1
|
Evolution of Multiple Domains of the HIV-1 Envelope Glycoprotein during Coreceptor Switch with CCR5 Antagonist Therapy. Microbiol Spectr 2022; 10:e0072522. [PMID: 35727047 PMCID: PMC9431240 DOI: 10.1128/spectrum.00725-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 uses CD4 as a receptor and chemokine receptors CCR5 and/or CXCR4 as coreceptors. CCR5 antagonists are a class of antiretrovirals used to inhibit viral entry. Phenotypic prediction algorithms such as Geno2Pheno are used to assess CCR5 antagonist eligibility, for which the V3 region is screened. However, there exist scenarios where the algorithm cannot give an accurate prediction of tropism. The current study examined coreceptor shift of HIV-1 from CCR5-tropic strains to CXCR4-tropic or dual-tropic strains among five subjects in a clinical trial of the CCR5 antagonist vicriviroc. Envelope gene amplicon libraries were constructed and subjected to next-generation sequencing, as well as single-clone sequencing and functional analyses. Approximately half of the amplified full-length single envelope-encoding clones had no significant activity for infection of cells expressing high levels of CD4 and CCR5 or CXCR4. Functional analysis of 9 to 21 individual infectious clones at baseline and at the time of VF were used to construct phylogenetic trees and sequence alignments. These studies confirmed that specific residues and the overall charge of the V3 loop were the major determinants of coreceptor use, in addition to specific residues in other domains of the envelope protein in V1/V2, V4, C3, and C4 domains that may be important for coreceptor shift. These results provide greater insight into the viral genetic determinants of coreceptor shift. IMPORTANCE This study is novel in combining single-genome sequence analysis and next-generation sequencing to characterize HIV-1 quasispecies. The work highlights the importance of mutants present at frequencies of 1% or less in development of drug resistance. This study highlights a critical role of specific amino acid substitutions outside V3 that contribute to coreceptor shift as well as important roles of the V1/V2, V4, C3, and C4 domain residues.
Collapse
|
2
|
Abstract
Cysteine-X-cysteine chemokine receptor 4 (CXCR4) is a broadly expressed and multifunctional G protein-coupled chemokine receptor critical for organogenesis, hematopoiesis, and antimicrobial host defense. In the hematopoietic system, the binding of CXCR4 to its cognate chemokine ligand, CXCL12, mediates leukocyte trafficking, distribution, survival, activation, and proliferation. Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is a rare, autosomal dominant, combined immunodeficiency disorder caused by mutations in the C-terminus of CXCR4 that prevent receptor downregulation and therefore result in pathologically increased signaling. The "M" in the acronym WHIM refers to myelokathexis, the retention of neutrophils in the bone marrow resulting in neutropenia, which explains in part the increased susceptibility to bacterial infection. However, WHIM patients also present with B and T lymphopenia, which may explain the susceptibility to human papillomavirus (HPV), the cause of warts. The impact of WHIM mutations on lymphocytes and adaptive immunity has received less attention than myelokathexis and is the focus of this review.
Collapse
Affiliation(s)
- Shamik Majumdar
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Insights into the Impact of CD8 + Immune Modulation on Human Immunodeficiency Virus Evolutionary Dynamics in Distinct Anatomical Compartments by Using Simian Immunodeficiency Virus-Infected Macaque Models of AIDS Progression. J Virol 2017; 91:JVI.01162-17. [PMID: 28931681 DOI: 10.1128/jvi.01162-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/24/2017] [Indexed: 12/16/2022] Open
Abstract
A thorough understanding of the role of human immunodeficiency virus (HIV) intrahost evolution in AIDS pathogenesis has been limited by the need for longitudinally sampled viral sequences from the vast target space within the host, which are often difficult to obtain from human subjects. CD8+ lymphocyte-depleted macaques infected with simian immunodeficiency virus (SIV) provide an increasingly utilized model of pathogenesis due to clinical manifestations similar to those for HIV-1 infection and AIDS progression, as well as a characteristic rapid disease onset. Comparison of this model with SIV-infected non-CD8+ lymphocyte-depleted macaques also provides a unique opportunity to investigate the role of CD8+ cells in viral evolution and population dynamics throughout the duration of infection. Using several different phylogenetic methods, we analyzed viral gp120 sequences obtained from extensive longitudinal sampling of multiple tissues and enriched leukocyte populations from SIVmac251-infected macaques with or without CD8+ lymphocyte depletion. SIV evolutionary and selection patterns in non-CD8+ lymphocyte-depleted animals were characterized by sequential population turnover and continual viral adaptation, a scenario readily comparable to intrahost evolutionary patterns during human HIV infection in the absence of antiretroviral therapy. Alternatively, animals that were depleted of CD8+ lymphocytes exhibited greater variation in population dynamics among tissues and cell populations over the course of infection. Our findings highlight the major role for CD8+ lymphocytes in prolonging disease progression through continual control of SIV subpopulations from various anatomical compartments and the potential for greater independent viral evolutionary behavior among these compartments in response to immune modulation.IMPORTANCE Although developments in combined antiretroviral therapy (cART) strategies have successfully prolonged the time to AIDS onset in HIV-1-infected individuals, a functional cure has yet to be found. Improvement of drug interventions for a virus that is able to infect a wide range of tissues and cell types requires a thorough understanding of viral adaptation and infection dynamics within this target milieu. Although it is difficult to accomplish in the human host, longitudinal sampling of multiple anatomical locations is readily accessible in the SIV-infected macaque models of neuro-AIDS. The significance of our research is in identifying the impact of immune modulation, through differing immune selective pressures, on viral evolutionary behavior in a multitude of anatomical compartments. The results provide evidence encouraging the development of a more sophisticated model that considers a network of individual viral subpopulations within the host, with differing infection and transmission dynamics, which is necessary for more effective treatment strategies.
Collapse
|
4
|
Pace of Coreceptor Tropism Switch in HIV-1-Infected Individuals after Recent Infection. J Virol 2017; 91:JVI.00793-17. [PMID: 28659473 DOI: 10.1128/jvi.00793-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/08/2017] [Indexed: 11/20/2022] Open
Abstract
HIV-1 entry into target cells influences several aspects of HIV-1 pathogenesis, including viral tropism, HIV-1 transmission and disease progression, and response to entry inhibitors. The evolution from CCR5- to CXCR4-using strains in a given human host is still unpredictable. Here we analyzed timing and predictors for coreceptor evolution among recently HIV-1-infected individuals. Proviral DNA was longitudinally evaluated in 66 individuals using Geno2pheno[coreceptor] Demographics, viral load, CD4+ and CD8+ T cell counts, CCR5Δ32 polymorphisms, GB virus C (GBV-C) coinfection, and HLA profiles were also evaluated. Ultradeep sequencing was performed on initial samples from 11 selected individuals. A tropism switch from CCR5- to CXCR4-using strains was identified in 9/49 (18.4%) individuals. Only a low baseline false-positive rate (FPR) was found to be a significant tropism switch predictor. No minor CXCR4-using variants were identified in initial samples of 4 of 5 R5/non-R5 switchers. Logistic regression analysis showed that patients with an FPR of >40.6% at baseline presented a stable FPR over time whereas lower FPRs tend to progressively decay, leading to emergence of CXCR4-using strains, with a mean evolution time of 27.29 months (range, 8.90 to 64.62). An FPR threshold above 40.6% determined by logistic regression analysis may make it unnecessary to further determine tropism for prediction of disease progression related to emergence of X4 strains or use of CCR5 antagonists. The detection of variants with intermediate FPRs and progressive FPR decay over time not only strengthens the power of Geno2pheno in predicting HIV tropism but also indirectly confirms a continuous evolution from earlier R5 variants toward CXCR4-using strains.IMPORTANCE The introduction of CCR5 antagonists in the antiretroviral arsenal has sparked interest in coreceptors utilized by HIV-1. Despite concentrated efforts, viral and human host features predicting tropism switch are still poorly understood. Limited longitudinal data are available to assess the influence that these factors have on predicting tropism switch and disease progression. The present study describes longitudinal tropism evolution in a group of recently HIV-infected individuals to determine the prevalence and potential correlates of tropism switch. We demonstrated here that a low baseline FPR determined by the Geno2pheno[coreceptor] algorithm can predict tropism evolution from CCR5 to CXCR4 coreceptor use.
Collapse
|
5
|
Parto S, Lartillot N. Detecting consistent patterns of directional adaptation using differential selection codon models. BMC Evol Biol 2017. [PMID: 28645318 PMCID: PMC5481935 DOI: 10.1186/s12862-017-0979-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phylogenetic codon models are often used to characterize the selective regimes acting on protein-coding sequences. Recent methodological developments have led to models explicitly accounting for the interplay between mutation and selection, by modeling the amino acid fitness landscape along the sequence. However, thus far, most of these models have assumed that the fitness landscape is constant over time. Fluctuations of the fitness landscape may often be random or depend on complex and unknown factors. However, some organisms may be subject to systematic changes in selective pressure, resulting in reproducible molecular adaptations across independent lineages subject to similar conditions. RESULTS Here, we introduce a codon-based differential selection model, which aims to detect and quantify the fine-grained consistent patterns of adaptation at the protein-coding level, as a function of external conditions experienced by the organism under investigation. The model parameterizes the global mutational pressure, as well as the site- and condition-specific amino acid selective preferences. This phylogenetic model is implemented in a Bayesian MCMC framework. After validation with simulations, we applied our method to a dataset of HIV sequences from patients with known HLA genetic background. Our differential selection model detects and characterizes differentially selected coding positions specifically associated with two different HLA alleles. CONCLUSION Our differential selection model is able to identify consistent molecular adaptations as a function of repeated changes in the environment of the organism. These models can be applied to many other problems, ranging from viral adaptation to evolution of life-history strategies in plants or animals.
