1
|
Weerakoon H, Miles JJ, Hill MM, Lepletier A. A shotgun proteomic dataset of human mucosal-associated invariant T cells. Data Brief 2024; 56:110786. [PMID: 39224509 PMCID: PMC11367653 DOI: 10.1016/j.dib.2024.110786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells represent a unique unconventional T cell population important in eliciting immunomodulatory responses in a range of diseases, including infectious diseases, autoimmunity and cancer. This innate-like T cell subset predominantly express CD8 in humans. Unlike conventional CD8+ T cells, which recognize peptide antigen presented by polymorphic major histocompatibility complex (MHC) molecules, MAIT cells are restricted by MR1, a non-polymorphic antigen-presenting molecule widely expressed in multiple tissues. Thus, identification of proteomic signature of MAIT cells in relation to conventional T cells is pivotal in understanding it's specific functional characteristics. The high-resolution dataset presents here comprehensively describes and compare the whole cell proteomes of MAIT (TCRVα7.2+CD161+) and conventional/non-MAIT T cells (TCR Vα7.2-CD161-) in humans. The dataset was generated using the proteomic samples prepared from matched T cell subsets sorted from peripheral blood mononuclear cells (PBMC) of three healthy volunteers. Peptides obtained from trypsin-digested cell lysates were analysed using Data-Dependent Mass Spectrometry (DDA-MS). Label-free quantitation of DDA-MS data using MaxQuant and MaxLFQ software identified 4,442 proteins at a 1 % false discovery rate. Of them, 3680 proteins that were detected with single UniProt accession and a minimum of 2 unique or razor peptides were assessed to identify differentially abundant proteins between MAIT cells and conventional T cells, including total T cells and CD8+ T cells. The dataset comprises high-quality label-free quantitative proteomic data that can be used to compare the expression pattern of whole cell proteomes between the above-mentioned T cell populations. Further, this can be used as a reference proteome of human MAIT cells for the in-depth understanding of the MAIT cell behaviour among T cells and to discover potential therapeutic targets to modulate MAIT cell function.
Collapse
Affiliation(s)
- Harshi Weerakoon
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Department of Biochemistry, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| | - John J. Miles
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Michelle M. Hill
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Ailin Lepletier
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- Institute for Biomedicine and Glycomics, Southport, QLD, Australia
| |
Collapse
|
2
|
Du Q, Zeng H, Pang X, Cao J, Xie B, Long C, Liang L, Deng F, Huang M, Li L, Huang F, Liu X, Hu Y, Lv J. CagA-positive Helicobacter pylori may promote and aggravate scrub typhus. Front Microbiol 2024; 15:1351784. [PMID: 38298891 PMCID: PMC10828044 DOI: 10.3389/fmicb.2024.1351784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024] Open
Abstract
Helicobacter pylori (H. pylori) infection may alter the host's resistance to tsutsugamushi disease pathogens through the Th1 immune response, leading to potential synergistic pathogenic effects. A total of 117 scrub typhus cases at Beihai People's Hospital and affiliated hospitals of Youjiang University for Nationalities and Medical Sciences were studied from January to December 2022, alongside 130 healthy individuals forming the control group. All participants underwent serum H. pylori antibody testing. The prevalence of H. pylori infection was significantly higher among scrub typhus patients (89.7%) compared to healthy individuals (54.6%) (p < 0.05). Moreover, type I H. pylori infection was notably more prevalent in scrub typhus cases (67.5%) compared to healthy individuals (30%) (p < 0.05). Multifactorial analysis demonstrated type I H. pylori infection as an independent risk factor for scrub typhus (adjusted odds ratio: 2.407, 95% confidence interval: 1.249-4.64, p = 0.009). Among scrub typhus patients with multiple organ damage, the prevalence of type I H. pylori infection was significantly higher (50.6%) than type II H. pylori infection (15.4%) (χ2 = 4.735, p = 0.030). These results highlight a higher incidence of H. pylori infection in scrub typhus patients compared to the healthy population. Additionally, type I H. pylori strain emerged as an independent risk factor for scrub typhus development. Moreover, individuals infected with type I H. pylori are more susceptible to multiple organ damage. These findings suggest a potential role of H. pylori carrying the CagA gene in promoting and exacerbating scrub typhus.
Collapse
Affiliation(s)
- Qiuying Du
- Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Houyang Zeng
- Department of Infectious Diseases, Beihai People's Hospital, Beihai, Guangxi, China
| | - Xianwu Pang
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, China
| | - Jianyu Cao
- Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Bo Xie
- Institute of Life Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Chunyi Long
- Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Liudan Liang
- Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Fenglian Deng
- Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Meijin Huang
- Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Li Li
- Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Fengyan Huang
- Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Xinli Liu
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Yanling Hu
- Institute of Life Sciences, Guangxi Medical University, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiannan Lv
- Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| |
Collapse
|
3
|
Wei L, Chen Z, Lv Q. Mucosal-associated invariant T cells display both pathogenic and protective roles in patients with inflammatory bowel diseases. Amino Acids 2023; 55:1819-1827. [PMID: 37819474 DOI: 10.1007/s00726-023-03344-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
An important subtype of the innate-like T lymphocytes is mucosal-associated invariant T (MAIT) cells expressing a semi-invariant T cell receptor α (TCR-α) chain. MAIT cells could be activated mainly by TCR engagement or cytokines. They have been found to have essential roles in various immune mediated. There have been growing preclinical and clinical findings that show an association between MAIT cells and the physiopathology of inflammatory bowel diseases (IBD). Of note, published reports demonstrate contradictory findings regarding the role of MAIT cells in IBD patients. A number of reports suggests a protective effect, whereas others show a pathogenic impact. The present review article aimed to explore and discuss the findings of experimental and clinical investigations evaluating the effects of MAIT cells in IBD subjects and animal models. Findings indicate that MAIT cells could exert opposite effects in the course of IBD, including an anti-inflammatory protective effect of blood circulating MAIT cells and an effector pathogenic effect of colonic MAIT cells. Another important finding is that blood levels of MAIT cells can be considered as a potential biomarker in IBD patients.
