1
|
Kim CG, Kim WK, Kim N, Pyung YJ, Park DJ, Lee JC, Cho CS, Chu H, Yun CH. Intranasal Immunization With Nanoparticles Containing an Orientia tsutsugamushi Protein Vaccine Candidate and a Polysorbitol Transporter Adjuvant Enhances Both Humoral and Cellular Immune Responses. Immune Netw 2023; 23:e47. [PMID: 38188601 PMCID: PMC10767547 DOI: 10.4110/in.2023.23.e47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 01/09/2024] Open
Abstract
Scrub typhus, a mite-borne infectious disease, is caused by Orientia tsutsugamushi. Despite many attempts to develop a protective strategy, an effective preventive vaccine has not been developed. The identification of appropriate Ags that cover diverse antigenic strains and provide long-lasting immunity is a fundamental challenge in the development of a scrub typhus vaccine. We investigated whether this limitation could be overcome by harnessing the nanoparticle-forming polysorbitol transporter (PST) for an O. tsutsugamushi vaccine strategy. Two target proteins, 56-kDa type-specific Ag (TSA56) and surface cell Ag A (ScaA) were used as vaccine candidates. PST formed stable nano-size complexes with TSA56 (TSA56-PST) and ScaA (ScaA-PST); neither exhibited cytotoxicity. The formation of Ag-specific IgG2a, IgG2b, and IgA in mice was enhanced by intranasal vaccination with TSA56-PST or ScaA-PST. The vaccines containing PST induced Ag-specific proliferation of CD8+ and CD4+ T cells. Furthermore, the vaccines containing PST improved the mouse survival against O. tsutsugamushi infection. Collectively, the present study indicated that PST could enhance both Ag-specific humoral immunity and T cell response, which are essential to effectively confer protective immunity against O. tsutsugamushi infection. These findings suggest that PST has potential for use in an intranasal vaccination strategy.
Collapse
Affiliation(s)
- Cheol Gyun Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Bio-MAX/N-Bio, Seoul National University, Seoul 08826, Korea
| | - Won Kyong Kim
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, National Institute of Health, Cheongju 28159, Korea
| | - Narae Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Young Jin Pyung
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Da-Jeong Park
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jeong-Cheol Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyuk Chu
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, National Institute of Health, Cheongju 28159, Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
- Institutes of Green-bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
- Interdisciplinary Programs in Agricultural Genomics, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
2
|
Inthawong M, Pinthong N, Thaiprakhong A, Wangrangsimakul T, Sunyakumthorn P, Hill J, Sonthayanon P, Paris DH, Dunachie SJ, Kronsteiner B. A whole blood intracellular cytokine assay optimised for field site studies demonstrates polyfunctionality of CD4+ T cells in acute scrub typhus. PLoS Negl Trop Dis 2023; 17:e0010905. [PMID: 36961865 PMCID: PMC10075457 DOI: 10.1371/journal.pntd.0010905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/05/2023] [Accepted: 02/25/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Assessment of cellular immune responses by combining intracellular cytokine staining and immunophenotyping using flow cytometry enables the simultaneous measurement of T cell phenotype and effector function in response to pathogens and vaccines. The use of whole blood samples rather than peripheral blood mononuclear cells avoids both the need for immediate processing and loss of functional antigen presenting cells due to processing and cryopreservation. Using whole blood provides the possibility to stimulate peripheral T cells in situ, and is more suitable for studies where sample volume is limited, such as those involving children, the elderly and critically ill patients. The aim of this study was to provide a robust tool for the assessment of antigen-specific T cell responses in a field site setting with limited resources. METHODOLOGY/PRINCIPLE FINDINGS We optimised a flow cytometry-based whole blood intracellular cytokine assay (WBA) with respect to duration of antigen stimulation and intracellular protein retention time. We demonstrate the ability of the WBA to capture polyfunctional T cell responses in the context of acute scrub typhus infection, by measuring IFN-γ, TNF and IL-2 in CD4+ and CD8+ T cells in response to the causative agent O. tsutsugamushi (OT). Using an optimised OT antigen preparation, we demonstrate the presence of polyfunctional antigen-specific memory CD4+ T cells in the blood of scrub typhus patients. CONCLUSIONS/SIGNIFICANCE In conclusion, this flow cytometry-based WBA is well-suited for use at field study sites, and enables the assessment of polyfunctional T cell responses to infectious agents and vaccines through delineation of antigen-specific cytokine secretion at the single cell level.
