individual clones in epidemiological studies, and to understand how drug resistance emerges and spreads. Here, we review the applications of the increasingly available genotyping tools and whole-genome sequencing data, and argue for a better integration of population genetics findings into malaria-control strategies.
Collapse
|
29
|
Kim A, Popovici J, Vantaux A, Samreth R, Bin S, Kim S, Roesch C, Liang L, Davies H, Felgner P, Herrera S, Arévalo-Herrera M, Ménard D, Serre D. Characterization of P. vivax blood stage transcriptomes from field isolates reveals similarities among infections and complex gene isoforms. Sci Rep 2017; 7:7761. [PMID: 28798400 PMCID: PMC5552866 DOI: 10.1038/s41598-017-07275-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/23/2017] [Indexed: 01/19/2023] Open
Abstract
Our understanding of the structure and regulation of Plasmodium vivax genes is limited by our inability to grow the parasites in long-term in vitro cultures. Most P. vivax studies must therefore rely on patient samples, which typically display a low proportion of parasites and asynchronous parasites. Here, we present stranded RNA-seq data generated directly from a small volume of blood from three Cambodian vivax malaria patients collected before treatment. Our analyses show surprising similarities of the parasite gene expression patterns across infections, despite extensive variations in parasite stage proportion. These similarities contrast with the unique gene expression patterns observed in sporozoites isolated from salivary glands of infected Colombian mosquitoes. Our analyses also indicate that more than 10% of P. vivax genes encode multiple, often undescribed, protein-coding sequences, potentially increasing the diversity of proteins synthesized by blood stage parasites. These data also greatly improve the annotations of P. vivax gene untranslated regions, providing an important resource for future studies of specific genes.
Collapse
Affiliation(s)
- Adam Kim
- Institute for Genome Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Jean Popovici
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Amélie Vantaux
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Reingsey Samreth
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Sophalai Bin
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Saorin Kim
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Camille Roesch
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Li Liang
- Division of Infectious Diseases, University of California Irvine, Irvine, California, USA
| | - Huw Davies
- Division of Infectious Diseases, University of California Irvine, Irvine, California, USA
| | - Philip Felgner
- Division of Infectious Diseases, University of California Irvine, Irvine, California, USA
| | | | - Myriam Arévalo-Herrera
- Caucaseco Scientific Research Center, Cali, Colombia.,School of Health, University of Valle, Cali, Colombia
| | - Didier Ménard
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia. .,Unité Biologie des Interactions Hôte-Parasite, Institut Pasteur, Paris, France. .,Inserm U1016, CNRS UMR8104, Institut Cochin, Paris, France.
| | - David Serre
- Institute for Genome Sciences, University of Maryland, Baltimore, Maryland, USA.
| |
Collapse
|
30
|
de Oliveira TC, Rodrigues PT, Menezes MJ, Gonçalves-Lopes RM, Bastos MS, Lima NF, Barbosa S, Gerber AL, Loss de Morais G, Berná L, Phelan J, Robello C, de Vasconcelos ATR, Alves JMP, Ferreira MU. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax. PLoS Negl Trop Dis 2017; 11:e0005824. [PMID: 28759591 PMCID: PMC5552344 DOI: 10.1371/journal.pntd.0005824] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/10/2017] [Accepted: 07/20/2017] [Indexed: 01/15/2023] Open
Abstract
Background The Americas were the last continent colonized by humans carrying malaria parasites. Plasmodium falciparum from the New World shows very little genetic diversity and greater linkage disequilibrium, compared with its African counterparts, and is clearly subdivided into local, highly divergent populations. However, limited available data have revealed extensive genetic diversity in American populations of another major human malaria parasite, P. vivax. Methods We used an improved sample preparation strategy and next-generation sequencing to characterize 9 high-quality P. vivax genome sequences from northwestern Brazil. These new data were compared with publicly available sequences from recently sampled clinical P. vivax isolates from Brazil (BRA, total n = 11 sequences), Peru (PER, n = 23), Colombia (COL, n = 31), and Mexico (MEX, n = 19). Principal findings/Conclusions We found that New World populations of P. vivax are as diverse (nucleotide diversity π between 5.2 × 10−4 and 6.2 × 10−4) as P. vivax populations from Southeast Asia, where malaria transmission is substantially more intense. They display several non-synonymous nucleotide substitutions (some of them previously undescribed) in genes known or suspected to be involved in antimalarial drug resistance, such as dhfr, dhps, mdr1, mrp1, and mrp-2, but not in the chloroquine resistance transporter ortholog (crt-o) gene. Moreover, P. vivax in the Americas is much less geographically substructured than local P. falciparum populations, with relatively little between-population genome-wide differentiation (pairwise FST values ranging between 0.025 and 0.092). Finally, P. vivax populations show a rapid decline in linkage disequilibrium with increasing distance between pairs of polymorphic sites, consistent with very frequent outcrossing. We hypothesize that the high diversity of present-day P. vivax lineages in the Americas originated from successive migratory waves and subsequent admixture between parasite lineages from geographically diverse sites. Further genome-wide analyses are required to test the demographic scenario suggested by our data. Plasmodium vivax is the most common human malaria parasite in the Americas, but how and when this species arrived in the New World remains unclear. Here we describe high-quality whole-genome sequence data for nine P. vivax isolates from Brazil, a country that accounts for 37% of the malaria burden in this continent, and compare these data with additional publicly available P. vivax genomes from Brazil, Peru, Colombia, and Mexico. P. vivax populations from the New World were found to be as diverse as their counterparts from areas with substantially higher malaria transmission, such as Southeast Asia, and to carry several non-synonymous substitutions in candidate drug-resistance genes. Moreover, genome-wide patterns of linkage disequilibrium between pairs of polymorphic sites are consistent with very frequent outcrossing in these populations. Interestingly, local P. vivax is more polymorphic, with less between-population differentiation, than sympatric populations of P. falciparum, possibly as a result of different demographic histories of these two species in the Americas. We hypothesize that local P. vivax lineages originated from successive migratory waves and subsequent admixture between parasites from geographically diverse sites.
