1
|
Wen YT, Cheng AC, Podin Y. Precision Medicine for Sepsis Management in Low- and Middle-Income Countries-Melioidosis as a Model? Am J Respir Crit Care Med 2024; 209:237-238. [PMID: 38055331 PMCID: PMC10840778 DOI: 10.1164/rccm.202311-2056ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023] Open
Affiliation(s)
- Yeo Tsin Wen
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore, Singapore
- National Centre for Infectious Diseases Singapore, Singapore
- Department of Infectious Diseases Tan Tock Seng Hospital Singapore, Singapore
| | - Allen C Cheng
- Professor/Director Infectious Diseases Monash Health School of Clinical Sciences Monash University Melbourne, Victoria, Australia
- Director of Infection Prevention and Healthcare Epidemiology Professor in Infectious Diseases Epidemiology Alfred Hospital Melbourne, Victoria, Australia
| | - Yuwana Podin
- Institute of Health and Community Medicine University of Malaysia, Sarawak Sarawak, Malaysia
| |
Collapse
|
2
|
Kappagoda CN, Senevirathne R, Jayasundara D, Warnasekara Y, Srimantha L, De Silva L, Agampodi SB. The human Toll-like receptor 2 (TLR2) response during pathogenic Leptospira infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567338. [PMID: 38014008 PMCID: PMC10680769 DOI: 10.1101/2023.11.16.567338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background Human innate immune responses are triggered through the interaction of human pattern recognition receptors and pathogen-associated molecular patterns. The role of toll-like receptor2 (TLR2) in mice innate immune response to leptospirosis is well established, while human studies are limited. The present study aimed to determine the TLR2 response among confirmed cases of leptospirosis. Methodology/Principle findings The study has two components. Clinically suspected patients of leptospirosis were confirmed using a previously validated qPCR assay. Total RNA was extracted from patients' RNA-stabilized whole blood samples. Human TLR2 gene expression (RT-qPCR) analysis was carried out using an exon-exon spanning primer pair, using CFX Maestro™ software. The first set of patient samples was used to calculate the Relative Normalized Expression (ΔΔCq value) of the TLR2 gene in comparison to a healthy control sample and normalized by the reference gene GAPDH (Glyceraldehyde-3-phosphate dehydrogenase). Secondly, recruited patient samples were subjected to TLR2 gene expression analysis and compared to healthy controls and normalized by the reference genes Beta-2-microglobulin(B2M), Hypoxanthine phosphoribosyltransferase 1 (HPRT 1).In the initial cohort of 64 confirmed leptospirosis cases, 18 were selected for human TLR2 gene expression analysis based on criteria of leptospiremia and RNA yield. Within this group, one individual exhibited a down-regulation of TLR2 gene (Expression/ΔΔCq=0.01352), whereas the remaining subjects presented no significant change in gene expression. In a subsequent cohort of 23 confirmed cases, 13 were chosen for similar analysis. Among these, three patients demonstrated down-regulation of TLR2 gene expression, with Expression/ΔΔCq values of 0.86574, 0.47200, and 0.28579, respectively. No TLR2 gene expression was noted in the other patients within this second group. Conclusions Our investigation into the acute phase of leptospirosis using human clinical samples has revealed a downregulation of TLR2 gene expression. This observation contrasts to the upregulation commonly reported in the majority of in-vitro and in-vivo studies of Leptospira infection. These preliminary findings prompt a need for further research to explore the mechanisms underlying TLR2's role in the pathogenesis of leptospirosis, which may differ in clinical settings compared to laboratory models. Author Summary The human immune system employs pattern recognition receptors like toll-like receptor 2 (TLR2) to detect and combat infections such as leptospirosis. While TLR2's role is well-documented in mice, its function in the human response to leptospirosis remains unclear. Our study evaluated TLR2 activity in patients with confirmed leptospirosis. We conducted a genetic analysis of blood samples from these patients, comparing TLR2 gene activity against healthy individuals, with standard reference genes for accuracy. Contrary to expectations and existing laboratory data, we observed a decrease in TLR2 activity in some patients. This suggests that human TLR2 responses in actual infections may diverge from established laboratory models. These findings indicate a need for further study to understand the human immune response to leptospirosis, which may significantly differ from that observed in controlled experimental settings.