Collapse
Affiliation(s)
- Manutsanun Inthawong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Nattapon Pinthong
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Areerat Thaiprakhong
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tri Wangrangsimakul
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- NDM Center for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Piyanate Sunyakumthorn
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Jennifer Hill
- NDM Center for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Piengchan Sonthayanon
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Daniel H. Paris
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Medicine, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Susanna J. Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- NDM Center for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Barbara Kronsteiner
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- NDM Center for Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Inthawong M, Sunyakumthorn P, Wongwairot S, Anantatat T, Dunachie SJ, Im-Erbsin R, Jones JW, Mason CJ, Lugo LA, Blacksell SD, Day NPJ, Sonthayanon P, Richards AL, Paris DH. A time-course comparative clinical and immune response evaluation study between the human pathogenic Orientia tsutsugamushi strains: Karp and Gilliam in a rhesus macaque (Macaca mulatta) model. PLoS Negl Trop Dis 2022; 16:e0010611. [PMID: 35925895 PMCID: PMC9352090 DOI: 10.1371/journal.pntd.0010611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Scrub typhus is a vector-borne febrile illness caused by Orientia tsutsugamushi transmitted by the bite of Trombiculid mites. O. tsutsugamushi has a high genetic diversity and is increasingly recognized to have a wider global distribution than previously assumed. METHODOLOGY/PRINCIPLE FINDINGS We evaluated the clinical outcomes and host immune responses of the two most relevant human pathogenic strains of O. tsutsugamushi; Karp (n = 4) and Gilliam (n = 4) in a time-course study over 80 days post infection (dpi) in a standardized scrub typhus non-human primate rhesus macaque model. We observed distinct features in clinical progression and immune response between the two strains; Gilliam-infected macaques developed more pronounced systemic infection characterized by an earlier onset of bacteremia, lymph node enlargement, eschar lesions and higher inflammatory markers during the acute phase of infection, when compared to the Karp strain. C-reactive protein (CRP) plasma levels, interferon gamma (IFN-γ, interleukin-1 receptor antagonist (IL-1ra), IL-15 serum concentrations, CRP/IL10- and IFN-γ/IL-10 ratios correlated positively with bacterial load in blood, implying activation of the innate immune response and preferential development of a T helper-type 1 immune response. The O. tsutsugamushi-specific immune memory responses in cells isolated from skin and lymph nodes at 80 dpi were more markedly elevated in the Gilliam-infected macaques than in the Karp-infected group. The comparative cytokine response dynamics of both strains revealed significant up-regulation of IFN-γ, tumor necrosis factor (TNF), IL-15, IL-6, IL-18, regulatory IL-1ra, IL-10, IL-8 and granulocyte-colony-stimulating factor (G-CSF). These data suggest that the clinical outcomes and host immune responses to scrub typhus could be associated with counter balancing effects of pro- and anti-inflammatory cytokine-mediated responses. Currently, no data on characterized time-course comparisons of O. tsutsugamushi strains regarding measures of disease severity and immune response is available. Our study provides evidence for the strain-specificity of host responses in scrub typhus, which supports our understanding of processes at the initial inoculation site (eschar), systemic disease progression, protective and/or pathogenic host immune mechanisms and cellular immune memory function. CONCLUSIONS/SIGNIFICANCE This study characterised an improved intradermal rhesus macaque challenge model for scrub typhus, whereby the Gilliam strain infection associated with higher disease severity in the rhesus macaque model than the previous Karp strain infection. Difficulties associated with inoculum quantitation for obligate-intracellular bacteria were overcome by using functional inoculum titrations in outbred mice. The Gilliam-based rhesus macaque model provides improved endpoint measurements and contributes towards the identification of correlates of protection for future vaccine development.
