1
|
Mbaoma OC, Thomas SM, Beierkuhnlein C. Significance of vertical transmission of arboviruses in mosquito-borne disease epidemiology. Parasit Vectors 2025; 18:137. [PMID: 40205559 PMCID: PMC11983947 DOI: 10.1186/s13071-025-06761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Mosquito-borne diseases (MBDs) are increasingly prevalent due to the resultant impact of global change with significant health and economic impacts worldwide. Dengue virus (DENV), chikungunya virus (CHIKV), Zika virus (ZIKV), yellow fever virus (YFV), Japanese encephalitis (JEV), and West Nile virus (WNV) transmitted by Aedes and Culex species have been identified as arboviruses of public health interest. The vertical transmission (VT) refers to the process where infected mosquitoes transmit viruses to their offspring; this has been often overlooked in MBD epidemiology. We conducted a systematic review to evaluate the role of VT in the occurrence, prevalence, and spread of MBDs, focusing on study types, mosquito species, and virus genera. In total, 73 studies from 2005 to 2024 relating to VT in the mosquito population were reviewed. Findings revealed the occurrence of VT across multiple mosquito species in natural and experimental settings, with significant variation in VT rates depending on vector species, virus genus, and study location. Aedes aegypti, Aedes albopictus, Aedes vexans, Culex pipiens, Culex tarsalis, and Culex quinquefasciatus were identified as mosquito species that support VT, while pathogens identified to be transmitted vertically were DENV, ZIKV, WNV, CHIKV, YFV, Sindbis virus (SINV), Ross River virus (RRV), and Mayaro virus (MAYV). VT rates were reported as minimum, and infection rate (MIR) varied across species, study type and location. Also, a high VT rate may precede a mosquito-borne disease outbreak. These findings indicate that VT, though often overlooked, contributes to the dynamics of MBD transmission and could influence disease outbreaks and endemism, especially under changing climatic conditions, highlighting the need for incorporating VT in mathematical models, experimental studies, and control strategies to understand dynamics of MBDs, given its potential role in sustaining arbovirus transmission and influencing outbreak dynamics.
Collapse
Affiliation(s)
| | - Stephanie Margarete Thomas
- Department of Biogeography, University of Bayreuth, Bayreuth, Germany
- Center of Ecology and Environmental Research, BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Carl Beierkuhnlein
- Department of Biogeography, University of Bayreuth, Bayreuth, Germany
- Center of Ecology and Environmental Research, BayCEER, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
2
|
Bandeira ILC, Martins MG, da Conceição Miranda Santos A, de Oliveira CF, Dos Santos ÉB, de Arruda E Silva F, Chiang JO, da Costa Vasconcelos PF, Nicola PA. Serologic and Molecular Evidence of Arboviruses in Nonhuman Primates in Northeast Brazil. ECOHEALTH 2025; 22:29-41. [PMID: 39799547 DOI: 10.1007/s10393-024-01695-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 01/15/2025]
Abstract
Arbovirus surveillance in marmosets (Callithrix spp.) that live close to humans helps identify viral circulation in the environment and contributes to public health. We investigated the exposure to arboviral infections in 47 captive and free-living Callithrix from urban and peri-urban areas in the semiarid region of northeastern Brazil (SNB) in 2018. The samples were tested for antibodies against 23 arbovirus antigens and the presence of Orthoflavivirus zikaense (ZIKV), Orthoflavivirus denguei, Alphavirus chikungunya, and Orthoflavivirus flavi using hemagglutination inhibition (HI) and RT-qPCR assays. HI highlighted three samples seropositivity for Flavivirus (3/47; 6,4%). One of these samples displayed monotypic antibodies to Alphavirus eastern (formerly known as Eastern equine encephalitis virus; genus Alphavirus). RT-qPCR revealed that one sample (1/41; 2.4%) of C. jacchus captured in a commercial area of Petrolina-PE was positive for ZIKV. Our results indicated that marmosets living close to humans in the SNB were exposed to arboviruses, with the identification of ZIKV, even after the largest epidemic of the virus in the country and the subsequent human cases reduction. Here, we reinforce the importance of both continuous arboviruses monitoring in wildlife and preserving natural habitats to promote public health and biodiversity conservation.
