1
|
Hoque K, Ali Z, Maliha A, Al-Ghouti MA, Cugno C, Rahman SM, Rahman MM. Enhancing Bone Health with Conjugated Linoleic Acid: Mechanisms, Challenges, and Innovative Strategies. Nutrients 2025; 17:1395. [PMID: 40284258 PMCID: PMC12030704 DOI: 10.3390/nu17081395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025] Open
Abstract
Conjugated linoleic acid (CLA) is a bioactive compound known for its anti-inflammatory, anti-carcinogenic, and metabolic effects, with growing interest in its role in supporting bone health. Preclinical studies, particularly those involving the t10c12 isomer, have shown that CLA can enhance bone mineral density (BMD) by enhancing bone formation and reducing bone resorption, indicating its potential as a therapeutic agent to improve bone health. However, clinical trials have yielded inconsistent results, underscoring the difficulty in translating animal model successes to human applications. A major challenge is CLA's low water solubility, poor absorption, and limited bioavailability, which restrict its therapeutic effectiveness. To address these issues, nanoparticle-based delivery systems have been proposed to improve its solubility, stability, and resistance to oxidative damage, thereby enhancing its bioactivity. Recent studies also suggest that electrical stimulation can stimulate bone regeneration by promoting bone cell proliferation, differentiation, and adherence to scaffolds. This review explores the combined use of CLA supplementation and electrical stimulation as a novel approach to improving bone health, particularly in osteoporosis management. By integrating CLA's biological effects with the regenerative potential of electrical stimulation, this multimodal strategy offers a promising method for enhancing bone restoration, with significant implications for clinical applications in bone health.
Collapse
Affiliation(s)
- Khandoker Hoque
- Department of Electrical and Electronics Engineering, San Francisco Bay University, Fremont, CA 94539, USA;
| | - Zayana Ali
- Biological Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Asma Maliha
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Mohammad A. Al-Ghouti
- Environmental Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Chiara Cugno
- Advanced Cell Therapy Core, Research Department, Sidra Medicine, Doha P.O. Box 26999, Qatar;
| | | | - Md Mizanur Rahman
- Biological Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
2
|
Muanjai P, Chaovalit S, Luangpon N, Srijunto W, Chancharoen P, Namsawang J, Prasertsri P, Kamandulis S, Venckunas T, Boonla O. Effectiveness of Home-Based Stretching and Strengthening Training for Improving Flexibility, Strength, and Physical Function in Older Adults with Leg Tightness and/or Suspected Sarcopenia. Sports (Basel) 2025; 13:65. [PMID: 40137789 PMCID: PMC11946402 DOI: 10.3390/sports13030065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES The aim of the present study was to assess the effectiveness of flexibility or strengthening exercises to improve flexibility, strength, muscle architecture, and functional performance in older adults with leg tightness and/or suspected sarcopenia. METHODS Ninety adults with leg tightness and/or suspected sarcopenia (age: 66.8 ± 4.9 years) were randomly allocated to two subtypes of intervention at home: resistance-band exercise (RE) or eccentric exercise (ECC) for those with weakness; static or dynamic stretching for those with tightness; and static stretching plus ECC or no exercise for those with both muscle tightness and weakness. The program consisted of 3-6 weekly sessions over eight weeks. Blinded outcome assessments before and after the eight-week program and at the three-month follow-up included mobility performance via Timed Up-and-Go (TUG), and flexibility and strength tests, as well as measurement of stiffness. RESULTS All groups had increased peak torque after eight weeks and improved TUG at the three-month follow-up (p < 0.05). Improved plantar flexor strength persisted at the three-month follow-up (p = 0.009). In addition, the RE and ECC groups had increased muscle thickness by 4.0 and 8.7% after eight weeks (p < 0.05). Hamstring flexibility increased in all exercise groups, except the RE group. Moreover, all six groups showed improved calf flexibility, whereas no changes in stiffness were noted. CONCLUSIONS Increases in mobility performance, strength, and flexibility appeared due to learning effects and increased physical activity, rather than the specific training impact. However, strength-based programs may be recommended for older adults with suspected sarcopenia, as they provide additional benefits, such as short-lasting muscle hypertrophy.
Collapse
Affiliation(s)
- Pornpimol Muanjai
- Department of Physical Therapy, Allied Health Sciences Faculty, Burapha University, Chonburi 20131, Thailand; (P.M.); (N.L.); (W.S.); (J.N.)
| | - Sirawee Chaovalit
- Department of Physical Therapy, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Nongnuch Luangpon
- Department of Physical Therapy, Allied Health Sciences Faculty, Burapha University, Chonburi 20131, Thailand; (P.M.); (N.L.); (W.S.); (J.N.)
| | - Wirasinee Srijunto
- Department of Physical Therapy, Allied Health Sciences Faculty, Burapha University, Chonburi 20131, Thailand; (P.M.); (N.L.); (W.S.); (J.N.)
| | - Pongrung Chancharoen
- Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand; (P.C.); (P.P.)
| | - Juntip Namsawang
- Department of Physical Therapy, Allied Health Sciences Faculty, Burapha University, Chonburi 20131, Thailand; (P.M.); (N.L.); (W.S.); (J.N.)
| | - Piyapong Prasertsri
- Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand; (P.C.); (P.P.)
| | - Sigitas Kamandulis
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania; (S.K.); (T.V.)
| | - Tomas Venckunas
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania; (S.K.); (T.V.)
| | - Orachorn Boonla
- Department of Physical Therapy, Allied Health Sciences Faculty, Burapha University, Chonburi 20131, Thailand; (P.M.); (N.L.); (W.S.); (J.N.)
| |
Collapse
|
3
|
Nilsson MI, Xhuti D, de Maat NM, Hettinga BP, Tarnopolsky MA. Obesity and Metabolic Disease Impair the Anabolic Response to Protein Supplementation and Resistance Exercise: A Retrospective Analysis of a Randomized Clinical Trial with Implications for Aging, Sarcopenic Obesity, and Weight Management. Nutrients 2024; 16:4407. [PMID: 39771028 PMCID: PMC11677392 DOI: 10.3390/nu16244407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Anabolic resistance accelerates muscle loss in aging and obesity, thus predisposing to sarcopenic obesity. METHODS In this retrospective analysis of a randomized clinical trial, we examined baseline predictors of the adaptive response to three months of home-based resistance exercise, daily physical activity, and protein-based, multi-ingredient supplementation (MIS) in a cohort of free-living, older males (n = 32). RESULTS Multiple linear regression analyses revealed that obesity and a Global Risk Index for metabolic syndrome (MetS) were the strongest predictors of Δ% gains in lean mass (TLM and ASM), LM/body fat ratios (TLM/%BF, ASM/FM, and ASM/%BF), and allometric LM (ASMI, TLM/BW, TLM/BMI, ASM/BW), with moderately strong, negative correlations to the adaptive response to polytherapy r = -0.36 to -0.68 (p < 0.05). Kidney function, PA level, and chronological age were only weakly associated with treatment outcomes (p > 0.05). Next, we performed a subgroup analysis in overweight/obese participants with at least one other MetS risk factor and examined their adaptive response to polytherapy with two types of protein-based MIS (PLA; collagen peptides and safflower oil, n = 8, M5; whey/casein, creatine, calcium, vitamin D3, and fish oil, n = 12). The M5 group showed greater improvements in LM (ASM; +2% vs. -0.8%), LM/body fat ratios (ASM/FM; +3.8% vs. -5.1%), allometric LM (ASM/BMI; +1.2% vs. -2.5%), strength (leg press; +17% vs. -1.4%), and performance (4-Step-Stair-Climb time; -10.5% vs. +1.1%) vs. the PLA group (p < 0.05). Bone turnover markers, indicative of bone accretion, were increased pre-to-post intervention in the M5 group only (P1NP; p = 0.036, P1NP/CTX ratio; p = 0.088). The overall anabolic response, as indicated by ranking low-to-high responders for Δ% LM (p = 0.0079), strength (p = 0.097), and performance (p = 0.19), was therefore significantly higher in the M5 vs. PLA group (p = 0.013). CONCLUSIONS Our findings confirm that obesity/MetS is a key driver of anabolic resistance in old age and that a high-quality, whey/casein-based MIS is more effective than a collagen-based alternative for maintaining musculoskeletal health in individuals at risk for sarcopenic obesity, even when total daily protein intake exceeds current treatment guidelines.
Collapse
Affiliation(s)
- Mats I. Nilsson
- Exerkine Corporation, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada;
| | - Donald Xhuti
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (D.X.); (N.M.d.M.)
| | - Nicoletta Maria de Maat
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (D.X.); (N.M.d.M.)
| | - Bart P. Hettinga
- Exerkine Corporation, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada;
| | - Mark A. Tarnopolsky
- Exerkine Corporation, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada;
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (D.X.); (N.M.d.M.)
| |
Collapse
|
4
|
Sim J, Lim J, Lee H, Park S, Shin D. A 3 month nutrition and exercise program improved hallux strength among senior daycare center users in Korea: a cluster randomized controlled trial. Front Public Health 2024; 12:1364908. [PMID: 39104890 PMCID: PMC11299432 DOI: 10.3389/fpubh.2024.1364908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction With a growing aging population, the focus on the health and well-being of older adults, especially in preventing falls, becomes crucial. This 3 month study, initiated in July 2022, aimed to assess the impact of a nutrition and exercise program in senior daycare centers in Chuncheon, South Korea. Methods A 3 month study, beginning in July 2022, included 204 older adults from 10 senior daycare centers in Chuncheon, South Korea. Randomly assigned to intervention or control groups, the intervention involved nutrition, daily toe exercises, or both. Control centers received interventions post-measurements. Pre- and post-intervention analyses used paired t-tests and multiple linear regression, assessing metrics like toe grip strength for significance. While 204 were initially enrolled, the analysis included 151 participants due to dropouts. Results Participants, with a mean age of 83.3 years (43.1% aged ≥ 85 years), exhibited mild to moderate cognitive impairment and multiple chronic illnesses. Health data indicated that 37.3% were obese, and the average BMI was 24.0 kg/m2. Both the intervention and control groups showed significant improvements in toe grip strength post-intervention. Specifically, the exercise-only and combined exercise-nutrition groups demonstrated significant differences in hallux strength compared to the control group after adjusting for age and gender. Conclusion The study showed that a basic nutrition and exercise program increased toe strength in older adults with chronic diseases, including mild cognitive impairments. This intervention holds potential to prevent muscle strength decline and reduce fall risks in older individuals. As the first of its kind in Korean senior daycare centers, it emphasizes the need for future research and standardized programs for senior daycare users.
Collapse
Affiliation(s)
- Jiwon Sim
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
- The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Jongguk Lim
- Department of General Physical Education, Ilsong Liberal Arts School, Hallym University, Chuncheon, Republic of Korea
| | - Hayoung Lee
- School of Nursing, Hallym University, Chuncheon, Republic of Korea
- Areumdeurinamu Children Hospital, Sejong, Republic of Korea
| | - Sohyun Park
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
- The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Dongsoo Shin
- School of Nursing, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
5
|
Wang L, Valencak TG, Shan T. Fat infiltration in skeletal muscle: Influential triggers and regulatory mechanism. iScience 2024; 27:109221. [PMID: 38433917 PMCID: PMC10907799 DOI: 10.1016/j.isci.2024.109221] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Fat infiltration in skeletal muscle (also known as myosteatosis) is now recognized as a distinct disease from sarcopenia and is directly related to declining muscle capacity. Hence, understanding the origins and regulatory mechanisms of fat infiltration is vital for maintaining skeletal muscle development and improving human health. In this article, we summarized the triggering factors such as aging, metabolic diseases and metabolic syndromes, nonmetabolic diseases, and muscle injury that all induce fat infiltration in skeletal muscle. We discussed recent advances on the cellular origins of fat infiltration and found several cell types including myogenic cells and non-myogenic cells that contribute to myosteatosis. Furthermore, we reviewed the molecular regulatory mechanism, detection methods, and intervention strategies of fat infiltration in skeletal muscle. Based on the current findings, our review will provide new insight into regulating function and lipid metabolism of skeletal muscle and treating muscle-related diseases.