Collapse
Affiliation(s)
- Lei Wei
- Department of General Surgery, Pudong New District Gongli Hospital of Shanghai, Shanghai, 200120, China
| | - Zhigang Chen
- Department of General Surgery, Pudong New District Gongli Hospital of Shanghai, Shanghai, 200120, China
| | - Qiang Lv
- Department of General Surgery, Pudong New District Gongli Hospital of Shanghai, Shanghai, 200120, China.
| |
Collapse
|
4
|
Kedia-Mehta N, Pisarska MM, Rollings C, O'Neill C, De Barra C, Foley C, Wood NAW, Wrigley-Kelly N, Veerapen N, Besra G, Bergin R, Jones N, O'Shea D, Sinclair LV, Hogan AE. The proliferation of human mucosal-associated invariant T cells requires a MYC-SLC7A5-glycolysis metabolic axis. Sci Signal 2023; 16:eabo2709. [PMID: 37071733 DOI: 10.1126/scisignal.abo2709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are an abundant population of innate T cells that recognize bacterial ligands and play a key role in host protection against bacterial and viral pathogens. Upon activation, MAIT cells undergo proliferative expansion and increase their production of effector molecules such as cytokines. In this study, we found that both mRNA and protein abundance of the key metabolism regulator and transcription factor MYC was increased in stimulated MAIT cells. Using quantitative mass spectrometry, we identified the activation of two MYC-controlled metabolic pathways, amino acid transport and glycolysis, both of which were necessary for MAIT cell proliferation. Last, we showed that MAIT cells isolated from people with obesity showed decreased MYC mRNA abundance upon activation, which was associated with defective MAIT cell proliferation and functional responses. Collectively, our data uncover the importance of MYC-regulated metabolism for MAIT cell proliferation and provide additional insight into the molecular basis for the functional defects of MAIT cells in obesity.
Collapse
Affiliation(s)
- Nidhi Kedia-Mehta
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Marta M Pisarska
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
- National Children's Research Centre, Dublin 12, Ireland
| | - Christina Rollings
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Chloe O'Neill
- National Children's Research Centre, Dublin 12, Ireland
| | | | - Cathriona Foley
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Nicole A W Wood
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
- National Children's Research Centre, Dublin 12, Ireland
| | - Neil Wrigley-Kelly
- St. Vincent's University Hospital, Dublin 4, Ireland
- University College Dublin, Dublin 4, Ireland
| | | | - Gurdyal Besra
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Ronan Bergin
- National Children's Research Centre, Dublin 12, Ireland
| | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Donal O'Shea
- National Children's Research Centre, Dublin 12, Ireland
- St. Vincent's University Hospital, Dublin 4, Ireland
- University College Dublin, Dublin 4, Ireland
| | - Linda V Sinclair
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Andrew E Hogan
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
- National Children's Research Centre, Dublin 12, Ireland
| |
Collapse
|
5
|
Thiriot J, Liang Y, Fisher J, Walker DH, Soong L. Host transcriptomic profiling of CD-1 outbred mice with severe clinical outcomes following infection with Orientia tsutsugamushi. PLoS Negl Trop Dis 2022; 16:e0010459. [PMID: 36417363 PMCID: PMC9683618 DOI: 10.1371/journal.pntd.0010459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
Orientia tsutsugamushi is an obligately intracellular bacterium with endothelial tropism and can cause mild to lethal scrub typhus in humans. No vaccine is available for this reemerging and severely neglected infection. Previous scrub typhus studies have utilized inbred mice, yet such models have intrinsic limitations. Thus, the development of suitable mouse models that better mimic human diseases is in great need for immunologic investigation and future vaccine studies. This study is aimed at establishing scrub typhus in outbred CD-1 mice and defining immune biomarkers related to disease severity. CD-1 mice received O. tsutsugamushi Karp strain via the i.v. route; major organs were harvested at 2-12 days post-infection for kinetic analyses. We found that for our given infection doses, CD-1 mice were significantly more susceptible (90-100% lethal) than were inbred C57BL/6 mice (0-10% lethal). Gross pathology of infected CD-1 mouse organs revealed features that mimicked human scrub typhus, including pulmonary edema, interstitial pneumonia, perivascular lymphocytic infiltrates, and vasculitis. Alteration in angiopoietin/receptor expression in inflamed lungs implied endothelial dysfunction. Lung immune gene profiling using NanoString analysis displayed a Th1/CD8-skewed, but Th2 repressed profile, including novel biomarkers not previously investigated in other scrub typhus models. Bio-plex analysis revealed a robust inflammatory response in CD-1 mice as evidenced by increased serum cytokine and chemokine levels, correlating with immune cell recruitment during the severe stages of the disease. This study provides an important framework indicating a value of CD-1 mice for delineating host susceptibility to O. tsutsugamushi, immune dysregulation, and disease pathogenesis. This preclinical model is particularly useful for future translational and vaccine studies for severe scrub typhus.
