1
|
Hernandez JR, Lee HJ, Vigilant ME, Crawford S, Pietrantonio PV. The V410L kdr allele in the VGSC confers higher levels of field resistance to permethrin in urban mosquito populations of Aedes aegypti (L.). PEST MANAGEMENT SCIENCE 2025; 81:923-936. [PMID: 39469906 DOI: 10.1002/ps.8495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Females of Aedes aegypti transmit emerging arboviruses including Zika, dengue, yellow fever, and chikungunya. Control of these adult mosquitoes heavily relies on synthetic insecticides, including pyrethroids. However, insecticide resistance development in populations poses a significant challenge to vector control, particularly from knockdown resistance (kdr) mutations in the voltage-gated sodium channel (VGSC), the target of pyrethroids. This study investigated the field efficacy of Permanone, a pyrethroid-based insecticide, against Ae. aegypti by assessing the impact of three common kdr mutations (V410L, V1016I, F1534C) on mosquito survival under a real operational mosquito control scenario, by quantifying the pesticide delivered in the field. RESULTS Field cage tests (FCTs) were conducted while conducting a realistic mosquito control application. Female mosquitoes from six operational areas from Harris County, TX, USA were exposed to Permanone delivered with a handheld sprayer. Permanone deposited near the cages was estimated from aluminum boats placed in the field during FCTs using gas chromatography-mass spectrometry (GC-MS). Mortality rates were recorded, and individual mosquitoes were genotyped for kdr mutations. A probit regression model was used to analyze the factors influencing mosquito survivorship. As the distance from the application source route increased, the amount of Permanone deposited decreased, resulting in higher survivorship frequency of Ae. aegypti females with the triple-resistant kdr genotype (LL/II/CC). The L allele at the 410-site significantly contributed to an increased resistance level when co-occurring with other kdr mutations. CONCLUSION This study linked the survival probabilities of mosquitoes with different kdr genotypes, and the amount of pesticide they received in the field. Pesticide quantification, control efficacy results and genotyping allowed us to empirically determine the impact of genotypic resistance on vector control in the field. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Han-Jung Lee
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Maximea E Vigilant
- Mosquito and Vector Control Division, Harris County Public Health, Houston, TX, USA
| | - Scott Crawford
- Department of Statistics, College of Arts and Sciences, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
2
|
Uemura N, Itokawa K, Komagata O, Kasai S. Recent advances in the study of knockdown resistance mutations in Aedes mosquitoes with a focus on several remarkable mutations. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101178. [PMID: 38346494 DOI: 10.1016/j.cois.2024.101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
The Aedes mosquito, which transmits the dengue fever virus and other viruses, has acquired resistance to pyrethroid insecticides in a naturally selective manner. Massive use of insecticides has led to the worldwide expansion of resistant populations. The major factor in pyrethroid resistance is knockdown resistance (kdr) caused by amino acid mutation(s) in the voltage-gated sodium channel, which is the target site of this insecticide group. Some kdr mutations can lead to a dramatic increase in resistance, and multiple mutations can increase the level of pyrethroid resistance by 10 to several-hundred. In this review, we summarize the kdr identified in Aedes mosquitoes with a focus on the recent advances in the study of kdr.