Collapse
Affiliation(s)
- Manutsanun Inthawong
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Piyanate Sunyakumthorn
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Sirima Wongwairot
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tippawan Anantatat
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Susanna J. Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Rawiwan Im-Erbsin
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - James W. Jones
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Carl J. Mason
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Luis A. Lugo
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Stuart D. Blacksell
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Nicholas P. J. Day
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Piengchan Sonthayanon
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Allen L. Richards
- Viral & Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Daniel H. Paris
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
- Department of Medicine, Swiss Tropical and Public Health Institute, Faculty of Medicine, University of Basel, Switzerland
- Department of Clinical Research, Faculty of Medicine, University of Basel, Switzerland
| |
Collapse
|
4
|
Orientia tsutsugamushi selectively stimulates the C-type lectin receptor Mincle and type 1-skewed proinflammatory immune responses. PLoS Pathog 2021; 17:e1009782. [PMID: 34320039 PMCID: PMC8351992 DOI: 10.1371/journal.ppat.1009782] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/09/2021] [Accepted: 07/03/2021] [Indexed: 12/20/2022] Open
Abstract
Orientia tsutsugamushi is an obligately intracellular bacterium and the etiological agent of scrub typhus. The lung is a major target organ of infection, displaying type 1-skewed proinflammatory responses. Lung injury and acute respiratory distress syndrome are common complications of severe scrub typhus; yet, their underlying mechanisms remain unclear. In this study, we investigated whether the C-type lectin receptor (CLR) Mincle contributes to immune recognition and dysregulation. Following lethal infection in mice, we performed pulmonary differential expression analysis with NanoString. Of 671 genes examined, we found 312 significantly expressed genes at the terminal phase of disease. Mincle (Clec4e) was among the top 5 greatest up-regulated genes, accompanied with its signaling partners, type 1-skewing chemokines (Cxcr3, Ccr5, and their ligands), as well as Il27. To validate the role of Mincle in scrub typhus, we exposed murine bone marrow-derived macrophages (MΦ) to live or inactivated O. tsutsugamushi and analyzed a panel of CLRs and proinflammatory markers via qRT-PCR. We found that while heat-killed bacteria stimulated transitory Mincle expression, live bacteria generated a robust response in MΦ, which was validated by indirect immunofluorescence and western blot. Notably, infection had limited impact on other tested CLRs or TLRs. Sustained proinflammatory gene expression in MΦ (Cxcl9, Ccl2, Ccl5, Nos2, Il27) was induced by live, but not inactivated, bacteria; infected Mincle-/- MΦ significantly reduced proinflammatory responses compared with WT cells. Together, this study provides the first evidence for a selective expression of Mincle in sensing O. tsutsugamushi and suggests a potential role of Mincle- and IL-27-related pathways in host responses to severe infection. Additionally, it provides novel insight into innate immune recognition of this poorly studied bacterium.
Collapse
|
5
|
van Gorkom T, Voet W, Sankatsing SUC, Nijhuis CDM, Ter Haak E, Kremer K, Thijsen SFT. Prospective comparison of two enzyme-linked immunosorbent spot assays for the diagnosis of Lyme neuroborreliosis. Clin Exp Immunol 2020; 199:337-356. [PMID: 31665540 PMCID: PMC7008225 DOI: 10.1111/cei.13393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2019] [Indexed: 11/08/2022] Open
Abstract
Commercial cellular tests are used to diagnose Lyme borreliosis (LB), but studies on their clinical validation are lacking. This study evaluated the utility of an in‐house and a commercial enzyme‐linked immunosorbent spot (ELISpot) assay for the diagnosis of Lyme neuroborreliosis (LNB). Prospectively, peripheral blood mononuclear cells (PBMCs) were isolated from patients and controls and analysed using an in‐house Borrelia ELISpot assay and the commercial LymeSpot assay. B. burgdorferi B31 whole cell lysate and a mixture of outer surface proteins were used to stimulate the PBMCs and the numbers of interferon‐gamma‐secreting T cells were measured. Results were evaluated using receiver operating characteristic (ROC) curve analysis. Eighteen active and 12 treated LNB patients, 10 healthy individuals treated for an early (mostly cutaneous) manifestation of LB in the past and 47 untreated healthy individuals were included. Both assays showed a poor diagnostic performance with sensitivities, specificities, positive and negative predictive values ranging from 44.4–66.7%, 42.0–72.5%, 21.8–33.3% and 80.5–87.0%, respectively. The LymeSpot assay performed equally poorly when the calculation method of the manufacturer was used. Both the in‐house and the LymeSpot assay are unable to diagnose active LNB or to monitor antibiotic treatment success.