Collapse
Affiliation(s)
- Joseph Thiriot
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - James Fisher
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David H. Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
6
|
Kim OS, Park KJ, Jin HM, Cho YN, Kim YS, Kwon SH, Koh JT, Ju JK, Kee SJ, Park YW. Activation and increased production of interleukin-17 and tumour necrosis factor-α of mucosal-associated invariant T cells in patients with periodontitis. J Clin Periodontol 2022; 49:706-716. [PMID: 35569027 DOI: 10.1111/jcpe.13648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 04/08/2022] [Accepted: 05/10/2022] [Indexed: 12/28/2022]
Abstract
AIM Mucosal-associated invariant T (MAIT) cells are known to be resident in oral mucosal tissue, but their roles in periodontitis are unknown. This study aimed to examine the level and function of MAIT cells in periodontitis patients. MATERIALS AND METHODS Frequency, activation, and function of MAIT cells from 28 periodontitis patients and 28 healthy controls (HCs) were measured by flow cytometry. RESULTS Circulating MAIT cells were numerically reduced in periodontitis patients. Moreover, they exhibited higher expression of CD69 and annexin V, together with more increased production of interleukin (IL)-17 and tumour necrosis factor (TNF)-α, in periodontitis patients than in HCs. Interestingly, periodontitis patients had higher frequencies of MAIT cells in gingival tissue than in peripheral blood. In addition, circulating MAIT cells had elevated expression of tissue-homing chemokine receptors such as CCR6 and CXCR6, and the corresponding chemokines (i.e., CCL20 and CXCL16) were more strongly expressed in inflamed gingiva than in healthy gingiva. CONCLUSIONS This study demonstrates that circulating MAIT cells are numerically deficient with an activated profile toward the production of IL-17 and TNF-α in periodontitis patients. Furthermore, circulating MAIT cells have the potential to migrate to inflamed gingival tissues.
Collapse
Affiliation(s)
- Ok-Su Kim
- Department of Periodontology, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea.,Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Ki-Jeong Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hye-Mi Jin
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Young-Nan Cho
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Ye Seul Kim
- Department of Periodontology, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Seung-Hee Kwon
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea.,Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Tae Koh
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea.,Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jae Kyun Ju
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Yong-Wook Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| |
Collapse
|
7
|
Kang SJ, Park KJ, Jin HM, Cho YN, Oh TH, Kim SE, Kim UJ, Park KH, Jung SI, Kim TO, Kim HS, Jo YG, Ju JK, Kee SJ, Park YW. Circulating Plasmacytoid and Conventional Dendritic Cells Are Numerically and Functionally Deficient in Patients With Scrub Typhus. Front Immunol 2021; 12:700755. [PMID: 34276693 PMCID: PMC8281928 DOI: 10.3389/fimmu.2021.700755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Background Dendritic cells (DCs) are specialized antigen-presenting cells known to bridge innate and adaptive immune reactions. However, the relationship between circulating DCs and Orientia tsutsugamushi infection is unclear. Therefore, this study aimed to examine the level and function of plasmacytoid DCs (pDCs) and conventional DCs (cDCs), two subsets of circulating DCs, in scrub typhus patients. Methods The study included 35 scrub typhus patients and 35 healthy controls (HCs). pDC and cDC levels, CD86 and CD274 expression, and cytokine levels were measured using flow cytometry. Results Circulating pDC and cDC levels were found to be significantly reduced in scrub typhus patients, which were correlated with disease severity. The patients displayed increased percentages of CD86+ pDCs, CD274+ pDCs, and CD274+ cDCs in the peripheral blood. The alterations in the levels and surface phenotypes of pDCs and cDCs were recovered in the remission state. In addition, the production of interferon (IFN)-α and tumor necrosis factor (TNF)-α by circulating pDCs, and interleukin (IL)-12 and TNF-α by circulating cDCs was reduced in scrub typhus patients. Interestingly, our in vitro experiments showed that the percentages of CD86+ pDCs, CD274+ pDCs, and CD274+ cDCs were increased in cultures treated with cytokines including IFN-γ, IL-12, and TNF-α. Conclusions This study demonstrates that circulating pDCs and cDCs are numerically deficient and functionally impaired in scrub typhus patients. In addition, alterations in the expression levels of surface phenotypes of pDCs and cDCs could be affected by pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Seung-Ji Kang
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Ki-Jeong Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Hye-Mi Jin
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Young-Nan Cho
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Tae Hoon Oh
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Seong Eun Kim
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Uh Jin Kim
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Kyung-Hwa Park
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Sook-In Jung
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Tae-Ok Kim
- Department of Pulmonology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Hyo Shin Kim
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Young-Goun Jo
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Jae Kyun Ju
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Yong-Wook Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| |
Collapse
|
8
|
Cho YN, Jeong HS, Park KJ, Kim HS, Kim EH, Jin HM, Jung HJ, Ju JK, Choi SE, Kang JH, Park DJ, Kim TJ, Lee SS, Kee SJ, Park YW. Altered distribution and enhanced osteoclastogenesis of mucosal-associated invariant T cells in gouty arthritis. Rheumatology (Oxford) 2021; 59:2124-2134. [PMID: 32087015 DOI: 10.1093/rheumatology/keaa020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/08/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE This study was designed to investigate the role of mucosal-associated invariant T (MAIT) cells in gouty arthritis (GA) and their effects on osteoclastogenesis. METHODS Patients with GA (n = 61), subjects with hyperuricaemia (n = 11) and healthy controls (n = 30) were enrolled in this study. MAIT cells, cytokines, CD69, programmed death-1 (PD-1) and lymphocyte-activation gene 3 (LAG-3) levels were measured by flow cytometry. In vitro osteoclastogenesis experiments were performed using peripheral blood mononuclear cells in the presence of M-CSF and RANK ligand. RESULTS Circulating MAIT cell levels were significantly reduced in GA patients. However, their capacities for IFN-γ, IL-17 and TNF-α production were preserved. Expression levels of CD69, PD-1 and LAG-3 in MAIT cells were found to be elevated in GA patients. In particular, CD69 expression in circulating MAIT cells was increased by stimulation with MSU crystals, suggesting that deposition of MSU crystals might contribute to MAIT cell activation. Interestingly, MAIT cells were found to be accumulated in synovial fluid and infiltrated into gouty tophus tissues within joints. Furthermore, activated MAIT cells secreted pro-resorptive cytokines (i.e. IL-6, IL-17 and TNF-α) and facilitated osteoclastogenesis. CONCLUSION This study demonstrates that circulating MAIT cells are activated and numerically deficient in GA patients. In addition, MAIT cells have the potential to migrate to inflamed tissues and induce osteoclastogenesis. These findings provide an important role of MAIT cells in the pathogenesis of inflammation and bone destruction in GA patients.