Collapse
Affiliation(s)
- Nozomi Uemura
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Kentaro Itokawa
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Osamu Komagata
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Shinji Kasai
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| |
Collapse
|
3
|
Almeras L, Costa MM, Amalvict R, Guilliet J, Dusfour I, David JP, Corbel V. Potential of MALDI-TOF MS biotyping to detect deltamethrin resistance in the dengue vector Aedes aegypti. PLoS One 2024; 19:e0303027. [PMID: 38728353 PMCID: PMC11086877 DOI: 10.1371/journal.pone.0303027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Insecticide resistance in mosquitoes is spreading worldwide and represents a growing threat to vector control. Insecticide resistance is caused by different mechanisms including higher metabolic detoxication, target-site modification, reduced penetration and behavioral changes that are not easily detectable with simple diagnostic methods. Indeed, most molecular resistance diagnostic tools are costly and labor intensive and then difficult to use for routine monitoring of insecticide resistance. The present study aims to determine whether mosquito susceptibility status against the pyrethroid insecticides (mostly used for mosquito control) could be established by the protein signatures of legs and/or thoraxes submitted to MALDI-TOF Mass Spectrometry (MS). The quality of MS spectra for both body parts was controlled to avoid any bias due to unconformity protein profiling. The comparison of MS profiles from three inbreeds Ae. aegypti lines from French Guiana (IRF, IR03, IR13), with distinct deltamethrin resistance genotype / phenotype and the susceptible reference laboratory line BORA (French Polynesia), showed different protein signatures. On both body parts, the analysis of whole protein profiles revealed a singularity of BORA line compared to the three inbreeding lines from French Guiana origin, suggesting that the first criteria of differentiation is the geographical origin and/or the breeding history rather than the insecticide susceptibility profile. However, a deeper analysis of the protein profiles allowed to identify 10 and 11 discriminating peaks from leg and thorax spectra, respectively. Among them, a specific peak around 4870 Da was detected in legs and thoraxes of pyrethroid resistant lines compared to the susceptible counterparts hence suggesting that MS profiling may be promising to rapidly distinguish resistant and susceptible phenotypes. Further work is needed to confirm the nature of this peak as a deltamethrin resistant marker and to validate the routine use of MS profiling to track insecticide resistance in Ae. aegypti field populations.
Collapse
Affiliation(s)
- Lionel Almeras
- Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Unité Parasitologie et Entomologie, Marseille, 13005, France
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, 13005, France
| | - Monique Melo Costa
- Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Unité Parasitologie et Entomologie, Marseille, 13005, France
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, 13005, France
| | - Rémy Amalvict
- Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Unité Parasitologie et Entomologie, Marseille, 13005, France
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, 13005, France
- Centre National de Référence du Paludisme, Marseille, 13005, France
| | - Joseph Guilliet
- Laboratoire d’Ecologie Alpine, UMR UGA-USMB-CNRS 5553, Université Grenoble Alpes, Grenoble, 38041, France
| | - Isabelle Dusfour
- Institut Pasteur de la Guyane, Vectopôle Amazonien Emile Abonnenc, Unité de Contrôle et Adaptation des Vecteurs, Cayenne, France
| | - Jean-Philippe David
- Laboratoire d’Ecologie Alpine, UMR UGA-USMB-CNRS 5553, Université Grenoble Alpes, Grenoble, 38041, France
| | - Vincent Corbel
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
- Laboratório de Fisiologia e Controle de Artrópodes Vetores (Laficave), Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (FIOCRUZ), Avenida Brasil, Rio de Janeiro–RJ, Brazil
| |
Collapse
|
4
|
Enayati A, Valadan R, Bagherzadeh M, Cheraghpour M, Nikookar SH, Fazeli-Dinan M, Hosseini-Vasoukolaei N, Sahraei Rostami F, Shabani Kordshouli R, Raeisi A, Nikpour F, Mirolyaei A, Bagheri F, Sedaghat MM, Zaim M, Weetman D, Hemigway J. Kdr genotyping and the first report of V410L and V1016I kdr mutations in voltage-gated sodium channel gene in Aedes aegypti (Diptera: Culicidae) from Iran. Parasit Vectors 2024; 17:34. [PMID: 38273349 PMCID: PMC10811842 DOI: 10.1186/s13071-024-06123-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Aedes aegypti is the main vector of arboviral diseases worldwide. The species invaded and became established in southern Iran in 2020. Insecticide-based interventions are primarily used for its control. With insecticide resistance widespread, knowledge of resistance mechanisms is vital for informed deployment of insecticidal interventions, but information from Iranian Ae. aegypti is lacking. METHODS Fifty-six Ae. aegypti specimens were collected from the port city of Bandar Lengeh in Hormozgan Province in the South of Iran in 2020 and screened for kdr mutations. The most common kdr mutations in Latin America and Asia (V410L, S989P, V1016G/I and F1534C), especially when present in combinations, are highly predictive of DDT and pyrethroid resistance were detected. Phylogenetic analyses based on the diversity of S989P and V1016G/I mutations were undertaken to assess the phylogeography of these kdr mutations. RESULTS Genotyping all four kdr positions of V410L, S989P, V1016G/I and F1534C revealed that only 16 out of the 56 (28.57%) specimens were homozygous wild type for all kdr mutation sites. Six haplotypes including VSVF (0.537), VSVC (0.107), LSVF (0.016), LSIF (0.071), VPGC (0.257) and LPGC (0.011) were detected in this study. For the first time, 11 specimens harbouring the V410L mutation, and 8 samples with V1016I mutation were found. V410L and V1016I were coincided in 8 specimens. Also, six specimens contained 1016G/I double mutation which was not reported before. CONCLUSIONS The relatively high frequency of these kdr mutations in Iranian Ae. aegypti indicates a population exhibiting substantial resistance to pyrethroid insecticides, which are used widely in control operations and household formulations. The detection of the 410L/1016I kdr mutant haplotype in Iranian Ae. aegypti suggests possible convergence of invasive populations from West Africa or Latin America. However, as Iran has very limited maritime/air connections with those African countries, a Latin American origin for the invasive Ae. aegypti in Iran is more plausible.