Collapse
Affiliation(s)
- Sahar Parto
- Département de Biochimie et Médecine Moléculaire, Centre Robert Cedergren, Bio-Informatique et Génomique, Université de Montréal, Montréal, Québec, Canada.
| | - Nicolas Lartillot
- Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, CNRS, UMR 5558, Lyon, France
| |
Collapse
|
6
|
The meningeal lymphatic system: a route for HIV brain migration? J Neurovirol 2015; 22:275-81. [PMID: 26572785 DOI: 10.1007/s13365-015-0399-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/15/2015] [Accepted: 10/23/2015] [Indexed: 01/08/2023]
Abstract
Two innovative studies recently identified functional lymphatic structures in the meninges that may influence the development of HIV-associated neurological disorders (HAND). Until now, blood vessels were assumed to be the sole transport system by which HIV-infected monocytes entered the brain by bypassing a potentially hostile blood-brain barrier through inflammatory-mediated semi-permeability. A cascade of specific chemokine signals promote monocyte migration from blood vessels to surrounding brain tissues via a well-supported endothelium, where the cells differentiate into tissue macrophages capable of productive HIV infection. Lymphatic vessels on the other hand are more loosely organized than blood vessels. They absorb interstitial fluid from bodily tissues where HIV may persist and exchange a variety of immune cells (CD4(+) T cells, monocytes, macrophages, and dendritic cells) with surrounding tissues through discontinuous endothelial junctions. We propose that the newly discovered meningeal lymphatics are key to HIV migration among viral reservoirs and brain tissue during periods of undetectable plasma viral loads due to suppressive combinational antiretroviral therapy, thus redefining the migration process in terms of a blood-lymphatic transport system.
Collapse
|
7
|
Liu Y, Chiaromonte F, Ross H, Malhotra R, Elleder D, Poss M. Error correction and statistical analyses for intra-host comparisons of feline immunodeficiency virus diversity from high-throughput sequencing data. BMC Bioinformatics 2015; 16:202. [PMID: 26123018 PMCID: PMC4486422 DOI: 10.1186/s12859-015-0607-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/29/2015] [Indexed: 11/16/2022] Open
Abstract
Background Infection with feline immunodeficiency virus (FIV) causes an immunosuppressive disease whose consequences are less severe if cats are co-infected with an attenuated FIV strain (PLV). We use virus diversity measurements, which reflect replication ability and the virus response to various conditions, to test whether diversity of virulent FIV in lymphoid tissues is altered in the presence of PLV. Our data consisted of the 3′ half of the FIV genome from three tissues of animals infected with FIV alone, or with FIV and PLV, sequenced by 454 technology. Results Since rare variants dominate virus populations, we had to carefully distinguish sequence variation from errors due to experimental protocols and sequencing. We considered an exponential-normal convolution model used for background correction of microarray data, and modified it to formulate an error correction approach for minor allele frequencies derived from high-throughput sequencing. Similar to accounting for over-dispersion in counts, this accounts for error-inflated variability in frequencies – and quite effectively reproduces empirically observed distributions. After obtaining error-corrected minor allele frequencies, we applied ANalysis Of VAriance (ANOVA) based on a linear mixed model and found that conserved sites and transition frequencies in FIV genes differ among tissues of dual and single infected cats. Furthermore, analysis of minor allele frequencies at individual FIV genome sites revealed 242 sites significantly affected by infection status (dual vs. single) or infection status by tissue interaction. All together, our results demonstrated a decrease in FIV diversity in bone marrow in the presence of PLV. Importantly, these effects were weakened or undetectable when error correction was performed with other approaches (thresholding of minor allele frequencies; probabilistic clustering of reads). We also queried the data for cytidine deaminase activity on the viral genome, which causes an asymmetric increase in G to A substitutions, but found no evidence for this host defense strategy. Conclusions Our error correction approach for minor allele frequencies (more sensitive and computationally efficient than other algorithms) and our statistical treatment of variation (ANOVA) were critical for effective use of high-throughput sequencing data in understanding viral diversity. We found that co-infection with PLV shifts FIV diversity from bone marrow to lymph node and spleen. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0607-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Liu
- Department of Statistics, The Pennsylvania State University, University Park, PA, 16802, USA. .,The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Francesca Chiaromonte
- Department of Statistics, The Pennsylvania State University, University Park, PA, 16802, USA. .,The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Howard Ross
- Bioinformatics Institute, School of Biological Sciences, University of Auckland, Auckland, 1142, New Zealand.
| | - Raunaq Malhotra
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Daniel Elleder
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA. .,The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA. .,Current address: Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague, 14000, Czech Republic.
| | - Mary Poss
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA. .,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA. .,The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
8
|
Tracking the Emergence of Host-Specific Simian Immunodeficiency Virus env and nef Populations Reveals nef Early Adaptation and Convergent Evolution in Brain of Naturally Progressing Rhesus Macaques. J Virol 2015; 89:8484-96. [PMID: 26041280 DOI: 10.1128/jvi.01010-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/27/2015] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED While a clear understanding of the events leading to successful establishment of host-specific viral populations and productive infection in the central nervous system (CNS) has not yet been reached, the simian immunodeficiency virus (SIV)-infected rhesus macaque provides a powerful model for the study of human immunodeficiency virus (HIV) intrahost evolution and neuropathogenesis. The evolution of the gp120 and nef genes, which encode two key proteins required for the establishment and maintenance of infection, was assessed in macaques that were intravenously inoculated with the same viral swarm and allowed to naturally progress to simian AIDS and potential SIV-associated encephalitis (SIVE). Longitudinal plasma samples and immune markers were monitored until terminal illness. Single-genome sequencing was employed to amplify full-length env through nef transcripts from plasma over time and from brain tissues at necropsy. nef sequences diverged from the founder virus faster than gp120 diverged. Host-specific sequence populations were detected in nef (~92 days) before they were detected in gp120 (~182 days). At necropsy, similar brain nef sequences were found in different macaques, indicating convergent evolution, while gp120 brain sequences remained largely host specific. Molecular clock and selection analyses showed weaker clock-like behavior and stronger selection pressure in nef than in gp120, with the strongest nef selection in the macaque with SIVE. Rapid nef diversification, occurring prior to gp120 diversification, indicates that early adaptation of nef in the new host is essential for successful infection. Moreover, the convergent evolution of nef sequences in the CNS suggests a significant role for nef in establishing neurotropic strains. IMPORTANCE The SIV-infected rhesus macaque model closely resembles HIV-1 immunopathogenesis, neuropathogenesis, and disease progression in humans. Macaques were intravenously infected with identical viral swarms to investigate evolutionary patterns in the gp120 and nef genes leading to the emergence of host-specific viral populations and potentially linked to disease progression. Although each macaque exhibited unique immune profiles, macaque-specific nef sequences evolving under selection were consistently detected in plasma samples at 3 months postinfection, significantly earlier than in gp120 macaque-specific sequences. On the other hand, nef sequences in brain tissues, collected at necropsy of two animals with detectable infection in the central nervous system (CNS), revealed convergent evolution. The results not only indicate that early adaptation of nef in the new host may be essential for successful infection, but also suggest that specific nef variants may be required for SIV to efficiently invade CNS macrophages and/or enhance macrophage migration, resulting in HIV neuropathology.
Collapse
|
9
|
Strickland SL, Rife BD, Lamers SL, Nolan DJ, Veras NMC, Prosperi MCF, Burdo TH, Autissier P, Nowlin B, Goodenow MM, Suchard MA, Williams KC, Salemi M. Spatiotemporal dynamics of simian immunodeficiency virus brain infection in CD8+ lymphocyte-depleted rhesus macaques with neuroAIDS. J Gen Virol 2014; 95:2784-2795. [PMID: 25205684 DOI: 10.1099/vir.0.070318-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite the success of combined antiretroviral therapy in controlling viral replication in human immunodeficiency virus (HIV)-infected individuals, HIV-associated neurocognitive disorders, commonly referred to as neuroAIDS, remain a frequent and poorly understood complication. Infection of CD8(+) lymphocyte-depleted rhesus macaques with the SIVmac251 viral swarm is a well-established rapid disease model of neuroAIDS that has provided critical insight into HIV-1-associated neurocognitive disorder onset and progression. However, no studies so far have characterized in depth the relationship between intra-host viral evolution and pathogenesis in this model. Simian immunodeficiency virus (SIV) env gp120 sequences were obtained from six infected animals. Sequences were sampled longitudinally from several lymphoid and non-lymphoid tissues, including individual lobes within the brain at necropsy, for four macaques; two animals were sacrificed at 21 days post-infection (p.i.) to evaluate early viral seeding of the brain. Bayesian phylodynamic and phylogeographic analyses of the sequence data were used to ascertain viral population dynamics and gene flow between peripheral and brain tissues, respectively. A steady increase in viral effective population size, with a peak occurring at ~50-80 days p.i., was observed across all longitudinally monitored macaques. Phylogeographic analysis indicated continual viral seeding of the brain from several peripheral tissues throughout infection, with the last migration event before terminal illness occurring in all macaques from cells within the bone marrow. The results strongly supported the role of infected bone marrow cells in HIV/SIV neuropathogenesis. In addition, our work demonstrated the applicability of Bayesian phylogeography to intra-host studies in order to assess the interplay between viral evolution and pathogenesis.