Collapse
Affiliation(s)
- Illaira Leydira Carvalho Bandeira
- Universidade Federal do Vale do São Francisco, Rodovia BR-407, KM 12, Lote 543, Sem Número, Projeto de Irrigação Nilo Coelho, Petrolina, Pernambuco, 56300-000, Brazil.
| | - Marlos Gomes Martins
- Universidade Federal do Vale do São Francisco, Rodovia BR-407, KM 12, Lote 543, Sem Número, Projeto de Irrigação Nilo Coelho, Petrolina, Pernambuco, 56300-000, Brazil
| | | | | | - Éder Barros Dos Santos
- Instituto Evandro Chagas, Rodovia BR-316, KM 07, Sem número, Levilandia, Ananindeua, Pará, 67030-000, Brazil
| | - Franko de Arruda E Silva
- Instituto Evandro Chagas, Rodovia BR-316, KM 07, Sem número, Levilandia, Ananindeua, Pará, 67030-000, Brazil
| | - Jannifer Oliveira Chiang
- Instituto Evandro Chagas, Rodovia BR-316, KM 07, Sem número, Levilandia, Ananindeua, Pará, 67030-000, Brazil
| | - Pedro Fernando da Costa Vasconcelos
- Instituto Evandro Chagas, Rodovia BR-316, KM 07, Sem número, Levilandia, Ananindeua, Pará, 67030-000, Brazil
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Travessa Perebebui, 2623, Marco, Belém, Pará, 66087-662, Brazil
| | - Patricia Avello Nicola
- Universidade Federal do Vale do São Francisco, Rodovia BR-407, KM 12, Lote 543, Sem Número, Projeto de Irrigação Nilo Coelho, Petrolina, Pernambuco, 56300-000, Brazil
| |
Collapse
|
3
|
Fatima M, An T, Park PG, Hong KJ. Advancements and Challenges in Addressing Zoonotic Viral Infections with Epidemic and Pandemic Threats. Viruses 2025; 17:352. [PMID: 40143281 PMCID: PMC11946417 DOI: 10.3390/v17030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Zoonotic viruses have significant pandemic potential, as evidenced by the coronavirus pandemic, which underscores that zoonotic infections have historically caused numerous outbreaks and millions of deaths over centuries. Zoonotic viruses induce numerous types of illnesses in their natural hosts. These viruses are transmitted to humans via biological vectors, direct contact with infected animals or their bites, and aerosols. Zoonotic viruses continuously evolve and adapt to human hosts, resulting in devastating consequences. It is very important to understand pathogenesis pathways associated with zoonotic viral infections across various hosts and develop countermeasure strategies accordingly. In this review, we briefly discuss advancements in diagnostics and therapeutics for zoonotic viral infections. It provides insight into recent outbreaks, viral dynamics, licensed vaccines, as well as vaccine candidates progressing to clinical investigations. Despite advancements, challenges persist in combating zoonotic viruses due to immune evasion, unpredicted outbreaks, and the complexity of the immune responses. Most of these viruses lack effective treatments and vaccines, relying entirely on supportive care and preventive measures. Exposure to animal reservoirs, limited vaccine access, and insufficient coverage further pose challenges to preventive efforts. This review highlights the critical need for ongoing interdisciplinary research and collaboration to strengthen preparedness and response strategies against emerging infectious threats.
Collapse
Affiliation(s)
- Munazza Fatima
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea; (M.F.)
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Timothy An
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Pil-Gu Park
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea; (M.F.)
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Kee-Jong Hong
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea; (M.F.)