Collapse
Affiliation(s)
- Ahmadali Enayati
- Department of Medical Entomology and Vector Control, School of Public Health and Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Reza Valadan
- Department of Immunology and Molecular and Cellular Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahboobeh Bagherzadeh
- Department of Medical Entomology and Vector Control, School of Public Health, Student Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Cheraghpour
- Department of Medical Entomology and Vector Control, School of Public Health, Student Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Hassan Nikookar
- Health Sciences Research Center, Department of Medical Entomology and Vector Control, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmoud Fazeli-Dinan
- Health Sciences Research Center, Department of Medical Entomology and Vector Control, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nasibeh Hosseini-Vasoukolaei
- Department of Medical Entomology and Vector Control, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farzaneh Sahraei Rostami
- Department of Medical Entomology and Vector Control, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Razieh Shabani Kordshouli
- Department of Medical Entomology and Vector Control, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Raeisi
- Vector Borne Diseases Control Department, Iran CDC, Ministry of Health and Medical Education, Tehran, Iran
- Department of Medical Parasitology & Mycology, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nikpour
- Vector Borne Diseases Control Department, Iran CDC, Ministry of Health and Medical Education, Tehran, Iran
- Department of Environmental Chemical Pollutants and Pesticides, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Mirolyaei
- Vector Borne Diseases Control Department, Iran CDC, Ministry of Health and Medical Education, Tehran, Iran
| | - Fatemeh Bagheri
- Hormozgan Provincial Health Center, Department of Communicable Diseases Control, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammad Mehdi Sedaghat
- Department of Medical Entomology and Vector Control, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Zaim
- Department of Medical Entomology and Vector Control, Tehran University of Medical Sciences, Tehran, Iran
| | - David Weetman
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Janet Hemigway
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
5
|
Silva JJ, Fisher CR, Dressel AE, Scott JG. Fitness costs in the presence and absence of insecticide use explains abundance of two common Aedes aegypti kdr resistance alleles found in the Americas. PLoS Negl Trop Dis 2023; 17:e0011741. [PMID: 37910567 PMCID: PMC10662748 DOI: 10.1371/journal.pntd.0011741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/21/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023] Open
Abstract
Aedes aegypti is the vector of viruses such as chikungunya, dengue, yellow fever and Zika that have a critical impact on human health. Control of adult mosquitoes is widely done using pyrethroids, but resistance has reduced the effectiveness of this class of insecticides. Resistance to pyrethroids in mosquitoes is commonly due to mutations in the voltage-gated sodium channel (Vgsc) gene (these mutations are known as knockdown resistance, kdr). In the Americas and the Caribbean, the most common kdr alleles are 410L+1016I+1534C and 1534C. In this study, we conducted a population cage experiment to evaluate changes in the allele and genotype frequencies of the 410L+1016I+1534C allele by crossing two congenic strains; one carrying the 410L+1016I+1534C and another with the 1534C allele. Changes in allele frequencies were measured over 10 generations in the absence of insecticide exposure. We also applied one cycle of selection with deltamethrin at F9 to evaluate the changes in allele and genotype frequencies. Our findings indicate that fitness costs were higher with the 410L+1016I+1534C allele, relative to the 1534C allele, in the absence of deltamethrin exposure, but that the 410L+1016I+1534C allele provides a stronger advantage when exposed to deltamethrin relative to the 1534C allele. Changes in genotype frequencies were not in Hardy-Weinberg equilibrium and could not be explained by drift. Our results suggest the diametrically opposed fitness costs in the presence and absence of insecticides is a reason for the variations in frequencies between the 410L+1016I+1534C and 1534C alleles in field populations.