Collapse
Affiliation(s)
- Samantha L Strickland
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Brittany D Rife
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | | | - David J Nolan
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Nazle M C Veras
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Mattia C F Prosperi
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Tricia H Burdo
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | | | - Brian Nowlin
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Maureen M Goodenow
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Marc A Suchard
- Departments of Biomathematics, Biostatistics and Human Genetics, University of California (UCLA), Los Angeles, CA, USA
| | | | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
da Silva J, Wyatt SK. Fitness valleys constrain HIV-1's adaptation to its secondary chemokine coreceptor. J Evol Biol 2014; 27:604-15. [DOI: 10.1111/jeb.12329] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/04/2014] [Indexed: 12/15/2022]
Affiliation(s)
- J. da Silva
- School of Molecular and Biomedical Science; University of Adelaide; Adelaide SA Australia
| | - S. K. Wyatt
- School of Molecular and Biomedical Science; University of Adelaide; Adelaide SA Australia
| |
Collapse
|
11
|
Hedskog C, Brodin J, Heddini A, Bratt G, Albert J, Mild M. Longitudinal ultradeep characterization of HIV type 1 R5 and X4 subpopulations in patients followed from primary infection to coreceptor switch. AIDS Res Hum Retroviruses 2013; 29:1237-44. [PMID: 23745959 DOI: 10.1089/aid.2012.0349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In early infection HIV-1 generally uses the CCR5 coreceptor. During disease progression the coreceptor use switches to include CXCR4 in approximately 70% of infected individuals. The primary determinant for coreceptor use is located in the V3 loop of the viral envelope. Here, ultradeep pyrosequencing (UDPS) of the V3 loop was used to investigate if CXCR4-using (X4) virus may be present as a minority population during primary HIV infection (PHI). Three patients with HIV populations that switched coreceptor use, as determined by the MT-2 cell culture assay, were investigated. Longitudinally collected plasma samples (four to nine samples per patient) obtained from PHI until after coreceptor switch were analyzed by UDPS of the V3 loop. From each sample between 279 and 32,094 reads were generated based on template molecule availability. UDPS analysis showed that the X4 virus that emerged after switch was not present during PHI or prior to overt phenotypic switch. In addition, the phylogenetic analyses indicated that the X4 populations originated from R5 variants that had evolved after the previous R5-only sample was obtained. Finally, one to three major variants were found during PHI, supporting the idea that infection is established with one or just a few viral particles.
Collapse
Affiliation(s)
- Charlotte Hedskog
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Brodin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Heddini
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Göran Bratt
- Venhälsan, Stockholm South General Hospital, Stockholm, Sweden
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Mild
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Unit for Support, Swedish Institute for Communicable Disease Control, Stockholm, Sweden
| |
Collapse
|
12
|
Côté SC, Plante A, Tardif MR, Tremblay MJ. Dectin-1/TLR2 and NOD2 agonists render dendritic cells susceptible to infection by X4-using HIV-1 and promote cis-infection of CD4(+) T cells. PLoS One 2013; 8:e67735. [PMID: 23844079 PMCID: PMC3699635 DOI: 10.1371/journal.pone.0067735] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/22/2013] [Indexed: 11/18/2022] Open
Abstract
HIV-1 pathogenesis is intimately linked with microbial infections and innate immunity during all stages of the disease. While the impact of microbial-derived products in transmission of R5-using virus to CD4+ T cells by dendritic cells (DCs) has been addressed before, very limited data are available on the effect of such compounds on DC-mediated dissemination of X4-tropic variant. Here, we provide evidence that treatment of DCs with dectin-1/TLR2 and NOD2 ligands increases cis-infection of autologous CD4+ T cells by X4-using virus. This phenomenon is most likely associated with an enhanced permissiveness of DCs to productive infection with X4 virus, which is linked to increased surface expression of CXCR4 and the acquisition of a maturation profile by DCs. The ensuing DC maturation enhances susceptibility of CD4+ T cells to productive infection with HIV-1. This study highlights the crucial role of DCs at different stages of HIV-1 infection and particularly in spreading of viral strains displaying a X4 phenotype.
Collapse
Affiliation(s)
- Sandra C. Côté
- Axe des Maladies Infectieuses et Immunitaires, Centre Hospitalier Universitaire de Québec-Pavillon CHUL, Québec, Canada
| | - Audrey Plante
- Axe des Maladies Infectieuses et Immunitaires, Centre Hospitalier Universitaire de Québec-Pavillon CHUL, Québec, Canada
| | - Mélanie R. Tardif
- Axe des Maladies Infectieuses et Immunitaires, Centre Hospitalier Universitaire de Québec-Pavillon CHUL, Québec, Canada
| | - Michel J. Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre Hospitalier Universitaire de Québec-Pavillon CHUL, Québec, Canada
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de médecine, Université Laval, Québec, Canada
- * E-mail:
| |
Collapse
|
13
|
Salemi M. The intra-host evolutionary and population dynamics of human immunodeficiency virus type 1: a phylogenetic perspective. Infect Dis Rep 2013; 5:e3. [PMID: 24470967 PMCID: PMC3892624 DOI: 10.4081/idr.2013.s1.e3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/19/2013] [Indexed: 01/09/2023] Open
Abstract
The intra-host evolutionary and population dynamics of the human immunodeficiency virus type 1 (HIV-1), the cause of the acquired immunodeficiency syndrome, have been the focus of one of the most extensive study efforts in the field of molecular evolution over the past three decades. As HIV-1 is among the fastest mutating organisms known, viral sequence data sampled over time from infected patients can provide, through phylogenetic analysis, significant insights about the tempo and mode of evolutionary processes shaped by complex interaction with the host milieu. Five main aspects are discussed: the patterns of HIV-1 intra-host diversity and divergence over time in relation to different phases of disease progression; the impact of selection on the temporal structure of HIV-1 intra-host genealogies inferred from longitudinally sampled viral sequences; HIV-1 intra-host sub-population structure; the potential relationship between viral evolutionary rate and disease progression and the central evolutionary role played by recombination occurring in super-infected cells.
Collapse
Affiliation(s)
- Marco Salemi
- Department of Pathology Immunology and Laboratory Medicine and Emerging Pathogens Institute, University of Florida, Gainesville, USA
| |
Collapse
|
14
|
Mild M, Gray RR, Kvist A, Lemey P, Goodenow MM, Fenyö EM, Albert J, Salemi M, Esbjörnsson J, Medstrand P. High intrapatient HIV-1 evolutionary rate is associated with CCR5-to-CXCR4 coreceptor switch. INFECTION GENETICS AND EVOLUTION 2013; 19:369-77. [PMID: 23672855 DOI: 10.1016/j.meegid.2013.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 04/29/2013] [Accepted: 05/04/2013] [Indexed: 12/20/2022]
Abstract
In approximately 70% of individuals infected with HIV-1 subtype B, the virus switches coreceptor use from exclusively CCR5 use (R5 virus) to either inclusion of or exclusively CXCR4 use (X4 virus) during infection. This switch is associated with an accelerated loss of CD4(+) T-cells and a faster progression to AIDS. Despite intensive research, the mechanisms responsible for coreceptor switch remains elusive. In the present study, we investigated associations between viral evolutionary rate and selection pressure versus viral coreceptor use and rate of disease progression in eight patients with longitudinally sampled HIV-1 env V1-V3 sequences. By employing a Bayesian hierarchical phylogenetic model, we found that the HIV-1 evolutionary rate was more strongly associated with coreceptor switch than with rate of disease progression in terms of CD4(+)T-cell decline. Phylogenetic analyses showed that X4 variants evolved from R5 populations. In addition, coreceptor switch was associated with higher evolutionary rates on both the synonymous and non-synonymous substitution level, but not with dN/dS ratio rates. Our findings suggest that X4 viruses evolved from pre-existing R5 viral populations and that the evolution of coreceptor switch is governed by high replication rates rather than by selective pressure. Furthermore, the association of viral evolutionary rate was more strongly associated with coreceptor switch than disease progression. This adds to the understanding of the complex virus-host interplay that influences the evolutionary dynamics of HIV-1 coreceptor use.
Collapse
Affiliation(s)
- Mattias Mild
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Virology, Swedish Institute for Infectious Disease Control, Solna, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yin L, Liu L, Sun Y, Hou W, Lowe AC, Gardner BP, Salemi M, Williams WB, Farmerie WG, Sleasman JW, Goodenow MM. High-resolution deep sequencing reveals biodiversity, population structure, and persistence of HIV-1 quasispecies within host ecosystems. Retrovirology 2012; 9:108. [PMID: 23244298 PMCID: PMC3531307 DOI: 10.1186/1742-4690-9-108] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/20/2012] [Indexed: 02/05/2023] Open
Abstract
Background Deep sequencing provides the basis for analysis of biodiversity of taxonomically similar organisms in an environment. While extensively applied to microbiome studies, population genetics studies of viruses are limited. To define the scope of HIV-1 population biodiversity within infected individuals, a suite of phylogenetic and population genetic algorithms was applied to HIV-1 envelope hypervariable domain 3 (Env V3) within peripheral blood mononuclear cells from a group of perinatally HIV-1 subtype B infected, therapy-naïve children. Results Biodiversity of HIV-1 Env V3 quasispecies ranged from about 70 to 270 unique sequence clusters across individuals. Viral population structure was organized into a limited number of clusters that included the dominant variants combined with multiple clusters of low frequency variants. Next generation viral quasispecies evolved from low frequency variants at earlier time points through multiple non-synonymous changes in lineages within the evolutionary landscape. Minor V3 variants detected as long as four years after infection co-localized in phylogenetic reconstructions with early transmitting viruses or with subsequent plasma virus circulating two years later. Conclusions Deep sequencing defines HIV-1 population complexity and structure, reveals the ebb and flow of dominant and rare viral variants in the host ecosystem, and identifies an evolutionary record of low-frequency cell-associated viral V3 variants that persist for years. Bioinformatics pipeline developed for HIV-1 can be applied for biodiversity studies of virome populations in human, animal, or plant ecosystems.