Collapse
Affiliation(s)
- Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | | | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
6
|
Bahat G, Ozkok S. The Current Landscape of Pharmacotherapies for Sarcopenia. Drugs Aging 2024; 41:83-112. [PMID: 38315328 DOI: 10.1007/s40266-023-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
Sarcopenia is a skeletal muscle disorder characterized by progressive and generalized decline in muscle mass and function. Although it is mostly known as an age-related disorder, it can also occur secondary to systemic diseases such as malignancy or organ failure. It has demonstrated a significant relationship with adverse outcomes, e.g., falls, disabilities, and even mortality. Several breakthroughs have been made to find a pharmaceutical therapy for sarcopenia over the years, and some have come up with promising findings. Yet still no drug has been approved for its treatment. The key factor that makes finding an effective pharmacotherapy so challenging is the general paradigm of standalone/single diseases, traditionally adopted in medicine. Today, it is well known that sarcopenia is a complex disorder caused by multiple factors, e.g., imbalance in protein turnover, satellite cell and mitochondrial dysfunction, hormonal changes, low-grade inflammation, senescence, anorexia of aging, and behavioral factors such as low physical activity. Therefore, pharmaceuticals, either alone or combined, that exhibit multiple actions on these factors simultaneously will likely be the drug of choice to manage sarcopenia. Among various drug options explored throughout the years, testosterone still has the most cumulated evidence regarding its effects on muscle health and its safety. A mas receptor agonist, BIO101, stands out as a recent promising pharmaceutical. In addition to the conventional strategies (i.e., nutritional support and physical exercise), therapeutics with multiple targets of action or combination of multiple therapeutics with different targets/modes of action appear to promise greater benefit for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Gulistan Bahat
- Division of Geriatrics, Department of Internal Medicine, Istanbul Medical School, Istanbul University, Capa, 34390, Istanbul, Turkey.
| | - Serdar Ozkok
- Division of Geriatrics, Department of Internal Medicine, Hatay Training and Research Hospital, Hatay, 31040, Turkey
| |
Collapse
|
7
|
Hawley SE, Bell ZW, Huang Y, Gibbs JC, Churchward-Venne TA. Evaluation of sex-based differences in resistance exercise training-induced changes in muscle mass, strength, and physical performance in healthy older (≥60 y) adults: A systematic review and meta-analysis. Ageing Res Rev 2023; 91:102023. [PMID: 37507092 DOI: 10.1016/j.arr.2023.102023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
The objective of this systematic review and meta-analysis was to determine if there are sex-based differences in adaptations to resistance exercise training in healthy older adults. Following the screening process, data from 36 studies comparing older males and females (602 males; 703 females; ≥60 years of age) for changes in skeletal muscle size, muscle strength, and/or physical performance following the same resistance exercise training intervention were extracted. Mean study quality was 16/29 (modified Downs and Black checklist), considered moderate quality. Changes in absolute upper-body (Effect Size [ES] = 0.81 [95% CI 0.54, 1.09], P < 0.001), and lower-body (ES = 0.40 [95% CI 0.24, 0.56], P < 0.001) strength were greater in older males than females. Alternatively, changes in relative upper-body (ES = -0.46 [95% CI -0.77, -0.14], P < 0.01), and lower-body (ES = -0.24 [95% CI -0.42, -0.06], P < 0.01) strength were greater in older females than males. Changes in absolute, but not relative, whole-body fat-free mass (ES = 0.18 [95% CI 0.04, 0.33], P < 0.05) were greater in older males than females. There were no sex-based differences for absolute or relative changes in limb muscle size, muscle fiber size, or physical performance.
Collapse
Affiliation(s)
- Stephanie E Hawley
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Zachary W Bell
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Yijia Huang
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Jenna C Gibbs
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Tyler A Churchward-Venne
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada; Division of Geriatric Medicine, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
8
|
Jamka M, Czochralska-Duszyńska A, Mądry E, Lisowska A, Jończyk-Potoczna K, Cielecka-Piontek J, Bogdański P, Walkowiak J. The Effect of Conjugated Linoleic Acid Supplementation on Densitometric Parameters in Overweight and Obese Women-A Randomised Controlled Trial. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1690. [PMID: 37763810 PMCID: PMC10537680 DOI: 10.3390/medicina59091690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Background and Objectives: Conjugated linoleic acid (CLA) can improve bone health in animals, yet the effects on humans have not been consistent. Therefore, this parallel randomised controlled trial aimed to assess the effect of CLA supplementation on bone mineral density (BMD) and content (BMC) in overweight or obese women. Materials and Methods: The study population included 74 women who were divided into the CLA (n = 37) and control (n = 37) groups. The CLA group received six capsules per day containing approximately 3 g of cis-9, trans-11 and trans-10, cis-12 CLA isomers in a 50:50 ratio. The control group received the same number of placebo capsules that contained sunflower oil. BMC and BMD at total body, lumbar spine (L1-L4), and femoral neck were measured before and after a three-month intervention. Results: The comparison of BMC and BMD for the total body, lumbar spine (L1-L4), and femoral neck before and after the intervention showed no differences between the groups. However, a within-group analysis demonstrated a significant increase in BMC (p = 0.0100) and BMD (p = 0.0397) at lumbar spine (L1-L4) in the CLA group. Nevertheless, there were no significant differences between the CLA and placebo groups in changes in all analysed densitometric parameters. Conclusions: Altogether, three-month CLA supplementation in overweight and obese women did not improve bone health, although the short intervention period could have limited our findings, long-term intervention studies are needed. The study protocol was registered in the German Clinical Trials Register database (ID: DRKS00010462, date of registration: 4 May 2016).
Collapse
Affiliation(s)
- Małgorzata Jamka
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland;
| | - Agata Czochralska-Duszyńska
- Department of Physiology, Poznan University of Medical Sciences, Święcickiego Str. 6, 61-781 Poznań, Poland; (A.C.-D.); (E.M.)
| | - Edyta Mądry
- Department of Physiology, Poznan University of Medical Sciences, Święcickiego Str. 6, 61-781 Poznań, Poland; (A.C.-D.); (E.M.)
| | - Aleksandra Lisowska
- Department of Pediatric Diabetes, Auxology and Obesity, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland;
| | - Katarzyna Jończyk-Potoczna
- Department of Pediatric Radiology, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka Str. 3, 60-806 Poznań, Poland;
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego Str. 84, 60-569 Poznań, Poland;
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland;
| |
Collapse
|
9
|
Liang CW, Cheng HY, Lee YH, Liou TH, Liao CD, Huang SW. Effects of conjugated linoleic acid and exercise on body composition and obesity: a systematic review and meta-analysis. Nutr Rev 2023; 81:397-415. [PMID: 36048508 DOI: 10.1093/nutrit/nuac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CONTEXT Conjugated linoleic acid (CLA) has been reported to have anti-obesity and antidiabetic effects. However, the benefits of CLA combined with exercise remain unclear, and studies report conflicting results. OBJECTIVE A systematic review and meta-analysis were performed to investigate the synergistic effect of CLA and exercise on body composition, exercise-related indices, insulin resistance, and lipid profiles; and of the safety of CLA supplements. DATA SOURCES In October 2021, the PubMed, Embase, and Cochrane Library databases were searched for reports on clinical trials of the combined intervention of CLA and exercise. DATA EXTRACTION A total of 18 randomized controlled trials and 2 crossover trials were included. The methodological quality assessment was performed using the revised Cochrane risk-of-bias tool. Pooled effect sizes were reported as standardized mean difference (SMD) for continuous data and risk ratio for dichotomous data with their corresponding 95% confidence intervals (CIs). Heterogeneity was tested using the I2 statistic. DATA ANALYSIS The combination of CLA and exercise resulted in significantly decreased body fat (SMD, -0.42 [95%CI, -0.70, -0.14]; P = 0.003; I2 = 65) and insulin resistance (SMD, -0.25 [95%CI, -0.44, -0.06]; P = 0.01; I2 = 0) than did exercise alone. In subgroup analysis, the following factors were associated with significant outcomes: (1) body mass index ≥25 kg/m2; (2) female sex; (3) follow-up time >4 weeks; and (4) intervention duration >4 weeks. Nevertheless, supplementation with CLA during exercise programs was not effective for body-weight control, exercise performance enhancement, or lipid-profile improvement. CLA in combination with exercise did not result in a higher risk of adverse events (risk ratio, 1.32 [95%CI, 0.94-1.84]; P > 0.05; I2 = 0). CONCLUSION CLA combined with exercise is generally safe and can lower body fat and insulin resistance but does not reduce body weight, enhance exercise performance, or improve lipid profiles.
Collapse
Affiliation(s)
- Chun-Wei Liang
- are with the School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Yi Cheng
- are with the School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hao Lee
- are with the Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,are with the Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsan-Hon Liou
- are with the Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,are with the Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-De Liao
- are with the Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,is with the Master Program in Long-Term Care, College of Nursing, Taipei Medical University, Taipei, Taiwan
| | - Shih-Wei Huang
- are with the Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,are with the Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
10
|
Candow DG, Chilibeck PD, Forbes SC, Fairman CM, Gualano B, Roschel H. Creatine supplementation for older adults: Focus on sarcopenia, osteoporosis, frailty and Cachexia. Bone 2022; 162:116467. [PMID: 35688360 DOI: 10.1016/j.bone.2022.116467] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
Sarcopenia refers to the age-related reduction in strength, muscle mass and functionality which increases the risk for falls, injuries and fractures. Sarcopenia is associated with other age-related conditions such as osteoporosis, frailty and cachexia. Identifying treatments to overcome sarcopenia and associated conditions is important from a global health perspective. There is evidence that creatine monohydrate supplementation, primarily when combined with resistance training, has favorable effects on indices of aging muscle and bone. These musculoskeletal benefits provide some rationale for creatine being a potential intervention for treating frailty and cachexia. The purposes of this narrative review are to update the collective body of research pertaining to the effects of creatine supplementation on indices of aging muscle and bone (including bone turnover markers) and present possible justification and rationale for its utilization in the treatment of frailty and cachexia in older adults.
Collapse
Affiliation(s)
- Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada.
| | - Philip D Chilibeck
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Scott C Forbes
- Department of Physical Education Studies, Brandon University Brandon, MB, Canada
| | - Ciaran M Fairman
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculty of Medicine FMUSP, University of Sao Paulo, Sao Paulo, Brazil
| | - Hamilton Roschel
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculty of Medicine FMUSP, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
11
|
Delpino FM, Figueiredo LM, Forbes SC, Candow DG, Santos HO. The Influence of Age, Sex, and Type of Exercise on the Efficacy of Creatine Supplementation on Lean Body Mass: A Systematic Review and Meta-analysis of Randomized Clinical Trials. Nutrition 2022; 103-104:111791. [DOI: 10.1016/j.nut.2022.111791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 10/31/2022]
|
12
|
Forbes SC, Ostojic SM, Souza-Junior TP, Candow DG. A high dose of creatine combined with resistance training appears to be required to augment indices of bone health in older adults. ANNALS OF NUTRITION AND METABOLISM 2021; 78:183-186. [PMID: 34788768 DOI: 10.1159/000520967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/19/2022]
Abstract
Not applicable.