Collapse
Affiliation(s)
- Juan J. Silva
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Cera R. Fisher
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Anastacia E. Dressel
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Jeffrey G. Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
6
|
Rubio-Palis Y, Dzuris N, Sandi C, Vizcaino-Cabarrus RL, Corredor-Medina C, González JA, Lenhart AE. Insecticide resistance levels and associated mechanisms in three Aedes aegypti populations from Venezuela. Mem Inst Oswaldo Cruz 2023; 118:e220210. [PMID: 37377253 DOI: 10.1590/0074-02760220210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The massive use of insecticides in public health has exerted selective pressure resulting in the development of resistance in Aedes aegypti to different insecticides in Venezuela. Between 2010 and 2020, the only insecticides available for vector control were the organophosphates (Ops) fenitrothion and temephos which were focally applied. OBJECTIVES To determine the state of insecticide resistance and to identify the possible biochemical and molecular mechanisms involved in three populations of Ae. aegypti from Venezuela. METHODS CDC bottle bioassays were conducted on Ae. aegypti collected between October 2019 and February 2020 in two hyperendemic localities for dengue in Aragua State and in a malaria endemic area in Bolívar State. Insecticide resistance mechanisms were studied using biochemical assays and polymerase chain reaction (PCR) to detect kdr mutations. FINDINGS Bioassays showed contrasting results among populations; Las Brisas was resistant to malathion, permethrin and deltamethrin, Urbanización 19 de Abril was resistant to permethrin and Nacupay to malathion. All populations showed significantly higher activity of mixed function oxidases and glutathione-S-transferases (GSTs) in comparison with the susceptible strain. The kdr mutations V410L, F1534C, and V1016I were detected in all populations, with F1534C at higher frequencies. MAIN CONCLUSION Insecticide resistance persists in three Ae. aegypti populations from Venezuela even in the relative absence of insecticide application.
Collapse
Affiliation(s)
- Yasmin Rubio-Palis
- Universidad de Carabobo, Instituto de Investigaciones Biomédicas, Maracay, Venezuela
| | - Nicole Dzuris
- US Centers for Disease Control and Prevention, Center for Global Health, Division of Parasitic Diseases and Malaria, Entomology Branch, Atlanta, GA, USA
| | - Christopher Sandi
- US Centers for Disease Control and Prevention, Center for Global Health, Division of Parasitic Diseases and Malaria, Entomology Branch, Atlanta, GA, USA
| | - Rita Lucrecia Vizcaino-Cabarrus
- US Centers for Disease Control and Prevention, Center for Global Health, Division of Parasitic Diseases and Malaria, Entomology Branch, Atlanta, GA, USA
| | - Claudia Corredor-Medina
- US Centers for Disease Control and Prevention, Center for Global Health, Division of Parasitic Diseases and Malaria, Entomology Branch, Atlanta, GA, USA
| | - Jesús Alberto González
- Ministerio del Poder Popular para la Salud, Dirección General de Salud Ambiental, Dirección de Control de Vectores, Maracay, Venezuela
| | - Audrey E Lenhart
- US Centers for Disease Control and Prevention, Center for Global Health, Division of Parasitic Diseases and Malaria, Entomology Branch, Atlanta, GA, USA
| |
Collapse
|
7
|
Niklas B, Rydzewski J, Lapied B, Nowak W. Toward Overcoming Pyrethroid Resistance in Mosquito Control: The Role of Sodium Channel Blocker Insecticides. Int J Mol Sci 2023; 24:10334. [PMID: 37373481 DOI: 10.3390/ijms241210334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Diseases spread by mosquitoes lead to the death of 700,000 people each year. The main way to reduce transmission is vector control by biting prevention with chemicals. However, the most commonly used insecticides lose efficacy due to the growing resistance. Voltage-gated sodium channels (VGSCs), membrane proteins responsible for the depolarizing phase of an action potential, are targeted by a broad range of neurotoxins, including pyrethroids and sodium channel blocker insecticides (SCBIs). Reduced sensitivity of the target protein due to the point mutations threatened malaria control with pyrethroids. Although SCBIs-indoxacarb (a pre-insecticide bioactivated to DCJW in insects) and metaflumizone-are used in agriculture only, they emerge as promising candidates in mosquito control. Therefore, a thorough understanding of molecular mechanisms of SCBIs action is urgently needed to break the resistance and stop disease transmission. In this study, by performing an extensive combination of equilibrium and enhanced sampling molecular dynamics simulations (3.2 μs in total), we found the DIII-DIV fenestration to be the most probable entry route of DCJW to the central cavity of mosquito VGSC. Our study revealed that F1852 is crucial in limiting SCBI access to their binding site. Our results explain the role of the F1852T mutation found in resistant insects and the increased toxicity of DCJW compared to its bulkier parent compound, indoxacarb. We also delineated residues that contribute to both SCBIs and non-ester pyrethroid etofenprox binding and thus could be involved in the target site cross-resistance.