Collapse
Affiliation(s)
- Li Yin
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, 2033 Mowry Road, PO Box 103633, Gainesville, FL 32610-3633, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Haaland RE, Sullivan ST, Evans-Strickfaden T, Lennox JL, Hart CE. Female genital tract shedding of CXCR4-tropic HIV Type 1 is associated with a majority population of CXCR4-tropic HIV Type 1 in blood and declining CD4(+) cell counts. AIDS Res Hum Retroviruses 2012; 28:1524-32. [PMID: 22369497 PMCID: PMC5555632 DOI: 10.1089/aid.2012.0004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study compared HIV-1 genotypes shed over time (≤3.5 years) in the vaginal secretions (VS) and blood plasma (BP) of 15 chronically infected women. Analysis of predicted coreceptor tropism (CCR5=R5, CXCR4=X4) for quasispecies shedding revealed three patterns: (1) viral quasispecies shed in both VS and BP were restricted to R5-tropism at all time points, (2) quasispecies shed in VS were restricted to R5-tropism at all time points but X4 quasispecies were identified in the BP at one or more time points, and (3) quasispecies shed in matched VS and BP both contained X4-tropic viruses. Overall, the frequency of X4 quasispecies circulation in VS was 2-fold less than in BP and detection of X4 virus in VS was more likely to occur when X4 quasispecies comprised more than 50% of BP viruses (p=0.01) and when declines in blood CD4(+) lymphocyte levels were the greatest (p=0.038). Additionally, the mean number of predicted N-glycosylation sites between matched VS and BP samples was strongly correlated (r=0.86, p<0.0001) with glycosylation densities in the following order (VS R5=BP R5 > BP X4 > VS X4). The X4 glycosylation densities may result from compartmentalization pressures in the female genital tract or the delayed appearance of these viruses in VS. Our results suggest that the presence of X4 virus in VS is associated with a threshold population of X4 quasispecies in BP, which are increasing during the HIV-induced failure of the human immune system.
Collapse
Affiliation(s)
- Richard E Haaland
- Laboratory Branch, Division of HIV and AIDS Prevention, National Center for HIV, STD, and TB Prevention, Centers for Disease Control and Prevention , Atlanta, Georgia 30333, USA.
| | | | | | | | | |
Collapse
|
17
|
Combination of immune and viral factors distinguishes low-risk versus high-risk HIV-1 disease progression in HLA-B*5701 subjects. J Virol 2012; 86:9802-16. [PMID: 22761389 DOI: 10.1128/jvi.01165-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HLA-B*5701 is the host factor most strongly associated with slow HIV-1 disease progression, although rates can vary within this group. Underlying mechanisms are not fully understood but likely involve both immunological and virological dynamics. The present study investigated HIV-1 in vivo evolution and epitope-specific CD8(+) T cell responses in six HLA-B*5701 patients who had not received antiretroviral treatment, monitored from early infection for up to 7 years. The subjects were classified as high-risk progressors (HRPs) or low-risk progressors (LRPs) based on baseline CD4(+) T cell counts. Dynamics of HIV-1 Gag p24 evolution and multifunctional CD8(+) T cell responses were evaluated by high-resolution phylogenetic analysis and polychromatic flow cytometry, respectively. In all subjects, substitutions occurred more frequently in flanking regions than in HLA-B*5701-restricted epitopes. In LRPs, p24 sequence diversity was significantly lower; sequences exhibited a higher degree of homoplasy and more constrained mutational patterns than HRPs. The HIV-1 intrahost evolutionary rate was also lower in LRPs and followed a strict molecular clock, suggesting neutral genetic drift rather than positive selection. Additionally, polyfunctional CD8(+) T cell responses, particularly to TW10 and QW9 epitopes, were more robust in LRPs, who also showed significantly higher interleukin-2 (IL-2) production in early infection. Overall, the findings indicate that HLA-B*5701 patients with higher CD4 counts at baseline have a lower risk of HIV-1 disease progression because of the interplay between specific HLA-linked immune responses and the rate and mode of viral evolution. The study highlights the power of a multidisciplinary approach, integrating high-resolution evolutionary and immunological data, to understand mechanisms underlying HIV-1 pathogenesis.
Collapse
|
18
|
Norström MM, Prosperi MCF, Gray RR, Karlsson AC, Salemi M. PhyloTempo: A Set of R Scripts for Assessing and Visualizing Temporal Clustering in Genealogies Inferred from Serially Sampled Viral Sequences. Evol Bioinform Online 2012; 8:261-9. [PMID: 22745529 PMCID: PMC3382462 DOI: 10.4137/ebo.s9738] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Serially-sampled nucleotide sequences can be used to infer demographic history of evolving viral populations. The shape of a phylogenetic tree often reflects the interplay between evolutionary and ecological processes. Several approaches exist to analyze the topology and traits of a phylogenetic tree, by means of tree balance, branching patterns and comparative properties. The temporal clustering (TC) statistic is a new topological measure, based on ancestral character reconstruction, which characterizes the temporal structure of a phylogeny. Here, PhyloTempo is the first implementation of the TC in the R language, integrating several other topological measures in a user-friendly graphical framework. The comparison of the TC statistic with other measures provides multifaceted insights on the dynamic processes shaping the evolution of pathogenic viruses. The features and applicability of PhyloTempo were tested on serially-sampled intra-host human and simian immunodeficiency virus population data sets. PhyloTempo is distributed under the GNU general public license at https://sourceforge.net/projects/phylotempo/.
Collapse
Affiliation(s)
- Melissa M Norström
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
19
|
Castro-Nallar E, Crandall KA, Pérez-Losada M. Genetic diversity and molecular epidemiology of HIV transmission. Future Virol 2012. [DOI: 10.2217/fvl.12.4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The high genetic diversity of HIV is one of its most significant features, as it has consequences in global distribution, vaccine design, therapy success, disease progression, transmissibility and viral load testing. Studying HIV diversity helps to understand its origins, migration patterns, current distribution and transmission events. New advances in sequencing technologies based on the parallel acquisition of data are now used to characterize within-host and population processes in depth. Additionally, we have seen similar advances in statistical methods designed to model the past history of lineages (the phylodynamic framework) to ultimately gain better insights into the evolutionary history of HIV. We can, for example, estimate population size changes, lineage dispersion over geographic areas and epidemiological parameters solely from sequence data. In this article, we review some of the evolutionary approaches used to study transmission patterns and processes in HIV and the insights gained from such studies.
Collapse
Affiliation(s)
- Eduardo Castro-Nallar
- Department of Biology, 401 Widtsoe Building, Brigham Young University, Provo, UT 84602-5181, USA
| | - Keith A Crandall
- Department of Biology, 401 Widtsoe Building, Brigham Young University, Provo, UT 84602-5181, USA
| | - Marcos Pérez-Losada
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| |
Collapse
|
20
|
Castro-Nallar E, Pérez-Losada M, Burton GF, Crandall KA. The evolution of HIV: inferences using phylogenetics. Mol Phylogenet Evol 2012; 62:777-92. [PMID: 22138161 PMCID: PMC3258026 DOI: 10.1016/j.ympev.2011.11.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 12/02/2022]
Abstract
Molecular phylogenetics has revolutionized the study of not only evolution but also disparate fields such as genomics, bioinformatics, epidemiology, ecology, microbiology, molecular biology and biochemistry. Particularly significant are its achievements in population genetics as a result of the development of coalescent theory, which have contributed to more accurate model-based parameter estimation and explicit hypothesis testing. The study of the evolution of many microorganisms, and HIV in particular, have benefited from these new methodologies. HIV is well suited for such sophisticated population analyses because of its large population sizes, short generation times, high substitution rates and relatively small genomes. All these factors make HIV an ideal and fascinating model to study molecular evolution in real time. Here we review the significant advances made in HIV evolution through the application of phylogenetic approaches. We first examine the relative roles of mutation and recombination on the molecular evolution of HIV and its adaptive response to drug therapy and tissue allocation. We then review some of the fundamental questions in HIV evolution in relation to its origin and diversification and describe some of the insights gained using phylogenies. Finally, we show how phylogenetic analysis has advanced our knowledge of HIV dynamics (i.e., phylodynamics).