Collapse
Affiliation(s)
- Thais C. de Oliveira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Priscila T. Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria José Menezes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Raquel M. Gonçalves-Lopes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Melissa S. Bastos
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nathália F. Lima
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Susana Barbosa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexandra L. Gerber
- Unit of Computational Genomics Darcy Fontoura de Almeida, Laboratory of Bioinformatics, National Laboratory of Scientific Computation, Petrópolis, Brazil
| | - Guilherme Loss de Morais
- Unit of Computational Genomics Darcy Fontoura de Almeida, Laboratory of Bioinformatics, National Laboratory of Scientific Computation, Petrópolis, Brazil
| | - Luisa Berná
- Unit of Molecular Biology, Pasteur Institute of Montevideo, Montevideo, Uruguay
| | - Jody Phelan
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Carlos Robello
- Unit of Molecular Biology, Pasteur Institute of Montevideo, Montevideo, Uruguay
| | - Ana Tereza R. de Vasconcelos
- Unit of Computational Genomics Darcy Fontoura de Almeida, Laboratory of Bioinformatics, National Laboratory of Scientific Computation, Petrópolis, Brazil
| | - João Marcelo P. Alves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
31
|
González-Cerón L, Montoya A, Corzo-Gómez JC, Cerritos R, Santillán F, Sandoval MA. Genetic diversity and natural selection of Plasmodium vivax multi-drug resistant gene (pvmdr1) in Mesoamerica. Malar J 2017; 16:261. [PMID: 28666481 PMCID: PMC5493867 DOI: 10.1186/s12936-017-1905-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/23/2017] [Indexed: 01/09/2023] Open
Abstract
Background The Plasmodium vivax multidrug resistant 1 gene (pvmdr1) codes for a transmembrane protein of the parasite’s digestive vacuole. It is likely that the pvmdr1 gene mutations occur at different sites by convergent evolution. In here, the genetic variation of pvmdr1 at three sites of the Mesoamerican region was studied. Since 1950s, malarious patients of those areas have been treated only with chloroquine and primaquine. Methods Blood samples from patients infected with P. vivax were obtained in southern Mexico (SMX), in the Northwest (NIC-NW) and in the northeast (NIC-NE) of Nicaragua. Genomic DNA was obtained and fragments of pvmdr1 were amplified and sequenced. The nucleotide and amino acid changes as well as the haplotype frequency in pvmdr1 were determined per strain and per geographic site. The sequences of pvmdr1 obtained from the studied regions were compared with homologous sequences from the GenBank database to explore the P. vivax genetic structure. Results In 141 parasites, eight nucleotide changes (two changes were synonymous and other six were nonsynonymous) were detected in 1536 bp. The PvMDR1 amino acid changes Y976F, F1076FL were predominant in endemic parasites from NIC-NE and outbreak parasites in NIC-NW but absent in SMX. Thirteen haplotypes were resolved, and found to be closely related, but their frequency at each geographic site was different (P = 0.0001). The pvmdr1codons 925–1083 gene fragment showed higher genetic and haplotype diversity in parasites from NIC-NE than the other areas outside Latin America. The haplotype networks suggested local diversification of pvmdr1 and no significant departure from neutrality. The FST values were low to moderate regionally, but high between NIC-NE or NIC-NW and other regions inside and outside Latin America. Conclusions The pvmdr1 gene might have diversified recently at regional level. In the absence of significant natural, genetic drift might have caused differential pvmdr1 haplotype frequencies at different geographic sites in Mesoamerica. A very recent expansion of divergent pvmdr1 haplotypes in NIC-NE/NIC-NW produced high differentiation between these and parasites from other sites including SMX. These data are useful to set a baseline for epidemiological surveillance.
Collapse
Affiliation(s)
- Lilia González-Cerón
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico.
| | - Alberto Montoya
- Departamento de Parasitología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Josselin C Corzo-Gómez
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico
| | - Rene Cerritos
- Division de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Frida Santillán
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico
| | - Marco A Sandoval
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico
| |
Collapse
|
32
|
Wahlgren M, Goel S, Akhouri RR. Variant surface antigens of Plasmodium falciparum and their roles in severe malaria. Nat Rev Microbiol 2017; 15:479-491. [DOI: 10.1038/nrmicro.2017.47] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Shen HM, Chen SB, Wang Y, Xu B, Abe EM, Chen JH. Genome-wide scans for the identification of Plasmodium vivax genes under positive selection. Malar J 2017; 16:238. [PMID: 28587615 PMCID: PMC5461743 DOI: 10.1186/s12936-017-1882-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/27/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The current trend of Plasmodium vivax cases imported from Southeast Asia into China has sharply increased recently, especially from the China-Myanmar border (CMB) area. High recombination rates of P. vivax populations associated with varied transmission intensity might cause distinct local selective pressures. The information on the genetic variability of P. vivax in this area is scant. Hence, this study assessed the genetic diversity of P. vivax genome sequence in CMB area and aimed to provide information on the positive selection of new gene loci. RESULTS This study reports a genome-wide survey of P. vivax in CMB area, using blood samples from local patients to identify population-specific selective processes. The result showed that considerable genetic diversity and mean pair-wise divergence among the sequenced P. vivax isolates were higher in some important gene families. Using the standardized integrated haplotype score (|iHS|) for all SNPs in chromosomal regions with SNPs above the top 1% distribution, it was observed that the top score locus involved 356 genes and most of them are associated with red blood cell invasion and immune evasion. The XP-EHH test was also applied and some important genes associated with anti-malarial drug resistance were observed in high positive scores list. This result suggests that P. vivax in CMB area is facing more pressure to survive than any other region and this has led to the strong positive selection of genes that are associated with host-parasite interactions. CONCLUSIONS This study suggests that greater genetic diversity in P. vivax from CMB area and positive selection signals in invasion and drug resistance genes are consistent with the history of drug use during malaria elimination programme in CMB area. Furthermore, this result also demonstrates that haplotype-based detecting selection can assist the genome-wide methods to identify the determinants of P. vivax diversity.