Collapse
Affiliation(s)
- Young-Nan Cho
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hae-Seong Jeong
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Ki-Jeong Park
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hyung-Seok Kim
- Department of Forensic MedicineChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Eun-Hee Kim
- Department of Forensic MedicineChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hye-Mi Jin
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hyun-Ju Jung
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Jae Kyun Ju
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Sung-Eun Choi
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Ji-Hyoun Kang
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Dong-Jin Park
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Tae-Jong Kim
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Shin-Seok Lee
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Yong-Wook Park
- Department of RheumatologyChonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| |
Collapse
|
9
|
Pisarska MM, Dunne MR, O'Shea D, Hogan AE. Interleukin‐17 producing mucosal associated invariant T cells ‐ emerging players in chronic inflammatory diseases? Eur J Immunol 2020; 50:1098-1108. [DOI: 10.1002/eji.202048645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/25/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Marta M. Pisarska
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth University Kildare Ireland
- National Children's Research Centre Dublin Ireland
| | - Margaret R. Dunne
- Trinity Translational Medicine Institute, Department of SurgerySt James's Hospital Dublin Ireland
- Trinity St James's Cancer InstituteSt James's Hospital Dublin Dublin Ireland
| | - Donal O'Shea
- Obesity Immunology Group, Education and Research Centre, St Vincent's University HospitalUniversity College Dublin Ireland
| | - Andrew E. Hogan
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth University Kildare Ireland
- National Children's Research Centre Dublin Ireland
- Obesity Immunology Group, Education and Research Centre, St Vincent's University HospitalUniversity College Dublin Ireland
| |
Collapse
|
10
|
Ju JK, Cho YN, Park KJ, Kwak HD, Jin HM, Park SY, Kim HS, Kee SJ, Park YW. Activation, Deficiency, and Reduced IFN-γ Production of Mucosal-Associated Invariant T Cells in Patients with Inflammatory Bowel Disease. J Innate Immun 2020; 12:422-434. [PMID: 32535589 DOI: 10.1159/000507931] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells that can activate either in response to T-cell receptor (TCR) engagement or through activating cytokines and play an important role in autoimmune disorders. The study examined the level and function of MAIT cells in patients with inflammatory bowel disease (IBD). Circulating MAIT cell levels were significantly reduced in IBD patients. This MAIT cell deficiency was correlated with IBD disease activity grades, hemoglobin, and CRP. IFN-γ production of circulating MAIT cells in response to both MHC class 1b-like related protein (MR1)-dependent and -independent stimulations was decreased in IBD patients, which was partially associated with reduced activation of nuclear factor of activated T cells 1 (NFAT1) transcription factor, a main regulator of IFN-γ production. Expression levels of CD69, programmed death-1 (PD-1), and annexin V in MAIT cells were elevated in IBD patients. CCL20, CXCL10, CXCL16, and CCL25 were expressed higher in inflamed intestinal tissues than in noninflamed tissues. This study demonstrates that circulating MAIT cells are activated and numerically and functionally deficient in IBD patients. Furthermore, activated MAIT cells have the potential to migrate to inflamed tissues. These findings suggest an important role of MAIT cells in mucosal immunity in IBD.
Collapse
Affiliation(s)
- Jae Kyun Ju
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Young-Nan Cho
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Ki-Jeong Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Han Deok Kwak
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hye-Mi Jin
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seon-Young Park
- Department of Gastroenterology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hyun Soo Kim
- Department of Gastroenterology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Yong-Wook Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea,
| |
Collapse
|
11
|
Zhang Y, Kong D, Wang H. Mucosal-Associated Invariant T cell in liver diseases. Int J Biol Sci 2020; 16:460-470. [PMID: 32015682 PMCID: PMC6990906 DOI: 10.7150/ijbs.39016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
Mucosal-associated invariant T cells (MAIT cells) are a new population of innate immune cells, which are abundant in the liver and play complex roles in various liver diseases. In this review, we summarize MAIT cells in the liver diseases in recent studies, figure out the role of MAIT cells in various liver disease, including Alcoholic liver disease, Non-alcoholic liver disease, Autoimmune liver diseases, Viral hepatitis and Liver Cancer. Briefly, MAIT cells are involved in anti-bacteria responses in the alcoholic liver diseases. Besides, the activated MAIT cells promote the liver inflammation by secreting inflammatory cytokines and produce regulatory cytokines, which induces anti-inflammatory macrophage polarization. MAIT cells participate in the liver fibrosis via enhancing hepatic stellate cell activation. In viral hepatitis, MAIT cells exhibit a flawed and exhausted phenotype, which results in little effect on controlling the virus and bacteria. In liver cancer, MAIT cells indicate the disease progression and the outcome of therapy. In summary, MAIT cells are attractive biomarkers and therapeutic targets for liver disease.