Collapse
Affiliation(s)
- Eduardo Castro-Nallar
- Department of Biology, 401 Widtsoe Building, Brigham Young University, Provo, UT 84602-5181, USA.
| | | | | | | |
Collapse
|
21
|
Faria NR, Suchard MA, Rambaut A, Lemey P. Toward a quantitative understanding of viral phylogeography. Curr Opin Virol 2011; 1:423-9. [PMID: 22440846 DOI: 10.1016/j.coviro.2011.10.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 08/22/2011] [Accepted: 10/07/2011] [Indexed: 12/11/2022]
Abstract
Phylogeographic approaches help uncover the imprint that spatial epidemiological processes leave in the genomes of fast evolving viruses. Recent Bayesian inference methods that consider phylogenetic diffusion of discretely and continuously distributed traits offer a unique opportunity to explore genotypic and phenotypic evolution in greater detail. To provide a taste of the recent advances in viral diffusion approaches, we highlight key findings arising at the intrahost, local and global epidemiological scales. We also outline future areas of research and discuss how these may contribute to a quantitative understanding of the phylodynamics of RNA viruses.
Collapse
Affiliation(s)
- Nuno Rodrigues Faria
- Department of Microbiology and Immunology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
22
|
Brackney DE, Pesko KN, Brown IK, Deardorff ER, Kawatachi J, Ebel GD. West Nile virus genetic diversity is maintained during transmission by Culex pipiens quinquefasciatus mosquitoes. PLoS One 2011; 6:e24466. [PMID: 21935412 PMCID: PMC3171416 DOI: 10.1371/journal.pone.0024466] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 08/10/2011] [Indexed: 11/18/2022] Open
Abstract
Due to error-prone replication, RNA viruses exist within hosts as a heterogeneous population of non-identical, but related viral variants. These populations may undergo bottlenecks during transmission that stochastically reduce variability leading to fitness declines. Such bottlenecks have been documented for several single-host RNA viruses, but their role in the population biology of obligate two-host viruses such as arthropod-borne viruses (arboviruses) in vivo is unclear, but of central importance in understanding arbovirus persistence and emergence. Therefore, we tracked the composition of West Nile virus (WNV; Flaviviridae, Flavivirus) populations during infection of the vector mosquito, Culex pipiens quinquefasciatus to determine whether WNV populations undergo bottlenecks during transmission by this host. Quantitative, qualitative and phylogenetic analyses of WNV sequences in mosquito midguts, hemolymph and saliva failed to document reductions in genetic diversity during mosquito infection. Further, migration analysis of individual viral variants revealed that while there was some evidence of compartmentalization, anatomical barriers do not impose genetic bottlenecks on WNV populations. Together, these data suggest that the complexity of WNV populations are not significantly diminished during the extrinsic incubation period of mosquitoes.
Collapse
Affiliation(s)
- Doug E. Brackney
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Kendra N. Pesko
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Ivy K. Brown
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Eleanor R. Deardorff
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Jon Kawatachi
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Gregory D. Ebel
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
23
|
English S, Katzourakis A, Bonsall D, Flanagan P, Duda A, Fidler S, Weber J, McClure M, Phillips R, Frater J. Phylogenetic analysis consistent with a clinical history of sexual transmission of HIV-1 from a single donor reveals transmission of highly distinct variants. Retrovirology 2011; 8:54. [PMID: 21736738 PMCID: PMC3161944 DOI: 10.1186/1742-4690-8-54] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 07/07/2011] [Indexed: 01/27/2023] Open
Abstract
Background To combat the pandemic of human immunodeficiency virus 1 (HIV-1), a successful vaccine will need to cope with the variability of transmissible viruses. Human hosts infected with HIV-1 potentially harbour many viral variants but very little is known about viruses that are likely to be transmitted, or even if there are viral characteristics that predict enhanced transmission in vivo. We show for the first time that genetic divergence consistent with a single transmission event in vivo can represent several years of pre-transmission evolution. Results We describe a highly unusual case consistent with a single donor transmitting highly related but distinct HIV-1 variants to two individuals on the same evening. We confirm that the clustering of viral genetic sequences, present within each recipient, is consistent with the history of a single donor across the viral env, gag and pol genes by maximum likelihood and Bayesian Markov Chain Monte Carlo based phylogenetic analyses. Based on an uncorrelated, lognormal relaxed clock of env gene evolution calibrated with other datasets, the time since the most recent common ancestor is estimated as 2.86 years prior to transmission (95% confidence interval 1.28 to 4.54 years). Conclusion Our results show that an effective design for a preventative vaccine will need to anticipate extensive HIV-1 diversity within an individual donor as well as diversity at the population level.
Collapse
Affiliation(s)
- Suzanne English
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, Oxford University, South Parks Road, Oxford, OX1 3SY, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
OBJECTIVE The contribution of naive CD4⁺ T cells to the pool of HIV-infected cells remains poorly described. This study aimed at evaluating HIV infection in naive T-cell subsets in viremic and HAART-treated patients, together with various parameters implicated in naive T-cell homeostasis, in order to better understand infection in these subsets. DESIGN AND METHODS HIV provirus was quantified in various FACS-sorted CD4/CD8 T-cell subsets [recent thymic emigrants (RTEs), non-RTE naives and memory T cells] purified from peripheral blood cells of untreated viremic and HAART-treated aviremic HIV-infected patients. HIV proviral DNA was quantified using a highly sensitive real-time PCR assay allowing detection of one HIV copy in 10⁵ cells. Intrathymic precursor T-cell proliferation and circulating T-cell cycling were, respectively, evaluated through measurement of the sj/βTREC ratio (signal joint T-Cell Receptor Excision Circle frequency divided by DβJβTREC frequency) and Ki-67 expression. Plasma interleukin (IL)-7 concentrations were measured by ELISA. RESULTS RTEs and non-RTEs were equally HIV infected. Altogether, naive CD4⁺ T cells represented 0.24%-60% of the infected cells. In contrast, HIV DNA was undetectable in naive CD8⁺ T cells. RTE infection rate directly correlated with IL-7 plasma levels (r = 0.607, P = 0.0035) but was independent from plasma viral load, peripheral T-cell cycling and intrathymic precursor T-cell proliferation. CONCLUSION We demonstrated that RTEs are effectively HIV infected. The similar infection rate observed in RTEs and other naive T cells, its relationship with plasma IL-7 levels, together with the lack of correlation between RTE infection and either thymic or peripheral proliferation, strongly suggests that RTE infection occurs either late during thymopoiesis or early on during their extrathymic maturation.
Collapse
|
25
|
A novel methodology for large-scale phylogeny partition. Nat Commun 2011; 2:321. [PMID: 21610724 PMCID: PMC6045912 DOI: 10.1038/ncomms1325] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 04/21/2011] [Indexed: 01/24/2023] Open
Abstract
Understanding the determinants of virus transmission is a fundamental step for effective design of screening and intervention strategies to control viral epidemics. Phylogenetic analysis can be a valid approach for the identification of transmission chains, and very-large data sets can be analysed through parallel computation. Here we propose and validate a new methodology for the partition of large-scale phylogenies and the inference of transmission clusters. This approach, on the basis of a depth-first search algorithm, conjugates the evaluation of node reliability, tree topology and patristic distance analysis. The method has been applied to identify transmission clusters of a phylogeny of 11,541 human immunodeficiency virus-1 subtype B pol gene sequences from a large Italian cohort. Molecular transmission chains were characterized by means of different clinical/demographic factors, such as the interaction between male homosexuals and male heterosexuals. Our method takes an advantage of a flexible notion of transmission cluster and can become a general framework to analyse other epidemics.
Collapse
|
26
|
Haraguchi S, Ho SK, Morrow M, Goodenow MM, Sleasman JW. Developmental regulation of P-glycoprotein activity within thymocytes results in increased anti-HIV protease inhibitor activity. J Leukoc Biol 2011; 90:653-60. [PMID: 21504949 DOI: 10.1189/jlb.0111-009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The thymus harbors HIV-1 and supports its replication. Treatment with PI-containing ART restores thymic output of naïve T cells. This study demonstrates that CXCR4-using WT viruses are more sensitive to PI in fetal thymcocytes than mature T cells with average IC(50) values for two PIs, RTV and IDV, of 1.5 nM (RTV) and 4.4 nM (IDV) in thymocytes versus 309.4 nM (RTV) and 27.3 nM (IDV) in mature T cells. P-gp activity, as measured using Rh123 efflux and quantitation of P-gp mRNA, increased with thymocyte maturation into CD4 and CD8 lineage T cells. P-gp activity is developmentally regulated in the thymus. Thymocytes developed increased levels of P-gp activity as maturation from DP to SP CD4 or CD8 T cells occurred, although CD4 T cells acquired activity more rapidly. Reduced P-gp activity in thymocytes is one mechanism for effectiveness of PI therapy in suppressing viral replication in the thymus and in reconstitution of naïve T cells, particularly among children receiving PI-containing ART.