Collapse
|
3
|
dela Cruz MCP, Paner JRO, Nevado JB. Identification of Potential Prognosticators for Sepsis through Expression Analysis of Transcriptomic Data from Sepsis Survivors and Nonsurvivors. ACTA MEDICA PHILIPPINA 2023; 57:11-23. [PMID: 39483296 PMCID: PMC11522635 DOI: 10.47895/amp.vi0.3934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background Infection can be severely complicated by a dysregulated, whole-body inflammatory response known as sepsis. While previous research showed that genetic predisposition is linked to outcome differences, current patient characterization fails to determine which septic patients have greater tendencies to develop into severe sepsis or go into septic shock. As such, the identification of prognostic biomarkers may assist in identifying these high-risk patients and help improve the clinical management of the disease. Objective In this study, we aimed to identify molecular patterns involved in sepsis. We also aimed to identify essential genes associated with the disease's survival which could serve as potential prognosticators for the disease. Methods We used weighted gene co-expression analysis (WGCNA) to analyze GSE63042, an RNA expression dataset from 129 patients with systemic inflammatory response syndrome or sepsis, including 78 sepsis survivors and 28 sepsis nonsurvivors. This analysis included identifying gene modules that differentiate sepsis survivors from nonsurvivors and qualitatively assessing differentially expressed genes. We then used STRING's protein-protein interaction and gene ontology analysis to determine the functional and pathway relationships of the genes in the top modules. Lastly, we assessed the prognosticator abilities of the hub genes using ROC analysis. Results We found four diverse co-expression gene modules significantly associated with sepsis survival. Our differential gene expression analysis, combined with protein-protein interaction and gene ontology analysis, revealed that the hub genes of these modules - TAF10, SNAPIN, PSME2, PSMB9, JUNB, and CEBPD - may serve as candidate markers for sepsis prognosis. These markers were significantly downregulated in sepsis nonsurvivors compared with sepsis survivors. Conclusion Weighted gene co-expression analysis, gene ontology enrichment analysis, and proteinprotein network interaction analysis of transcriptomic data from sepsis survivors and nonsurvivors revealed TAF10, SNAPIN, PSME2, PSMB9, JUNB, and CEBPD as potential biomarkers for sepsis prognosis. These genes are associated with functions related to proper immune response, and their downregulation in sepsis nonsurvivors suggests eventual immune exhaustion in late sepsis. Further analyses, however, are necessary to validate their roles in sepsis progression and patient survival.
Collapse
Affiliation(s)
- Ma. Carmela P. dela Cruz
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila
| | - Joseph Romeo O. Paner
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila
| | - Jose B. Nevado
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila
- Institute of Human Genetics, National Institutes of Health, University of the Philippines Manila
| |
Collapse
|
4
|
Wrede D, Bordak M, Abraham Y, Mehedi M. Pulmonary Pathogen-Induced Epigenetic Modifications. EPIGENOMES 2023; 7:13. [PMID: 37489401 PMCID: PMC10366755 DOI: 10.3390/epigenomes7030013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023] Open
Abstract
Epigenetics generally involves genetic control by factors other than our own DNA sequence. Recent research has focused on delineating the mechanisms of two major epigenetic phenomena: DNA methylation and histone modification. As epigenetics involves many cellular processes, it is no surprise that it can also influence disease-associated gene expression. A direct link between respiratory infections, host cell epigenetic regulations, and chronic lung diseases is still unknown. Recent studies have revealed bacterium- or virus-induced epigenetic changes in the host cells. In this review, we focused on respiratory pathogens (viruses, bacteria, and fungi) induced epigenetic modulations (DNA methylation and histone modification) that may contribute to lung disease pathophysiology by promoting host defense or allowing pathogen persistence.
Collapse
Affiliation(s)
| | | | | | - Masfique Mehedi
- School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (D.W.); (M.B.); (Y.A.)
| |
Collapse
|
5
|
Rajeev R, Dwivedi AP, Sinha A, Agarwaal V, Dev RR, Kar A, Khosla S. Epigenetic interaction of microbes with their mammalian hosts. J Biosci 2021. [PMID: 34728591 PMCID: PMC8550911 DOI: 10.1007/s12038-021-00215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The interaction of microbiota with its host has the ability to alter the cellular functions of both, through several mechanisms. Recent work, from many laboratories including our own, has shown that epigenetic mechanisms play an important role in the alteration of these cellular functions. Epigenetics broadly refers to change in the phenotype without a corresponding change in the DNA sequence. This change is usually brought by epigenetic modifications of the DNA itself, the histone proteins associated with the DNA in the chromatin, non-coding RNA or the modifications of the transcribed RNA. These modifications, also known as epigenetic code, do not change the DNA sequence but alter the expression level of specific genes. Microorganisms seem to have learned how to modify the host epigenetic code and modulate the host transcriptome in their favour. In this review, we explore the literature that describes the epigenetic interaction of bacteria, fungi and viruses, with their mammalian hosts.