Collapse
Affiliation(s)
- Scott C Forbes
- Department of Physical Education Studies, Faculty of Education, Brandon University, Brandon, Manitoba, Canada
| | - Sergej M Ostojic
- Department of Nutrition and Public Health, University of Agder, Kristiansand, Norway
| | - Tacito P Souza-Junior
- Research Group on Metabolism, Nutrition and Strength Training, Federal University of Parana, Curitiba, Brazil
| | - Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, Saskatchewan, Canada
| |
Collapse
|
13
|
Choi M, Kim H, Bae J. Does the combination of resistance training and a nutritional intervention have a synergic effect on muscle mass, strength, and physical function in older adults? A systematic review and meta-analysis. BMC Geriatr 2021; 21:639. [PMID: 34772342 PMCID: PMC8588667 DOI: 10.1186/s12877-021-02491-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Health-promoting interventions are important for preventing frailty and sarcopenia in older adults. However, there is limited evidence that nutritional interventions yield additional effects when combined with resistance training. This systematic review and meta-analysis aimed to compare the effectiveness of nutritional interventions with resistance training and that of resistance training alone. METHODS Randomized controlled trials published in peer-reviewed journals prior to July 2020 were retrieved from databases and other sources. The articles were screened according to the inclusion and exclusion criteria. The methodological quality of the included studies was assessed using Cochrane's risk of bias tool 2. A meta-analysis was performed using the RevMan 5.4 program and STATA 16 program. RESULTS A total of 22 studies were included in the meta-analysis. The results of the meta-analysis showed no significant differences between groups in muscle mass, muscle strength, or physical functional performance. In the subgroup analysis regarding the types of nutritional interventions, creatine showed significant effects on lean body mass (n = 4, MD 2.61, 95% CI 0.51 to 4.72). Regarding the other subgroup analyses, there were no significant differences in appendicular skeletal muscle mass (p = .43), hand grip strength (p = .73), knee extension strength (p = .09), chair stand test results (p = .31), or timed up-and-go test results (p = .31). In the meta-regression, moderators such as the mean age of subjects and duration of interventions were not associated with outcome variables. CONCLUSIONS This meta-analysis showed that nutritional interventions with resistance training have no additional effect on body composition, muscle strength, or physical function. Only creatine showed synergistic effects with resistance training on muscle mass. TRIAL REGISTRATION CRD42021224843 .
Collapse
Affiliation(s)
- MoonKi Choi
- College of Nursing, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea, 24341
| | - Hayeon Kim
- Seoul Women's College of Nursing, Ganhodae-ro 38, Seodaemun-gu, Seoul, Republic of Korea, 03617
| | - Juyeon Bae
- Department of Nursing, Yeoju Institute of Technology, Sejong-ro 338, Yeoju-si, Gyeonggi-do, Republic of Korea, 12652.
| |
Collapse
|
14
|
Murphy C, Koehler K. Energy deficiency impairs resistance training gains in lean mass but not strength: A meta-analysis and meta-regression. Scand J Med Sci Sports 2021; 32:125-137. [PMID: 34623696 DOI: 10.1111/sms.14075] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
Short-term energy deficits impair anabolic hormones and muscle protein synthesis. However, the effects of prolonged energy deficits on resistance training (RT) outcomes remain unexplored. Thus, we conducted a systematic review of PubMed and SportDiscus for randomized controlled trials performing RT in an energy deficit (RT+ED) for ≥3 weeks. We first divided the literature into studies with a parallel control group without an energy deficit (RT+CON; Analysis A) and studies without RT+CON (Analysis B). Analysis A consisted of a meta-analysis comparing gains in lean mass (LM) and strength between RT+ED and RT+CON. Studies in Analysis B were matched with separate RT+CON studies for participant and intervention characteristics, and we qualitatively compared the gains in LM and strength between RT+ED and RT+CON. Finally, Analyses A and B were pooled into a meta-regression examining the relationship between the magnitude of the energy deficit and LM. Analysis A showed LM gains were impaired in RT+ED vs RT+CON (effect size (ES) = -0.57, p = 0.02), but strength gains were comparable between conditions (ES = -0.31, p = 0.28). Analysis B supports the impairment of LM in RT+ED (ES: -0.11, p = 0.03) vs RT+CON (ES: 0.20, p < 0.001) but not strength (RT+ED ES: 0.84; RT+CON ES: 0.81). Finally, our meta-regression demonstrated that an energy deficit of ~500 kcal · day-1 prevented gains in LM. Individuals performing RT to build LM should avoid prolonged energy deficiency, and individuals performing RT to preserve LM during weight loss should avoid energy deficits >500 kcal day-1 .
Collapse
Affiliation(s)
- Chaise Murphy
- Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Karsten Koehler
- Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| |
Collapse
|
15
|
van der Veen Y, Post A, Kremer D, Koops CA, Marsman E, Appeldoorn TYJ, Touw DJ, Westerhuis R, Heiner-Fokkema MR, Franssen CFM, Wallimann T, Bakker SJL. Chronic Dialysis Patients Are Depleted of Creatine: Review and Rationale for Intradialytic Creatine Supplementation. Nutrients 2021; 13:2709. [PMID: 34444869 PMCID: PMC8400647 DOI: 10.3390/nu13082709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022] Open
Abstract
There is great need for the identification of new, potentially modifiable risk factors for the poor health-related quality of life (HRQoL) and of the excess risk of mortality in dialysis-dependent chronic kidney disease patients. Creatine is an essential contributor to cellular energy homeostasis, yet, on a daily basis, 1.6-1.7% of the total creatine pool is non-enzymatically degraded to creatinine and subsequently lost via urinary excretion, thereby necessitating a continuous supply of new creatine in order to remain in steady-state. Because of an insufficient ability to synthesize creatine, unopposed losses to the dialysis fluid, and insufficient intake due to dietary recommendations that are increasingly steered towards more plant-based diets, hemodialysis patients are prone to creatine deficiency, and may benefit from creatine supplementation. To avoid problems with compliance and fluid balance, and, furthermore, to prevent intradialytic losses of creatine to the dialysate, we aim to investigate the potential of intradialytic creatine supplementation in improving outcomes. Given the known physiological effects of creatine, intradialytic creatine supplementation may help to maintain creatine homeostasis among dialysis-dependent chronic kidney disease patients, and consequently improve muscle status, nutritional status, neurocognitive status, HRQoL. Additionally, we describe the rationale and design for a block-randomized, double-blind, placebo-controlled pilot study. The aim of the pilot study is to explore the creatine uptake in the circulation and tissues following different creatine supplementation dosages.
Collapse
Affiliation(s)
- Yvonne van der Veen
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (D.K.); (C.F.M.F.)
| | - Adrian Post
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (D.K.); (C.F.M.F.)
| | - Daan Kremer
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (D.K.); (C.F.M.F.)
| | - Christa A. Koops
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (C.A.K.); (M.R.H.-F.)
| | - Erik Marsman
- Dialysis Center Groningen, 9713 GZ Groningen, The Netherlands; (E.M.); (R.W.)
| | - Theo Y. Jerôme Appeldoorn
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (T.Y.J.A.); (D.J.T.)
| | - Daan J. Touw
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (T.Y.J.A.); (D.J.T.)
| | - Ralf Westerhuis
- Dialysis Center Groningen, 9713 GZ Groningen, The Netherlands; (E.M.); (R.W.)
| | - Margaretha Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (C.A.K.); (M.R.H.-F.)
| | - Casper F. M. Franssen
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (D.K.); (C.F.M.F.)
| | - Theo Wallimann
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland;
| | - Stephan J. L. Bakker
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (D.K.); (C.F.M.F.)
| |
Collapse
|
16
|
Su H, Liu D, Shao J, Li Y, Wang X, Gao Q. Aging Liver: Can Exercise be a Better Way to Delay the Process than Nutritional and Pharmacological Intervention? Focus on Lipid Metabolism. Curr Pharm Des 2021; 26:4982-4991. [PMID: 32503400 DOI: 10.2174/1381612826666200605111232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Nowadays, the world is facing a common problem that the population aging process is accelerating. How to delay metabolic disorders in middle-aged and elderly people, has become a hot scientific and social issue worthy of attention. The liver plays an important role in lipid metabolism, and abnormal lipid metabolism may lead to liver diseases. Exercise is an easily controlled and implemented intervention, which has attracted extensive attention in improving the health of liver lipid metabolism in the elderly. This article reviewed the body aging process, changes of lipid metabolism in the aging liver, and the mechanism and effects of different interventions on lipid metabolism in the aging liver, especially focusing on exercise intervention. METHODS A literature search was performed using PubMed-NCBI, EBSCO Host and Web of Science, and also a report from WHO. In total, 143 studies were included from 1986 to 15 February 2020. CONCLUSION Nutritional and pharmacological interventions can improve liver disorders, and nutritional interventions are less risky relatively. Exercise intervention can prevent and improve age-related liver disease, especially the best high-intensity interval training intensity and duration is expected to be one of the research directions in the future.
Collapse
Affiliation(s)
- Hao Su
- The School of Sport Science, Beijing Sport University, Beijing, China
| | - Dongsen Liu
- The School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Jia Shao
- The Graduate School, Beijing Sport University, Beijing, China
| | - Yinuo Li
- The Graduate School, Beijing Sport University, Beijing, China
| | - Xiaoxia Wang
- The School of Physical Education and Art Education, Beijing Technology and Business University, Beijing, China
| | - Qi Gao
- The School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
17
|
Measuring Conjugated Linoleic Acid (CLA) Production by Bifidobacteria. Methods Mol Biol 2021; 2278:87-100. [PMID: 33649950 DOI: 10.1007/978-1-0716-1274-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The biological significance of conjugated fatty acids (CFAs) has been linked to positive health effects based on biomedical, in vitro, and clinical studies. Of note, conjugated linoleic acids (CLAs) are the most widely characterized fatty acids as geometric isomers cis-9,trans-11 and trans-10,cis-12 CLA occur naturally in ruminant fats, dairy products, and hydrogenated oils. Concerning CLAs, it is known that bacterial biohydrogenation, a process whereby ruminal bacteria or starter cultures of lactic acid bacteria have the ability to synthesize CLA by altering the chemical structure of essential fatty acids via enzymatic mechanisms, produces a multitude of isomers with desirable properties. Bifidobacterium species are classed as food grade microorganisms and some of these strains harness molecular determinants that are responsible for the bioconversion of free fatty acids to CLAs. However, molecular mechanisms have yet to be fully elucidated. Reports pertaining to CLAs have been attributed to suppressing tumor growth, delaying the onset of diabetes mellitus and reducing body fat in obese individuals. Given the increased attention for their bioactive properties, we describe in this chapter the qualitative and quantitative methods used to identify and quantify CLA isomers produced by bifidobacterial strains in supplemented broth media. These approaches enable rapid detection of potential CLA producing strains and accurate measurement of fatty acids in biological matrices.
Collapse
|
18
|
Stares A, Bains M. The Additive Effects of Creatine Supplementation and Exercise Training in an Aging Population: A Systematic Review of Randomized Controlled Trials. J Geriatr Phys Ther 2021; 43:99-112. [PMID: 30762623 DOI: 10.1519/jpt.0000000000000222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND PURPOSE The role of creatine supplementation in young athletes and bodybuilders is well established including ergogenic properties of muscular hypertrophy, strength, power, and endurance. Whether the benefits of creatine supplementation translate to an aging population with moderate training stimulus remains unclear especially in regard to gender, creatine dose, and duration. This systematic review assessed whether creatine supplementation combined with exercise results in additive improvements in indices of skeletal muscle, bone, and mental health over exercise alone in healthy older adults. METHODS PubMed, CINAHL, and Web of Science databases were utilized to identify randomized controlled trials of creatine supplementation combined with exercise in an aging population with additional predetermined inclusion and exclusion criteria. Two reviewers independently screened the titles and abstracts, reviewed full-text articles, and performed quality assessments using the Physiotherapy Evidence Database scale. RESULTS AND DISCUSSION Seventeen studies were comprehensively reviewed according to categories of strength, endurance, functional capacity, body composition, cognition, and safety. These studies suggest that any additive ergogenic creatine effects on upper and/or lower body strength, functional capacity, and lean mass in an older population would require a continuous and daily low-dose creatine supplementation combined with at least 12 weeks of resistance training. Potential creatine specific increases in regional bone mineral density of the femur are possible but may require at least 1 year of creatine supplementation combined with moderate resistance training, and additional long-term clinical trials are warranted. The limited data suggested no additive effects of creatine over exercise alone on indices of mental health. The beneficial effects of creatine supplementation are more consistent in older women than in men. CONCLUSIONS Creatine monohydrate is safe to use in older adults. While creatine in conjunction with moderate- to high-intensity exercise in an aging population may improve skeletal muscle health, additional studies are needed to determine the effective dosing and duration paradigm for potential combined creatine and exercise effects on bone and cognition in older adults.
