1
|
López-Arencibia A, Bethencourt-Estrella CJ, San Nicolás-Hernández D, Rodríguez-Expósito RL, Domínguez-de-Barros A, Salazar-Villatoro L, Omaña-Molina M, Cen-Pacheco F, Díaz-Marrero AR, Fernández JJ, Córdoba-Lanús E, Lorenzo-Morales J, Piñero JE. Dehydrothyrsiferol Against Cutaneous Leishmaniasis: Treatment Outcome in a Murine Model. Mar Drugs 2024; 23:13. [PMID: 39852516 PMCID: PMC11766930 DOI: 10.3390/md23010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/05/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025] Open
Abstract
One of the most important steps in preclinical drug discovery is to demonstrate the in vivo efficacy of potential leishmanicidal compounds and good characteristics at the level of parasite killing prior to initiating human clinical trials. This paper describes the use of dehydrothyrsiferol (DT), isolated from the red alga Laurencia viridis, in a pharmaceutical form supported on Sepigel, and the in vivo efficacy against a mouse model of cutaneous leishmaniasis. Studying the ultrastructural effect of DT was also carried out to verify the suspected damage at the cellular level and determine the severity of damages produced in the homeostasis of promastigotes. BALB/c mice infected with Leishmania amazonensis were divided into four groups: untreated mice, mice treated with miltefosine orally and mice treated topically with 1% and 0.5% DT-Sepigel; treatment was carried out for two weeks. Treatment with DT significantly reduced the parasite load in skin, liver and spleen compared with the untreated group. In addition, DT-Sepigel at the lowest concentration (0.5%) showed the best results, reducing lesion size by 87% at 3 weeks post-treatment. DT-Sepigel has demonstrated to be a potent topical treatment that, in combined drug trials, may aim at combating cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Spain; (C.J.B.-E.); (D.S.N.-H.); (R.L.R.-E.); (A.D.-d.-B.); (E.C.-L.)
- Consorcio Centro de Investigación Biomédica en Red M.P. de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28006 Madrid, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Carlos J. Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Spain; (C.J.B.-E.); (D.S.N.-H.); (R.L.R.-E.); (A.D.-d.-B.); (E.C.-L.)
- Consorcio Centro de Investigación Biomédica en Red M.P. de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28006 Madrid, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Desirée San Nicolás-Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Spain; (C.J.B.-E.); (D.S.N.-H.); (R.L.R.-E.); (A.D.-d.-B.); (E.C.-L.)
| | - Rubén L. Rodríguez-Expósito
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Spain; (C.J.B.-E.); (D.S.N.-H.); (R.L.R.-E.); (A.D.-d.-B.); (E.C.-L.)
- Consorcio Centro de Investigación Biomédica en Red M.P. de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28006 Madrid, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Angélica Domínguez-de-Barros
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Spain; (C.J.B.-E.); (D.S.N.-H.); (R.L.R.-E.); (A.D.-d.-B.); (E.C.-L.)
| | - Lizbeth Salazar-Villatoro
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico (M.O.-M.)
| | - Maritza Omaña-Molina
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico (M.O.-M.)
- Facultad de Estudios Superiores Iztacala, Medicina, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Francisco Cen-Pacheco
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain; (F.C.-P.); (J.J.F.)
- Facultad de Bioanálisis, Campus-Veracruz, Universidad Veracruzana, Veracruz 91700, Mexico
| | - Ana R. Díaz-Marrero
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain; (F.C.-P.); (J.J.F.)
- Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Astrofísico Francisco Sánchez 3, 38206 La Laguna, Spain
| | - José J. Fernández
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain; (F.C.-P.); (J.J.F.)
- Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 3, 38206 La Laguna, Spain
| | - Elizabeth Córdoba-Lanús
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Spain; (C.J.B.-E.); (D.S.N.-H.); (R.L.R.-E.); (A.D.-d.-B.); (E.C.-L.)
- Consorcio Centro de Investigación Biomédica en Red M.P. de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28006 Madrid, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Spain; (C.J.B.-E.); (D.S.N.-H.); (R.L.R.-E.); (A.D.-d.-B.); (E.C.-L.)
- Consorcio Centro de Investigación Biomédica en Red M.P. de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28006 Madrid, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Spain; (C.J.B.-E.); (D.S.N.-H.); (R.L.R.-E.); (A.D.-d.-B.); (E.C.-L.)