Collapse
|
6
|
Mariappan V, Vellasamy KM, Barathan M, Girija ASS, Shankar EM, Vadivelu J. Hijacking of the Host's Immune Surveillance Radars by Burkholderia pseudomallei. Front Immunol 2021; 12:718719. [PMID: 34456925 PMCID: PMC8384953 DOI: 10.3389/fimmu.2021.718719] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/12/2021] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei (B. pseudomallei) causes melioidosis, a potentially fatal disease for which no licensed vaccine is available thus far. The host-pathogen interactions in B. pseudomallei infection largely remain the tip of the iceberg. The pathological manifestations are protean ranging from acute to chronic involving one or more visceral organs leading to septic shock, especially in individuals with underlying conditions similar to COVID-19. Pathogenesis is attributed to the intracellular ability of the bacterium to ‘step into’ the host cell’s cytoplasm from the endocytotic vacuole, where it appears to polymerize actin filaments to spread across cells in the closer vicinity. B. pseudomallei effectively evades the host’s surveillance armory to remain latent for prolonged duration also causing relapses despite antimicrobial therapy. Therefore, eradication of intracellular B. pseudomallei is highly dependent on robust cellular immune responses. However, it remains ambiguous why certain individuals in endemic areas experience asymptomatic seroconversion, whereas others succumb to sepsis-associated sequelae. Here, we propose key insights on how the host’s surveillance radars get commandeered by B. pseudomallei.
Collapse
Affiliation(s)
- Vanitha Mariappan
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Muttiah Barathan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - A S Smiline Girija
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Esaki M Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Yimthin T, Cliff JM, Phunpang R, Ekchariyawat P, Kaewarpai T, Lee JS, Eckold C, Andrada M, Thiansukhon E, Tanwisaid K, Chuananont S, Morakot C, Sangsa N, Silakun W, Chayangsu S, Buasi N, Day N, Lertmemongkolchai G, Chantratita W, Eoin West T, Chantratita N. Blood transcriptomics to characterize key biological pathways and identify biomarkers for predicting mortality in melioidosis. Emerg Microbes Infect 2021; 10:8-18. [PMID: 33256556 PMCID: PMC7832033 DOI: 10.1080/22221751.2020.1858176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melioidosis is an often lethal tropical disease caused by the Gram-negative bacillus, Burkholderia pseudomallei. The study objective was to characterize transcriptomes in melioidosis patients and identify genes associated with outcome. Whole blood RNA-seq was performed in a discovery set of 29 melioidosis patients and 3 healthy controls. Transcriptomic profiles of patients who did not survive to 28 days were compared with patients who survived and healthy controls, showing 65 genes were significantly up-regulated and 218 were down-regulated in non-survivors compared to survivors. Up-regulated genes were involved in myeloid leukocyte activation, Toll-like receptor cascades and reactive oxygen species metabolic processes. Down-regulated genes were hematopoietic cell lineage, adaptive immune system and lymphocyte activation pathways. RT-qPCR was performed for 28 genes in a validation set of 60 melioidosis patients and 20 healthy controls, confirming differential expression. IL1R2, GAS7, S100A9, IRAK3, and NFKBIA were significantly higher in non-survivors compared with survivors (P < 0.005) and healthy controls (P < 0.0001). The AUROCC of these genes for mortality discrimination ranged from 0.80-0.88. In survivors, expression of IL1R2, S100A9 and IRAK3 genes decreased significantly over 28 days (P < 0.05). These findings augment our understanding of this severe infection, showing expression levels of specific genes are potential biomarkers to predict melioidosis outcomes.