Collapse
Affiliation(s)
- Aaron Stares
- School of Physical Therapy, University of the Incarnate Word, San Antonio, Texas
| | | |
Collapse
|
19
|
Nilsson MI, Mikhail A, Lan L, Di Carlo A, Hamilton B, Barnard K, Hettinga BP, Hatcher E, Tarnopolsky MG, Nederveen JP, Bujak AL, May L, Tarnopolsky MA. A Five-Ingredient Nutritional Supplement and Home-Based Resistance Exercise Improve Lean Mass and Strength in Free-Living Elderly. Nutrients 2020; 12:nu12082391. [PMID: 32785021 PMCID: PMC7468764 DOI: 10.3390/nu12082391] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
Old age is associated with lower physical activity levels, suboptimal protein intake, and desensitization to anabolic stimuli, predisposing for age-related muscle loss (sarcopenia). Although resistance exercise (RE) and protein supplementation partially protect against sarcopenia under controlled conditions, the efficacy of home-based, unsupervised RE (HBRE) and multi-ingredient supplementation (MIS) is largely unknown. In this randomized, placebo-controlled and double-blind trial, we examined the effects of HBRE/MIS on muscle mass, strength, and function in free-living, older men. Thirty-two sedentary men underwent twelve weeks of home-based resistance band training (3 d/week), in combination with daily intake of a novel five-nutrient supplement (‘Muscle5’; M5, n = 16, 77.4 ± 2.8 y) containing whey, micellar casein, creatine, vitamin D, and omega-3 fatty acids, or an isocaloric/isonitrogenous placebo (PLA; n = 16, 74.4 ± 1.3 y), containing collagen and sunflower oil. Appendicular and total lean mass (ASM; +3%, TLM; +2%), lean mass to fat ratios (ASM/% body fat; +6%, TLM/% body fat; +5%), maximal strength (grip; +8%, leg press; +17%), and function (5-Times Sit-to-Stand time; −9%) were significantly improved in the M5 group following HBRE/MIS therapy (pre vs. post tests; p < 0.05). Fast-twitch muscle fiber cross-sectional areas of the quadriceps muscle were also significantly increased in the M5 group post intervention (Type IIa; +30.9%, Type IIx, +28.5%, p < 0.05). Sub-group analysis indicated even greater gains in total lean mass in sarcopenic individuals following HBRE/MIS therapy (TLM; +1.65 kg/+3.4%, p < 0.05). We conclude that the Muscle5 supplement is a safe, well-tolerated, and effective complement to low-intensity, home-based resistance exercise and improves lean mass, strength, and overall muscle quality in old age.
Collapse
Affiliation(s)
- Mats I. Nilsson
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (M.I.N.); (A.M.); (L.L.); (A.D.C.); (B.H.); (K.B.); (E.H.); (M.G.T.); (J.P.N.); (L.M.)
- Exerkine Corporation, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (B.P.H.); (A.L.B.)
| | - Andrew Mikhail
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (M.I.N.); (A.M.); (L.L.); (A.D.C.); (B.H.); (K.B.); (E.H.); (M.G.T.); (J.P.N.); (L.M.)
- Department of Kinesiology, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Lucy Lan
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (M.I.N.); (A.M.); (L.L.); (A.D.C.); (B.H.); (K.B.); (E.H.); (M.G.T.); (J.P.N.); (L.M.)
| | - Alessia Di Carlo
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (M.I.N.); (A.M.); (L.L.); (A.D.C.); (B.H.); (K.B.); (E.H.); (M.G.T.); (J.P.N.); (L.M.)
| | - Bethanie Hamilton
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (M.I.N.); (A.M.); (L.L.); (A.D.C.); (B.H.); (K.B.); (E.H.); (M.G.T.); (J.P.N.); (L.M.)
| | - Kristin Barnard
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (M.I.N.); (A.M.); (L.L.); (A.D.C.); (B.H.); (K.B.); (E.H.); (M.G.T.); (J.P.N.); (L.M.)
| | - Bart P. Hettinga
- Exerkine Corporation, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (B.P.H.); (A.L.B.)
| | - Erin Hatcher
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (M.I.N.); (A.M.); (L.L.); (A.D.C.); (B.H.); (K.B.); (E.H.); (M.G.T.); (J.P.N.); (L.M.)
| | - Milla G. Tarnopolsky
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (M.I.N.); (A.M.); (L.L.); (A.D.C.); (B.H.); (K.B.); (E.H.); (M.G.T.); (J.P.N.); (L.M.)
| | - Joshua P. Nederveen
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (M.I.N.); (A.M.); (L.L.); (A.D.C.); (B.H.); (K.B.); (E.H.); (M.G.T.); (J.P.N.); (L.M.)
| | - Adam L. Bujak
- Exerkine Corporation, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (B.P.H.); (A.L.B.)
| | - Linda May
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (M.I.N.); (A.M.); (L.L.); (A.D.C.); (B.H.); (K.B.); (E.H.); (M.G.T.); (J.P.N.); (L.M.)
| | - Mark A. Tarnopolsky
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (M.I.N.); (A.M.); (L.L.); (A.D.C.); (B.H.); (K.B.); (E.H.); (M.G.T.); (J.P.N.); (L.M.)
- Exerkine Corporation, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (B.P.H.); (A.L.B.)
- Correspondence: ; Tel.: +905-521-2100 (ext. 76593); Fax: +905-577-8380
| |
Collapse
|
20
|
Graille M, Wild P, Sauvain JJ, Hemmendinger M, Guseva Canu I, Hopf NB. Urinary 8-OHdG as a Biomarker for Oxidative Stress: A Systematic Literature Review and Meta-Analysis. Int J Mol Sci 2020; 21:E3743. [PMID: 32466448 PMCID: PMC7313038 DOI: 10.3390/ijms21113743] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress reflects a disturbance in the balance between the production and accumulation of reactive oxygen species (ROS). ROS are scavenged by the antioxidant system, but when in excess concentration, they can oxidize proteins, lipids, and DNA. DNA damage is usually repaired, and the oxidized products are excreted in urine. 8-hydroxy-2-deoxyguanosine is considered a biomarker for oxidative damage of DNA. It is needed to define background ranges for 8-OHdG, to use it as a measure of oxidative stress overproduction. We established a standardized protocol for a systematic review and meta-analysis to assess background ranges for urinary 8-OHdG concentrations in healthy populations. We computed geometric mean (GM) and geometric standard deviations (GSD) as the basis for the meta-analysis. We retrieved an initial 1246 articles, included 84 articles, and identified 128 study subgroups. We stratified the subgroups by body mass index, gender, and smoking status reported. The pooled GM value for urinary 8-OHdG concentrations in healthy adults with a mean body mass index (BMI) ≤ 25 measured using chemical methods was 3.9 ng/mg creatinine (interquartile range (IQR): 3 to 5.5 ng/mg creatinine). A significant positive association was observed between smoking and urinary 8-OHdG concentrations when measured by chemical analysis. No gender effect was observed.
Collapse
Affiliation(s)
- Melanie Graille
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche, 21066 Epalinges-Lausanne, Switzerland; (M.G.); (P.W.); (J.-J.S.); (M.H.); (I.G.C.)
| | - Pascal Wild
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche, 21066 Epalinges-Lausanne, Switzerland; (M.G.); (P.W.); (J.-J.S.); (M.H.); (I.G.C.)
- Institut national de recherche et de sécurité (INRS), 54000 Nancy, France
| | - Jean-Jacques Sauvain
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche, 21066 Epalinges-Lausanne, Switzerland; (M.G.); (P.W.); (J.-J.S.); (M.H.); (I.G.C.)
| | - Maud Hemmendinger
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche, 21066 Epalinges-Lausanne, Switzerland; (M.G.); (P.W.); (J.-J.S.); (M.H.); (I.G.C.)
| | - Irina Guseva Canu
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche, 21066 Epalinges-Lausanne, Switzerland; (M.G.); (P.W.); (J.-J.S.); (M.H.); (I.G.C.)
| | - Nancy B. Hopf
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche, 21066 Epalinges-Lausanne, Switzerland; (M.G.); (P.W.); (J.-J.S.); (M.H.); (I.G.C.)
- Swiss Center for Applied Human Toxicology (SCAHT), Missionsstrasse 64, 4055 Basel, Switzerland
| |
Collapse
|
21
|
Abiri B, Vafa M. The Role of Nutrition in Attenuating Age-Related Skeletal Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1260:297-318. [PMID: 32304039 DOI: 10.1007/978-3-030-42667-5_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The elderly population is increasing rapidly worldwide, and we are faced with the significant challenge for maintaining or improving physical activity, independence, and quality of life. Sarcopenia, the age-related decline of skeletal muscle mass, is characterized by loss of muscle quantity and quality resulting to a gradual slowing of movement, a decrease in strength and power, elevated risk of fall-related injury, and often frailty. Supplemental, hormonal, and pharmacological approaches have been attempted to attenuate sarcopenia but these have not achieved outstanding results. In this review, we summarize the current knowledge of nutrition-based therapies for counteracting sarcopenia.
Collapse
Affiliation(s)
- Behnaz Abiri
- Department of Nutrition, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran. .,Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Fragala MS, Cadore EL, Dorgo S, Izquierdo M, Kraemer WJ, Peterson MD, Ryan ED. Resistance Training for Older Adults: Position Statement From the National Strength and Conditioning Association. J Strength Cond Res 2019; 33:2019-2052. [PMID: 31343601 DOI: 10.1519/jsc.0000000000003230] [Citation(s) in RCA: 606] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fragala, MS, Cadore, EL, Dorgo, S, Izquierdo, M, Kraemer, WJ, Peterson, MD, and Ryan, ED. Resistance training for older adults: position statement from the national strength and conditioning association. J Strength Cond Res 33(8): 2019-2052, 2019-Aging, even in the absence of chronic disease, is associated with a variety of biological changes that can contribute to decreases in skeletal muscle mass, strength, and function. Such losses decrease physiologic resilience and increase vulnerability to catastrophic events. As such, strategies for both prevention and treatment are necessary for the health and well-being of older adults. The purpose of this Position Statement is to provide an overview of the current and relevant literature and provide evidence-based recommendations for resistance training for older adults. As presented in this Position Statement, current research has demonstrated that countering muscle disuse through resistance training is a powerful intervention to combat the loss of muscle strength and muscle mass, physiological vulnerability, and their debilitating consequences on physical functioning, mobility, independence, chronic disease management, psychological well-being, quality of life, and healthy life expectancy. This Position Statement provides evidence to support recommendations for successful resistance training in older adults related to 4 parts: (a) program design variables, (b) physiological adaptations, (c) functional benefits, and (d) considerations for frailty, sarcopenia, and other chronic conditions. The goal of this Position Statement is to a) help foster a more unified and holistic approach to resistance training for older adults, b) promote the health and functional benefits of resistance training for older adults, and c) prevent or minimize fears and other barriers to implementation of resistance training programs for older adults.