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Korea mRNA Vaccine Initiative, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
4
|
Costa TA, Arruda MS, Garcia-Oliveira GF, Reis EVDS, Guimarães ACDS, Moreira GD, Arias NEC, Beirão MDV, Vasilakis N, Hanley KA, Drumond BP. Detection of neutralizing antibodies against arboviruses from liver homogenates. PLoS Negl Trop Dis 2024; 18:e0012740. [PMID: 39671423 DOI: 10.1371/journal.pntd.0012740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/27/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024] Open
Abstract
Yellow fever virus (YFV) circulates in a sylvatic cycle between non-human primates (NHPs) and arboreal mosquitoes in Brazil. Passive monitoring of ill or deceased NHPs is a key component of the Brazilian yellow fever (YF) surveillance program. Samples from NHPs carcasses are usually suitable for molecular tests but not for serological assays. As an alternative to the conventional plaque reduction neutralization test (PRNT) based on sera, we tested the utility of liver homogenates from experimentally infected (YFV, Mayaro virus [MAYV], chikungunya virus [CHIKV], or mock) mice to quantify PRNTs. Although homogenates from mock-infected mice showed a low level of nonspecific virus neutralization against all three viruses, homogenates from YFV-, MAYV- and CHIKV-infected mice demonstrated significantly higher levels of virus neutralization compared to controls. Receiver operating characteristic (ROC) curves analyses were performed using the median neutralization values of three technical replicates for each infected group separately or collectively. Results showed scores ≥0.97 (95% CI ≥ 0.89-1.0) for the area under the curve at dilutions 1:20 to 1:80, suggesting that median virus neutralization values effectively differentiated infected mice from controls. Liver homogenates obtained from 25 NHP carcasses (collected during the 2017 YF outbreak in Brazil) were also tested using the adapted PRNT as well as rapid lateral flow tests to investigate anti-YFV IgM. Neutralization activity was detected in six NHP samples that were also positive by PCR and anti-YFV IgM tests and one sample that tested negative by PCR and IgM test. Our results demonstrate the feasibility of using liver homogenates as an alternative approach for serological investigation in viral epidemiologic surveillance.
Collapse
Affiliation(s)
- Thaís Alkifeles Costa
- Laboratório de Vírus, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Matheus Soares Arruda
- Laboratório de Vírus, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Erik Vinicius de Sousa Reis
- Laboratório de Vírus, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Gabriel Dias Moreira
- Laboratório de Vírus, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Marina do Vale Beirão
- Laboratório de Vírus, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Vector-Borne and Zoonotic Diseases, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Betânia Paiva Drumond
- Laboratório de Vírus, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
5
|
Saivish MV, Nogueira ML, Rossi SL, Vasilakis N. Beyond Borders: Investigating the Mysteries of Cacipacoré, a Lesser-Studied Arbovirus in Brazil. Viruses 2024; 16:336. [PMID: 38543701 PMCID: PMC10975354 DOI: 10.3390/v16030336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 04/01/2024] Open
Abstract
Cacipacoré virus (CPCV) was discovered in 1977 deep in the Amazon rainforest from the blood of a black-faced ant thrush (Formicarius analis). As a member of the family Flaviviridae and genus orthoflavivirus, CPCV's intricate ecological association with vectors and hosts raises profound questions. CPCV's transmission cycle may involve birds, rodents, equids, bovines, marsupials, non-human primates, and bats as potential vertebrate hosts, whereas Culex and Aedes spp. mosquitoes have been implicated as potential vectors of transmission. The virus' isolation across diverse biomes, including urban settings, suggests its adaptability, as well as presents challenges for its accurate diagnosis, and thus its impact on veterinary and human health. With no specific treatment or vaccine, its prevention hinges on traditional arbovirus control measures. Here, we provide an overview of its ecology, transmission cycles, epidemiology, pathogenesis, and prevention, aiming at improving our ability to better understand this neglected arbovirus.
Collapse
Affiliation(s)
- Marielena V. Saivish
- Laboratórios de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, Sao Jose do Rio Preto 15090-000, SP, Brazil; (M.V.S.); (M.L.N.)