- Consorcio Centro de Investigación Biomédica en Red M.P. de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28006 Madrid, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| |
Collapse
|
2
|
de Andrade FCC, Carvalho MF, Figueiredo AMS. Survival Strategies of Staphylococcus aureus: Adaptive Regulation of the Anti-Restriction Gene ardA-H1 Under Stress Conditions. Antibiotics (Basel) 2024; 13:1131. [PMID: 39766521 PMCID: PMC11672565 DOI: 10.3390/antibiotics13121131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objective: The anti-restriction protein ArdA-H1, found in multiresistant Staphylococcus aureus (MRSA) strains from the ST239-SCCmecIII lineage, inhibits restriction-modification systems, fostering horizontal gene transfer (HGT) and supporting genetic adaptability and resistance. This study investigates the regulatory mechanisms controlling ardA-H1 expression in S. aureus under various stress conditions, including acidic pH, iron limitation, and vancomycin exposure, and explores the roles of the Agr quorum sensing system. Methods: The expression of ardA-H1 was analyzed in S. aureus strains exposed to environmental stressors using real-time quantitative reverse transcription PCR. Comparisons were made between Agr-functional and Agr-deficient strains. In addition, Agr inhibition was achieved using a heterologous Agr autoinducing peptide. Results: The Agr system upregulated ardA-H1 expression in acidic and iron-limited conditions. However, vancomycin induced ardA-H1 activation specifically in the Agr-deficient strain GV69, indicating that an alternative regulatory pathway controls ardA-H1 expression in the absence of agr. The vancomycin response in GV69 suggests that diminished quorum sensing may offer a survival advantage by promoting persistence and HGT-related adaptability. Conclusion: Overall, our findings provide new insights into the intricate relationships between quorum-sensing, stress responses, bacterial virulence, and genetic plasticity, enhancing our understanding of S. aureus adaptability in challenging environments.
Collapse
Affiliation(s)
- Flavia Costa Carvalho de Andrade
- Departamento de Microbiologia Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (F.C.C.d.A.); (M.F.C.)
| | - Mariana Fernandes Carvalho
- Departamento de Microbiologia Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (F.C.C.d.A.); (M.F.C.)
| | - Agnes Marie Sá Figueiredo
- Departamento de Microbiologia Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (F.C.C.d.A.); (M.F.C.)
- Programa de Pós-Graduação em Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Niterói 24033-900, Brazil
| |
Collapse
|
3
|
de Paula JC, Bakoshi ABK, Lazarin-Bidóia D, Ud Din Z, Rodrigues-Filho E, Ueda-Nakamura T, Nakamura CV. Antiproliferative activity of the dibenzylideneacetone derivate (E)-3-ethyl-4-(4-nitrophenyl)but‑3-en-2-one in Trypanosoma cruzi. Acta Trop 2020; 211:105653. [PMID: 32777226 DOI: 10.1016/j.actatropica.2020.105653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 01/18/2023]
Abstract
Chagas disease is one of the most prevalent neglected diseases in the world. The illness is caused by Trypanosoma cruzi, a protozoan parasite with a complex life cycle and three morphologically distinct developmental stages. Nowadays, the only treatment is based on two nitro-derivative drugs, benznidazole and nifurtimox, which cause serious side effects. Since the treatment is limited, the search for new treatment options for patients with Chagas disease is highly necessary. In this study we analyzed the substance A11K3, a dibenzylideneacetone (DBA). DBAs have an acyclic dienone attached to aryl groups in both β-positions and studies have shown that they have biological activity against tumors cells, bacteria, and protozoa such as T. cruzi and Leishmania spp. Here we show that A11K3 is active against all three T. cruzi evolutionary forms: the epimastigote (IC50 = 3.3 ± 0.8), the trypomastigote (EC50 = 24 ± 4.3) and the intracellular amastigote (IC50 = 9.3 ± 0.5 µM). A cytotoxicity assay in LLCMK2 cells showed a CC50 of 239.2 ± 15.7 µM giving a selectivity index (CC50/IC50) of 72.7 for epimastigotes, 9.9 for trypomastigotes and 25.9 for intracellular amastigotes. Morphological and ultrastructural analysis of the parasites treated with A11K3 by TEM and SEM revealed alterations in the Golgi complex, mitochondria, plasma membrane and cell body, with an increase of autophagic vacuoles and lipid bodies. Biochemical assays of A11K3-treated T. cruzi showed an increase of ROS, plasma membrane ruptures, lipid peroxidation, mitochondrial membrane depolarization with a decrease in ATP and accumulation of autophagic vacuoles. The results lead to the hypothesis that A11K3 causes death of the protozoan through events such as plasma membrane and mitochondrial alterations and autophagy, characteristic of cell collapse.