Collapse
Affiliation(s)
- Hai-Mo Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Yue Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China.,Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, People's Republic of China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Eniola Michael Abe
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
34
|
Selective Whole-Genome Amplification Is a Robust Method That Enables Scalable Whole-Genome Sequencing of Plasmodium vivax from Unprocessed Clinical Samples. mBio 2017; 8:mBio.02257-16. [PMID: 28174312 PMCID: PMC5296604 DOI: 10.1128/mbio.02257-16] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Whole-genome sequencing (WGS) of microbial pathogens from clinical samples is a highly sensitive tool used to gain a deeper understanding of the biology, epidemiology, and drug resistance mechanisms of many infections. However, WGS of organisms which exhibit low densities in their hosts is challenging due to high levels of host genomic DNA (gDNA), which leads to very low coverage of the microbial genome. WGS of Plasmodium vivax, the most widely distributed form of malaria, is especially difficult because of low parasite densities and the lack of an ex vivo culture system. Current techniques used to enrich P. vivax DNA from clinical samples require significant resources or are not consistently effective. Here, we demonstrate that selective whole-genome amplification (SWGA) can enrich P. vivax gDNA from unprocessed human blood samples and dried blood spots for high-quality WGS, allowing genetic characterization of isolates that would otherwise have been prohibitively expensive or impossible to sequence. We achieved an average genome coverage of 24×, with up to 95% of the P. vivax core genome covered by ≥5 reads. The single-nucleotide polymorphism (SNP) characteristics and drug resistance mutations seen were consistent with those of other P. vivax sequences from a similar region in Peru, demonstrating that SWGA produces high-quality sequences for downstream analysis. SWGA is a robust tool that will enable efficient, cost-effective WGS of P. vivax isolates from clinical samples that can be applied to other neglected microbial pathogens. Malaria is a disease caused by Plasmodium parasites that caused 214 million symptomatic cases and 438,000 deaths in 2015. Plasmodium vivax is the most widely distributed species, causing the majority of malaria infections outside sub-Saharan Africa. Whole-genome sequencing (WGS) of Plasmodium parasites from clinical samples has revealed important insights into the epidemiology and mechanisms of drug resistance of malaria. However, WGS of P. vivax is challenging due to low parasite levels in humans and the lack of a routine system to culture the parasites. Selective whole-genome amplification (SWGA) preferentially amplifies the genomes of pathogens from mixtures of target and host gDNA. Here, we demonstrate that SWGA is a simple, robust method that can be used to enrich P. vivax genomic DNA (gDNA) from unprocessed human blood samples and dried blood spots for cost-effective, high-quality WGS.
Collapse
|
35
|
Chen SB, Wang Y, Kassegne K, Xu B, Shen HM, Chen JH. Whole-genome sequencing of a Plasmodium vivax clinical isolate exhibits geographical characteristics and high genetic variation in China-Myanmar border area. BMC Genomics 2017; 18:131. [PMID: 28166727 PMCID: PMC5294834 DOI: 10.1186/s12864-017-3523-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 01/27/2017] [Indexed: 11/29/2022] Open
Abstract
Background Currently in China, the trend of Plasmodium vivax cases imported from Southeast Asia was increased especially in the China-Myanmar border area. Driven by the increase in P. vivax cases and stronger need for vaccine and drug development, several P. vivax isolates genome sequencing projects are underway. However, little is known about the genetic variability in this area until now. Results The sequencing of the first P. vivax isolate from China-Myanmar border area (CMB-1) generated 120 million paired-end reads. A percentage of 10.6 of the quality-evaluated reads were aligned onto 99.9% of the reference strain Sal I genome in 62-fold coverage with an average of 4.8 SNPs per kb. We present a 539-SNP marker data set for P. vivax that can identify different parasites from different geographic origins with high sensitivity. We also identified exceptionally high levels of genetic variability in members of multigene families such as RBP, SERA, vir, MSP3 and AP2. The de-novo assembly yielded a database composed of 8,409 contigs with N50 lengths of 6.6 kb and revealed 661 novel predicted genes including 78 vir genes, suggesting a greater functional variation in P. vivax from this area. Conclusion Our result contributes to a better understanding of P. vivax genetic variation, and provides a fundamental basis for the geographic differentiation of vivax malaria from China-Myanmar border area using a direct sequencing approach without leukocyte depletion. This novel sequencing method can be used as an essential tool for the genomic research of P. vivax in the near future. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3523-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology Ministry of Health, Shanghai, 200025, People's Republic of China
| | - Yue Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology Ministry of Health, Shanghai, 200025, People's Republic of China.,Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, People's Republic of China
| | - Kokouvi Kassegne
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology Ministry of Health, Shanghai, 200025, People's Republic of China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology Ministry of Health, Shanghai, 200025, People's Republic of China
| | - Hai-Mo Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology Ministry of Health, Shanghai, 200025, People's Republic of China.
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology Ministry of Health, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
36
|
Overlap Extension Barcoding for the Next Generation Sequencing and Genotyping of Plasmodium falciparum in Individual Patients in Western Kenya. Sci Rep 2017; 7:41108. [PMID: 28117350 PMCID: PMC5259759 DOI: 10.1038/srep41108] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/15/2016] [Indexed: 12/23/2022] Open
Abstract
Large-scale molecular epidemiologic studies of Plasmodium falciparum parasites have provided insights into parasite biology and transmission, can identify the spread of drug resistance, and are useful in assessing vaccine targets. The polyclonal nature infections in high transmission settings is problematic for traditional genotyping approaches. Next-generation sequencing (NGS) approaches to parasite genotyping allow sensitive detection of minority variants, disaggregation of complex parasite mixtures, and scalable processing of large samples sets. Therefore, we designed, validated, and applied to field parasites an approach that leverages sequencing of individually barcoded samples in a multiplex manner. We utilize variant barcodes, invariant linker sequences and modular template-specific primers to allow for the simultaneous generation of high-dimensional sequencing data of multiple gene targets. This modularity permits a cost-effective and reproducible way to query many genes at once. In mixtures of reference parasite genomes, we quantitatively detected unique haplotypes comprising as little as 2% of a polyclonal infection. We applied this genotyping approach to field-collected parasites collected in Western Kenya in order to simultaneously obtain parasites genotypes at three unlinked loci. In summary, we present a rapid, scalable, and flexible method for genotyping individual parasites that enables molecular epidemiologic studies of parasite evolution, population structure and transmission.