Collapse
Affiliation(s)
| | - Eduardo L Cadore
- School of Physical Education, Physiotherapy and Dance, Exercise Research Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Sandor Dorgo
- Department of Kinesiology, University of Texas at El Paso, El Paso, Texas
| | - Mikel Izquierdo
- Department of Health Sciences, Public University of Navarre, CIBER of Frailty and Healthy Aging (CIBERFES), Navarrabiomed, Pamplona, Navarre, Spain
| | - William J Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Mark D Peterson
- Department of Physical Medicine and Rehabilitation, University of Michigan-Medicine, Ann Arbor, Michigan
| | - Eric D Ryan
- Department of Exercise and Sport Science, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
23
|
Changes in Fat Mass Following Creatine Supplementation and Resistance Training in Adults ≥50 Years of Age: A Meta-Analysis. J Funct Morphol Kinesiol 2019; 4:jfmk4030062. [PMID: 33467377 PMCID: PMC7739317 DOI: 10.3390/jfmk4030062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/12/2019] [Accepted: 08/21/2019] [Indexed: 12/18/2022] Open
Abstract
Aging is associated with an increase in fat mass which increases the risk for disease, morbidity and premature mortality. Creatine supplementation in combination with resistance training has been shown to increase lean tissue mass in adults ≥50 years of age; however, the synergetic effects of creatine and resistance training on fat mass in this population are unclear. Creatine metabolism plays an important role in adipose tissue bioenergetics and energy expenditure. Thus, the combination of creatine supplementation and resistance training may decrease fat mass more than resistance training alone. The purpose of this review is two-fold: (1) to perform meta-analyses on studies involving creatine supplementation during resistance training on fat mass in adults ≥50 years of age, and (2) to discuss possible mechanistic actions of creatine on reducing fat mass. Nineteen studies were included in our meta-analysis with 609 participants. Results from the meta-analyses showed that adults ≥50 years of age who supplemented with creatine during resistance training experienced a greater reduction in body fat percentage (0.55%, p = 0.04) compared to those on placebo during resistance training. Despite no statistical difference (p = 0.13), adults supplementing with creatine lost ~0.5 kg more fat mass compared to those on placebo. Interestingly, there are studies which have linked mechanism(s) explaining how creatine may influence fat mass, and these data are also discussed.
Collapse
|
24
|
Candow DG, Forbes SC, Chilibeck PD, Cornish SM, Antonio J, Kreider RB. Variables Influencing the Effectiveness of Creatine Supplementation as a Therapeutic Intervention for Sarcopenia. Front Nutr 2019; 6:124. [PMID: 31448281 PMCID: PMC6696725 DOI: 10.3389/fnut.2019.00124] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Sarcopenia is an age-related muscle condition characterized by a reduction in muscle quantity, force generating capacity and physical performance. Sarcopenia occurs in 8-13% of adults ≥ 60 years of age and can lead to disability, frailty, and various other diseases. Over the past few decades, several leading research groups have focused their efforts on developing strategies and recommendations for attenuating sarcopenia. One potential nutritional intervention for sarcopenia is creatine supplementation. However, research is inconsistent regarding the effectiveness of creatine on aging muscle. The purpose of this perspective paper is to: (1) propose possible reasons for the inconsistent responsiveness to creatine in aging adults, (2) discuss the potential mechanistic actions of creatine on muscle biology, (3) determine whether the timing of creatine supplementation influences aging muscle, (4) evaluate the evidence investigating the effects of creatine with other compounds (protein, conjugated linoleic acid) in aging adults, and (5) provide insight regarding the safety of creatine for aging adults.
Collapse
Affiliation(s)
- Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Scott C Forbes
- Department of Physical Education, Brandon University, Brandon, MB, Canada
| | - Philip D Chilibeck
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Stephen M Cornish
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB, Canada
| | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL, United States
| | - Richard B Kreider
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
25
|
Tarnopolsky MA, Nilsson MI. Nutrition and exercise in Pompe disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:282. [PMID: 31392194 DOI: 10.21037/atm.2019.05.52] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The current standard of care for Pompe disease (PD) is the administration of enzyme replacement therapy (ERT). Exercise and nutrition are often considered as complementary strategies rather than "treatments" per se. Nutritional assessment is important in patients with locomotor disability because the relative hypodynamia limits energy expenditure and thus the total amount of energy must be reduced to avoid obesity. A lower total energy intake often leads to lower protein and micronutrient intake. Consequently, ensuring that Pompe patients are tested for and replaced for deficiencies (protein, vitamin D, vitamin B12, etc.) is an important aspect of care. Furthermore, given the role of autophagy in the pathophysiology of PD and the fact that fasting induces autophagy, it is important that strategies such as nutritional timing and amino acid intake (L-arginine, L-leucine) be evaluated as therapies. Exercise interventions have been shown to improve six-minute walk testing distance by more than what was seen in the seminal ERT study in late-onset PD. Exercise therapy can also activate autophagy, and this is likely another component of its efficacy. The current review will evaluate the theoretical and practical aspects of nutrition and exercise as therapies for patients with PD.
Collapse
Affiliation(s)
- Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Mats I Nilsson
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
26
|
Nilsson MI, Tarnopolsky MA. Mitochondria and Aging-The Role of Exercise as a Countermeasure. BIOLOGY 2019; 8:biology8020040. [PMID: 31083586 PMCID: PMC6627948 DOI: 10.3390/biology8020040] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/15/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022]
Abstract
Mitochondria orchestrate the life and death of most eukaryotic cells by virtue of their ability to supply adenosine triphosphate from aerobic respiration for growth, development, and maintenance of the ‘physiologic reserve’. Although their double-membrane structure and primary role as ‘powerhouses of the cell’ have essentially remained the same for ~2 billion years, they have evolved to regulate other cell functions that contribute to the aging process, such as reactive oxygen species generation, inflammation, senescence, and apoptosis. Biological aging is characterized by buildup of intracellular debris (e.g., oxidative damage, protein aggregates, and lipofuscin), which fuels a ‘vicious cycle’ of cell/DNA danger response activation (CDR and DDR, respectively), chronic inflammation (‘inflammaging’), and progressive cell deterioration. Therapeutic options that coordinately mitigate age-related declines in mitochondria and organelles involved in quality control, repair, and recycling are therefore highly desirable. Rejuvenation by exercise is a non-pharmacological approach that targets all the major hallmarks of aging and extends both health- and lifespan in modern humans.
Collapse
Affiliation(s)
- Mats I Nilsson
- Department of Pediatrics and Medicine, McMaster University Medical Center, Hamilton, ON L8S 4L8, Canada.
- Exerkine Corporation, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada.
| | - Mark A Tarnopolsky
- Department of Pediatrics and Medicine, McMaster University Medical Center, Hamilton, ON L8S 4L8, Canada.
- Exerkine Corporation, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
27
|
Veronese N, Stubbs B, Punzi L, Soysal P, Incalzi RA, Saller A, Maggi S. Effect of nutritional supplementations on physical performance and muscle strength parameters in older people: A systematic review and meta-analysis. Ageing Res Rev 2019; 51:48-54. [PMID: 30826500 DOI: 10.1016/j.arr.2019.02.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 01/06/2023]
Abstract
Malnutrition plays a role in the development of poor physical performance, frailty and sarcopenia. The use of nutritional supplementations for improving physical performance and muscle strength parameters in older people is unclear. We therefore aimed to summarize the effect of nutritional supplementations compared to placebo on physical performance (i.e. tests more investigating physical function, utilising aerobic capacity & muscle power) and muscle strength (i.e. tests depending on muscle power) outcomes in older people in randomized controlled trials (RCTs). A literature search in major databases was undertaken until the 01st September 2018. Eligible studies were RCTs investigating the effect of nutritional supplementations vs. placebo in older people (people having an age >60 years). Standardized mean differences (SMD) and 95% confidence intervals (CIs) were used through a random effect model. Over 4007 potentially eligible articles, 32 RCTs for a total of 4137 older participants (2097 treated and 2040 placebo) (mean age: 76.3 years; 65% females) were included. Compared to placebo, multi-nutrient supplementations significantly improved chair rise time (n = 3; SMD=-0.90; 95%CI: -1.46 to -0.33; I2 = 87%). Multi-nutrients significantly improved handgrip strength when compared to placebo (n = 6; 780 participants; SMD = 0.41; 95%CI: 0.06 to 0.76; I2 = 79%), as did nutritional supplementations including protein (n = 7; 535 participants; SMD = 0.24; 95%CI: 0.07 to 0.41; I2 = 16%).Nutritional supplementations also led to a significant improvement in chair rise time and in handgrip strength in participants affected by frailty/sarcopenia and in those affected by medical conditions. In conclusion, nutritional supplementation can improve a number of physical performance outcomes in older people, particularly when they include multi-nutrients and in people already affected by specific medical conditions, or by frailty/sarcopenia.
Collapse
Affiliation(s)
- Nicola Veronese
- National Research Council, Neuroscience Institute, Aging Branch, Padova, Italy.
| | - Brendon Stubbs
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, United Kingdom; Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Faculty of Health, Social Care and Education, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Leonardo Punzi
- Rheumatology Center, SS Giovanni e Paolo Hospital, Venice, Italy
| | - Pinar Soysal
- Department of Geriatric Medicine, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | | | - Alois Saller
- Internal Medicine, Department of Medicine DIMED, University-Hospital of Padova, Padova, Italy
| | - Stefania Maggi
- National Research Council, Neuroscience Institute, Aging Branch, Padova, Italy
| |
Collapse
|
28
|
Effect of pre-exercise and post-exercise creatine supplementation on bone mineral content and density in healthy aging adults. Exp Gerontol 2019; 119:89-92. [DOI: 10.1016/j.exger.2019.01.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/13/2018] [Accepted: 01/25/2019] [Indexed: 11/21/2022]
|
29
|
Candow DG, Forbes SC, Chilibeck PD, Cornish SM, Antonio J, Kreider RB. Effectiveness of Creatine Supplementation on Aging Muscle and Bone: Focus on Falls Prevention and Inflammation. J Clin Med 2019; 8:E488. [PMID: 30978926 PMCID: PMC6518405 DOI: 10.3390/jcm8040488] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/25/2022] Open
Abstract
Sarcopenia, defined as the age-related decrease in muscle mass, strength and physical performance, is associated with reduced bone mass and elevated low-grade inflammation. From a healthy aging perspective, interventions which overcome sarcopenia are clinically relevant. Accumulating evidence suggests that exogenous creatine supplementation has the potential to increase aging muscle mass, muscle performance, and decrease the risk of falls and possibly attenuate inflammation and loss of bone mineral. Therefore, the purpose of this review is to: (1) summarize the effects of creatine supplementation, with and without resistance training, in aging adults and discuss possible mechanisms of action, (2) examine the effects of creatine on bone biology and risk of falls, (3) evaluate the potential anti-inflammatory effects of creatine and (4) determine the safety of creatine supplementation in aging adults.