Collapse
Affiliation(s)
- Thatcha Yimthin
- Faculty of Tropical Medicine, Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Jacqueline Margaret Cliff
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - Rungnapa Phunpang
- Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Peeraya Ekchariyawat
- Faculty of Tropical Medicine, Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand.,Faculty of Public Health, Department of Microbiology, Mahidol University, Bangkok, Thailand
| | - Taniya Kaewarpai
- Faculty of Tropical Medicine, Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Ji-Sook Lee
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - Clare Eckold
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Megan Andrada
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | | | | | | | - Chumpol Morakot
- Department of Medicine, Mukdahan Hospital, Mukdahan, Thailand
| | | | | | | | - Noppol Buasi
- Department of Medicine, Sisaket Hospital, Sisaket, Thailand
| | - Nicholas Day
- Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ganjana Lertmemongkolchai
- Faculty of Associated Medical Science, Department of Clinical Immunology, Khon Kaen University, Khon Kaen, Thailand.,The Centre for Research and Development of Medical Diagnostic Laboratories, Khon Kaen University, Khon Kaen, Thailand
| | - Wasun Chantratita
- Faculty of Medicine Ramathibodi Hospital, Center for Medical Genomics, Mahidol University, Bangkok, Thailand
| | - T Eoin West
- Division of Pulmonary and Critical Care Medicine, Harborview Medical Center, University of Washington, Seattle, Washington, USA
| | - Narisara Chantratita
- Faculty of Tropical Medicine, Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand.,Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Rajeev R, Dwivedi AP, Sinha A, Agarwaal V, Dev RR, Kar A, Khosla S. Epigenetic interaction of microbes with their mammalian hosts. J Biosci 2021; 46:94. [PMID: 34728591 PMCID: PMC8550911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/20/2021] [Indexed: 02/11/2023]
Abstract
The interaction of microbiota with its host has the ability to alter the cellular functions of both, through several mechanisms. Recent work, from many laboratories including our own, has shown that epigenetic mechanisms play an important role in the alteration of these cellular functions. Epigenetics broadly refers to change in the phenotype without a corresponding change in the DNA sequence. This change is usually brought by epigenetic modifications of the DNA itself, the histone proteins associated with the DNA in the chromatin, non-coding RNA or the modifications of the transcribed RNA. These modifications, also known as epigenetic code, do not change the DNA sequence but alter the expression level of specific genes. Microorganisms seem to have learned how to modify the host epigenetic code and modulate the host transcriptome in their favour. In this review, we explore the literature that describes the epigenetic interaction of bacteria, fungi and viruses, with their mammalian hosts.
Collapse
Affiliation(s)
- Ramisetti Rajeev
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Ambey Prasad Dwivedi
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Anunay Sinha
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Viplove Agarwaal
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | | | - Anjana Kar
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Sanjeev Khosla
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Institute of Microbial Technology (IMTech), Chandigarh, India
| |
Collapse
|
9
|
Saikh KU, Ranji CM, Ulrich RG, Corea E, De Silva AD, Natesan M. An increase in p62/NBR1 levels in melioidosis patients of Sri Lanka exhibit a characteristic of potential host biomarker. J Med Microbiol 2020; 69:1240-1248. [PMID: 32815800 PMCID: PMC7660894 DOI: 10.1099/jmm.0.001242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction. Melioidosis, caused by Burkholderia pseudomallei, in endemic areas, poses a challenge for treating the diseased populations without accurate diagnosis, and the disease-specific biomarkers linked with the infection have yet to be reported. Due to the invasive nature of the causative agent, Burkholderia pseudomallei, host innate effector mechanisms, including autophagy are known to be activated, resulting in differential expression of cellular proteins and immune markers. Identification of a disease-specific biomarker associated with B. pseudomallei infection will be helpful to facilitate rapid confirmation of melioidosis, which would enable early treatment and therapeutic success.Aim. We aimed to assess the levels of a host autophagy component, p62/NBR1, which function as a cargo-receptor in the process of autophagy activation leading to the degradation of ubiquitin-coated intracellular bacteria in which p62/NBR1 itself is degraded in the clearance of the pathogen. We further probed the extent of intracellular p62/NBR1 degradation and assessed its potential as a melioidosis biomarker.Methodology. We analysed peripheral blood mononuclear cell (PBMC) lysates using an ELISA-based assay for detecting cytosolic autophagy-related proteins p62/NBR1. We measured p62/NBR1 levels in diseased (confirmed B. pseudomallei infection) and non -diseased populations and utilized receiver operating characteristic (ROC) curve and max Youden index analysis for evaluating potential disease biomarker characteristics.Results. Our results revealed a three to fivefold increase in p62/NBR1 levels confirmed melioidosis cases compared to uninfected healthy donors. Comparable to p62/NBR1, levels of cytosolic LC3-I levels also increased, whereas the levels of degraded membrane bound form LC3-II was low, suggesting autophagy deficiency. Proinflammatory serum cytokine response, particularly IL-6, was consistently higher alongside B. pseudomallei infection in comparison to healthy controls.Conclusions. ROC curve and max Youden index analysis suggest that increased p62/NBR1 levels in diseased populations display characteristics of a potential disease biomarker in melioidosis and illustrates that an elevated p62/NBR1 level, in conjunction with B. pseudomallei infection associated with autophagy deficiency.