Collapse
Affiliation(s)
- Yujue Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Derun Kong
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.,Department of Gastroenterology, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui 236000, P.R. China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| |
Collapse
|
12
|
Kang SJ, Jin HM, Cho YN, Oh TH, Kim SE, Kim UJ, Park KH, Jang HC, Jung SI, Kee SJ, Park YW. Dysfunction of Circulating Natural Killer T Cells in Patients With Scrub Typhus. J Infect Dis 2019; 218:1813-1821. [PMID: 29982731 DOI: 10.1093/infdis/jiy402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/28/2018] [Indexed: 01/01/2023] Open
Abstract
Background Human natural killer T (NKT) cells are known to serve as regulatory and/or effector cells in infectious diseases. However, little is known about the role of NKT cells in Orientia tsutsugamushi infection. Accordingly, the objective of this study was to examine the level and function of NKT cells in patients with scrub typhus. Methods This study included 62 scrub typhus patients and 62 healthy controls (HCs). NKT cell level and function in peripheral blood samples were measured by flow cytometry. Results Proliferation of NKT cells and their ability to produce interferon-γ and interleukin-4 (IL-4) were significantly lower in scrub typhus patients compared to those in HCs. However, circulating NKT cell levels were comparable between patients and HCs. Expression levels of CD69, programmed death-1 (PD-1), lymphocyte activation gene-3 (LAG-3), and T-cell immunoglobulin domain and mucin domain-containing molecule-3 (TIM-3) were significantly increased in scrub typhus patients. Elevated expression of CD69, PD-1, LAG-3, and TIM-3, impaired proliferation, and decreased IL-4 production by NKT cells were recovered in the remission phase. Conclusions This study demonstrates that circulating NKT cells are numerically preserved but functionally impaired in scrub typhus patients. In addition, NKT cell dysfunction is recovered in the remission phase.
Collapse
Affiliation(s)
- Seung-Ji Kang
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hye-Mi Jin
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Young-Nan Cho
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Tae-Hoon Oh
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seong Eun Kim
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Uh Jin Kim
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Kyung-Hwa Park
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hee-Chang Jang
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Sook-In Jung
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Yong-Wook Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| |
Collapse
|
13
|
Godfrey DI, Koay HF, McCluskey J, Gherardin NA. The biology and functional importance of MAIT cells. Nat Immunol 2019; 20:1110-1128. [PMID: 31406380 DOI: 10.1038/s41590-019-0444-8] [Citation(s) in RCA: 351] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/11/2019] [Indexed: 01/25/2023]
Abstract
In recent years, a population of unconventional T cells called 'mucosal-associated invariant T cells' (MAIT cells) has captured the attention of immunologists and clinicians due to their abundance in humans, their involvement in a broad range of infectious and non-infectious diseases and their unusual specificity for microbial riboflavin-derivative antigens presented by the major histocompatibility complex (MHC) class I-like protein MR1. MAIT cells use a limited T cell antigen receptor (TCR) repertoire with public antigen specificities that are conserved across species. They can be activated by TCR-dependent and TCR-independent mechanisms and exhibit rapid, innate-like effector responses. Here we review evidence showing that MAIT cells are a key component of the immune system and discuss their basic biology, development, role in disease and immunotherapeutic potential.
Collapse
Affiliation(s)
- Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia.
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas A Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
14
|
Jo YG, Jin HM, Cho YN, Kim JC, Kee SJ, Park YW. Activation and Impaired Tumor Necrosis Factor-α Production of Circulating Mucosal-Associated Invariant T Cells in Patients with Trauma. J Innate Immun 2019; 11:506-515. [PMID: 31085907 DOI: 10.1159/000499343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 02/28/2019] [Indexed: 01/20/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells rapidly produce proinflammatory cytokines in an innate-like manner and play an important role in controlling the host immune response. This study examined the function of MAIT cells in trauma patients. The expression of cytokines in peripheral blood MAIT cells was measured by flow cytometry. MAIT cells in trauma patients displayed impaired tumor necrosis factor (TNF)-α production, together with elevated CD69 expression. The expression of CD69 was negatively correlated with MAIT cell frequency. These patients had higher plasma levels of interleukin (IL)-12 and IL-18. In particular, CD69 expression of MAIT cells was increased by stimulation with IL-18 in synergy with other proinflammatory cytokines or plasma of trauma patients. The production of TNF-α by MAIT cells was characterized by an initial burst and rapid decline, in contrast to delayed and sustained production of interferon (IFN)-γ. Activated MAIT cells showed a functional defect in the production of TNF-α upon restimulation. This study demonstrates that circulating MAIT cells are activated and functionally impaired in TNF-α production in patients with trauma. The activation and dysfunction of MAIT cells was mediated by proinflammatory cytokines. These findings provide important information underlying the innate immune response of patients with trauma.