Collapse
Affiliation(s)
- Jéssica Carreira de Paula
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Bloco B-08, Av. Colombo 5790, Maringá, PR CEP 87020-900, Brazil
| | - Amanda Beatriz Kawano Bakoshi
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Bloco B-08, Av. Colombo 5790, Maringá, PR CEP 87020-900, Brazil
| | - Danielle Lazarin-Bidóia
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Bloco B-08, Av. Colombo 5790, Maringá, PR CEP 87020-900, Brazil
| | - Zia Ud Din
- LaBioMMi, Departamento de Química, Universidade Federal de São Carlos, CP 676, São Carlos, SP 13.565-905, Brazil
| | - Edson Rodrigues-Filho
- LaBioMMi, Departamento de Química, Universidade Federal de São Carlos, CP 676, São Carlos, SP 13.565-905, Brazil
| | - Tania Ueda-Nakamura
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Bloco B-08, Av. Colombo 5790, Maringá, PR CEP 87020-900, Brazil
| | - Celso Vataru Nakamura
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Bloco B-08, Av. Colombo 5790, Maringá, PR CEP 87020-900, Brazil.
| |
Collapse
|
4
|
Mach J, Sutak R. Iron in parasitic protists – from uptake to storage and where we can interfere. Metallomics 2020; 12:1335-1347. [DOI: 10.1039/d0mt00125b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A comprehensive review of iron metabolism in parasitic protists and its potential use as a drug target.
Collapse
Affiliation(s)
- Jan Mach
- Department of Parasitology
- Faculty of Science - BIOCEV
- Charles University
- Vestec u Prahy
- Czech Republic
| | - Robert Sutak
- Department of Parasitology
- Faculty of Science - BIOCEV
- Charles University
- Vestec u Prahy
- Czech Republic
| |
Collapse
|
5
|
Ferreira CM, Oliveira MP, Paes MC, Oliveira MF. Modulation of mitochondrial metabolism as a biochemical trait in blood feeding organisms: the redox vampire hypothesis redux. Cell Biol Int 2018; 42:683-700. [PMID: 29384241 DOI: 10.1002/cbin.10945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/27/2018] [Indexed: 12/31/2022]
Abstract
Hematophagous organisms undergo remarkable metabolic changes during the blood digestion process, increasing fermentative glucose metabolism, and reducing respiratory rates, both consequence of functional mitochondrial remodeling. Here, we review the pathways involved in energy metabolism and mitochondrial functionality in a comparative framework across different hematophagous species, and consider how these processes regulate redox homeostasis during blood digestion. The trend across distinct species indicate that a switch in energy metabolism might represent an important defensive mechanism to avoid the potential harmful interaction of oxidants generated from aerobic energy metabolism with products derived from blood digestion. Indeed, in insect vectors, blood feeding transiently reduces respiratory rates and oxidant production, irrespective of tissue and insect model. On the other hand, a different scenario is observed in several unrelated parasite species when exposed to blood digestion products, as respiratory rates reduce and mitochondrial oxidant production increase. The emerging picture indicates that re-wiring of energy metabolism, through reduced mitochondrial function, culminates in improved tolerance to redox insults and seems to represent a key step for hematophagous organisms to cope with the overwhelming and potentially toxic blood meal.
Collapse
Affiliation(s)
- Caroline M Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil
| | - Matheus P Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil.,Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Marcia C Paes
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Marcus F Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil
| |
Collapse
|
6
|
Dias-Lopes G, Saboia-Vahia L, Margotti ET, Fernandes NDS, Castro CLDF, Oliveira FO, Peixoto JF, Britto C, Silva FCE, Cuervo P, Jesus JBD. Morphologic study of the effect of iron on pseudocyst formation in Trichomonas vaginalis and its interaction with human epithelial cells. Mem Inst Oswaldo Cruz 2017; 112:664-673. [PMID: 28953994 PMCID: PMC5607515 DOI: 10.1590/0074-02760170032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/12/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Trichomonas vaginalis is the aetiological agent of human trichomoniasis, which is one of the most prevalent sexually transmitted diseases in humans. Iron is an important element for the survival of this parasite and the colonisation of the host urogenital tract. OBJECTIVES In this study, we investigated the effects of iron on parasite proliferation in the dynamics of pseudocyst formation and morphologically characterised iron depletion-induced pseudocysts. METHODS We performed structural and ultrastructural analyses using light microscopy, scanning electron microscopy and transmission electron microscopy. FINDINGS It was observed that iron depletion (i) interrupts the proliferation of T. vaginalis, (ii) induces morphological changes in typical multiplicative trophozoites to spherical non-proliferative, non-motile pseudocysts, and (iii) induces the arrest of cell division at different stages of the cell cycle; (iv) iron is the fundamental element for the maintenance of typical trophozoite morphology; (v) pseudocysts induced by iron depletion are viable and reversible forms; and, finally, (vi) we demonstrated that pseudocysts induced by iron depletion are able to interact with human epithelial cells maintaining their spherical forms. MAIN CONCLUSIONS Together, these data suggest that pseudocysts could be induced as a response to iron nutritional stress and could have a potential role in the transmission and infection of T. vaginalis.