Collapse
Affiliation(s)
- Kamal U. Saikh
- Department of Immunology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Cyra M. Ranji
- Department of Immunology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Robert G. Ulrich
- Department of Immunology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Enoka Corea
- Department of Microbiology, University of Colombo, Colombo, Sri Lanka
| | - Aruna Dharshan De Silva
- Division of Vaccine Discovery, La Jolla Institute of Allergy and Immunology, La Jolla, CA, USA
- Department of Paraclinical Sciences, Faculty of Medicine, Kotelawala Defence University, Ratmalana, Sri Lanka
| | - Mohan Natesan
- Department of Immunology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| |
Collapse
|
10
|
Adapting Microarray Gene Expression Signatures for Early Melioidosis Diagnosis. J Clin Microbiol 2020; 58:JCM.01906-19. [PMID: 32350042 DOI: 10.1128/jcm.01906-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/17/2020] [Indexed: 12/24/2022] Open
Abstract
Melioidosis is caused by Burkholderia pseudomallei and is predominantly seen in tropical regions. The clinical signs and symptoms of the disease are nonspecific and often result in misdiagnosis, failure of treatment, and poor clinical outcome. Septicemia with septic shock is the most common cause of death, with mortality rates above 40%. Bacterial culture is the gold standard for diagnosis, but it has low sensitivity and takes days to produce definitive results. Early laboratory diagnosis can help guide physicians to provide treatment specific to B. pseudomallei In our study, we adapted host gene expression signatures obtained from microarray data of B. pseudomallei-infected cases to develop a real-time PCR diagnostic test using two differentially expressed genes, AIM2 (absent in melanoma 2) and FAM26F (family with sequence similarity 26, member F). We tested blood from 33 patients with B. pseudomallei infections and 29 patients with other bacterial infections to validate the test and determine cutoff values for use in a cascading diagnostic algorithm. Differentiation of septicemic melioidosis from other sepsis cases had a sensitivity of 82%, specificity of 93%, and negative and positive predictive values (NPV and PPV) of 82% and 93%, respectively. Separation of cases likely to be melioidosis from those unlikely to be melioidosis in nonbacteremic situations showed a sensitivity of 40%, specificity of 54%, and NPV and PPV of 44% and 50%, respectively. We suggest that our AIM2 and FAM26F expression combination algorithm could be beneficial for early melioidosis diagnosis, offering a result within 24 h of admission.
Collapse
|
11
|
Ward MD, Brueggemann EE, Kenny T, Reitstetter RE, Mahone CR, Trevino S, Wetzel K, Donnelly GC, Retterer C, Norgren RB, Panchal RG, Warren TK, Bavari S, Cazares LH. Characterization of the plasma proteome of nonhuman primates during Ebola virus disease or melioidosis: a host response comparison. Clin Proteomics 2019; 16:7. [PMID: 30774579 PMCID: PMC6366079 DOI: 10.1186/s12014-019-9227-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Background In-depth examination of the plasma proteomic response to infection with a wide variety of pathogens can assist in the development of new diagnostic paradigms, while providing insight into the interdependent pathogenic processes which encompass a host’s immunological and physiological responses. Ebola virus (EBOV) causes a highly lethal infection termed Ebola virus disease (EVD) in primates and humans. The Gram negative non-spore forming bacillus Burkholderia pseudomallei (Bp) causes melioidosis in primates and humans, characterized by severe pneumonia with high mortality. We sought to examine the host response to infection with these two bio-threat pathogens using established animal models to provide information on the feasibility of pre-symptomatic diagnosis, since the induction of host molecular signaling networks can occur before clinical presentation and pathogen detection. Methods Herein we report the quantitative proteomic analysis of plasma collected at various times of disease progression from 10 EBOV-infected and 5 Bp-infected nonhuman primates (NHP). Our strategy employed high resolution LC–MS/MS and a peptide-tagging approach for relative protein quantitation. In each infection type, for all proteins with > 1.3 fold abundance change at any post-infection time point, a direct comparison was made with levels obtained from plasma collected daily from 5 naïve rhesus macaques, to determine the fold changes that were significant, and establish the natural variability of abundance for endogenous plasma proteins. Results A total of 41 plasma proteins displayed significant alterations in abundance during EBOV infection, and 28 proteins had altered levels during Bp infection, when compared to naïve NHPs. Many major acute phase proteins quantitated displayed similar fold-changes between the two infection types but exhibited different temporal dynamics. Proteins related to the clotting cascade, immune signaling and complement system exhibited significant differential abundance during infection with EBOV or Bp, indicating a specificity of the response. Conclusions These results advance our understanding of the global plasma proteomic response to EBOV and Bp infection in relevant primate models for human disease and provide insight into potential innate immune response differences between viral and bacterial infections. Electronic supplementary material The online version of this article (10.1186/s12014-019-9227-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael D Ward