Collapse
Affiliation(s)
- Young-Goun Jo
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hye-Mi Jin
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Young-Nan Cho
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Jung-Chul Kim
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Yong-Wook Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea,
| |
Collapse
|
15
|
O'Brien A, Loftus RM, Pisarska MM, Tobin LM, Bergin R, Wood NAW, Foley C, Mat A, Tinley FC, Bannan C, Sommerville G, Veerapen N, Besra GS, Sinclair LV, Moynagh PN, Lynch L, Finlay DK, O'Shea D, Hogan AE. Obesity Reduces mTORC1 Activity in Mucosal-Associated Invariant T Cells, Driving Defective Metabolic and Functional Responses. THE JOURNAL OF IMMUNOLOGY 2019; 202:3404-3411. [PMID: 31076528 DOI: 10.4049/jimmunol.1801600] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/12/2019] [Indexed: 12/13/2022]
Abstract
Obesity underpins the development of numerous chronic diseases, such as type II diabetes mellitus. It is well established that obesity negatively alters immune cell frequencies and functions. Mucosal-associated invariant T (MAIT) cells are a population of innate T cells, which we have previously reported are dysregulated in obesity, with altered circulating and adipose tissue frequencies and a reduction in their IFN-γ production, which is a critical effector function of MAIT cells in host defense. Hence, there is increased urgency to characterize the key molecular mechanisms that drive MAIT cell effector functions and to identify those which are impaired in the obesity setting. In this study, we found that MAIT cells significantly upregulate their rates of glycolysis upon activation in an mTORC1-dependent manner, and this is essential for MAIT cell IFN-γ production. Furthermore, we show that mTORC1 activation is dependent on amino acid transport via SLC7A5. In obese patients, using RNA sequencing, Seahorse analysis, and a series of in vitro experiments, we demonstrate that MAIT cells isolated from obese adults display defective glycolytic metabolism, mTORC1 signaling, and SLC7A5 aa transport. Collectively, our data detail the intrinsic metabolic pathways controlling MAIT cell cytokine production and highlight mTORC1 as an important metabolic regulator that is impaired in obesity, leading to altered MAIT cell responses.
Collapse
Affiliation(s)
- Aisling O'Brien
- Obesity Immunology Group, Education and Research Centre, St. Vincent's University Hospital, University College Dublin, Dublin 4, Ireland
| | - Roisin M Loftus
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Marta M Pisarska
- National Children's Research Centre, Dublin 12, Ireland.,Department of Biology, Institute of Immunology, Maynooth University, Maynooth, County Kildare W23 F2K8, Ireland
| | - Laura M Tobin
- Obesity Immunology Group, Education and Research Centre, St. Vincent's University Hospital, University College Dublin, Dublin 4, Ireland.,National Children's Research Centre, Dublin 12, Ireland
| | - Ronan Bergin
- Department of Biology, Institute of Immunology, Maynooth University, Maynooth, County Kildare W23 F2K8, Ireland
| | - Nicole A W Wood
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland.,Department of Biology, Institute of Immunology, Maynooth University, Maynooth, County Kildare W23 F2K8, Ireland
| | - Cathriona Foley
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Arimin Mat
- Obesity Immunology Group, Education and Research Centre, St. Vincent's University Hospital, University College Dublin, Dublin 4, Ireland
| | - Frances C Tinley
- Department of Biology, Institute of Immunology, Maynooth University, Maynooth, County Kildare W23 F2K8, Ireland
| | - Ciaran Bannan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Gary Sommerville
- Dana Farber Cancer Institute, Molecular Biology Core Facilities, Boston, MA 02215
| | - Natacha Veerapen
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Linda V Sinclair
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Paul N Moynagh
- Department of Biology, Institute of Immunology, Maynooth University, Maynooth, County Kildare W23 F2K8, Ireland.,School of Medicine, Dentistry and Biomedical Sciences, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast BT9 7BL, United Kingdom
| | - Lydia Lynch
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland.,School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 4, Ireland; and.,School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin 2, Ireland
| | - Donal O'Shea
- Obesity Immunology Group, Education and Research Centre, St. Vincent's University Hospital, University College Dublin, Dublin 4, Ireland.,National Children's Research Centre, Dublin 12, Ireland.,Department of Biology, Institute of Immunology, Maynooth University, Maynooth, County Kildare W23 F2K8, Ireland
| | - Andrew E Hogan
- Obesity Immunology Group, Education and Research Centre, St. Vincent's University Hospital, University College Dublin, Dublin 4, Ireland; .,National Children's Research Centre, Dublin 12, Ireland.,Department of Biology, Institute of Immunology, Maynooth University, Maynooth, County Kildare W23 F2K8, Ireland
| |
Collapse
|
16
|
Bora T, Khan SA. Evaluation of Th1 and Th2 immune response in clinical and sub-clinical scrub typhus infection. Hum Immunol 2019; 80:503-509. [PMID: 30904436 DOI: 10.1016/j.humimm.2019.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 11/19/2022]
Abstract
Scrub typhus (ST), caused by a gram negative intracellular bacteria- Orientia tsutsugamushi, is one among the leading causes of febrile illness across Southeast Asia, including India. Clinical presentation can vary from asymptomatic to severely fatal. Th1-cell mediated immunity has been suggested to play an important role against ST infection in animal models. However, human data on protective immunity are limited. The present study was undertaken to identify host immune correlates that could confer protection in individuals that remain clinically asymptomatic/sub-clinical. Serum cytokine profiling and mRNA expression levels of Th1 (TNF-α, IFN-γ, IL-2) and Th2 (IL-10, IL-6, IL-4) cytokines was studied amongst the clinical and sub-clinical infections. It was observed that a Th1/Th2 pattern is not involved in human ST infection irrespective of being a symptomatic or asymptomatic presentation. However, significant difference was observed in IL-10 serum and gene expression levels. This study suggests a possible role of IL-10 in disease phenotypic presentation. Over-production of IL-10 was found to be a significant factor contributing to the severity of the disease whereas a protective immune mechanism might exist with a low level of IL-10 in ST infection.