Collapse
Affiliation(s)
- Geovane Dias-Lopes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | - Leonardo Saboia-Vahia
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Leishmanioses, Rio de Janeiro, RJ, Brasil
| | - Eliane Trindade Margotti
- Universidade Federal de São João Del Rei, Faculdade de Medicina, Departamento de Medicina, São João Del Rei, MG, Brasil
| | - Nilma de Souza Fernandes
- Universidade Federal de São João Del Rei, Faculdade de Medicina, Departamento de Medicina, São João Del Rei, MG, Brasil
| | | | - Francisco Odencio Oliveira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Ultraestrutura Celular, Rio de Janeiro, RJ, Brasil
| | - Juliana Figueiredo Peixoto
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | - Constança Britto
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | - Fernando Costa E Silva
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Centro de Biociências e Biotecnologia, Laboratório de Biologia Celular e Tecidual, Rio de Janeiro, RJ, Brasil
| | - Patricia Cuervo
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Leishmanioses, Rio de Janeiro, RJ, Brasil
| | - José Batista de Jesus
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil.,Universidade Federal de São João Del Rei, Faculdade de Medicina, Departamento de Medicina, São João Del Rei, MG, Brasil
| |
Collapse
|
7
|
Kumari A, Singh KP, Mandal A, Paswan RK, Sinha P, Das P, Ali V, Bimal S, Lal CS. Intracellular zinc flux causes reactive oxygen species mediated mitochondrial dysfunction leading to cell death in Leishmania donovani. PLoS One 2017; 12:e0178800. [PMID: 28586364 PMCID: PMC5460814 DOI: 10.1371/journal.pone.0178800] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/18/2017] [Indexed: 02/06/2023] Open
Abstract
Leishmaniasis caused by Leishmania parasite is a global threat to public health and one of the most neglected tropical diseases. Therefore, the discovery of novel drug targets and effective drug is a major challenge and an important goal. Leishmania is an obligate intracellular parasite that alternates between sand fly and human host. To survive and establish infections, Leishmania parasites scavenge and internalize nutrients from the host. Nevertheless, host cells presents mechanism like nutrient restriction to inhibit microbial growth and control infection. Zinc is crucial for cellular growth and disruption in its homeostasis hinders growth and survival in many cells. However, little is known about the role of zinc in Leishmania growth and survival. In this study, the effect of zinc on the growth and survival of L.donovani was analyzed by both Zinc-depletion and Zinc-supplementation using Zinc-specific chelator N, N, N', N'–tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) and Zinc Sulfate (ZnSO4). Treatment of parasites with TPEN rather than ZnSO4 had significantly affected the growth in a dose- and time-dependent manner. The pre-treatment of promastigotes with TPEN resulted into reduced host-parasite interaction as indicated by decreased association index. Zn depletion resulted into flux in intracellular labile Zn pool and increased in ROS generation correlated with decreased intracellular total thiol and retention of plasma membrane integrity without phosphatidylserine exposure in TPEN treated promastigotes. We also observed that TPEN-induced Zn depletion resulted into collapse of mitochondrial membrane potential which is associated with increase in cytosolic calcium and cytochrome-c. DNA fragmentation analysis showed increased DNA fragments in Zn-depleted cells. In summary, intracellular Zn depletion in the L. donovani promastigotes led to ROS-mediated caspase-independent mitochondrial dysfunction resulting into apoptosis-like cell death. Therefore, cellular zinc homeostasis in Leishmania can be explored for new drug targets and chemotherapeutics to control Leishmanial growth and disease progression.