Collapse
Affiliation(s)
- Soichi Haraguchi
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of South Florida, St. Petersburg, Florida 33701, USA
| | | | | | | | | |
Collapse
|
27
|
Perez R, Gibson S, Lopez P, Koenig E, De Castro M, Yamamura Y. Distribution of HIV-1 infection in different T lymphocyte subsets: antiretroviral therapy-naïve vs. experienced patients. AIDS Res Hum Retroviruses 2011; 27:399-410. [PMID: 21054214 DOI: 10.1089/aid.2010.0176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Memory CD4 T cells are the primary targets of HIV-1 infection, which then subsequently spreads to other T lymphocyte subsets. Antiretroviral therapy (ART) alters the pattern of HIV-1 distribution. Blood samples were collected from ART-naïve or -experienced HIV-1 patients, and the memory and naïve subsets of CD4(+) and CD8(+) T lymphocytes, respectively, were isolated by cell sorting. DNA was extracted and the HIV-1 env C2/V3 region PCR amplified. Amplicons were cloned and sequenced, and genetic relatedness among different HIV-1 compartments was determined by the phylogenetic analysis of clonal sequences. The viral V3 sequence of HIV-1 in each compartment was analyzed by using webPSSM to determine CCR5 or CXCR4 coreceptor binding property of the virus. The direction of viral migration among involved compartments was determined by using the MacClade program. In ART-naïve patients, HIV-1 was generally confined to the memory CD4 T (mT4) cell compartment, even though in a few cases, naïve CD4 T (nT4) cells were also infected. When this occurred, the HIV-1 gene migrated from nT4 to mT4. In contrast, HIV-1 was detected in nT4 and mT4 as well as in the memory CD8 T (mT8) compartments of ART-experienced patients. However, no clear pattern of directional HIV-1 gene flow among the compartments could be determined because of the small sample size. All HIV-1-infected T cell compartments housed the virus that used either CCR5 or CXCR4 as the coreceptor.
Collapse
Affiliation(s)
- Raul Perez
- Department of Internal Medicine, Wayne State University, Detroit, Michigan
| | - Sonia Gibson
- Department of Internal Medicine, Wayne State University, Detroit, Michigan
| | - Pablo Lopez
- Ponce School of Medicine AIDS Research Program, Ponce, Puerto Rico
| | - Ellen Koenig
- Instituto Dominicano de Estudios Virológicos, Santo Domingo, Dominican Republic
| | - Marisol De Castro
- Instituto Dominicano de Estudios Virológicos, Santo Domingo, Dominican Republic
| | | |
Collapse
|
28
|
Coetzer M, Nedellec R, Cilliers T, Meyers T, Morris L, Mosier DE. Extreme genetic divergence is required for coreceptor switching in HIV-1 subtype C. J Acquir Immune Defic Syndr 2011; 56:9-15. [PMID: 20921899 PMCID: PMC3006070 DOI: 10.1097/qai.0b013e3181f63906] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Coreceptor switching from CCR5 to CXCR4 is less common in subtype C HIV-1 infection than in subtype B for reasons that are unclear. We have examined sequential virus samples from a subtype C-infected child who had evidence of coreceptor switching. METHODS To examine HIV-1 envelope evolution towards CXCR4 usage, env sequences were correlated with phenotypic characteristics determined by entry assays, as well as the ability to use alternative coreceptors such as FPRL1, CCR3, CCR8 and others. The value of a phenotype predictor based on V3 sequences was also assessed. RESULTS Ninety-three sequences revealed 3 distinct coexistent virus lineages and only some members of one lineage evolved to use CXCR4. These lineages also had diverse alternative coreceptor patterns including the ability to use FPRL1, CCR3, CCR8, APJ, CMKLR1, RDC-1, CXCR6, CCR1, GPCR1, GPR15 and CCR6. Coreceptor switching was associated with extensive and rapid sequence divergence in the V1/V2 region in addition to V3 changes. Furthermore, interlineage recombination within the C2 region resulted in low predictability of a V3 sequence-based phenotype algorithm, and highlighted the importance of V1/V2 and V3 sequences in coreceptor usage. CONCLUSION These results suggest that the evolution to coreceptor switching in subtype C infection requires more mutations than other subtypes, and this contributes to the reduced incidence of R5X4 viruses.
Collapse
MESH Headings
- Child
- Cloning, Molecular
- HIV Infections/immunology
- HIV Infections/virology
- HIV-1/genetics
- HIV-1/immunology
- Humans
- Molecular Sequence Data
- Phenotype
- Phylogeny
- Receptors, CCR5/genetics
- Receptors, CCR5/immunology
- Receptors, CXCR4/genetics
- Receptors, CXCR4/immunology
- Receptors, Formyl Peptide/genetics
- Receptors, Formyl Peptide/immunology
- Receptors, Lipoxin/genetics
- Receptors, Lipoxin/immunology
- Recombination, Genetic/genetics
- env Gene Products, Human Immunodeficiency Virus/genetics
Collapse
Affiliation(s)
- Mia Coetzer
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Lamers SL, Gray RR, Salemi M, Huysentruyt LC, McGrath MS. HIV-1 phylogenetic analysis shows HIV-1 transits through the meninges to brain and peripheral tissues. INFECTION GENETICS AND EVOLUTION 2010; 11:31-7. [PMID: 21055482 DOI: 10.1016/j.meegid.2010.10.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 10/18/2010] [Accepted: 10/22/2010] [Indexed: 11/19/2022]
Abstract
Brain infection by the human immunodeficiency virus type 1 (HIV-1) has been investigated in many reports with a variety of conclusions concerning the time of entry and degree of viral compartmentalization. To address these diverse findings, we sequenced HIV-1 gp120 clones from a wide range of brain, peripheral and meningeal tissues from five patients who died from several HIV-1 associated disease pathologies. High-resolution phylogenetic analysis confirmed previous studies that showed a significant degree of compartmentalization in brain and peripheral tissue subpopulations. Some intermixing between the HIV-1 subpopulations was evident, especially in patients that died from pathologies other than HIV-associated dementia. Interestingly, the major tissue harboring virus from both the brain and peripheral tissues was the meninges. These results show that (1) HIV-1 is clearly capable of migrating out of the brain, (2) the meninges are the most likely primary transport tissues, and (3) infected brain macrophages comprise an important HIV reservoir during highly active antiretroviral therapy.
Collapse
|
30
|
Different tempo and anatomic location of dual-tropic and X4 virus emergence in a model of R5 simian-human immunodeficiency virus infection. J Virol 2010; 84:340-51. [PMID: 19846515 DOI: 10.1128/jvi.01865-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported coreceptor switch in rhesus macaques inoculated intravenously with R5 simian-human immunodeficiency virus SF162P3N (SHIV(SF162P3N)). Whether R5-to-X4 virus evolution occurs in mucosally infected animals and in which anatomic site the switch occurs, however, were not addressed. We herein report a change in coreceptor preference in macaques infected intrarectally with SHIV(SF162P3N). The switch occurred in infected animals with high levels of virus replication and undetectable antiviral antibody response and required sequence changes in the V3 loop of the gp120 envelope protein. X4 virus emergence was associated with an accelerated drop in peripheral CD4(+) T-cell count but followed rather than preceded the onset of CD4(+) T-cell loss. The conditions, genotypic requirements, and patterns of coreceptor switch in intrarectally infected animals were thus remarkably consistent with those found in macaques infected intravenously. They also overlapped with those reported for humans, suggestive of a common mechanism for coreceptor switch in the two hosts. Furthermore, two independent R5-to-X4 evolutionary pathways were identified in one infected animal, giving rise to dual-tropic and X4 viruses which differed in switch kinetics and tissue localization. The dual-tropic switch event predominated early, and the virus established infection in multiple tissues sites. In contrast, the switch to X4 virus occurred later, initiating and expanding mainly in peripheral lymph nodes. These findings help define R5 SHIV(SF162P3N) infection of rhesus macaques as a model to study the mechanistic basis, dynamics, and sites of HIV-1 coreceptor switch.
Collapse
|
31
|
Abstract
Rag2(-/-) gamma(C)(-/-) mice transplanted with human hematopoietic stem cells (DKO-hu-HSC mice) mimic aspects of human infection with human immunodeficiency virus type 1 (HIV-1), including sustained viral replication and CD4(+) T-cell decline. However, the extent of HIV-1 evolution during long-term infection in these humanized mice, a key feature of the natural infection, has not been assessed fully. In this study, we examined the types of genotypic and phenotypic changes in the viral env gene that occur in the viral populations of DKO-hu-HSC mice infected with the CCR5-tropic isolate HIV-1(JRCSF) for up to 44 weeks. The mean rate of divergence of viral populations in mice was similar to that observed in a cohort of humans during a similar period of infection. Many amino acid substitutions were common across mice, including losses of N-linked glycosylation sites and substitutions in the CD4 binding site and in CD4-induced epitopes, indicating common selective pressures between mice. In addition, env variants evolved sensitivity to antibodies directed at V3, suggesting a more open conformation for Env. This phenotypic change was associated with increased CD4 binding efficiency and was attributed to specific amino acid substitutions. In one mouse, env variants emerged that exhibited a CXCR4-tropic phenotype. These sequences were compartmentalized in the mesenteric lymph node. In summary, viral populations in these mice exhibited dynamic behavior that included sequence evolution, compartmentalization, and the appearance of distinct phenotypic changes. Thus, humanized mice offer a useful model for studying evolutionary processes of HIV-1 in a complex host environment.