Collapse
Affiliation(s)
- Beata Niklas
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - Jakub Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - Bruno Lapied
- University Angers, INRAE, SIFCIR, SFR QUASAV, F-49045 Angers, France
| | - Wieslaw Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| |
Collapse
|
8
|
Estep A, Kissoon K, Saldana M, Fredregill C. Persistent variation in insecticide resistance intensity in container breeding Aedes (Diptera: Culicidae) co-collected in Houston, TX. JOURNAL OF MEDICAL ENTOMOLOGY 2023:7175077. [PMID: 37210592 DOI: 10.1093/jme/tjad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 05/22/2023]
Abstract
As observed in many locations worldwide, resistance to pyrethroids is common in Aedes aegypti (L.) in the southern United States and northern Mexico. Strong resistance in Aedes albopictus (Skuse) is less common and is not as well characterized. These 2 species have been undergoing range expansion and are sympatric in many locations including Houston, Texas. They are often collected from the same locations and lay eggs in the same larval habitats. In this study, we colonized both Ae. aegypti and Ae. albopictus from 4 locations in Houston and characterized insecticide resistance using permethrin as a model pyrethroid. We found differences in resistance intensity between the species at all 4 sites. Within the Ae. aegypti, resistance ratios ranged from 3.5- to 30.0-fold when compared to the ORL1952 laboratory susceptible strain. Expression of several P450s was higher than in the ORL1952 strain, but the pattern was similar between the field strains of Ae. aegypti. Higher resistance ratios did correlate with increasing percentages of the dilocus knockdown resistance (kdr) genotype. In contrast, Ae. albopictus from the 4 locations all had very low resistance ratios (<4-fold) when compared to the same laboratory susceptible strain. Five years later, we performed additional collections and characterization from the most resistant location to assess the temporal persistence of this difference in resistance between the species. The same pattern of high resistance in Ae. aegypti and low resistance in sympatric Ae. albopictus remained 5 yr later and this may have implications for operational efficacy.