Collapse
Affiliation(s)
- Anjali Kumari
- Division of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of medical Research), Agamkuan, Patna, Bihar, India
| | - Krishn Pratap Singh
- Laboratory of Molecular Biochemistry and Cell Biology, Division of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of medical Research), Agamkuan, Patna, Bihar, India
| | - Abhishek Mandal
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of medical Research), Agamkuan, Patna, Bihar, India
| | - Ranjeet Kumar Paswan
- Division of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of medical Research), Agamkuan, Patna, Bihar, India
| | - Preeti Sinha
- Division of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of medical Research), Agamkuan, Patna, Bihar, India
| | - Pradeep Das
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of medical Research), Agamkuan, Patna, Bihar, India
| | - Vahab Ali
- Laboratory of Molecular Biochemistry and Cell Biology, Division of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of medical Research), Agamkuan, Patna, Bihar, India
| | - Sanjiva Bimal
- Division of Immunology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of medical Research), Agamkuan, Patna, Bihar, India
| | - Chandra Shekhar Lal
- Division of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of medical Research), Agamkuan, Patna, Bihar, India
- * E-mail:
| |
Collapse
|
8
|
Bruno de Sousa C, Gangadhar KN, Morais TR, Conserva GAA, Vizetto-Duarte C, Pereira H, Laurenti MD, Campino L, Levy D, Uemi M, Barreira L, Custódio L, Passero LFD, Lago JHG, Varela J. Antileishmanial activity of meroditerpenoids from the macroalgae Cystoseira baccata. Exp Parasitol 2017; 174:1-9. [PMID: 28126391 DOI: 10.1016/j.exppara.2017.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 11/10/2016] [Accepted: 01/22/2017] [Indexed: 01/08/2023]
Abstract
The development of novel drugs for the treatment of leishmaniases continues to be crucial to overcome the severe impacts of these diseases on human and animal health. Several bioactivities have been described in extracts from macroalgae belonging to the Cystoseira genus. However, none of the studies has reported the chemical compounds responsible for the antileishmanial activity observed upon incubation of the parasite with the aforementioned extracts. Thus, this work aimed to isolate and characterize the molecules present in a hexane extract of Cystoseira baccata that was found to be bioactive against Leishmania infantum in a previous screening effort. A bioactivity-guided fractionation of the C. baccata extract was carried out and the inhibitory potential of the isolated compounds was evaluated via the MTT assay against promastigotes and murine macrophages as well as direct counting against intracellular amastigotes. Moreover, the promastigote ultrastructure, DNA fragmentation and changes in the mitochondrial potential were assessed to unravel their mechanism of action. In this process, two antileishmanial meroditerpenoids, (3R)- and (3S)-tetraprenyltoluquinol (1a/1b) and (3R)- and (3S)-tetraprenyltoluquinone (2a/2b), were isolated. Compounds 1 and 2 inhibited the growth of the L. infantum promastigotes (IC50 = 44.9 ± 4.3 and 94.4 ± 10.1 μM, respectively), inducing cytoplasmic vacuolization and the presence of coiled multilamellar structures in mitochondria as well as an intense disruption of the mitochondrial membrane potential. Compound 1 decreased the intracellular infection index (IC50 = 25.0 ± 4.1 μM), while compound 2 eliminated 50% of the intracellular amastigotes at a concentration > 88.0 μM. This work identified compound 2 as a novel metabolite and compound 1 as a biochemical isolated from Cystoseira algae displaying antileishmanial activity. Compound 1 can thus be an interesting scaffold for the development of novel chemotherapeutic molecules for canine and human visceral leishmaniases studies. This work reinforces the evidence of the marine environment as source of novel molecules.
Collapse
Affiliation(s)
| | - Katkam N Gangadhar
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Faro, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Thiago R Morais
- Departamento de Ciências Exatas e da Terra, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Geanne A A Conserva
- Departamento de Ciências Exatas e da Terra, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | | | - Hugo Pereira
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Márcia D Laurenti
- Laboratório de Patologia das Moléstias Infecciosas (LIM-50), Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Lenea Campino
- Global Health and Tropical Medicine Centre, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal; Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Debora Levy
- Laboratório de Genética e Hematologia Molecular (LIM-31), Departamento de Clinica Médica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Miriam Uemi
- Departamento de Ciências Exatas e da Terra, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Luísa Barreira
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Luísa Custódio
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Luiz Felipe D Passero
- São Paulo State University (UNESP), Institute of Biosciences, São Vicente, Praça Infante Dom Henrique, s/n, 11330-900 São Vicente, SP, Brazil
| | - João Henrique G Lago
- Departamento de Ciências Exatas e da Terra, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil.
| | - João Varela
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Faro, Portugal.