Collapse
|
37
|
Wang Y, Huang D, Chen KY, Cui M, Wang W, Huang X, Awadellah A, Li Q, Friedman A, Xin WW, Di Martino L, Cominelli F, Miron A, Chan R, Fox J, Xu Y, Shen X, Kalady MF, Markowitz S, Maillard I, Lowe JB, Xin W, Zhou L. Fucosylation Deficiency in Mice Leads to Colitis and Adenocarcinoma. Gastroenterology 2017; 152:193-205.e10. [PMID: 27639802 PMCID: PMC5164974 DOI: 10.1053/j.gastro.2016.09.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/29/2016] [Accepted: 09/07/2016] [Indexed: 01/29/2023]
Abstract
BACKGROUND & AIMS De novo synthesis of guanosine diphosphate (GDP)-fucose, a substrate for fucosylglycans, requires sequential reactions mediated by GDP-mannose 4,6-dehydratase (GMDS) and GDP-4-keto-6-deoxymannose 3,5-epimerase-4-reductase (FX or tissue specific transplantation antigen P35B [TSTA3]). GMDS deletions and mutations are found in 6%-13% of colorectal cancers; these mostly affect the ascending and transverse colon. We investigated whether a lack of fucosylation consequent to loss of GDP-fucose synthesis contributes to colon carcinogenesis. METHODS FX deficiency and GMDS deletion produce the same biochemical phenotype of GDP-fucose deficiency. We studied a mouse model of fucosylation deficiency (Fx-/- mice) and mice with the full-length Fx gene (controls). Mice were placed on standard chow or fucose-containing diet (equivalent to a control fucosylglycan phenotype). Colon tissues were collected and analyzed histologically or by enzyme-linked immunosorbent assays to measure cytokine levels; T cells also were collected and analyzed. Fecal samples were analyzed by 16s ribosomal RNA sequencing. Mucosal barrier function was measured by uptake of fluorescent dextran. We transplanted bone marrow cells from Fx-/- or control mice (Ly5.2) into irradiated 8-week-old Fx-/- or control mice (Ly5.1). We performed immunohistochemical analyses for expression of Notch and the hes family bHLH transcription factor (HES1) in colon tissues from mice and a panel of 60 human colorectal cancer specimens (27 left-sided, 33 right-sided). RESULTS Fx-/- mice developed colitis and serrated-like lesions. The intestinal pathology of Fx-/- mice was reversed by addition of fucose to the diet, which restored fucosylation via a salvage pathway. In the absence of fucosylation, dysplasia appeared and progressed to adenocarcinoma in up to 40% of mice, affecting mainly the right colon and cecum. Notch was not activated in Fx-/- mice fed standard chow, leading to decreased expression of its target Hes1. Fucosylation deficiency altered the composition of the fecal microbiota, reduced mucosal barrier function, and altered epithelial proliferation marked by Ki67. Fx-/- mice receiving control bone marrow cells had intestinal inflammation and dysplasia, and reduced expression of cytokines produced by cytotoxic T cells. Human sessile serrated adenomas and right-sided colorectal tumors with epigenetic loss of MutL homolog 1 (MLH1) had lost or had lower levels of HES1 than other colorectal tumor types or nontumor tissues. CONCLUSIONS In mice, fucosylation deficiency leads to colitis and adenocarcinoma, loss of Notch activation, and down-regulation of Hes1. HES1 loss correlates with the development of human right-sided colorectal tumors with epigenetic loss of MLH1. These findings indicate that carcinogenesis in a subset of colon cancer is consequent to a molecular mechanism driven by fucosylation deficiency and/or HES1-loss.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Dan Huang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kai-Yuan Chen
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Min Cui
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Weihuan Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xiaoran Huang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Amad Awadellah
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Qing Li
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Ann Friedman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - William W. Xin
- School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104-6304, USA
| | - Luca Di Martino
- Department of Internal Medicine, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Fabio Cominelli
- Department of Internal Medicine, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Alex Miron
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ricky Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - James Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yan Xu
- Department of Chemistry, Cleveland State University, Cleveland, OH 44106, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Mathew F. Kalady
- Department of Colorectal Surgery, Digestive Diseases Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Sanford Markowitz
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ivan Maillard
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - John B. Lowe
- Department of Pathology, Genentech Inc., San Francisco, CA, 94080 USA
| | - Wei Xin
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA,Department of Pathology, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio.
| |
Collapse
|
38
|
Auburn S, Böhme U, Steinbiss S, Trimarsanto H, Hostetler J, Sanders M, Gao Q, Nosten F, Newbold CI, Berriman M, Price RN, Otto TD. A new Plasmodium vivax reference sequence with improved assembly of the subtelomeres reveals an abundance of pir genes. Wellcome Open Res 2016; 1:4. [PMID: 28008421 PMCID: PMC5172418 DOI: 10.12688/wellcomeopenres.9876.1] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Plasmodium vivax is now the predominant cause of malaria in the Asia-Pacific, South America and Horn of Africa. Laboratory studies of this species are constrained by the inability to maintain the parasite in continuous
ex vivo culture, but genomic approaches provide an alternative and complementary avenue to investigate the parasite’s biology and epidemiology. To date, molecular studies of
P. vivax have relied on the Salvador-I reference genome sequence, derived from a monkey-adapted strain from South America. However, the Salvador-I reference remains highly fragmented with over 2500 unassembled scaffolds. Using high-depth Illumina sequence data, we assembled and annotated a new reference sequence, PvP01, sourced directly from a patient from Papua Indonesia. Draft assemblies of isolates from China (PvC01) and Thailand (PvT01) were also prepared for comparative purposes. The quality of the PvP01 assembly is improved greatly over Salvador-I, with fragmentation reduced to 226 scaffolds. Detailed manual curation has ensured highly comprehensive annotation, with functions attributed to 58% core genes in PvP01 versus 38% in Salvador-I. The assemblies of PvP01, PvC01 and PvT01 are larger than that of Salvador-I (28-30 versus 27 Mb), owing to improved assembly of the subtelomeres. An extensive repertoire of over 1200
Plasmodium interspersed repeat (
pir) genes were identified in PvP01 compared to 346 in Salvador-I, suggesting a vital role in parasite survival or development. The manually curated PvP01 reference and PvC01 and PvT01 draft assemblies are important new resources to study vivax malaria. PvP01 is maintained at GeneDB and ongoing curation will ensure continual improvements in assembly and annotation quality.