Collapse
Affiliation(s)
- Alden Estep
- United States Department of Agriculture, Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Drive, Gainesville, FL 32608, USA
| | - Kimberley Kissoon
- Harris County Public Health & Environmental Services, Mosquito Control Division, 3300 Spanish Trail, Suite D, Houston, TX 77021, USA
| | - Miguel Saldana
- Harris County Public Health & Environmental Services, Mosquito Control Division, 3300 Spanish Trail, Suite D, Houston, TX 77021, USA
| | - Chris Fredregill
- Harris County Public Health & Environmental Services, Mosquito Control Division, 3300 Spanish Trail, Suite D, Houston, TX 77021, USA
| |
Collapse
|
9
|
Fisher CR, Dressel AE, Silva JJ, Scott JG. A Globally Distributed Insecticide Resistance Allele Confers a Fitness Cost in the Absence of Insecticide in Aedes aegypti (Diptera: Culicidae), the Yellow Fever Mosquito. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:494-499. [PMID: 36799337 PMCID: PMC10179442 DOI: 10.1093/jme/tjad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Indexed: 05/13/2023]
Abstract
The cosmopolitan mosquito Aedes aegypti is a vector of harmful arboviruses. Pyrethroid insecticides are used to reduce adult populations and prevent the spread of disease. Pyrethroids target the insect voltage-gated sodium channel (VGSC). Collectively, mutations in Vgsc that confer resistance are referred to as knock-down resistance or kdr. There are numerous kdr mutations found in A. aegypti Vgsc, and there is co-occurrence of some mutations. Full-length cDNA sequences have identified nine known kdr (e.g., 1534C) alleles. The 1534C allele is among the most common kdr alleles, but allele frequencies between populations vary considerably. We used the 1534C:RK strain, which has the 1534C (kdr) allele in the genetic background of the insecticide susceptible Rockefeller (ROCK) strain, and conducted population cage experiments to assess the potential intrinsic fitness cost of the 1534C allele relative to the susceptible allele (F1534) in the ROCK strain. Individuals were genotyped across generations using allele specific PCR. A fitness cost of the 1534C allele was detected across seven generations of mosquitos reared in the absence of insecticide selection pressure. The decrease in allele frequency was not due to drift. Comparison of our results to previous studies suggests that the magnitude of the fitness cost of kdr alleles in the absence of insecticide is disconnected from the level of resistance they confer, and that the fitness costs of different kdr alleles can be variable.
Collapse
Affiliation(s)
- Cera R Fisher
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| | - Anastacia E Dressel
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| | - Juan J Silva
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| | - Jeffrey G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| |
Collapse
|
10
|
Hernandez JR, Liu S, Fredregill CL, Pietrantonio PV. Impact of the V410L kdr mutation and co-occurring genotypes at kdr sites 1016 and 1534 in the VGSC on the probability of survival of the mosquito Aedes aegypti (L.) to Permanone in Harris County, TX, USA. PLoS Negl Trop Dis 2023; 17:e0011033. [PMID: 36689414 PMCID: PMC9870149 DOI: 10.1371/journal.pntd.0011033] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/17/2022] [Indexed: 01/24/2023] Open
Abstract
Harris County, TX, is the third most populous county in the USA and upon detection of arboviruses Harris County Public Health applies insecticides (e.g., pyrethroid-based Permanone 31-66) against adults of Culex quinquefasciatus to prevent disease transmission. Populations of Aedes aegypti, while not yet a target of public health control, are likely affected by pyrethroid exposure. As this species is a vector of emerging arboviruses, its resistance status to Permanone and the kdr mutations in the voltage-gated sodium channel (VGSC) associated with pyrethroid resistance were investigated. We examined females of known genotype at the V1016I and F1534C sites (N = 716) for their genotype at the 410 amino acid position in the VGSC, and for the influence of their kdr genotype on survival to Permanone at three different distances from the insecticide source in field tests. Most females (81.8%) had at least one resistant L allele at the 410 position, being the first report of the V410L mutation in Ae. aegypti for Texas. When only genotypes at the 410 position were analyzed, the LL genotype exhibited higher survivorship than VL or VV. Out of 27 possible tri-locus kdr genotypes only 23 were found. Analyses of the probability of survival of tri-locus genotypes and for the V410L genotype using a multivariate logistic regression model including area, distance, and genotype found significant interactions between distance and genotype. When only the most common tri-locus genotypes were analyzed (LL/II/CC, 48.2%; VL/II/CC, 19.1%; and VV/II/CC, 10.1%) genotype had no effect on survival, but significant interactions of distance and genotype were found. This indicated that the V410L kdr allele increased survival probability at certain distances. Genotypes did not differ in survivorship at 7.62-m, but LL/II/CC had higher survivorship than VL/II/CC at 15.24- and 22.86-m. The model also identified differences in survivorship among the operational areas investigated.