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Ernst E Brueggemann
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Tara Kenny
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Raven E Reitstetter
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Christopher R Mahone
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Sylvia Trevino
- 2Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Kelly Wetzel
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Ginger C Donnelly
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Cary Retterer
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Robert B Norgren
- 3Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Rekha G Panchal
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Travis K Warren
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Sina Bavari
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Lisa H Cazares
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| |
Collapse
|
12
|
Nithichanon A, Rinchai D, Buddhisa S, Saenmuang P, Kewcharoenwong C, Kessler B, Khaenam P, Chetchotisakd P, Maillere B, Robinson J, Reynolds CJ, Boyton RJ, Altmann DM, Lertmemongkolchai G. Immune Control of Burkholderia pseudomallei--Common, High-Frequency T-Cell Responses to a Broad Repertoire of Immunoprevalent Epitopes. Front Immunol 2018; 9:484. [PMID: 29616023 PMCID: PMC5869189 DOI: 10.3389/fimmu.2018.00484] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/23/2018] [Indexed: 12/03/2022] Open
Abstract
Burkholderia pseudomallei (Bp) is an environmental bacterial pathogen that causes potentially lethal sepsis in susceptible individuals and is considered a Category B, Tier-1 biothreat agent. As such, it is crucial to gain an improved understanding of protective immunity and potential vaccine candidates. The nature of immune correlates dictating why most exposed individuals in endemic regions undergo asymptomatic seroconversion while others succumb to life-threatening sepsis is largely uncharted. Bp seroreactive, immunogenic proteins have previously been identified by antigen microarray. We here set out to conduct an analysis of T-cell recognition of the Bp immunome using serodominant antigens represented in the original antigen microarray, examining immune correlates of disease in healthy seropositive individuals and those with acute disease or in convalescence. By screening a library of 739 overlapping peptides representing the sequences of 20 different Bp antigens, we aimed to define immune correlates of protection at the level of immunoprevalent T-cell epitopes. Responses to a large number of epitopes were common in healthy seropositive individuals: we found remarkably broad responsiveness to Bp epitopes, with 235 of 739 peptides recognized by ≥80% of all tested donors. The cumulative response to Bp epitopes in healthy, seropositive, donors from this endemic region were of the order of thousands of spot forming cells per million cells, making Bp recognition a significant component of the T-cell repertoire. Noteworthy among our findings, analysis revealed 10 highly immunoprevalent T-cell epitopes, able to induce Bp-specific IFNγ responses that were high in responding T-cell frequency within the repertoire, and also common across individuals with different human leukocyte antigen types. Acute melioidosis patients showed poor T-cell responses to the immunoprevalent epitopes, but acquired responsiveness following recovery from infection. Our findings suggest that a large repertoire of CD4 T cells, high in frequency and with broad coverage of antigens and epitopes, is important in controlling Bp infection. This offers an attractive potential strategy for subunit or epitope-based vaccines.
Collapse
Affiliation(s)
- Arnone Nithichanon
- Centre for Research & Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Darawan Rinchai
- Centre for Research & Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Surachat Buddhisa
- Centre for Research & Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Pornpun Saenmuang
- Centre for Research & Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Chidchamai Kewcharoenwong
- Centre for Research & Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Bianca Kessler
- Centre for Research & Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Prasong Khaenam
- Centre for Research & Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | | | - Bernard Maillere
- Protein Engineering and Research Department, CEA Saclay, Gif-sur-Yvette, France
| | - John Robinson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | - Daniel M. Altmann
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Ganjana Lertmemongkolchai
- Centre for Research & Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|