Collapse
Affiliation(s)
- Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Ulrike Böhme
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | | | - Jessica Hostetler
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, UK.,Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| | - Mandy Sanders
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Qi Gao
- Jiangsu Institute of Parasitic Diseases, Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Jiangsu, China
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Chris I Newbold
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, UK.,Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Thomas D Otto
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, UK
| |
Collapse
|
39
|
Pearson RD, Amato R, Auburn S, Miotto O, Almagro-Garcia J, Amaratunga C, Suon S, Mao S, Noviyanti R, Trimarsanto H, Marfurt J, Anstey NM, William T, Boni MF, Dolecek C, Hien TT, White NJ, Michon P, Siba P, Tavul L, Harrison G, Barry A, Mueller I, Ferreira MU, Karunaweera N, Randrianarivelojosia M, Gao Q, Hubbart C, Hart L, Jeffery B, Drury E, Mead D, Kekre M, Campino S, Manske M, Cornelius VJ, MacInnis B, Rockett KA, Miles A, Rayner JC, Fairhurst RM, Nosten F, Price RN, Kwiatkowski DP. Genomic analysis of local variation and recent evolution in Plasmodium vivax. Nat Genet 2016; 48:959-964. [PMID: 27348299 PMCID: PMC4966634 DOI: 10.1038/ng.3599] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 05/27/2016] [Indexed: 01/12/2023]
Abstract
The widespread distribution and relapsing nature of Plasmodium vivax infection present major challenges for the elimination of malaria. To characterize the genetic diversity of this parasite in individual infections and across the population, we performed deep genome sequencing of >200 clinical samples collected across the Asia-Pacific region and analyzed data on >300,000 SNPs and nine regions of the genome with large copy number variations. Individual infections showed complex patterns of genetic structure, with variation not only in the number of dominant clones but also in their level of relatedness and inbreeding. At the population level, we observed strong signals of recent evolutionary selection both in known drug resistance genes and at new loci, and these varied markedly between geographical locations. These findings demonstrate a dynamic landscape of local evolutionary adaptation in the parasite population and provide a foundation for genomic surveillance to guide effective strategies for control and elimination of P. vivax.
Collapse
Affiliation(s)
- Richard D Pearson
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- MRC Centre for Genomics and Global Health, Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Roberto Amato
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- MRC Centre for Genomics and Global Health, Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territories 0811, Australia
| | - Olivo Miotto
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- MRC Centre for Genomics and Global Health, Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok 10400, Thailand
| | - Jacob Almagro-Garcia
- MRC Centre for Genomics and Global Health, Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Chanaki Amaratunga
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Seila Suon
- National Centre for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Sivanna Mao
- Sampov Meas Referral Hospital, Pursat, Cambodia
| | - Rintis Noviyanti
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia
| | | | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territories 0811, Australia
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territories 0811, Australia
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit and Queen Elizabeth Hospital Clinical Research Centre, Kota Kinabalu, Sabah, Malaysia
| | - Maciej F Boni
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Tinh Tran Hien
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok 10400, Thailand
| | - Pascal Michon
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Faculty of Medicine and Health Sciences, Divine Word University, Madang, Papua New Guinea
| | - Peter Siba
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Livingstone Tavul
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Gabrielle Harrison
- Division of Population Health and Immunity, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Alyssa Barry
- Division of Population Health and Immunity, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Ivo Mueller
- Division of Population Health and Immunity, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nadira Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, Sri Lanka
| | | | - Qi Gao
- Jiangsu Institute of Parasitic Diseases, Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Wuxi, Jiangsu, People's Republic of China
| | - Christina Hubbart
- MRC Centre for Genomics and Global Health, Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Lee Hart
- MRC Centre for Genomics and Global Health, Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Ben Jeffery
- MRC Centre for Genomics and Global Health, Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Eleanor Drury
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Daniel Mead
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Mihir Kekre
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Susana Campino
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Magnus Manske
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Victoria J Cornelius
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- MRC Centre for Genomics and Global Health, Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Bronwyn MacInnis
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Kirk A Rockett
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- MRC Centre for Genomics and Global Health, Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Alistair Miles
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- MRC Centre for Genomics and Global Health, Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Julian C Rayner
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Rick M Fairhurst
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Francois Nosten
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok 10400, Thailand
- Shoklo Malaria Research Unit, Mae Sot, Tak 63110, Thailand
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territories 0811, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7LJ, UK
| | - Dominic P Kwiatkowski
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- MRC Centre for Genomics and Global Health, Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK
| |
Collapse
|
40
|
Kissinger JC. An unsettling picture emerges from population genomic studies of Plasmodium vivax. Nat Genet 2016; 48:825-6. [PMID: 27463397 DOI: 10.1038/ng.3630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two new studies confirm that Plasmodium vivax populations are more diverse than Plasmodium falciparum and identify signs of recent selection at many loci, including those for drug resistance. P. vivax shows a trend of regional adaptations that poses challenges to global efforts to control and eliminate this major cause of relapsing malaria.