| |
Collapse
|
9
|
Zaidi A, Singh KP, Ali V. Leishmania and its quest for iron: An update and overview. Mol Biochem Parasitol 2016; 211:15-25. [PMID: 27988301 DOI: 10.1016/j.molbiopara.2016.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 11/21/2016] [Accepted: 12/11/2016] [Indexed: 12/12/2022]
Abstract
Parasites of genus Leishmania are the causative agents of complex neglected diseases called leishmaniasis and continue to be a significant health concern globally. Iron is a vital nutritional requirement for virtually all organisms, including pathogenic trypanosomatid parasites, and plays a crucial role in many facets of cellular metabolism as a cofactor of several enzymes. Iron acquisition is essential for the survival of parasites. Yet parasites are also vulnerable to the toxicity of iron and reactive oxygen species. The aim of this review is to provide an update on the current knowledge about iron acquisition and usage by Leishmania species. We have also discussed about host strategy to modulate iron availability and the strategies deployed by Leishmania parasites to overcome iron withholding defences and thus favour parasite growth within host macrophages. Since iron plays central roles in the host's response and parasite metabolism, a comprehensive understanding of the iron metabolism is beneficial to identify potential viable therapeutic opportunities against leishmaniasis.
Collapse
Affiliation(s)
- Amir Zaidi
- Laboratory of Molecular Biochemistry and Cell Biology, Dept. of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna, India
| | - Krishn Pratap Singh
- Laboratory of Molecular Biochemistry and Cell Biology, Dept. of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna, India
| | - Vahab Ali
- Laboratory of Molecular Biochemistry and Cell Biology, Dept. of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna, India.
| |
Collapse
|
10
|
In Vitro and In Vivo Activities of 2,3-Diarylsubstituted Quinoxaline Derivatives against Leishmania amazonensis. Antimicrob Agents Chemother 2016; 60:3433-44. [PMID: 27001812 DOI: 10.1128/aac.02582-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/15/2016] [Indexed: 11/20/2022] Open
Abstract
Leishmaniasis is endemic in 98 countries and territories worldwide. The therapies available for leishmaniasis have serious side effects, thus prompting the search for new therapies. The present study investigated the antileishmanial activities of 2,3-diarylsubstituted quinoxaline derivatives against Leishmania amazonensis The antiproliferative activities of 6,7-dichloro-2,3-diphenylquinoxaline (LSPN329) and 2,3-di-(4-methoxyphenyl)-quinoxaline (LSPN331) against promastigotes and intracellular amastigotes were assessed, and the cytotoxicities of LSPN329 and LSPN331 were determined. Morphological and ultrastructural alterations were examined by electron microscopy, and biochemical alterations, reflected by the mitochondrial membrane potential (ΔΨm), mitochondrial superoxide anion (O2·(-)) concentration, the intracellular ATP concentration, cell volume, the level of phosphatidylserine exposure on the cell membrane, cell membrane integrity, and lipid inclusions, were evaluated. In vivo antileishmanial activity was evaluated in a murine cutaneous leishmaniasis model. Compounds LSPN329 and LSPN331 showed significant selectivity for promastigotes and intracellular amastigotes and low cytotoxicity. In promastigotes, ultrastructural alterations were observed, including an increase in lipid inclusions, concentric membranes, and intense mitochondrial swelling, which were associated with hyperpolarization of ΔΨm, an increase in the O2·(-) concentration, decreased intracellular ATP levels, and a decrease in cell volume. Phosphatidylserine exposure and DNA fragmentation were not observed. The cellular membrane remained intact after treatment. Thus, the multifactorial response that was responsible for the cellular collapse of promastigotes was based on intense mitochondrial alterations. BALB/c mice treated with LSPN329 or LSPN331 showed a significant decrease in lesion thickness in the infected footpad. Therefore, the antileishmanial activity and mitochondrial mechanism of action of LSPN329 and LSPN331 and the decrease in lesion thickness in vivo brought about by LSPN329 and LSPN331 make them potential candidates for new drug development for the treatment of leishmaniasis.
Collapse
|
11
|
Abstract
SUMMARYIron is an essential element for the survival of trichomonads during host–parasite interaction. The availability of this metal modulates several metabolic pathways of the parasites and regulates the expression of virulence factors such as adhesins and proteolytic enzymes. In this study, we investigated the effect of iron depletion on the morphology and life cycle ofTritrichomonas foetus. Scanning and transmission electron microscopy analyses revealed that depletion of iron from the culture medium (named TYM-DIP inducer medium) induces morphological transformation of typical pear-shaped trophozoites into spherical and non-motile pseudocysts. Remarkably, inoculation of pseudocysts into an iron-rich medium (standard TYM medium), or addition of FeSO4to a TYM-DIP inducer medium reverted the morphological transformation process and typical trophozoites were recovered. These results show that pseudocysts are viable forms of the parasite and highlight the role of iron as a modulator of the parasite phenotype. Although iron is required for the survival ofT. foetus, iron depletion does not cause a cellular collapse of pseudocysts, but instead induces phenotypic alterations, probably in order to allow the parasite to survive conditions of nutritional stress. Together, these findings support previous studies that suggest pseudocysts are a resistance form in the life cycle ofT. foetusand enable new approaches to understanding the multifactorial role of iron in the cell biology of this protozoan parasite.