Collapse
Affiliation(s)
- Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2, Canada.
| | - Scott C Forbes
- Department of Physical Education, Brandon University, Brandon, MB R7A 6A9, Canada.
| | - Philip D Chilibeck
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada.
| | - Stephen M Cornish
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL 33314, USA.
| | - Richard B Kreider
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843-4253, USA.
| |
Collapse
|
30
|
Valenzuela PL, Morales JS, Emanuele E, Pareja-Galeano H, Lucia A. Supplements with purported effects on muscle mass and strength. Eur J Nutr 2019; 58:2983-3008. [PMID: 30604177 DOI: 10.1007/s00394-018-1882-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/13/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Several supplements are purported to promote muscle hypertrophy and strength gains in healthy subjects, or to prevent muscle wasting in atrophying situations (e.g., ageing or disuse periods). However, their effectiveness remains unclear. METHODS This review summarizes the available evidence on the beneficial impacts of several popular supplements on muscle mass or strength. RESULTS Among the supplements tested, nitrate and caffeine returned sufficient evidence supporting their acute beneficial effects on muscle strength, whereas the long-term consumption of creatine, protein and polyunsaturated fatty acids seems to consistently increase or preserve muscle mass and strength (evidence level A). On the other hand, mixed or unclear evidence was found for several popular supplements including branched-chain amino acids, adenosine triphosphate, citrulline, β-Hydroxy-β-methylbutyrate, minerals, most vitamins, phosphatidic acid or arginine (evidence level B), weak or scarce evidence was found for conjugated linoleic acid, glutamine, resveratrol, tribulus terrestris or ursolic acid (evidence level C), and no evidence was found for other supplements such as ornithine or α-ketoglutarate (evidence D). Of note, although most supplements appear to be safe when consumed at typical doses, some adverse events have been reported for some of them (e.g., caffeine, vitamins, α-ketoglutarate, tribulus terrestris, arginine) after large intakes, and there is insufficient evidence to determine the safety of many frequently used supplements (e.g., ornithine, conjugated linoleic acid, ursolic acid). CONCLUSION In summary, despite their popularity, there is little evidence supporting the use of most supplements, and some of them have been even proven ineffective or potentially associated with adverse effects.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Department of Sport and Health, Spanish Agency for Health Protection in Sport (AEPSAD), Madrid, Spain.,Physiology Unit. Systems Biology Department, University of Alcalá, Madrid, Spain
| | - Javier S Morales
- Faculty of Sport Sciences, Universidad Europea De Madrid, Villaviciosa De Odón, 28670, Madrid, Spain
| | | | - Helios Pareja-Galeano
- Faculty of Sport Sciences, Universidad Europea De Madrid, Villaviciosa De Odón, 28670, Madrid, Spain. .,Research Institute of the Hospital 12 De Octubre (i+12), Madrid, Spain.
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea De Madrid, Villaviciosa De Odón, 28670, Madrid, Spain.,Research Institute of the Hospital 12 De Octubre (i+12), Madrid, Spain
| |
Collapse
|
31
|
Kerksick CM, Wilborn CD, Roberts MD, Smith-Ryan A, Kleiner SM, Jäger R, Collins R, Cooke M, Davis JN, Galvan E, Greenwood M, Lowery LM, Wildman R, Antonio J, Kreider RB. ISSN exercise & sports nutrition review update: research & recommendations. J Int Soc Sports Nutr 2018; 15:38. [PMID: 30068354 PMCID: PMC6090881 DOI: 10.1186/s12970-018-0242-y] [Citation(s) in RCA: 454] [Impact Index Per Article: 64.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022] Open
Abstract
Background Sports nutrition is a constantly evolving field with hundreds of research papers published annually. In the year 2017 alone, 2082 articles were published under the key words ‘sport nutrition’. Consequently, staying current with the relevant literature is often difficult. Methods This paper is an ongoing update of the sports nutrition review article originally published as the lead paper to launch the Journal of the International Society of Sports Nutrition in 2004 and updated in 2010. It presents a well-referenced overview of the current state of the science related to optimization of training and performance enhancement through exercise training and nutrition. Notably, due to the accelerated pace and size at which the literature base in this research area grows, the topics discussed will focus on muscle hypertrophy and performance enhancement. As such, this paper provides an overview of: 1.) How ergogenic aids and dietary supplements are defined in terms of governmental regulation and oversight; 2.) How dietary supplements are legally regulated in the United States; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of nutritional approaches to augment skeletal muscle hypertrophy and the potential ergogenic value of various dietary and supplemental approaches. Conclusions This updated review is to provide ISSN members and individuals interested in sports nutrition with information that can be implemented in educational, research or practical settings and serve as a foundational basis for determining the efficacy and safety of many common sport nutrition products and their ingredients.
Collapse
Affiliation(s)
- Chad M Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA.
| | - Colin D Wilborn
- Exercise & Sport Science Department, University of Mary-Hardin Baylor, Belton, TX, USA
| | | | - Abbie Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | | | | | - Rick Collins
- Collins Gann McCloskey and Barry PLLC, Mineola, NY, USA
| | - Mathew Cooke
- Department of Health and Medical Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Jaci N Davis
- Exercise & Sport Science Department, University of Mary-Hardin Baylor, Belton, TX, USA
| | - Elfego Galvan
- University of Texas Medical Branch, Galveston, TX, USA
| | - Mike Greenwood
- Exercise & Sports Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX, USA
| | - Lonnie M Lowery
- Department of Human Performance & Sport Business, University of Mount Union, Alliance, OH, USA
| | | | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL, USA
| | - Richard B Kreider
- Exercise & Sports Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
32
|
Forbes SC, Chilibeck PD, Candow DG. Creatine Supplementation During Resistance Training Does Not Lead to Greater Bone Mineral Density in Older Humans: A Brief Meta-Analysis. Front Nutr 2018; 5:27. [PMID: 29740583 PMCID: PMC5928444 DOI: 10.3389/fnut.2018.00027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/06/2018] [Indexed: 11/24/2022] Open
Abstract
Creatine supplementation during resistance training has potential beneficial effects on properties of bone in aging adults. We systematically reviewed randomized controlled trials (RCTs) investigating the effect of creatine supplementation combined with resistance training on bone mineral density (BMD) in aging adults. We searched PubMed and SPORTDiscus databases and included RCTs of ≥3 months duration that examined the combined effect of creatine and resistance training on bone mineral in adults >50 years of age or postmenopausal. Meta-analyses were performed when applicable trials were available on whole body and clinically important bone sites. Five trials met inclusion criteria with a total of 193 participants. Two of the studies reported significant benefits of creatine supplementation and resistance training compared to resistance training alone on bone. Meta-analyses revealed no greater effect of creatine and resistance training compared to resistance training alone on whole body BMD (MD: 0.00, 95% CI −0.01 to 0.01, p = 0.50), hip BMD (MD −0.01, 95% CI −0.02 to 0.01, p = 0.26), femoral neck BMD (MD 0.00, 95% CI −0.01 to 0.01, p = 0.71), and lumbar spine BMD (MD 0.01, 95% CI −0.01 to 0.03, p = 0.32). In conclusion, there is a limited number of RCTs examining the effects of creatine supplementation and resistance training on BMD in older adults. Our meta-analyses revealed no significant effect on whole body, hip, femoral neck, or lumbar spine BMD when comparing creatine and resistance training to resistance training alone. Future longer term (>12 month) trials with higher resistance training frequencies (≥3 times per week) is warranted.
Collapse
Affiliation(s)
- Scott C Forbes
- Department of Physical Education, Faculty of Education, Brandon University, Brandon, MB, Canada
| | - Philip D Chilibeck
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Darren G Candow
- Faculty of Kinesiology & Health Studies, University of Regina, Regina, SK, Canada
| |
Collapse
|
33
|
Safdar A, Tarnopolsky MA. Exosomes as Mediators of the Systemic Adaptations to Endurance Exercise. Cold Spring Harb Perspect Med 2018; 8:a029827. [PMID: 28490541 PMCID: PMC5830902 DOI: 10.1101/cshperspect.a029827] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Habitual endurance exercise training is associated with multisystemic metabolic adaptations that lower the risk of inactivity-associated disorders such as obesity and type 2 diabetes mellitus (T2DM). Identification of complex systemic signaling networks responsible for these benefits are of great interest because of their therapeutic potential in metabolic diseases; however, specific signals that modulate the multisystemic benefits of exercise in multiple tissues and organs are only recently being discovered. Accumulated evidence suggests that muscle and other tissues have an endocrine function and release peptides and nucleic acids into the circulation in response to acute endurance exercise to mediate the multisystemic adaptations. Factors released from skeletal muscle have been termed myokines and we propose that the total of all factors released in response to endurance exercise (including peptides, nucleic acids, and metabolites) be termed, "exerkines." We propose that many of the exerkines are released within extracellular vesicles called exosomes, which regulate peripheral organ cross talk. Exosomes (30-140 nm) and larger microvesicles [MVs] (100-1000 nm) are subcategories of extracellular vesicles that are released into the circulation. Exosomes contain peptides and several nucleic acids (microRNA [miRNA], messenger RNA [mRNA], mitochondrial DNA [mtDNA]) and are involved in intercellular/tissue exchange of their contents. An acute bout of endurance exercise increases circulating exosomes that are hypothesized to mediate organ cross talk to promote systemic adaptation to endurance exercise. Further support for the role of exosomes (and possibly MVs) in mediating the systemic benefits of exercise comes from the fact that the majority of the previously reported myokines/exerkines are found in extracellular vesicles databases (Vesiclepedia and ExoCarta). We propose that exosomes isolated from athletes following exercise or exosomes bioengineered to incorporate one or many of known exerkines will be therapeutically useful in the treatment of obesity, T2DM, and other aging-associated metabolic disorders.
Collapse
Affiliation(s)
- Adeel Safdar
- Department of Pediatrics, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
- Department of Pediatrics & Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
34
|
Chilibeck PD, Kaviani M, Candow DG, Zello GA. Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: a meta-analysis. Open Access J Sports Med 2017; 8:213-226. [PMID: 29138605 PMCID: PMC5679696 DOI: 10.2147/oajsm.s123529] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The loss of muscle mass and strength with aging results in significant functional impairment. Creatine supplementation has been used in combination with resistance training as a strategy for increasing lean tissue mass and muscle strength in older adults, but results across studies are equivocal. We conducted a systematic review and meta-analysis of randomized controlled trials of creatine supplementation during resistance training in older adults with lean tissue mass, chest press strength, and leg press strength as outcomes by searching PubMed and SPORTDiscus databases. Twenty-two studies were included in our meta-analysis with 721 participants (both men and women; with a mean age of 57–70 years across studies) randomized to creatine supplementation or placebo during resistance training 2–3 days/week for 7–52 weeks. Creatine supplementation resulted in greater increases in lean tissue mass (mean difference =1.37 kg [95% CI =0.97–1.76]; p<0.00001), chest press strength (standardized mean difference [SMD] =0.35 [0.16–0.53]; p=0.0002), and leg press strength (SMD =0.24 [0.05–0.43]; p=0.01). A number of mechanisms exist by which creatine may increase lean tissue mass and muscular strength. These are included in a narrative review in the discussion section of this article. In summary, creatine supplementation increases lean tissue mass and upper and lower body muscular strength during resistance training of older adults, but potential mechanisms by which creatine exerts these positive effects have yet to be evaluated extensively.
Collapse
Affiliation(s)
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, NS
| | - Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina
| | - Gordon A Zello
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
35
|
The Combination of Physical Exercise with Muscle-Directed Antioxidants to Counteract Sarcopenia: A Biomedical Rationale for Pleiotropic Treatment with Creatine and Coenzyme Q10. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7083049. [PMID: 29123615 PMCID: PMC5632475 DOI: 10.1155/2017/7083049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/13/2017] [Accepted: 08/23/2017] [Indexed: 12/21/2022]
Abstract
Sarcopenia represents an increasing public health risk due to the rapid aging of the world's population. It is characterized by both low muscle mass and function and is associated with mobility disorders, increased risk of falls and fractures, loss of independence, disabilities, and increased risk of death. Despite the urgency of the problem, the development of treatments for sarcopenia has lagged. Increased reactive oxygen species (ROS) production and decreased antioxidant (AO) defences seem to be important factors contributing to muscle impairment. Studies have been conducted to verify whether physical exercise and/or AOs could prevent and/or delay sarcopenia through a normalization of the etiologically relevant ROS imbalance. Despite the strong rationale, the results obtained were contradictory, particularly with regard to the effects of the tested AOs. A possible explanation might be that not all the agents included in the general heading of "AOs" could fulfill the requisites to counteract the complex series of events causing/accelerating sarcopenia: the combination of the muscle-directed antioxidants creatine and coenzyme Q10 with physical exercise as a biomedical rationale for pleiotropic prevention and/or treatment of sarcopenia is discussed.