Collapse
Affiliation(s)
- Jessica C Kissinger
- Center for Tropical and Emerging Global Diseases, Department of Genetics and Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
41
|
Friedrich LR, Popovici J, Kim S, Dysoley L, Zimmerman PA, Menard D, Serre D. Complexity of Infection and Genetic Diversity in Cambodian Plasmodium vivax. PLoS Negl Trop Dis 2016; 10:e0004526. [PMID: 27018585 PMCID: PMC4809505 DOI: 10.1371/journal.pntd.0004526] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/18/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Plasmodium vivax is the most widely distributed human malaria parasite with 2.9 billion people living in endemic areas. Despite intensive malaria control efforts, the proportion of cases attributed to P. vivax is increasing in many countries. Genetic analyses of the parasite population and its dynamics could provide an assessment of the efficacy of control efforts, but, unfortunately, these studies are limited in P. vivax by the lack of informative markers and high-throughput genotyping methods. METHODOLOGY/PRINCIPAL FINDINGS We developed a sequencing-based assay to simultaneously genotype more than 100 SNPs and applied this approach to ~500 P. vivax-infected individuals recruited across nine locations in Cambodia between 2004 and 2013. Our analyses showed that the vast majority of infections are polyclonal (92%) and that P. vivax displays high genetic diversity in Cambodia without apparent geographic stratification. Interestingly, our analyses also revealed that the proportion of monoclonal infections significantly increased between 2004 and 2013, possibly suggesting that malaria control strategies in Cambodia may be successfully affecting the parasite population. CONCLUSIONS/SIGNIFICANCE Our findings demonstrate that this high-throughput genotyping assay is efficient in characterizing P. vivax diversity and can provide valuable insights to assess the efficacy of malaria elimination programs or to monitor the spread of specific parasites.
Collapse
Affiliation(s)
- Lindsey R. Friedrich
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Jean Popovici
- Unite d’Epidemiologie Moleculaire, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Saorin Kim
- Unite d’Epidemiologie Moleculaire, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Lek Dysoley
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Peter A. Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Didier Menard
- Unite d’Epidemiologie Moleculaire, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - David Serre
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
42
|
Gunawardena S, Karunaweera ND. Advances in genetics and genomics: use and limitations in achieving malaria elimination goals. Pathog Glob Health 2016; 109:123-41. [PMID: 25943157 DOI: 10.1179/2047773215y.0000000015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Success of the global research agenda towards eradication of malaria will depend on the development of new tools, including drugs, vaccines, insecticides and diagnostics. Genetic and genomic information now available for the malaria parasites, their mosquito vectors and human host, can be harnessed to both develop these tools and monitor their effectiveness. Here we review and provide specific examples of current technological advances and how these genetic and genomic tools have increased our knowledge of host, parasite and vector biology in relation to malaria elimination and in turn enhanced the potential to reach that goal. We then discuss limitations of these tools and future prospects for the successful achievement of global malaria elimination goals.
Collapse
|
43
|
Zhu L, Mok S, Imwong M, Jaidee A, Russell B, Nosten F, Day NP, White NJ, Preiser PR, Bozdech Z. New insights into the Plasmodium vivax transcriptome using RNA-Seq. Sci Rep 2016; 6:20498. [PMID: 26858037 PMCID: PMC4746618 DOI: 10.1038/srep20498] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022] Open
Abstract
Historically seen as a benign disease, it is now becoming clear that Plasmodium vivax can cause significant morbidity. Effective control strategies targeting P. vivax malaria is hindered by our limited understanding of vivax biology. Here we established the P. vivax transcriptome of the Intraerythrocytic Developmental Cycle (IDC) of two clinical isolates in high resolution by Illumina HiSeq platform. The detailed map of transcriptome generates new insights into regulatory mechanisms of individual genes and reveals their intimate relationship with specific biological functions. A transcriptional hotspot of vir genes observed on chromosome 2 suggests a potential active site modulating immune evasion of the Plasmodium parasite across patients. Compared to other eukaryotes, P. vivax genes tend to have unusually long 5′ untranslated regions and also present multiple transcription start sites. In contrast, alternative splicing is rare in P. vivax but its association with the late schizont stage suggests some of its significance for gene function. The newly identified transcripts, including up to 179 vir like genes and 3018 noncoding RNAs suggest an important role of these gene/transcript classes in strain specific transcriptional regulation.
Collapse
Affiliation(s)
- Lei Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sachel Mok
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Mallika Imwong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anchalee Jaidee
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Bruce Russell
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Nicholas P Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
44
|
Winter DJ, Pacheco MA, Vallejo AF, Schwartz RS, Arevalo-Herrera M, Herrera S, Cartwright RA, Escalante AA. Whole Genome Sequencing of Field Isolates Reveals Extensive Genetic Diversity in Plasmodium vivax from Colombia. PLoS Negl Trop Dis 2015; 9:e0004252. [PMID: 26709695 PMCID: PMC4692395 DOI: 10.1371/journal.pntd.0004252] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/30/2015] [Indexed: 11/24/2022] Open
Abstract
Plasmodium vivax is the most prevalent malarial species in South America and exerts a substantial burden on the populations it affects. The control and eventual elimination of P. vivax are global health priorities. Genomic research contributes to this objective by improving our understanding of the biology of P. vivax and through the development of new genetic markers that can be used to monitor efforts to reduce malaria transmission. Here we analyze whole-genome data from eight field samples from a region in Cordóba, Colombia where malaria is endemic. We find considerable genetic diversity within this population, a result that contrasts with earlier studies suggesting that P. vivax had limited diversity in the Americas. We also identify a selective sweep around a substitution known to confer resistance to sulphadoxine-pyrimethamine (SP). This is the first observation of a selective sweep for SP resistance in this species. These results indicate that P. vivax has been exposed to SP pressure even when the drug is not in use as a first line treatment for patients afflicted by this parasite. We identify multiple non-synonymous substitutions in three other genes known to be involved with drug resistance in Plasmodium species. Finally, we found extensive microsatellite polymorphisms. Using this information we developed 18 polymorphic and easy to score microsatellite loci that can be used in epidemiological investigations in South America.