Collapse
|
12
|
Mittra B, Laranjeira-Silva MF, Perrone Bezerra de Menezes J, Jensen J, Michailowsky V, Andrews NW. A Trypanosomatid Iron Transporter that Regulates Mitochondrial Function Is Required for Leishmania amazonensis Virulence. PLoS Pathog 2016; 12:e1005340. [PMID: 26741360 PMCID: PMC4704735 DOI: 10.1371/journal.ppat.1005340] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/22/2015] [Indexed: 11/20/2022] Open
Abstract
Iron, an essential co-factor of respiratory chain proteins, is critical for mitochondrial function and maintenance of its redox balance. We previously reported a role for iron uptake in differentiation of Leishmania amazonensis into virulent amastigotes, by a mechanism that involves reactive oxygen species (ROS) production and is independent of the classical pH and temperature cues. Iron import into mitochondria was proposed to be essential for this process, but evidence supporting this hypothesis was lacking because the Leishmania mitochondrial iron transporter was unknown. Here we describe MIT1, a homolog of the mitochondrial iron importer genes mrs3 (yeast) and mitoferrin-1 (human) that is highly conserved among trypanosomatids. MIT1 expression was essential for the survival of Trypanosoma brucei procyclic but not bloodstream forms, which lack functional respiratory complexes. L. amazonensis LMIT1 null mutants could not be generated, suggesting that this mitochondrial iron importer is essential for promastigote viability. Promastigotes lacking one LMIT1 allele (LMIT1/Δlmit1) showed growth defects and were more susceptible to ROS toxicity, consistent with the role of iron as the essential co-factor of trypanosomatid mitochondrial superoxide dismutases. LMIT1/Δlmit1 metacyclic promastigotes were unable to replicate as intracellular amastigotes after infecting macrophages or cause cutaneous lesions in mice. When induced to differentiate axenically into amastigotes, LMIT1/Δlmit1 showed strong defects in iron content and function of mitochondria, were unable to upregulate the ROS-regulatory enzyme FeSOD, and showed mitochondrial changes suggestive of redox imbalance. Our results demonstrate the importance of mitochondrial iron uptake in trypanosomatid parasites, and highlight the role of LMIT1 in the iron-regulated process that orchestrates differentiation of L. amazonensis into infective amastigotes. Leishmaniasis is a serious parasitic disease that affects 12 million people worldwide, with clinical manifestations ranging from self-healing cutaneous lesions to deadly visceralizing disease. A vaccine is not available, and new and less toxic drugs against this protozoan parasite are urgently needed. Following introduction into vertebrate hosts during a sand fly blood meal, Leishmania parasites undergo extensive changes in morphology and metabolism that are critical for adaptation to life inside host macrophages and replication as amastigotes. Earlier studies identified major events that occur during amastigote differentiation, but the signaling mechanism initiating this process remained poorly understood. Previously we demonstrated a novel role for the reactive oxygen species (ROS) H2O2 in initiating amastigote differentiation, a process proposed to be dependent on iron availability inside the parasite’s mitochondria. In this study we identify LMIT1, a Leishmania transmembrane protein that functions as a mitochondrial iron transporter and is conserved in other trypanosomatid protozoan parasites. Reduced LMIT1 expression impairs mitochondrial function in the infective amastigote stage, abolishing parasite virulence. Our findings identify LMIT1 as a promising new drug target, and support the conclusion that iron-dependent ROS signals generated in the mitochondria regulate differentiation of virulent Leishmania amastigotes.