Collapse
Affiliation(s)
- T van Gorkom
- Department of Medical Microbiology and Immunology, Diakonessenhuis Hospital, Utrecht, the Netherlands.,Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - W Voet
- Department of Neurology, Diakonessenhuis Hospital, Utrecht, the Netherlands
| | - S U C Sankatsing
- Department of Internal Medicine, Diakonessenhuis Hospital, Utrecht, the Netherlands
| | - C D M Nijhuis
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - E Ter Haak
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - K Kremer
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - S F T Thijsen
- Department of Medical Microbiology and Immunology, Diakonessenhuis Hospital, Utrecht, the Netherlands
| |
Collapse
|
6
|
Soong L. Dysregulated Th1 Immune and Vascular Responses in Scrub Typhus Pathogenesis. THE JOURNAL OF IMMUNOLOGY 2019; 200:1233-1240. [PMID: 29431689 DOI: 10.4049/jimmunol.1701219] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/30/2017] [Indexed: 12/25/2022]
Abstract
Scrub typhus is an emerging, insect-transmitted disease caused by Orientia tsutsugamushi, a Gram- and LPS-negative bacterium that replicates freely within professional phagocytes and endothelial cells. Scrub typhus is prevalent with high mortality rates, but information regarding its molecular pathogenesis, microbial virulence determinants, and key immune responses is limited. Improved animal models have recently been developed that respectively resemble the pathological features of self-limiting or severe scrub typhus in humans. Strong activation of Th1 and CD8, but not Th2 and regulatory T, immune responses, accompanied by altered angiopoietin/Tie2-related regulation, are hallmarks of lethal infection in murine models. This review, based primarily on recent advances from clinical and experimental studies, highlights tissue- and endothelial cell-specific biomarkers that are indicative of immune dysregulation. The potential roles of neutrophils and damage-associated molecular pattern molecules at late stages of disease are discussed in the context of vascular leakage, pulmonary and renal injury, and scrub typhus pathogenesis.
Collapse
Affiliation(s)
- Lynn Soong
- Department of Microbiology and Immunology, Center for Tropical Diseases, Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555; and .,Department of Pathology, Center for Tropical Diseases, Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
7
|
Zhang X, Wang J, Lu J, Li R, Zhao S. Immunogenicity of adenovirus-vector vaccine targeting hepatitis B virus: non-clinical safety assessment in non-human primates. Virol J 2018; 15:111. [PMID: 30041659 PMCID: PMC6056916 DOI: 10.1186/s12985-018-1026-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
Background A new promising therapeutic approach has emerged for patients chronically infected by the hepatitis B virus (HBV) with the development of a non-replicative adenovirus vector vaccine candidate (Ad-HBV). The vaccine encodes a fusion protein composed of a truncated HBV core protein, mutated polymerase protein, and two envelope domains. In this study, we assessed the immunogenicity of Ad-HBV administered to cynomolgus monkeys during a non-clinical safety assessment. Methods The virus was subcutaneously administered at 1.0 × 109 viral particles (VP)/animal (low-dose group), 1.0 × 1010 VP/animal (mid-dose group), and 1.0 × 1011 VP/animal (high-dose group); the control groups were administered an Ad5-null virus (1.0 × 1011 VP/animal) and saline only. Results Except for inflammatory cell infiltration under the skin at the injection sites and transient elevation of body temperature and serum albumin, no Ad-HBV-related toxic effects were noted in any treatment group. Moreover, interferon (IFN)-γ enzyme-linked immunospot assays showed that Ad-HBV induced the targeting of T cells to a broad spectrum of HBV-specific epitopes spanning all three of the selected HBV immunogens (core, polymerase, and envelope domains) in a dose-dependent manner. Although anti-Ad antibody was produced in all groups (except for the saline control), the antibody titers were significantly lower in the high-dose Ad-HBV group than in the group that received the same dose of the Ad-null empty vector. In addition, the IFN-γ and IL-2 expression levels in the liver were significantly improved for the mid-dose, high-dose, and Ad-null control group (p < 0.05), but not for the low-dose group. Conclusions Taken together, this safety assessment indicates that the Ad-HBV candidate vaccine is a potent specific immunotherapeutic agent, supporting its further clinical development as an anti-HBV infection vaccine. Electronic supplementary material The online version of this article (10.1186/s12985-018-1026-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuefeng Zhang
- Jiangsu Tripod Preclinical Research Laboratories Co., Ltd., Nanjing, 211800, China
| | - Jing Wang
- Jiangsu Tripod Preclinical Research Laboratories Co., Ltd., Nanjing, 211800, China
| | - Jing Lu
- Jiangsu Tripod Preclinical Research Laboratories Co., Ltd., Nanjing, 211800, China
| | - Rongrong Li
- Jiangsu Tripod Preclinical Research Laboratories Co., Ltd., Nanjing, 211800, China
| | - Shuli Zhao
- Jiangsu Tripod Preclinical Research Laboratories Co., Ltd., Nanjing, 211800, China. .,Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China.