Collapse
Affiliation(s)
- David J. Winter
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - M. Andreína Pacheco
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- Institute for Genomics and Evolutionary Medicine (igem), Temple University, Philadelphia, Pennsylvania, United States of America
| | | | - Rachel S. Schwartz
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Myriam Arevalo-Herrera
- Caucaseco Scientific Research Center, Cali, Colombia
- Faculty of Health, Universidad del Valle, Cali, Colombia
| | | | - Reed A. Cartwright
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- The School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Ananias A. Escalante
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- Institute for Genomics and Evolutionary Medicine (igem), Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
45
|
Gonçalves LA, Cravo P, Ferreira MU. Emerging Plasmodium vivax resistance to chloroquine in South America: an overview. Mem Inst Oswaldo Cruz 2015. [PMID: 25184999 PMCID: PMC4156446 DOI: 10.1590/0074-0276130579] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The global emergence of Plasmodium vivax strains resistant to
chloroquine (CQ) since the late 1980s is complicating the current international
efforts for malaria control and elimination. Furthermore, CQ-resistant vivax malaria
has already reached an alarming prevalence in Indonesia, East Timor and Papua New
Guinea. More recently, in vivo studies have documented CQ-resistant P.
vivax infections in Guyana, Peru and Brazil. Here, we summarise the
available data on CQ resistance across P. vivax-endemic areas of
Latin America by combining published in vivo and in vitro studies. We also review the
current knowledge regarding the molecular mechanisms of CQ resistance in P.
vivax and the prospects for developing and standardising reliable
molecular markers of drug resistance. Finally, we discuss how the Worldwide
Antimalarial Resistance Network, an international collaborative effort involving
malaria experts from all continents, might contribute to the current regional efforts
to map CQ-resistant vivax malaria in South America.
Collapse
Affiliation(s)
| | - Pedro Cravo
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - Marcelo Urbano Ferreira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
46
|
Daniels RF, Rice BL, Daniels NM, Volkman SK, Hartl DL. The utility of genomic data for Plasmodium vivax population surveillance. Pathog Glob Health 2015; 109:153-61. [PMID: 25892032 DOI: 10.1179/2047773215y.0000000014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Genetic polymorphisms identified from genomic sequencing can be used to track changes in parasite populations through time. Such tracking is particularly informative when applying control strategies and evaluating their effectiveness. Using genomic approaches may also enable improved ability to categorise populations and to stratify them according to the likely effectiveness of intervention. Clinical applications of genomic approaches also allow relapses to be classified according to reinfection or recrudescence. These tools can be used not only to assess the effectiveness of malaria interventions but also to appraise the strategies for malaria elimination.
Collapse
|
47
|
Baniecki ML, Faust AL, Schaffner SF, Park DJ, Galinsky K, Daniels RF, Hamilton E, Ferreira MU, Karunaweera ND, Serre D, Zimmerman PA, Sá JM, Wellems TE, Musset L, Legrand E, Melnikov A, Neafsey DE, Volkman SK, Wirth DF, Sabeti PC. Development of a single nucleotide polymorphism barcode to genotype Plasmodium vivax infections. PLoS Negl Trop Dis 2015; 9:e0003539. [PMID: 25781890 PMCID: PMC4362761 DOI: 10.1371/journal.pntd.0003539] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/15/2015] [Indexed: 12/30/2022] Open
Abstract
Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25–40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. Plasmodium vivax malaria is a major global public health problem, with nearly 2.5 billion people at risk for infection and approximately 132–391 million clinical infections annually. It has a wide geographical range, with a high disease burden in Asia, Central and South America, the Middle East, Oceania, and East Africa. Advances in sequencing technology and sample processing have made it possible to characterize the genetic diversity of P. vivax populations. This genetic variation provides a means to identify parasites by unique genetic signatures, or “barcodes.” We developed such a genetic barcode for P. vivax, composed of 42 robust and informative variants. Here we report its development and validation based on 87 clinical samples identified by microscopy to contain P. vivax from geographically diverse parasite populations from South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We show that the SNP barcode provides a genotyping tool that can be performed at low cost, providing a means to uniquely identify parasite infections and distinguish geographic origins, and that barcode data may offer new insights into P. vivax population structure and diversity.
Collapse
Affiliation(s)
- Mary Lynn Baniecki
- Broad Institute, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Aubrey L. Faust
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | | | - Daniel J. Park
- Broad Institute, Cambridge, Massachusetts, United States of America
| | - Kevin Galinsky
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Rachel F. Daniels
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Elizabeth Hamilton
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | | | - Nadira D. Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - David Serre
- Department of Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Peter A. Zimmerman
- Department of International Health, Biology and Genetics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Juliana M. Sá
- Laboratory of Malaria and Vector Research, Malaria Genetics Section, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
| | - Thomas E. Wellems
- Laboratory of Malaria and Vector Research, Malaria Genetics Section, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
| | - Lise Musset
- Department of Parasitology, Institute Pasteur de la Guyane, Cayenne, French Guiana
| | - Eric Legrand
- Department of Parasitology, Institute Pasteur de la Guyane, Cayenne, French Guiana
| | | | | | - Sarah K. Volkman
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- School of Nursing and Health Sciences, Simmons College, Boston, Massachusetts, United States of America
| | - Dyann F. Wirth
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Pardis C. Sabeti
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
48
|
Chan ER, Barnwell JW, Zimmerman PA, Serre D. Comparative analysis of field-isolate and monkey-adapted Plasmodium vivax genomes. PLoS Negl Trop Dis 2015; 9:e0003566. [PMID: 25768941 PMCID: PMC4358935 DOI: 10.1371/journal.pntd.0003566] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 01/26/2015] [Indexed: 11/23/2022] Open
Abstract
Significant insights into the biology of Plasmodium vivax have been gained from the ability to successfully adapt human infections to non-human primates. P. vivax strains grown in monkeys serve as a renewable source of parasites for in vitro and ex vivo experimental studies and functional assays, or for studying in vivo the relapse characteristics, mosquito species compatibilities, drug susceptibility profiles or immune responses towards potential vaccine candidates. Despite the importance of these studies, little is known as to how adaptation to a different host species may influence the genome of P. vivax. In addition, it is unclear whether these monkey-adapted strains consist of a single clonal population of parasites or if they retain the multiclonal complexity commonly observed in field isolates. Here we compare the genome sequences of seven P. vivax strains adapted to New World monkeys with those of six human clinical isolates collected directly in the field. We show that the adaptation of P. vivax parasites to monkey hosts, and their subsequent propagation, did not result in significant modifications of their genome sequence and that these monkey-adapted strains recapitulate the genomic diversity of field isolates. Our analyses also reveal that these strains are not always genetically homogeneous and should be analyzed cautiously. Overall, our study provides a framework to better leverage this important research material and fully utilize this resource for improving our understanding of P. vivax biology. In this study we compare the genome sequences of Plasmodium vivax collected directly from patients with those of parasites propagated in laboratory monkeys. We show that the adaptation and continuous propagation of Plasmodium vivax in monkeys does not induce systematic changes in the genome and, therefore, that these parasites constitute an unbiased resource for studying this important pathogen. Our analyses also reveal that some monkey-adapted Plasmodium vivax strains are not genetically homogenous and retain multiple genetically different parasites present in the original patient infection. Overall, our study confirms the utility of monkey-adapted Plasmodium vivax strains for malaria research but also shows that this resource should be analyzed cautiously as different samples of the same strain might provide different biological material.