Collapse
Affiliation(s)
- Trishna Bora
- Medical Entomology, Arbovirology and Rickettsial Disease Division, Indian Council of Medical Research- Regional Medical Research Centre, N.E. Region, Post box no. 105, Dibrugarh-786001, Assam, India
| | - Siraj Ahmed Khan
- Medical Entomology, Arbovirology and Rickettsial Disease Division, Indian Council of Medical Research- Regional Medical Research Centre, N.E. Region, Post box no. 105, Dibrugarh-786001, Assam, India.
| |
Collapse
|
17
|
Meermeier EW, Harriff MJ, Karamooz E, Lewinsohn DM. MAIT cells and microbial immunity. Immunol Cell Biol 2018; 96:607-617. [PMID: 29451704 PMCID: PMC6045460 DOI: 10.1111/imcb.12022] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 12/18/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells, the most abundant T-cell subset in humans, are increasingly being recognized for their importance in microbial immunity. MAIT cells accumulate in almost every mucosal tissue examined, including the lung, liver and intestinal tract, where they can be activated through T-cell receptor (TCR) triggering as well as cytokine stimulation in response to a host of microbial products. In this review, we specifically discuss MAIT cell responses to bacterial and fungal infections, with a focus on responses that are both MR1-dependent and -independent, the evidence for diversity in MAIT TCR usage in response to discrete microbial products, protective immunity induced by MAIT cells, and MAIT cell antimicrobial functions in the context of these infections.
Collapse
Affiliation(s)
- Erin W Meermeier
- Department of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
- Research and Development, VA Portland Health Care Center, Portland, OR, 97239, USA
| | - Melanie J Harriff
- Department of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
- Research and Development, VA Portland Health Care Center, Portland, OR, 97239, USA
| | - Elham Karamooz
- Department of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
- Research and Development, VA Portland Health Care Center, Portland, OR, 97239, USA
| | - David M Lewinsohn
- Department of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
- Research and Development, VA Portland Health Care Center, Portland, OR, 97239, USA
| |
Collapse
|
18
|
Díaz FE, Abarca K, Kalergis AM. An Update on Host-Pathogen Interplay and Modulation of Immune Responses during Orientia tsutsugamushi Infection. Clin Microbiol Rev 2018; 31:e00076-17. [PMID: 29386235 PMCID: PMC5967693 DOI: 10.1128/cmr.00076-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The obligate intracellular bacterium Orientia tsutsugamushi is the causative agent of scrub typhus in humans, a serious mite-borne disease present in a widespread area of endemicity, which affects an estimated 1 million people every year. This disease may exhibit a broad range of presentations, ranging from asymptomatic to fatal conditions, with the latter being due to disseminated endothelial infection and organ injury. Unique characteristics of the biology and host-pathogen interactions of O. tsutsugamushi, including the high antigenic diversity among strains and the highly variable, short-lived memory responses developed by the host, underlie difficulties faced in the pursuit of an effective vaccine, which is an imperative need. Other factors that have hindered scientific progress relative to the infectious mechanisms of and the immune response triggered by this bacterium in vertebrate hosts include the limited number of mechanistic studies performed on animal models and the lack of genetic tools currently available for this pathogen. However, recent advances in animal model development are promising to improve our understanding of host-pathogen interactions. Here, we comprehensively discuss the recent advances in and future perspectives on host-pathogen interactions and the modulation of immune responses related to this reemerging disease, highlighting the role of animal models.
Collapse
Affiliation(s)
- Fabián E Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katia Abarca
- Departamento en Enfermedades Infecciosas e Inmunología Pediátricas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
19
|
Xiao X, Cai J. Mucosal-Associated Invariant T Cells: New Insights into Antigen Recognition and Activation. Front Immunol 2017; 8:1540. [PMID: 29176983 PMCID: PMC5686390 DOI: 10.3389/fimmu.2017.01540] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells, a novel subpopulation of innate-like T cells that express an invariant T cell receptor (TCR)α chain and a diverse TCRβ chain, can recognize a distinct set of small molecules, vitamin B metabolites, derived from some bacteria, fungi but not viruses, in the context of an evolutionarily conserved major histocompatibility complex-related molecule 1 (MR1). This implies that MAIT cells may play unique and important roles in host immunity. Although viral antigens are not recognized by this limited TCR repertoire, MAIT cells are known to be activated in a TCR-independent mechanism during some viral infections, such as hepatitis C virus and influenza virus. In this article, we will review recent works in MAIT cell antigen recognition, activation and the role MAIT cells may play in the process of bacterial and viral infections and pathogenesis of non-infectious diseases.
Collapse
Affiliation(s)
- Xingxing Xiao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
20
|
Kumar V, Ahmad A. Role of MAIT cells in the immunopathogenesis of inflammatory diseases: New players in old game. Int Rev Immunol 2017; 37:90-110. [PMID: 29106304 DOI: 10.1080/08830185.2017.1380199] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Current advances in immunology have led to the identification of a population of novel innate immune T cells, called mucosa-associated invariant T (MAIT) cells. The cells in humans express an invariant TCRα chain (Vα7.2-Jα33) paired with a limited subset of TCRβ chains (Vβ2, 13 and 22), are restricted by the MHC class I (MH1)-related (MR)-1, and recognize molecules that are produced in the bacterial riboflavin (vitamin B2) biosynthetic pathway. They are present in the circulation, liver and at various mucosal sites (i.e. intestine, lungs and female reproductive tract, etc.). They kill host cells infected with bacteria and yeast, and secrete soluble mediators such as TNF-α, IFN-γ, IL-17, etc. The cells regulate immune responses and inflammation associated with a wide spectrum of acute and chronic diseases in humans. Since their discovery in 1993, significant advances have been made in understanding biology of MAIT cells and the potential role of these cells in the pathogenesis of autoimmune, inflammatory and infectious diseases as well as cancer in humans. The purpose of this review is to provide a current state of our knowledge about MAIT cell biology and delineate their role in autoimmune and inflammatory diseases (sterile or caused by infectious agents) and cancer in humans. A better understanding of the role of MAIT cells in human diseases may lead to novel ways of immunotherapies.