| |
Collapse
|
8
|
Díaz FE, Abarca K, Kalergis AM. An Update on Host-Pathogen Interplay and Modulation of Immune Responses during Orientia tsutsugamushi Infection. Clin Microbiol Rev 2018; 31:e00076-17. [PMID: 29386235 PMCID: PMC5967693 DOI: 10.1128/cmr.00076-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The obligate intracellular bacterium Orientia tsutsugamushi is the causative agent of scrub typhus in humans, a serious mite-borne disease present in a widespread area of endemicity, which affects an estimated 1 million people every year. This disease may exhibit a broad range of presentations, ranging from asymptomatic to fatal conditions, with the latter being due to disseminated endothelial infection and organ injury. Unique characteristics of the biology and host-pathogen interactions of O. tsutsugamushi, including the high antigenic diversity among strains and the highly variable, short-lived memory responses developed by the host, underlie difficulties faced in the pursuit of an effective vaccine, which is an imperative need. Other factors that have hindered scientific progress relative to the infectious mechanisms of and the immune response triggered by this bacterium in vertebrate hosts include the limited number of mechanistic studies performed on animal models and the lack of genetic tools currently available for this pathogen. However, recent advances in animal model development are promising to improve our understanding of host-pathogen interactions. Here, we comprehensively discuss the recent advances in and future perspectives on host-pathogen interactions and the modulation of immune responses related to this reemerging disease, highlighting the role of animal models.
Collapse
Affiliation(s)
- Fabián E Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katia Abarca
- Departamento en Enfermedades Infecciosas e Inmunología Pediátricas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
9
|
Sunyakumthorn P, Somponpun SJ, Im-erbsin R, Anantatat T, Jenjaroen K, Dunachie SJ, Lombardini ED, Burke RL, Blacksell SD, Jones JW, Mason CJ, Richards AL, Day NPJ, Paris DH. Characterization of the rhesus macaque (Macaca mulatta) scrub typhus model: Susceptibility to intradermal challenge with the human pathogen Orientia tsutsugamushi Karp. PLoS Negl Trop Dis 2018. [PMID: 29522521 PMCID: PMC5862536 DOI: 10.1371/journal.pntd.0006305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Scrub typhus is an important endemic disease in tropical Asia caused by Orientia tsutsugamushi for which no effective broadly protective vaccine is available. The successful evaluation of vaccine candidates requires well-characterized animal models and a better understanding of the immune response against O. tsutsugamushi. While many animal species have been used to study host immunity and vaccine responses in scrub typhus, only limited data exists in non-human primate (NHP) models. METHODOLOGY/PRINCIPLE FINDINGS In this study we evaluated a NHP scrub typhus disease model based on intradermal inoculation of O. tsutsugamushi Karp strain in rhesus macaques (n = 7). After an intradermal inoculation with 106 murine LD50 of O. tsutsugamushi at the anterior thigh (n = 4) or mock inoculum (n = 3), a series of time course investigations involving hematological, biochemical, molecular and immunological assays were performed, until day 28, when tissues were collected for pathology and immunohistochemistry. In all NHPs with O. tsutsugamushi inoculation, but not with mock inoculation, the development of a classic eschar with central necrosis, regional lymphadenopathy, and elevation of body temperature was observed on days 7-21 post inoculation (pi); bacteremia was detected by qPCR on days 6-18 pi; and alteration of liver enzyme function and increase of white blood cells on day 14 pi. Immune assays demonstrated raised serum levels of soluble cell adhesion molecules, anti-O. tsutsugamushi-specific antibody responses (IgM and IgG) and pathogen-specific cell-mediated immune responses in inoculated macaques. The qPCR assays detected O. tsutsugamushi in eschar, spleen, draining and non-draining lymph nodes, and immuno-double staining demonstrated intracellular O. tsutsugamushi in antigen presenting cells of eschars and lymph nodes. CONCLUSIONS/SIGNIFICANCE These data show the potential of using rhesus macaques as a scrub typhus model, for evaluation of correlates of protection in both natural and vaccine induced immunity, and support the evaluation of future vaccine candidates against scrub typhus.