Collapse
|
32
|
Ma Y, Feng Y, Liu D, Gao GF. Avian influenza virus, Streptococcus suis serotype 2, severe acute respiratory syndrome-coronavirus and beyond: molecular epidemiology, ecology and the situation in China. Philos Trans R Soc Lond B Biol Sci 2009; 364:2725-37. [PMID: 19687041 PMCID: PMC2865088 DOI: 10.1098/rstb.2009.0093] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The outbreak and spread of severe acute respiratory syndrome-associated coronavirus and the subsequent identification of its animal origin study have heightened the world's awareness of animal-borne or zoonotic pathogens. In addition to SARS, the highly pathogenic avian influenza virus (AIV), H5N1, and the lower pathogenicity H9N2 AIV have expanded their host ranges to infect human beings and other mammalian species as well as birds. Even the ‘well-known’ reservoir animals for influenza virus, migratory birds, became victims of the highly pathogenic H5N1 virus. Not only the viruses, but bacteria can also expand their host range: a new disease, streptococcal toxic shock syndrome, caused by human Streptococcus suis serotype 2 infection, has been observed in China with 52 human fatalities in two separate outbreaks (1998 and 2005, respectively). Additionally, enterohaemorrhagic Escherichia coli O157:H7 infection has increased worldwide with severe disease. Several outbreaks and sporadic isolations of this pathogen in China have made it an important target for disease control. A new highly pathogenic variant of porcine reproductive and respiratory syndrome virus (PRRSV) has been isolated in both China and Vietnam recently; although PRRSV is not a zoonotic human pathogen, its severe outbreaks have implications for food safety. All of these pathogens occur in Southeast Asia, including China, with severe consequences; therefore, we discuss the issues in this article by addressing the situation of the zoonotic threat in China.
Collapse
Affiliation(s)
- Ying Ma
- CAS Key Laboratory of Pathogenic Microbiology and Immunology (CASPMI), Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, The People's Republic of China
| | | | | | | |
Collapse
|
33
|
Salemi M, Lamers SL, Huysentruyt LC, Galligan D, Gray RR, Morris A, McGrath MS. Distinct patterns of HIV-1 evolution within metastatic tissues in patients with non-Hodgkins lymphoma. PLoS One 2009; 4:e8153. [PMID: 19997510 PMCID: PMC2780293 DOI: 10.1371/journal.pone.0008153] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 11/06/2009] [Indexed: 11/30/2022] Open
Abstract
Despite highly active antiretroviral therapy (HAART), AIDS related lymphoma (ARL) occurs at a significantly higher rate in patients infected with the Human Immunodeficiency Virus (HIV) than in the general population. HIV-infected macrophages are a known viral reservoir and have been shown to have lymphomagenic potential in SCID mice; therefore, there is an interest in determining if a viral component to lymphomagenesis also exists. We sequenced HIV-1 envelope gp120 clones obtained post mortem from several tumor and non-tumor tissues of two patients who died with AIDS-related Non-Hodgkin's lymphoma (ARL-NH). Similar results were found in both patients: 1) high-resolution phylogenetic analysis showed a significant degree of compartmentalization between lymphoma and non-lymphoma viral sub-populations while viral sub-populations from lymph nodes appeared to be intermixed within sequences from tumor and non-tumor tissues, 2) a 100-fold increase in the effective HIV population size in tumor versus non-tumor tissues was associated with the emergence of lymphadenopathy and aggressive metastatic ARL, and 3) HIV gene flow among lymph nodes, normal and metastatic tissues was non-random. The different population dynamics between the viruses found in tumors versus the non-tumor associated viruses suggest that there is a significant relationship between HIV evolution and lymphoma pathogenesis. Moreover, the study indicates that HIV could be used as an effective marker to study the origin and dissemination of lymphomas in vivo.
Collapse
Affiliation(s)
- Marco Salemi
- Department of Pathology Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
| | | | - Leanne C. Huysentruyt
- Department of Medicine, Hematology and Oncology, University of California San Francisco, San Francisco, California, United States of America
| | - Derek Galligan
- Department of Medicine, Hematology and Oncology, University of California San Francisco, San Francisco, California, United States of America
| | - Rebecca R. Gray
- Department of Pathology Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Alanna Morris
- Department of Medicine, Hematology and Oncology, University of California San Francisco, San Francisco, California, United States of America
| | - Michael S. McGrath
- Department of Medicine, Hematology and Oncology, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
34
|
Kamp C. Understanding the HIV coreceptor switch from a dynamical perspective. BMC Evol Biol 2009; 9:274. [PMID: 19948048 PMCID: PMC2797020 DOI: 10.1186/1471-2148-9-274] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 11/30/2009] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The entry of HIV into its target cells is facilitated by the prior binding to the cell surface molecule CD4 and a secondary coreceptor, mostly the chemokine receptors CCR5 or CXCR4. In early infection CCR5-using viruses (R5 viruses) are mostly dominant while a receptor switch towards CXCR4 occurs in about 50% of the infected individuals (X4 viruses) which is associated with a progression of the disease. There are many hypotheses regarding the underlying dynamics without yet a conclusive understanding. RESULTS While it is difficult to isolate key factors in vivo we have developed a minimal in silico model based on the approaches of Nowak and May to investigate the conditions under which the receptor switch occurs. The model allows to investigate the evolution of viral strains within a probabilistic framework along the three stages of disease from primary and latent infection to the onset of AIDS with a a sudden increase in viral load which goes along with the impairment of the immune response. The model is specifically applied to investigate the evolution of the viral quasispecies in terms of R5 and X4 viruses which directly translates into the composition of viral load and consequently the question of the coreceptor switch. CONCLUSION The model can explain the coreceptor switch as a result of a dynamical change in the underlying environmental conditions in the host. The emergence of X4 strains does not necessarily result in the dominance of X4 viruses in viral load which is more likely to occur in the model after some time of chronic infection. A better understanding of the conditions leading to the coreceptor switch is especially of interest as CCR5 blockers have recently been licensed as drugs which suppress R5 viruses but do not seem to necessarily induce a coreceptor switch.
Collapse
Affiliation(s)
- Christel Kamp
- Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany.
| |
Collapse
|
35
|
Mild M, Simon M, Albert J, Mirazimi A. Towards an understanding of the migration of Crimean-Congo hemorrhagic fever virus. J Gen Virol 2009; 91:199-207. [PMID: 19812264 DOI: 10.1099/vir.0.014878-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Crimean-Congo haemorrhagic fever (CCHF) is a lethal disease caused by Crimean-Congo hemorrhagic fever virus (CCHFV). It is one of the most widespread medically significant tick-borne pathogens, with a distribution that coincides well with the geographical occurrence of its tick vector, Hyalomma marginatum marginatum. Sporadic outbreaks of CCHF have previously been recognized in Asia, Africa, the Middle East and Europe but, in the 21st century, outbreaks have become more frequent in former Yugoslavia, Turkey and Iran. It has been suggested that CCHFV is a migrating pathogen, but it is not clear to what extent. We have, for the first time, analysed the worldwide migration pattern of CCHFV. Our results showed that Turkey may be a donor in Europe, towards both the east and the west, while the United Arab Emirates acted as a donor in the Middle East, and China was found to be the origin for genotype 2. Finally, we showed that migration of CCHFV was unrestricted between Iran and Pakistan. Considering the distribution and coincidence of the tick vector with CCHFV and CCHF, and the fact that the tick vector is present in western Europe, future outbreaks may extend to include hitherto-naïve areas, suggesting that increased surveillance and geographical mapping of this lethal pathogen are needed.
Collapse
Affiliation(s)
- Mattias Mild
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Nobels vag 16, 17182 Stockholm, Sweden.
| | | | | | | |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW To present recent information on the evolution of coreceptor use from CCR5 alone to CCR5 and CXCR4, the impact CCR5 inhibitors have on this process, and new insights into HIV-1 binding to CD4 and CCR5. RECENT FINDINGS The findings that are summarized include resistance to CCR5 inhibitors, genotypic predictors of coreceptor use, the link between coreceptor use and cell tropism, and new data on CCR5 structure and function. SUMMARY Resistance to CCR5 inhibitors is uncommon, and frequently involves selection of minor populations of R5X4 virus. Genotypic predictors of coreceptor use need to take into account the entire envelope sequence, not just V3. Genetic polymorphisms in humans that affect CCR5 or chemokines that bind CCR5 affect not only virus entry but also immune reconstitution.
Collapse
|
37
|
Lamers SL, Salemi M, Galligan DC, de Oliveira T, Fogel GB, Granier SC, Zhao L, Brown JN, Morris A, Masliah E, McGrath MS. Extensive HIV-1 intra-host recombination is common in tissues with abnormal histopathology. PLoS One 2009; 4:e5065. [PMID: 19333384 PMCID: PMC2659430 DOI: 10.1371/journal.pone.0005065] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 02/12/2009] [Indexed: 11/19/2022] Open
Abstract
There is evidence that immune-activated macrophages infected with the Human Immunodeficiency Virus (HIV) are associated with tissue damage and serve as a long-lived viral reservoir during therapy. In this study, we analyzed 780 HIV genetic sequences generated from 53 tissues displaying normal and abnormal histopathology. We found up to 50% of the sequences from abnormal lymphoid and macrophage rich non-lymphoid tissues were intra-host viral recombinants. The presence of extensive recombination, especially in non-lymphoid tissues, implies that HIV-1 infected macrophages may significantly contribute to the generation of elusive viral genotypes in vivo. Because recombination has been implicated in immune evasion, the acquisition of drug-resistance mutations, and alterations of viral co-receptor usage, any attempt towards the successful eradication of HIV-1 requires therapeutic approaches targeting tissue macrophages.