Collapse
Affiliation(s)
- Vijay Kumar
- a Department of Paediatrics and Child Care , Children's Health Queensland Clinical unit School of Medicine, Mater Research, Faculty of Medicine and Biomedical Sciences, University of Queensland , ST Lucia, Brisbane , Queensland , Australia
| | - Ali Ahmad
- b Laboratory of Innate Immunity, CHU Ste-Justine/Department of Microbiology , Infectious Diseases & Immunology, University of Montreal , Montreal , Quebec , Canada
| |
Collapse
|
21
|
Salou M, Franciszkiewicz K, Lantz O. MAIT cells in infectious diseases. Curr Opin Immunol 2017; 48:7-14. [DOI: 10.1016/j.coi.2017.07.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 01/03/2023]
|
22
|
Increased level and interferon-γ production of circulating natural killer cells in patients with scrub typhus. PLoS Negl Trop Dis 2017; 11:e0005815. [PMID: 28750012 PMCID: PMC5549767 DOI: 10.1371/journal.pntd.0005815] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/08/2017] [Accepted: 07/19/2017] [Indexed: 12/27/2022] Open
Abstract
Background Natural killer (NK) cells are essential immune cells against several pathogens. Not much is known regarding the roll of NK cells in Orientia tsutsugamushi infection. Thus, this study aims to determine the level, function, and clinical relevance of NK cells in patients with scrub typhus. Methodology/Principal findings This study enrolled fifty-six scrub typhus patients and 56 health controls (HCs). The patients were divided into subgroups according to their disease severity. A flow cytometry measured NK cell level and function in peripheral blood. Circulating NK cell levels and CD69 expressions were significantly increased in scrub typhus patients. Increased NK cell levels reflected disease severity. In scrub typhus patients, tests showed their NK cells produced higher amounts of interferon (IFN)-γ after stimulation with interleukin (IL)-12 and IL-18 relative to those of HCs. Meanwhile, between scrub typhus patients and HCs, the cytotoxicity and degranulation of NK cells against K562 were comparable. CD69 expressions were recovered to the normal levels in the remission phase. Conclusions This study shows that circulating NK cells are activated and numerically increased, and they produced more IFN-γ in scrub typhus patients. Orientia tsutsugamushi is an obligate intracellular bacterium. It primarily invades endothelial cells, macrophages, monocytes, and dendritic cells. Plasma concentrations of interferon (IFN)-γ, several cytokines and chemokines, which are known to recruit natural killer (NK) cells and T cells, were found to be increased in scrub typhus patients. NK cells are known as essential immune cells against several pathogens. In murine models of Rickettsial infection, the clearance of bacteria was found to be significantly associated with NK cell activity. Not much is known regarding NK cells’ role in O. tsutsugamushi infection in humans. This study is very possibly the first to measure NK cells’ level and function of in scrub typhus patients, or to examine NK cell levels’ clinical relevance. This study’s results demonstrate that circulating NK cells are activated and numerically increased in scrub typhus patients. Notably, increased production IFN-γ by NK cells of scrub typhus patients suggests their contribution to enhancement of intracellular bacterial killing in infected antigen presenting cells. Moreover, disease severity corresponded to increased NK cell levels. These findings importantly suggest that NK cells play a role in protecting the host against O. tsutsugamushi infection.
Collapse
|
23
|
Jo YG, Choi HJ, Kim JC, Cho YN, Kang JH, Jin HM, Kee SJ, Park YW. Deficiencies of Circulating Mucosal-associated Invariant T Cells and Natural Killer T Cells in Patients with Multiple Trauma. J Korean Med Sci 2017; 32:750-756. [PMID: 28378547 PMCID: PMC5383606 DOI: 10.3346/jkms.2017.32.5.750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/05/2017] [Indexed: 12/18/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells and natural killer T (NKT) cells are known to play important roles in autoimmunity, infectious diseases and cancers. However, little is known about the roles of these invariant T cells in multiple trauma. The purposes of this study were to examine MAIT and NKT cell levels in patients with multiple trauma and to investigate potential relationships between these cell levels and clinical parameters. The study cohort was composed of 14 patients with multiple trauma and 22 non-injured healthy controls (HCs). Circulating MAIT and NKT cell levels in the peripheral blood were measured by flow cytometry. The severity of injury was categorised according to the scoring systems, such as Acute Physiology and Chronic Health Evaluation (APACHE) II score, Simplified Acute Physiology Score (SAPS) II, and Injury Severity Score (ISS). Circulating MAIT and NKT cell numbers were significantly lower in multiple trauma patients than in HCs. Linear regression analysis showed that circulating MAIT cell numbers were significantly correlated with age, APACHE II, SAPS II, ISS category, hemoglobin, and platelet count. NKT cell numbers in the peripheral blood were found to be significantly correlated with APACHE II, SAPS II, and ISS category. This study shows numerical deficiencies of circulating MAIT cells and NKT cells in multiple trauma. In addition, these invariant T cell deficiencies were found to be associated with disease severity. These findings provide important information for predicting the prognosis of multiple trauma.
Collapse
Affiliation(s)
- Young Goun Jo
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Hyun Jung Choi
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Jung Chul Kim
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Young Nan Cho
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Jeong Hwa Kang
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Hye Mi Jin
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Seung Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Yong Wook Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Korea.
| |
Collapse
|