Collapse
Affiliation(s)
- Ernest R. Chan
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - John W. Barnwell
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Peter A. Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - David Serre
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
49
|
Luo Z, Sullivan SA, Carlton JM. The biology of Plasmodium vivax explored through genomics. Ann N Y Acad Sci 2015; 1342:53-61. [PMID: 25693446 DOI: 10.1111/nyas.12708] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/29/2014] [Accepted: 01/07/2015] [Indexed: 12/16/2022]
Abstract
Malaria is a mosquito-borne disease caused by the Plasmodium parasite. Of the four Plasmodium species that routinely cause human malaria, Plasmodium vivax is the most widespread species outside Africa, causing ∼18.9 million cases in 2012. P. vivax cannot be cultured continuously in vitro, which severely hampers research in nonendemic and endemic countries alike. Consequently, whole-genome sequencing has become an effective means to interrogate the biology of the P. vivax parasite. Our comparative genomic analysis of five P. vivax reference genomes and several whole-genome sequences of the closely related monkey malaria species P. cynomolgi has revealed an extraordinary level of genetic diversity and enabled characterization of novel multigene families and important single-copy genes. The generation of whole-genome sequences from multiple clinical isolates is also driving forward knowledge concerning the biology and evolution of the species. Understanding the biology of P. vivax is crucial to develop potential antimalarial drugs and vaccines and to achieve the goal of eliminating malaria.
Collapse
Affiliation(s)
- Zunping Luo
- Center for Genomics and Systems Biology, New York University, New York, New York
| | | | | |
Collapse
|
50
|
Roca-Feltrer A, Khim N, Kim S, Chy S, Canier L, Kerleguer A, Tor P, Chuor CM, Kheng S, Siv S, Kachur PS, Taylor WRJ, Hwang J, Menard D. Field trial evaluation of the performances of point-of-care tests for screening G6PD deficiency in Cambodia. PLoS One 2014; 9:e116143. [PMID: 25541721 PMCID: PMC4277465 DOI: 10.1371/journal.pone.0116143] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/02/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND User-friendly, accurate, point-of-care rapid tests to detect glucose-6-phosphate dehydrogenase deficiency (G6PDd) are urgently needed at peripheral level to safely recommend primaquine for malaria elimination. METHODS The CareStart G6PD RDT (AccessBio, New Jersey, USA), a novel rapid diagnostic test and the most commonly used test, the fluorescent spot test (FST) were assessed against the quantitatively measured G6PD enzyme activity for detecting G6PDd. Subjects were healthy males and non-pregnant females aged 18 years or older residing in six villages in Pailin Province, western Cambodia. FINDINGS Of the 938 subjects recruited, 74 (7.9%) were severe and moderately severe G6PD deficient (enzyme activity <30%), mostly in male population; population median G6PD activity was 12.0 UI/g Hb. The performances of the CareStart G6PD RDT and the FST, according to different cut-off values used to define G6PDd were very similar. For the detection of severe and moderately severe G6PDd (enzyme activity < 30%, < 3.6 UI/g Hb) in males and females, sensitivity and negative (normal status) predictive value were 100% for both point-of-care tools. When the G6PDd cut-off value increased (from < 40% to < 60%), the sensitivity for both PoCs decreased: 93.3% to 71.7% (CareStart G6PD RDT, p = 10(-6)) and 95.5% to 73.2% (FST, p = 10(-6)) while the specificity for both PoCs remained similar: 97.4% to 98.3% (CareStart G6PD RDT, p = 0.23) and 98.7% to 99.6% (FST, p = 0.06). The cut-off values for classifying individuals as normal were 4.0 UI/g Hb and 4.3 UI/g Hb for the CareStart G6PD RDT and the FST, respectively. CONCLUSIONS The CareStart G6PD RDT reliably detected moderate and severe G6PD deficient individuals (enzyme activity <30%), suggesting that this novel point-of-care is a promising tool for tailoring appropriate primaquine treatment for malaria elimination by excluding individuals with severe G6PDd for primaquine treatment.
Collapse
Affiliation(s)
| | - Nimol Khim
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Saorin Kim
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Sophy Chy
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Lydie Canier
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | | | - Pety Tor
- Medical Laboratory, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Char Meng Chuor
- National Center for Parasitology, Entomology and Malaria Control (CNM), Phnom Penh, Cambodia
| | - Sim Kheng
- National Center for Parasitology, Entomology and Malaria Control (CNM), Phnom Penh, Cambodia
| | - Sovannaroth Siv
- National Center for Parasitology, Entomology and Malaria Control (CNM), Phnom Penh, Cambodia
| | - Patrick S. Kachur
- U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Walter R. J. Taylor
- National Center for Parasitology, Entomology and Malaria Control (CNM), Phnom Penh, Cambodia
- Centre de Médecine Humanitaire, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Jimee Hwang
- Global Health Group, University of California San Francisco, San Francisco, California, United States of America
| | - Didier Menard
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
- * E-mail:
| |
Collapse
|