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | - Maurício L. Nogueira
- Laboratórios de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, Sao Jose do Rio Preto 15090-000, SP, Brazil; (M.V.S.); (M.L.N.)
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| |
Collapse
|
6
|
Garcia-Oliveira GF, Guimarães ACDS, Moreira GD, Costa TA, Arruda MS, de Mello ÉM, Silva MC, de Almeida MG, Hanley KA, Vasilakis N, Drumond BP. YELLOW ALERT: Persistent Yellow Fever Virus Circulation among Non-Human Primates in Urban Areas of Minas Gerais State, Brazil (2021-2023). Viruses 2023; 16:31. [PMID: 38257732 PMCID: PMC10818614 DOI: 10.3390/v16010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Yellow fever virus (YFV) is the agent of yellow fever (YF), which affects both humans and non-human primates (NHP). Neotropical NHP are highly susceptible to YFV and considered sentinels for YFV circulation. Brazil faced a significant YF outbreak in 2017-2018, with over 2000 human cases and 2000 epizootics cases, mainly in the State of Minas Gerais, Brazil. This study aimed to investigate whether YFV circulation persisted in NHP after the human outbreak had subsided. To this end, NHP carcass samples collected in Minas Gerais from 2021 to 2023 were screened for YFV. RNA was extracted from tissue fragments and used in RT-qPCR targeting the YFV 5'UTR. Liver and lung samples from 166 animals were tested, and the detection of the β-actin mRNA was used to ensure adequacy of RNA isolation. YFV RNA was detected in the liver of 18 NHP carcasses collected mainly from urban areas in 2021 and 2022. YFV positive NHP were mostly represented by Callithrix, from 5 out of the 12 grouped municipalities (mesoregions) in Minas Gerais state. These findings reveal the continued YFV circulation in NHP in urban areas of Minas Gerais during 2021 and 2022, with the attendant risk of re-establishing the urban YFV cycle.
Collapse
Affiliation(s)
- Gabriela F. Garcia-Oliveira
- Laboratório de Vírus, Departament of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte CEP 31270-901, Brazil; (G.F.G.-O.); (A.C.D.S.G.); (G.D.M.); (T.A.C.); (M.S.A.)
| | - Anna Catarina Dias Soares Guimarães
- Laboratório de Vírus, Departament of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte CEP 31270-901, Brazil; (G.F.G.-O.); (A.C.D.S.G.); (G.D.M.); (T.A.C.); (M.S.A.)
| | - Gabriel Dias Moreira
- Laboratório de Vírus, Departament of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte CEP 31270-901, Brazil; (G.F.G.-O.); (A.C.D.S.G.); (G.D.M.); (T.A.C.); (M.S.A.)
| | - Thais Alkifeles Costa
- Laboratório de Vírus, Departament of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte CEP 31270-901, Brazil; (G.F.G.-O.); (A.C.D.S.G.); (G.D.M.); (T.A.C.); (M.S.A.)
| | - Matheus Soares Arruda
- Laboratório de Vírus, Departament of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte CEP 31270-901, Brazil; (G.F.G.-O.); (A.C.D.S.G.); (G.D.M.); (T.A.C.); (M.S.A.)
| | - Érica Munhoz de Mello
- Centro de Controle de Zoonoses, Prefeitura de Belo Horizonte, Belo Horizonte CEP 31270-705, Minas Gerais, Brazil
| | - Marlise Costa Silva
- Laboratório de Zoonoses, Prefeitura de Belo Horizonte, Belo Horizonte CEP 31270-705, Minas Gerais, Brazil
| | | | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM 88003-8801, USA;
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
- Center for Vector-Borne and Zoonotic Diseases, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | - Betânia Paiva Drumond
- Laboratório de Vírus, Departament of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte CEP 31270-901, Brazil; (G.F.G.-O.); (A.C.D.S.G.); (G.D.M.); (T.A.C.); (M.S.A.)
| |
Collapse
|