Collapse
Affiliation(s)
- Bidyottam Mittra
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | | | - Juliana Perrone Bezerra de Menezes
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Laboratório de Patologia e Biointervenção, CPqGM, FIOCRUZ, Candeal, Salvador, Bahia, Brazil
| | - Jennifer Jensen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Vladimir Michailowsky
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Faculdade de Medicina, Setor Parasitologia, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Norma W. Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
13
|
Machado PDA, Mota VZ, Cavalli ACDL, de Carvalho GSG, Da Silva AD, Gameiro J, Cuin A, Coimbra ES. High selective antileishmanial activity of vanadium complex with stilbene derivative. Acta Trop 2015; 148:120-7. [PMID: 25917716 DOI: 10.1016/j.actatropica.2015.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 04/09/2015] [Accepted: 04/19/2015] [Indexed: 11/15/2022]
Abstract
Leishmaniasis is a group of disease caused by different species of the parasite Leishmania affecting millions of people worldwide. Conventional therapy relies on multiple parenteral injections with pentavalent antimonials which exhibit high toxicity and various side effects have been reported. Hence, the research for an effective and low toxic effect drug is necessary. In the present work, the synthesis, spectroscopic and analytical characterizations of stilbene derivative (H2Salophen) and its vanadium complex (VOSalophen) are reported. Besides the chemical ancillary information, investigation of the leishmanicidal effects of these compounds were provided. The biological assays against promastigote and amastigote forms of L. amazonensis have been shown that VOSalophen exhibited a strong antiparasitic activity (IC50 of 6.65 and 3.51 μM, respectively). Furthermore, the leishmanicidal activity was concentration and time-dependent. Regarding toxicity and selectivity on mammalian cells, VOSalophen have not caused significant damage to human erythrocytes in all concentrations tested and VOSalophen was almost seven times more destructive for the intracellular parasite than for macrophages. Furthermore, the leishmanicidal activity of VOSalophen in promastigote forms of L. amazonensis could be associated to mitochondrial dysfunction and increase of the reactive oxygen species (ROS) production. In L. amazonensis-infected macrophages, VOSalophen induces ROS production and a microbicidal action NO-dependent. Our biological results indicate the effective and selective action of VOSalophen against L. amazonensis and the leishmanicidal effect can be associated to parasite disorders and immumodulatory effects.
Collapse
Affiliation(s)
- Patrícia de Almeida Machado
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 33036-900 Juiz de Fora, MG, Brazil
| | - Vinícius Zamprogno Mota
- LQBin - Laboratório de Química BioInorgânica, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 33036-900 Juiz de Fora, MG, Brazil
| | - Ana Clara de Lima Cavalli
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 33036-900 Juiz de Fora, MG, Brazil
| | | | - Adilson David Da Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, MG, Brazil
| | - Jacy Gameiro
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 33036-900 Juiz de Fora, MG, Brazil
| | - Alexandre Cuin
- LQBin - Laboratório de Química BioInorgânica, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 33036-900 Juiz de Fora, MG, Brazil
| | - Elaine Soares Coimbra
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 33036-900 Juiz de Fora, MG, Brazil.
| |
Collapse
|
14
|
4-amino bis-pyridinium derivatives as novel antileishmanial agents. Antimicrob Agents Chemother 2014; 58:4103-12. [PMID: 24798287 DOI: 10.1128/aac.02481-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antileishmanial activity of a series of bis-pyridinium derivatives that are analogues of pentamidine have been investigated, and all compounds assayed were found to display activity against promastigotes and intracellular amastigotes of Leishmania donovani and Leishmania major, with 50% effective concentrations (EC50s) lower than 1 μM in most cases. The majority of compounds showed similar behavior in both Leishmania species, being slightly more active against L. major amastigotes. However, compound VGP-106 {1,1'-(biphenyl-4,4'-diylmethylene)bis[4-(4-bromo-N-methylanilino)pyridinium] dibromide} exhibited significantly higher activity against L. donovani amastigotes (EC50, 0.86 ± 0.46 μM) with a lower toxicity in THP-1 cells (EC50, 206.54 ± 9.89 μM). As such, VGP-106 was chosen as a representative compound to further elucidate the mode of action of this family of inhibitors in promastigote forms of L. donovani. We have determined that uptake of VGP-106 in Leishmania is a temperature-independent process, suggesting that the compound crosses the parasite membrane by diffusion. Transmission electron microscopy analysis showed a severe mitochondrial swelling in parasites treated with compound VGP-106, which induces hyperpolarization of the mitochondrial membrane potential and a significant decrease of intracellular free ATP levels due to the inhibition of ATP synthesis. Additionally, we have confirmed that VGP-106 induces mitochondrial ROS production and an increase in intracellular Ca(2+) levels. All these molecular events can activate the apoptotic process in Leishmania; however, propidium iodide assays gave no indication of DNA fragmentation. These results underline the potency of compound VGP-106, which may represent a new avenue for the development of novel antileishmanial compounds.
Collapse
|