Collapse
Affiliation(s)
| | - Marco Salemi
- BioInfoExperts, Thibodaux, Louisiana, United States of America
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Derek C. Galligan
- Department of Laboratory Medicine, Positive Health Program, University of California San Francisco, San Francisco, California, United States of America
| | - Tulio de Oliveira
- BioInfoExperts, Thibodaux, Louisiana, United States of America
- South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Gary B. Fogel
- Natural Selection, Inc., San Diego, California, United States of America
| | - Sara C. Granier
- BioInfoExperts, Thibodaux, Louisiana, United States of America
| | - Li Zhao
- The Department of Toxicology, Shandong University, Jinan, China
| | - Joseph N. Brown
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Alanna Morris
- Department of Laboratory Medicine, Positive Health Program, University of California San Francisco, San Francisco, California, United States of America
| | - Eliezer Masliah
- Department of Pathology, School of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Michael S. McGrath
- Department of Laboratory Medicine, Positive Health Program, University of California San Francisco, San Francisco, California, United States of America
- Pathologica Inc., Burlingame, California, United States of America
- AIDS and Cancer Specimen Resource, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Major coexisting human immunodeficiency virus type 1 env gene subpopulations in the peripheral blood are produced by cells with similar turnover rates and show little evidence of genetic compartmentalization. J Virol 2009; 83:4068-80. [PMID: 19211740 DOI: 10.1128/jvi.02486-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A distinctive feature of chronic human immunodeficiency virus type 1 (HIV-1) infection is the presence of multiple coexisting genetic variants, or subpopulations, that comprise the HIV-1 population detected in the peripheral blood. Analysis of HIV-1 RNA decay dynamics during the initiation of highly active antiretroviral therapy (HAART) has been a valuable tool for modeling the life span of infected cells that produce the bulk HIV-1 population. However, different HIV-1 target cells may have different turnover rates, and it is not clear whether the bulk HIV-1 RNA decay rate actually represents a composite of the decay rates of viral subpopulations compartmentalized in different cellular subsets with different life spans. Using heteroduplex tracking assays targeting the highly variable V3 or V4-V5 regions of the HIV-1 env gene in eight subjects, we found that all detectable coexisting HIV-1 variants in the peripheral blood generally decayed at similar rates during the initiation of HAART, suggesting that all of the variants were produced by cells with similar life spans. Furthermore, single genome amplification and coreceptor phenotyping revealed that in two subjects coexisting HIV-1 variants with distinct CXCR4 or CCR5 coreceptor phenotypes decayed with similar rates. Also, in nine additional subjects, recombination and a lack of genetic compartmentalization between X4 and R5 variants were observed, suggesting an overlap in host cell range. Our results suggest that the HIV-1 env subpopulations detectable in the peripheral blood are produced by cells with similar life spans and are not genetically isolated within particular cell types.
Collapse
|
39
|
Canducci F, Marinozzi MC, Sampaolo M, Berrè S, Bagnarelli P, Degano M, Gallotta G, Mazzi B, Lemey P, Burioni R, Clementi M. Dynamic features of the selective pressure on the human immunodeficiency virus type 1 (HIV-1) gp120 CD4-binding site in a group of long term non progressor (LTNP) subjects. Retrovirology 2009; 6:4. [PMID: 19146663 PMCID: PMC2639529 DOI: 10.1186/1742-4690-6-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 01/15/2009] [Indexed: 12/14/2022] Open
Abstract
The characteristics of intra-host human immunodeficiency virus type 1 (HIV-1) env evolution were evaluated in untreated HIV-1-infected subjects with different patterns of disease progression, including 2 normal progressor [NP], and 5 Long term non-progressor [LTNP] patients. High-resolution phylogenetic analysis of the C2-C5 env gene sequences of the replicating HIV-1 was performed in sequential samples collected over a 3–5 year period; overall, 301 HIV-1 genomic RNA sequences were amplified from plasma samples, cloned, sequenced and analyzed. Firstly, the evolutionary rate was calculated separately in the 3 codon positions. In all LTNPs, the 3rd codon mutation rate was equal or even lower than that observed at the 1st and 2nd positions (p = 0.016), thus suggesting strong ongoing positive selection. A Bayesian approach and a maximum-likelihood (ML) method were used to estimate the rate of virus evolution within each subject and to detect positively selected sites respectively. A great number of N-linked glycosylation sites under positive selection were identified in both NP and LTNP subjects. Viral sequences from 4 of the 5 LTNPs showed extensive positive selective pressure on the CD4-binding site (CD4bs). In addition, localized pressure in the area of the IgG-b12 epitope, a broad neutralizing human monoclonal antibody targeting the CD4bs, was documented in one LTNP subject, using a graphic colour grade 3-dimensional visualization. Overall, the data shown here documenting high selective pressure on the HIV-1 CD4bs of a group of LTNP subjects offers important insights for planning novel strategies for the immune control of HIV-1 infection.
Collapse
Affiliation(s)
- Filippo Canducci
- Laboratorio di Microbiologia e Virologa, Università Vita-Salute San Raffaele, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Brown JN, Kohler JJ, Coberley CR, Sleasman JW, Goodenow MM. HIV-1 activates macrophages independent of Toll-like receptors. PLoS One 2008; 3:e3664. [PMID: 19048100 PMCID: PMC2585009 DOI: 10.1371/journal.pone.0003664] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 10/15/2008] [Indexed: 11/19/2022] Open
Abstract
Background Macrophages provide an interface between innate and adaptive immunity and are important long-lived reservoirs for Human Immunodeficiency Virus Type-1 (HIV-1). Multiple genetic networks involved in regulating signal transduction cascades and immune responses in macrophages are coordinately modulated by HIV-1 infection. Methodology/Principal Findings To evaluate complex interrelated processes and to assemble an integrated view of activated signaling networks, a systems biology strategy was applied to genomic and proteomic responses by primary human macrophages over the course of HIV-1 infection. Macrophage responses, including cell cycle, calcium, apoptosis, mitogen-activated protein kinases (MAPK), and cytokines/chemokines, to HIV-1 were temporally regulated, in the absence of cell proliferation. In contrast, Toll-like receptor (TLR) pathways remained unaltered by HIV-1, although TLRs 3, 4, 7, and 8 were expressed and responded to ligand stimulation in macrophages. HIV-1 failed to activate phosphorylation of IRAK-1 or IRF-3, modulate intracellular protein levels of Mx1, an interferon-stimulated gene, or stimulate secretion of TNF, IL-1β, or IL-6. Activation of pathways other than TLR was inadequate to stimulate, via cross-talk mechanisms through molecular hubs, the production of proinflammatory cytokines typical of a TLR response. HIV-1 sensitized macrophage responses to TLR ligands, and the magnitude of viral priming was related to virus replication. Conclusions/Significance HIV-1 induced a primed, proinflammatory state, M1HIV, which increased the responsiveness of macrophages to TLR ligands. HIV-1 might passively evade pattern recognition, actively inhibit or suppress recognition and signaling, or require dynamic interactions between macrophages and other cells, such as lymphocytes or endothelial cells. HIV-1 evasion of TLR recognition and simultaneous priming of macrophages may represent a strategy for viral survival, contribute to immune pathogenesis, and provide important targets for therapeutic approaches.
Collapse
Affiliation(s)
- Joseph N. Brown
- Division of Rheumatology, Immunology and Infectious Diseases, Departments of Pathology, Immunology, and Laboratory Medicine, and Pediatrics, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - James J. Kohler
- Division of Rheumatology, Immunology and Infectious Diseases, Departments of Pathology, Immunology, and Laboratory Medicine, and Pediatrics, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Carter R. Coberley
- Division of Rheumatology, Immunology and Infectious Diseases, Departments of Pathology, Immunology, and Laboratory Medicine, and Pediatrics, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - John W. Sleasman
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of South Florida College of Medicine and All Children's Hospital, St. Petersburg, Florida, United States of America
| | - Maureen M. Goodenow
- Division of Rheumatology, Immunology and Infectious Diseases, Departments of Pathology, Immunology, and Laboratory Medicine, and Pediatrics, University of Florida College of Medicine, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
41
|
R5X4 viruses are evolutionary, functional, and antigenic intermediates in the pathway of a simian-human immunodeficiency virus coreceptor switch. J Virol 2008; 82:7089-99. [PMID: 18480460 DOI: 10.1128/jvi.00570-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To examine the pathway of the coreceptor switching of CCR5-using (R5) virus to CXCR4-using (X4) virus in simian-human immunodeficiency virus SHIV(SF162P3N)-infected rhesus macaque BR24, analysis was performed on variants present at 20 weeks postinfection, the time when the signature gp120 V3 loop sequence of the X4 switch variant was first detected by PCR. Unexpectedly, circulating and tissue variants with His/Ile instead of the signature X4 V3 His/Arg insertions predominated at this time point. Phylogenetic analysis of the sequences of the C2 conserved region to the V5 variable loop of the envelope (Env) protein showed that viruses bearing HI insertions represented evolutionary intermediates between the parental SHIV(SF162P3N) and the final X4 HR switch variant. Functional analyses demonstrated that the HI variants were phenotypic intermediates as well, capable of using both CCR5 and CXCR4 for entry. However, the R5X4 intermediate virus entered CCR5-expressing target cells less efficiently than the parental R5 strain and was more sensitive to both CCR5 and CXCR4 inhibitors than either the parental R5 or the final X4 virus. It was also more sensitive than the parental R5 virus to antibody neutralization, especially to agents directed against the CD4 binding site, but not as sensitive as the late X4 virus. Significantly, the V3 loop sequence that determined CXCR4 use also conferred soluble CD4 neutralization sensitivity. Collectively, the data illustrate that, similar to human immunodeficiency virus type 1 (HIV-1) infection in individuals, the evolution from CCR5 to CXCR4 usage in BR24 transitions through an intermediate phase with reduced virus entry and coreceptor usage efficiencies. The data further support a model linking an open envelope gp120 conformation, better CD4 binding, and expansion to CXCR4 usage.
Collapse
|