Collapse
Affiliation(s)
- Piyanate Sunyakumthorn
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Suwit J. Somponpun
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Rawiwan Im-erbsin
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Tippawan Anantatat
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Kemajittra Jenjaroen
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Susanna J. Dunachie
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Eric D. Lombardini
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Robin L. Burke
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Stuart D. Blacksell
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | - James W. Jones
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Carl J. Mason
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Allen L. Richards
- Viral & Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States of America
- Preventive Medicine and Biostatistics Department, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Nicholas P. J. Day
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Daniel H. Paris
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
- Department of Medicine, Swiss Tropical and Public Health Institute, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
10
|
Ha NY, Kim Y, Min CK, Kim HI, Yen NTH, Choi MS, Kang JS, Kim YS, Cho NH. Longevity of antibody and T-cell responses against outer membrane antigens of Orientia tsutsugamushi in scrub typhus patients. Emerg Microbes Infect 2017; 6:e116. [PMID: 29259327 PMCID: PMC5750460 DOI: 10.1038/emi.2017.106] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 01/30/2023]
Abstract
Scrub typhus, caused by Orientia tsutsugamushi infection, has been a serious public health issue in the Asia-Pacific region, with rising incidence and sporadic outbreaks. However, human protective immunity against specific antigens has been poorly characterized for this bacterium. In addition, immunity produced in early vaccine trials or even after natural infections, did not last long and had poor cross-reactivity among various genotypes. Here, we systematically investigated the kinetics and magnitude of specific adaptive immunity against two membrane antigens, 56 kDa type-specific antigen (TSA56) and surface cell antigen A (ScaA), that are involved in bacterial adhesion and invasion of the host in 64 recovered scrub typhus patients. Antibody responses to the bacterial antigens in patients were generally short-lived and waned to baseline levels 2 years after recovery. The anti-TSA56 IgG responses were predominantly composed of the IgG1 and IgG3 subclasses and persisted for up to 1 year after recovery, whereas IgG specific to ScaA primarily consisted of more transient IgG1, with limited responses by other subclasses. Cellular immunity, including CD4 and CD8 T-cells specific to membrane antigens, also rapidly declined from 1 year after infection, as measured by enzyme-linked immunospot (ELISPOT) assays and flow cytometry. The short longevity of antigen-specific adaptive immunity might be attributable to limited memory responses, as observed in earlier vaccine studies using whole bacterial antigens. Finally, we identified HLA-A*0201-restricted and highly conserved CD8 T-cell epitopes in the TSA56 antigen, which may be valuable tools for assessing cellular immunity against O. tsutsugamushi and developing an effective scrub typhus vaccine.
Collapse
Affiliation(s)
- Na-Young Ha
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yuri Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chan-Ki Min
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hong-Il Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Nguyen Thi Hai Yen
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Myung-Sik Choi
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jae-Seung Kang
- Department of Microbiology, Inha University School of Medicine, Incheon 22212, Republic of Korea
| | - Yeon-Sook Kim
- Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Seoul 03080, Republic of Korea
| |
Collapse
|