Collapse
Affiliation(s)
- Jonathan R. Hernandez
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Shuling Liu
- Department of Statistics, Texas A&M University, College Station, Texas, United States of America
| | - Chris L. Fredregill
- Harris County Public Health, Mosquito and Vector Control Division (HCPH-MVCD), Houston, Texas, United States of America
| | - Patricia V. Pietrantonio
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
11
|
Hayes CC, Schal C. Behavioral interactions of bed bugs with long-lasting pyrethroid-treated bed nets: challenges for vector control. Parasit Vectors 2022; 15:488. [PMID: 36572943 PMCID: PMC9791780 DOI: 10.1186/s13071-022-05613-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/07/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Widespread vector control has been essential in reducing the global incidence and prevalence of malaria, despite now stalled progress. Long-lasting insecticide-treated nets (LLINs) have historically been, and remain, one of the most commonly used vector control tools in the campaign against malaria. LLINs are effective only with proper use, adherence, retention and community adoption, which historically have relied on the successful control of secondary pests, including bed bugs. The emergence of pyrethroid-resistant bed bugs in malaria-endemic communities and failure to control infestations have been suggested to interfere with the effective use of LLINs. Therefore, the behavioral interactions of bed bugs with commonly used bed nets should be better understood. METHODS To investigate the interactions between bed bugs (Cimex lectularius L.) and LLINs, insecticide-susceptible and pyrethroid-resistant bed bugs were challenged to pass through two commonly used LLINs in two behavioral assays, namely host (blood meal)-seeking and aggregation-seeking assays. The proportions blood-fed and aggregated bed bugs, aggregation time and mortality were quantified and analyzed in different bed bug life stages. RESULTS Overall, both the insecticide-susceptible bed bugs and highly resistant bed bugs showed a varying ability to pass through LLINs based on treatment status and net design. Deltamethrin-treated nets significantly impeded both feeding and aggregation by the susceptible bed bugs. While none of the tested LLINs significantly impeded feeding (passage of unfed bed bugs through the nets) of the pyrethroid-resistant bed bugs, the untreated bed net, which has small mesh holes, impeded passage of fed bed bugs. Mortality was only seen in the susceptible bed bugs, with significantly higher mortality on deltamethrin-treated nets (63.5 ± 10.7%) than on permethrin-treated nets (2.0 ± 0.9%). CONCLUSIONS Commonly used new LLINs failed to prevent the passage of susceptible and pyrethroid-resistant bed bugs in host- and aggregation-seeking bioassays. The overall low and variable mortality observed in susceptible bed bugs during both assays highlighted the potential of LLINs to impose strong selection pressure for the evolution of pyrethroid resistance. Already, the failure to control bed bug infestations has been implicated as a contributing factor to the abandonment or misuse of LLINs. For the first time to our knowledge, we have shown the potential of LLINs in selecting for resistant secondary pest populations and so their potential role in stalling malaria control programs should be further investigated. The emergence of pyrethroid-resistant bed bugs in malaria-endemic communities may interfere with the effective use of pyrethroid-impregnated bed nets. We assessed the interactions of two bed bug strains with commonly used bed nets using two behavioral assays, namely host (blood meal)-seeking by unfed bed bugs and aggregation-seeking by freshly fed bed bugs. These assays assessed the passage of bed bugs through various bed nets in response to host cues and aggregation stimuli, respectively. Conditioned paper is a section of file folder paper that has been exposed to bed bugs and has been impregnated with feces and aggregation pheromone; it is attractive to aggregation-seeking fed bed bugs. An unconditioned ramp is a similar section of file folder paper that allows bed bugs to traverse the bed net and gain access to a blood-meal source.