Collapse
|
36
|
Tremblay BL, Rudkowska I. Nutrigenomic point of view on effects and mechanisms of action of ruminant trans fatty acids on insulin resistance and type 2 diabetes. Nutr Rev 2017; 75:214-223. [PMID: 28340087 DOI: 10.1093/nutrit/nuw066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Evidence from observational studies suggests beneficial effects of ruminant trans fatty acids (rTFA) on insulin resistance (IR) and type 2 diabetes (T2D). However, beneficial effects of rTFA are not always observed in cell, animal, and human studies. This narrative review presents potential mechanisms of action of rTFA using nutrigenomics and microRNA results in an integrative model. In addition, the review presents factors, including measures of IR and T2D, dose and duration of studies, as well as health status, ethnicity, and genotypes of subjects, that may help explain the heterogeneity in response to rTFA supplementation. Future studies should consider these factors, as well as research in nutritional genomics, to better understand the effects of rTFA on IR and T2D.
Collapse
Affiliation(s)
- Bénédicte L Tremblay
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, Quebec, Canada
| | - Iwona Rudkowska
- Department of Endocrinology and Nephrology, CHU de Québec Research Center, Quebec City, Quebec, Canada
| |
Collapse
|
37
|
Beaudart C, Dawson A, Shaw SC, Harvey NC, Kanis JA, Binkley N, Reginster JY, Chapurlat R, Chan DC, Bruyère O, Rizzoli R, Cooper C, Dennison EM. Nutrition and physical activity in the prevention and treatment of sarcopenia: systematic review. Osteoporos Int 2017; 28:1817-1833. [PMID: 28251287 PMCID: PMC5457808 DOI: 10.1007/s00198-017-3980-9] [Citation(s) in RCA: 369] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/31/2017] [Indexed: 01/06/2023]
Abstract
UNLABELLED This systematic review summarizes the effect of combined exercise and nutrition intervention on muscle mass and muscle function. A total of 37 RCTs were identified. Results indicate that physical exercise has a positive impact on muscle mass and muscle function in subjects aged 65 years and older. However, any interactive effect of dietary supplementation appears to be limited. INTRODUCTION In 2013, Denison et al. conducted a systematic review including 17 randomized controlled trials (RCTs) to explore the effect of combined exercise and nutrition intervention to improve muscle mass, muscle strength, or physical performance in older people. They concluded that further studies were needed to provide evidence upon which public health and clinical recommendations could be based. The purpose of the present work was to update the prior systematic review and include studies published up to October 2015. METHODS Using the electronic databases MEDLINE and EMBASE, we identified RCTs which assessed the combined effect of exercise training and nutritional supplementation on muscle strength, muscle mass, or physical performance in subjects aged 60 years and over. Study selection and data extraction were performed by two independent reviewers. RESULTS The search strategy identified 21 additional RCTs giving a total of 37 RCTs. Studies were heterogeneous in terms of protocols for physical exercise and dietary supplementation (proteins, essential amino acids, creatine, β-hydroxy-β-methylbuthyrate, vitamin D, multi-nutrients, or other). In 79% of the studies (27/34 RCTs), muscle mass increased with exercise but an additional effect of nutrition was only found in 8 RCTs (23.5%). Muscle strength increased in 82.8% of the studies (29/35 RCTs) following exercise intervention, and dietary supplementation showed additional benefits in only a small number of studies (8/35 RCTS, 22.8%). Finally, the majority of studies showed an increase of physical performance following exercise intervention (26/28 RCTs, 92.8%) but interaction with nutrition supplementation was only found in 14.3% of these studies (4/28 RCTs). CONCLUSION Physical exercise has a positive impact on muscle mass and muscle function in healthy subjects aged 60 years and older. The biggest effect of exercise intervention, of any type, has been seen on physical performance (gait speed, chair rising test, balance, SPPB test, etc.). We observed huge variations in regard to the dietary supplementation protocols. Based on the included studies, mainly performed on well-nourished subjects, the interactive effect of dietary supplementation on muscle function appears limited.
Collapse
Affiliation(s)
- C Beaudart
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
- Department of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
| | - A Dawson
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - S C Shaw
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - N C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - J A Kanis
- Centre for Metabolic Bone Disease, Medical School, University of Sheffield, Sheffield, UK
- Institute for Health and Aging, Catholic University of Australia, Melbourne, Australia
| | - N Binkley
- University of Wisconsin Osteoporosis Clinical Center and Research Program, Madison, WI, USA
| | - J Y Reginster
- Department of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
| | - R Chapurlat
- INSERM UMR 1033, Université de Lyon, Hôpital E Herriot, Lyon, France
| | - D C Chan
- Department of Geriatrics and Gerontology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Superintendent's Office, National Taiwan University Hospital Chu-Tong Branch, Hsinchu City, Taiwan
| | - O Bruyère
- Department of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
| | - R Rizzoli
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - C Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
- NIHR Musculoskeletal Biomedical Research Unit, Institute of Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| | - E M Dennison
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | | |
Collapse
|
38
|
Dionyssiotis Y, Chhetri J, Piotrowicz K, Gueye T, Sánchez E. Impact of nutrition for rehabilitation of older patients: Report on the 1st EICA-ESPRM-EUGMS Train the Trainers Course. Eur Geriatr Med 2017. [DOI: 10.1016/j.eurger.2016.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
PINA FLC, RIBEIRO AS, DODERO SR, BARBOSA DS, CYRINO ES, TIRAPEGUI J. Conjugated linoleic acid supplementation does not maximize motor performance and abdominal and trunk fat loss induced by aerobic training in overweight women. REV NUTR 2016. [DOI: 10.1590/1678-98652016000600004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Objective: To analyze the effect of eight weeks of conjugated linoleic acid supplementation on physical performance, and trunk and abdominal fat in overweight women submitted to an aerobic training program. Methods: Twenty-eight overweight women (body mass index ³25 kg/m2) were divided randomly and double-blindly to receive conjugated linoleic acid or placebo, both associated with an aerobic exercise program (frequency = three times a week, duration=30 min/session, intensity=80% of maximum heart rate). Conjugated linoleic acid (3.2 g) and placebo (4.0 g) supplements were consumed daily (four capsules) for eight weeks. Maximum speed and time to exhaustion were determined in incremental treadmill test. Trunk fat was estimated by dual-energy X-Ray absorptiometry. Waist circumference was used as indicator of abdominal fat. Results: Main effect of time (p<0.05) showed increased maximum speed (conjugated linoleic acid=+6.3% vs. placebo=+7.5%) and time to exhaustion (conjugated linoleic acid=+7.1% vs. placebo=+8.6%) in the incremental treadmill test, with no differences between the groups (p>0.05). Similarly, significant reductions (p<0.05) in trunk fat (conjugated linoleic acid=-1.7% vs. placebo=-1.5%) and abdominal fat (conjugated linoleic acid=-4.7% vs. placebo=-4.0%) were found after eight weeks of intervention, with no differences between the groups (p>0.05). Conclusion: The results of this study suggest that conjugated linoleic acid supplementation does not maximize motor performance, and loss of body and abdominal fat induced by aerobic training in overweight women.
Collapse
|
40
|
Safdar A, Saleem A, Tarnopolsky MA. The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat Rev Endocrinol 2016; 12:504-17. [PMID: 27230949 DOI: 10.1038/nrendo.2016.76] [Citation(s) in RCA: 295] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Endurance exercise-mediated multisystemic adaptations are known to mitigate metabolism-related disorders such as obesity and type 2 diabetes mellitus (T2DM). However, the underlying molecular mechanisms that promote crosstalk between organs and orchestrate the pro-metabolic effects of endurance exercise remain unclear. Exercise-induced release of peptides and nucleic acids from skeletal muscle and other organs (collectively termed 'exerkines') has been implicated in mediating these systemic adaptations. Given that the extracellular milieu is probably not a hospitable environment for labile exerkines, a lipid vehicle-based mode of delivery has originated over the course of evolution. Two types of extracellular vesicles, exosomes and microvesicles, have been shown to contain proteins and nucleic acids that participate in a variety of physiological and pathological processes. Exosomes, in particular, have been shown to facilitate the exchange of peptides, microRNA, mRNA and mitochondrial DNA between cells and tissues. Intriguingly, circulatory extracellular vesicle content increases in an intensity-dependant manner in response to endurance exercise. We propose that the systemic benefits of exercise are modulated by exosomes and/or microvesicles functioning in an autocrine, paracrine and/or endocrine manner. Furthermore, we posit that native or modified exosomes, and/or microvesicles enriched with exerkines will have therapeutic utility in the treatment of obesity and T2DM.
Collapse
Affiliation(s)
- Adeel Safdar
- Department of Pediatrics, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Ayesha Saleem
- Department of Pediatrics, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
41
|
Johannsmeyer S, Candow DG, Brahms CM, Michel D, Zello GA. Effect of creatine supplementation and drop-set resistance training in untrained aging adults. Exp Gerontol 2016; 83:112-9. [PMID: 27523919 DOI: 10.1016/j.exger.2016.08.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/04/2016] [Accepted: 08/10/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate the effects of creatine supplementation and drop-set resistance training in untrained aging adults. Participants were randomized to one of two groups: Creatine (CR: n=14, 7 females, 7 males; 58.0±3.0yrs, 0.1g/kg/day of creatine+0.1g/kg/day of maltodextrin) or Placebo (PLA: n=17, 7 females, 10 males; age: 57.6±5.0yrs, 0.2g/kg/day of maltodextrin) during 12weeks of drop-set resistance training (3days/week; 2 sets of leg press, chest press, hack squat and lat pull-down exercises performed to muscle fatigue at 80% baseline 1-repetition maximum [1-RM] immediately followed by repetitions to muscle fatigue at 30% baseline 1-RM). METHODS Prior to and following training and supplementation, assessments were made for body composition, muscle strength, muscle endurance, tasks of functionality, muscle protein catabolism and diet. RESULTS Drop-set resistance training improved muscle mass, muscle strength, muscle endurance and tasks of functionality (p<0.05). The addition of creatine to drop-set resistance training significantly increased body mass (p=0.002) and muscle mass (p=0.007) compared to placebo. Males on creatine increased muscle strength (lat pull-down only) to a greater extent than females on creatine (p=0.005). Creatine enabled males to resistance train at a greater capacity over time compared to males on placebo (p=0.049) and females on creatine (p=0.012). Males on creatine (p=0.019) and females on placebo (p=0.014) decreased 3-MH compared to females on creatine. CONCLUSIONS The addition of creatine to drop-set resistance training augments the gains in muscle mass from resistance training alone. Creatine is more effective in untrained aging males compared to untrained aging females.
Collapse
Affiliation(s)
| | - Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Canada.
| | - C Markus Brahms
- Faculty of Kinesiology and Health Studies, University of Regina, Canada
| | - Deborah Michel
- College of Pharmacy and Nutrition, University of Saskatchewan, Canada
| | - Gordon A Zello
- College of Pharmacy and Nutrition, University of Saskatchewan, Canada
| |
Collapse
|
42
|
Effects of resistance training of moderate intensity on heart rate variability, body composition, and muscle strength in healthy elderly women. SPORT SCIENCES FOR HEALTH 2016. [DOI: 10.1007/s11332-016-0303-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
43
|
Tarnopolsky M, Katzberg H, Petrof BJ, Sirrs S, Sarnat HB, Myers K, Dupré N, Dodig D, Genge A, Venance SL, Korngut L, Raiman J, Khan A. Pompe Disease: Diagnosis and Management. Evidence-Based Guidelines from a Canadian Expert Panel. Can J Neurol Sci 2016; 43:472-85. [PMID: 27055517 DOI: 10.1017/cjn.2016.37] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pompe disease is a lysosomal storage disorder caused by a deficiency of the enzyme acid alpha-glucosidase. Patients have skeletal muscle and respiratory weakness with or without cardiomyopathy. The objective of our review was to systematically evaluate the quality of evidence from the literature to formulate evidence-based guidelines for the diagnosis and management of patients with Pompe disease. The literature review was conducted using published literature, clinical trials, cohort studies and systematic reviews. Cardinal treatment decisions produced seven management guidelines and were assigned a GRADE classification based on the quality of evidence in the published literature. In addition, six recommendations were made based on best clinical practices but with insufficient data to form a guideline. Studying outcomes in rare diseases is challenging due to the small number of patients, but this is in particular the reason why we believe that informed treatment decisions need to consider the quality of the evidence.