Collapse
Affiliation(s)
- Christopher C. Hayes
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| |
Collapse
|
12
|
Kasai S, Itokawa K, Uemura N, Takaoka A, Furutani S, Maekawa Y, Kobayashi D, Imanishi-Kobayashi N, Amoa-Bosompem M, Murota K, Higa Y, Kawada H, Minakawa N, Cuong TC, Yen NT, Phong TV, Keo S, Kang K, Miura K, Ng LC, Teng HJ, Dadzie S, Subekti S, Mulyatno KC, Sawabe K, Tomita T, Komagata O. Discovery of super-insecticide-resistant dengue mosquitoes in Asia: Threats of concomitant knockdown resistance mutations. SCIENCE ADVANCES 2022; 8:eabq7345. [PMID: 36542722 PMCID: PMC9770935 DOI: 10.1126/sciadv.abq7345] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/04/2022] [Indexed: 05/29/2023]
Abstract
Aedes aegypti (Linnaeus, 1762) is the main mosquito vector for dengue and other arboviral infectious diseases. Control of this important vector highly relies on the use of insecticides, especially pyrethroids. The high frequency (>78%) of the L982W substitution was detected at the target site of the pyrethroid insecticide, the voltage-gated sodium channel (Vgsc) of A. aegypti collected from Vietnam and Cambodia. Alleles having concomitant mutations L982W + F1534C and V1016G + F1534C were also confirmed in both countries, and their frequency was high (>90%) in Phnom Penh, Cambodia. Strains having these alleles exhibited substantially higher levels of pyrethroid resistance than any other field population ever reported. The L982W substitution has never been detected in any country of the Indochina Peninsula except Vietnam and Cambodia, but it may be spreading to other areas of Asia, which can cause an unprecedentedly serious threat to the control of dengue fever as well as other Aedes-borne infectious diseases.
Collapse
Affiliation(s)
- Shinji Kasai
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Kentaro Itokawa
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Nozomi Uemura
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Aki Takaoka
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Shogo Furutani
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yoshihide Maekawa
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | | | - Michael Amoa-Bosompem
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Katsunori Murota
- Kagoshima Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kagoshima 891-0105, Japan
| | - Yukiko Higa
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hitoshi Kawada
- Department of Vector Ecology and Environment, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Noboru Minakawa
- Department of Vector Ecology and Environment, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Tran Chi Cuong
- Medical Entomology and Zoology Department, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Nguyen Thi Yen
- Medical Entomology and Zoology Department, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Tran Vu Phong
- Medical Entomology and Zoology Department, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Sath Keo
- Faculty of Veterinary Medicine, Royal University of Agriculture, P.O. Box 2696, Phnom Penh, Cambodia
| | - Kroesna Kang
- Faculty of Veterinary Medicine, Royal University of Agriculture, P.O. Box 2696, Phnom Penh, Cambodia
| | - Kozue Miura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, Singapore 138667, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Hwa-Jen Teng
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei City 10050, Taiwan
| | - Samuel Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P.O. Box LG 581, Legon,, Ghana
| | - Sri Subekti
- Entomology Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Kris Cahyo Mulyatno
- Entomology Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Takashi Tomita
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Osamu Komagata
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
13
|
Fisher CR, Wilson M, Scott JG. A chromosome-level assembly of the widely used Rockefeller strain of Aedes aegypti, the yellow fever mosquito. G3 GENES|GENOMES|GENETICS 2022; 12:6695221. [PMID: 36086997 PMCID: PMC9635639 DOI: 10.1093/g3journal/jkac242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022]
Abstract
Aedes aegypti is the vector of important human diseases, and genomic resources are crucial in facilitating the study of A. aegypti and its ecosystem interactions. Several laboratory-acclimated strains of this mosquito have been established, but the most used strain in toxicology studies is “Rockefeller,” which was originally collected and established in Cuba 130 years ago. A full-length genome assembly of another reference strain, “Liverpool,” was published in 2018 and is the reference genome for the species (AaegL5). However, genetic studies with the Rockefeller strain are complicated by the availability of only the Liverpool strain as the reference genome. Differences between Liverpool and Rockefeller have been known for decades, particularly in the expression of genes relevant to mosquito behavior and vector control (e.g. olfactory). These differences indicate that AaegL5 is likely not fully representative of the Rockefeller genome, presenting potential impediments to research. Here, we present a chromosomal-level assembly and annotation of the Rockefeller genome and a comparative characterization vs the Liverpool genome. Our results set the stage for a pan-genomic approach to understanding evolution and diversity within this important disease vector.
Collapse
Affiliation(s)
- Cera R Fisher
- Department of Entomology, Comstock Hall, Cornell University , Ithaca, NY 14853, USA
| | - Michael Wilson
- Center for Cell Analysis & Modeling, University of Connecticut Health Center , Farmington, CT 06030, USA
| | - Jeffrey G Scott
- Department of Entomology, Comstock Hall, Cornell University , Ithaca, NY 14853, USA
| |
Collapse
|