Collapse
Affiliation(s)
- Mark Tarnopolsky
- 1Department of Paediatrics,McMaster University Medical Centre,Hamilton,Ontario,Canada
| | - Hans Katzberg
- 4Department of Medicine (Neurology),University of Toronto,Toronto,Ontario,Canada
| | - Basil J Petrof
- 6Department of Medicine,Respiratory Division,McGill University,Montreal,Québec,Canada
| | - Sandra Sirrs
- 7Division of Endocrinology,Department of Medicine,University of British Columbia,Vancouver,British Columbia,Canada
| | - Harvey B Sarnat
- 8Departments of Paediatrics,Pathology (Neuropathology) and Clinical Neurosciences,Alberta Children's Hospital,Calgary,Alberta,Canada
| | - Kimberley Myers
- 9Department of Paediatric Cardiology,University of Calgary,Alberta Children's Hospital,Calgary,Alberta,Canada
| | - Nicolas Dupré
- 10Faculty of Medicine,Laval University,Québec City,Québec,Canada
| | - Dubravka Dodig
- 12Neurology Division,Department of Medicine,University Health Network/Toronto Western Hospital,Toronto,Ontario,Canada
| | - Angela Genge
- 13Montreal Neurological Institute and Hospital,Québec City,Québec,Canada
| | - Shannon L Venance
- 14Clinical Neurological Sciences,Western University,London Health Sciences Centre,London,Ontario,Canada
| | - Lawrence Korngut
- 15Department of Clinical Neurosciences,University of Calgary,Calgary,Alberta,Canada
| | - Julian Raiman
- 16Department of Paediatrics,University of Toronto,Toronto,Ontario,Canada
| | - Aneal Khan
- 18Department of Medical Genetics,University of Calgary,Calgary,Alberta,Canada
| |
Collapse
|
44
|
Gualano B, Rawson ES, Candow DG, Chilibeck PD. Creatine supplementation in the aging population: effects on skeletal muscle, bone and brain. Amino Acids 2016; 48:1793-805. [PMID: 27108136 DOI: 10.1007/s00726-016-2239-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/12/2016] [Indexed: 12/18/2022]
Abstract
This narrative review aims to summarize the recent findings on the adjuvant application of creatine supplementation in the management of age-related deficits in skeletal muscle, bone and brain metabolism in older individuals. Most studies suggest that creatine supplementation can improve lean mass and muscle function in older populations. Importantly, creatine in conjunction with resistance training can result in greater adaptations in skeletal muscle than training alone. The beneficial effect of creatine upon lean mass and muscle function appears to be applicable to older individuals regardless of sex, fitness or health status, although studies with very old (>90 years old) and severely frail individuals remain scarce. Furthermore, there is evidence that creatine may affect the bone remodeling process; however, the effects of creatine on bone accretion are inconsistent. Additional human clinical trials are needed using larger sample sizes, longer durations of resistance training (>52 weeks), and further evaluation of bone mineral, bone geometry and microarchitecture properties. Finally, a number of studies suggest that creatine supplementation improves cognitive processing under resting and various stressed conditions. However, few data are available on older adults, and the findings are discordant. Future studies should focus on older adults and possibly frail elders or those who have already experienced an age-associated cognitive decline.
Collapse
Affiliation(s)
- Bruno Gualano
- Applied Physiology in Nutrition, Exercise and Genetics Research Group, University of Sao Paulo, Sao Paulo, Brazil.
| | - Eric S Rawson
- Department of Exercise Science, Bloomsburg University, Bloomsburg, USA
| | - Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Philip D Chilibeck
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK, S7N 5B2, Canada
| |
Collapse
|
45
|
Chilibeck PD, Candow DG, Landeryou T, Kaviani M, Paus-Jenssen L. Effects of Creatine and Resistance Training on Bone Health in Postmenopausal Women. Med Sci Sports Exerc 2016; 47:1587-95. [PMID: 25386713 DOI: 10.1249/mss.0000000000000571] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Our primary purpose was to determine the effect of 12 months of creatine (Cr) supplementation during a supervised resistance training program on properties of bone in postmenopausal women. METHODS Participants were randomized (double-blind) into two groups: resistance training (3 d·wk) and Cr supplementation (0.1 g·kg·d) or resistance training and placebo (Pl). Our primary outcome measures were lumbar spine and femoral neck bone mineral density (BMD). Secondary outcome measures were total hip and whole-body BMD, bone geometric properties at the hip, speed of sound at the distal radius and tibia, whole-body lean tissue mass, muscle thickness, and bench press and hack squat strength. Forty-seven women (57 (SD, 6) yr; Cr, n = 23; Pl, n = 24) were randomized, with 33 analyzed after 12 months (Cr, n = 15; Pl, n = 18). RESULTS Cr attenuated the rate of femoral neck BMD loss (-1.2%; absolute change (95% confidence interval), -0.01 (-0.025 to 0.005) g·cm) compared with Pl (-3.9%; -0.03 (-0.044 to -0.017) g·cm; P < 0.05) and also increased femoral shaft subperiosteal width, a predictor of bone bending strength (Cr, 0.04 (-0.09 to 0.16) cm); Pl, -0.12 (-0.23 to -0.01) cm; P < 0.05). Cr increased relative bench press strength more than Pl (64% vs 34%; P < 0.05). There were no differences between groups for other outcome measures. There were no differences between groups for reports of serum liver enzyme abnormalities, and creatinine clearance was normal for Cr participants throughout the intervention. CONCLUSIONS Twelve months of Cr supplementation during a resistance training program preserves femoral neck BMD and increases femoral shaft superiosteal width, a predictor of bone bending strength, in postmenopausal women.
Collapse
Affiliation(s)
- Philip D Chilibeck
- 1College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, CANADA; 2Faculty of Kinesiology and Health Studies, University of Regina, Regina, Saskatchewan, CANADA; and 3College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, CANADA
| | | | | | | | | |
Collapse
|
46
|
Kim JH, Kim Y, Kim YJ, Park Y. Conjugated Linoleic Acid: Potential Health Benefits as a Functional Food Ingredient. Annu Rev Food Sci Technol 2016; 7:221-44. [DOI: 10.1146/annurev-food-041715-033028] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Ho Kim
- Department of Food and Biotechnology, Korea University, Sejong 339-700, Republic of Korea
| | - Yoo Kim
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003;
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong 339-700, Republic of Korea
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003;
| |
Collapse
|
47
|
Creatine in combination with resistance training and improvement in muscle strength: evaluation of a health claim pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
48
|
Kim Y, Kim J, Whang KY, Park Y. Impact of Conjugated Linoleic Acid (CLA) on Skeletal Muscle Metabolism. Lipids 2016; 51:159-78. [PMID: 26729488 DOI: 10.1007/s11745-015-4115-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/16/2015] [Indexed: 12/17/2022]
Abstract
Conjugated linoleic acid (CLA) has garnered special attention as a food bioactive compound that prevents and attenuates obesity. Although most studies on the effects of CLA on obesity have focused on the reduction of body fat, a number of studies have demonstrated that CLA also increases lean body mass and enhances physical performances. It has been suggested that these effects may be due in part to physiological changes in the skeletal muscle, such as changes in the muscle fiber type transformation, alteration of the intracellular signaling pathways in muscle metabolism, or energy metabolism. However, the mode of action for CLA in muscle metabolism is not completely understood. The purpose of this review is to summarize the current knowledge of the effects of CLA on skeletal muscle metabolism. Given that CLA not only reduces body fat, but also improves lean mass, there is great potential for the use of CLA to improve muscle metabolism, which would have a significant health impact.
Collapse
Affiliation(s)
- Yoo Kim
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA, 01003, USA
| | - Jonggun Kim
- Division of Biotechnology, Korea University, Seoul, 136-713, Republic of Korea
| | - Kwang-Youn Whang
- Division of Biotechnology, Korea University, Seoul, 136-713, Republic of Korea
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA, 01003, USA.
| |
Collapse
|
49
|
Cho K, Song Y, Kwon D. Conjugated linoleic acid supplementation enhances insulin sensitivity and peroxisome proliferator-activated receptor gamma and glucose transporter type 4 protein expression in the skeletal muscles of rats during endurance exercise. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:20-7. [PMID: 27096060 PMCID: PMC4823612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVES This study examined whether conjugated linoleic acid (CLA) supplementation affects insulin sensitivity and peroxisome proliferator-activated receptor gamma (PPAR-γ) and glucose transporter type 4 (GLUT-4) protein expressions in the skeletal muscles of rats during endurance exercise. MATERIALS AND METHODS Sprague-Dawley male rats were randomly divided into HS (high-fat diet (HFD) sedentary group, n = 8), CS (1.0% CLA supplemented HFD sedentary group, n = 8), and CE (1.0% CLA supplemented HFD exercise group, n = 8). The rats in the CE swam for 60 min a day, 5 days a week for 8 weeks. RESULTS The serum glucose and insulin contents and homeostasis model assessment of insulin resistance (HOMA-IR) value of the CS and CE were significantly decreased compared to those of the HS. The PPAR-γ protein expressions in the soleus muscle (SOM) and extensor digitorum longus muscle (EDL) were significantly higher in the CE than in the HS. In addition, the PPAR-γ protein expression in the SOM of the CS was significantly higher than that in the HS. On the other hand, the GLUT-4 protein expression of the SOM in the CE was significantly higher compared to that in the HS. However, there was no significant difference in GLUT-4 protein expression in the EDL among the groups. CONCLUSION CLA supplementation with/without endurance exercise has role in improvement of insulin sensitivity. Moreover, when CLA supplementation was accompanied by endurance exercise, the PPAR-γ protein expression in SOM and EDL and the GLUT-4 protein expression in SOM were enhanced compared with the control group.
Collapse
Affiliation(s)
- Kangok Cho
- Institute of Sports Health Science, Sunmoon University, Asan city, Chung Nam, 380-701, S. Korea
| | - Youngju Song
- Institute of Sports Health Science, Sunmoon University, Asan city, Chung Nam, 380-701, S. Korea
| | - Daekeun Kwon
- Institute of Sports Health Science, Sunmoon University, Asan city, Chung Nam, 380-701, S. Korea,Corresponding author: Daekeun Kwon. Institute of Sports Health Science, Sunmoon University, Asan city, Chung Nam, 380-701, S. Korea. Tel: +82-41-530-2239; Fax: +82-41-530-2810;
| |
Collapse
|
50
|
Kim Y, Kim D, Good DJ, Park Y. Conjugated linoleic acid (CLA) influences muscle metabolism via stimulating mitochondrial biogenesis signaling in adult‐onset inactivity induced obese mice. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201500220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yoo Kim
- Department of Food ScienceUniversity of MassachusettsAmherstMAUSA
| | - Daeyoung Kim
- Department of Mathematics and StatisticsUniversity of MassachusettsAmherstMAUSA
| | - Deborah J. Good
- Department of Human Nutrition, Foods and ExerciseVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| | - Yeonhwa Park
- Department of Food ScienceUniversity of MassachusettsAmherstMAUSA
| |
Collapse
|