1
|
Rojas I, de Mello MMM, Zanuzzo FS, Sandrelli RM, Peroni EDFC, Hall JR, Rise ML, Urbinati EC, Gamperl AK. Chronic hypoxia has differential effects on constitutive and antigen-stimulated immune function in Atlantic salmon ( Salmo salar). Front Immunol 2025; 16:1545754. [PMID: 40046052 PMCID: PMC11880259 DOI: 10.3389/fimmu.2025.1545754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/03/2025] [Indexed: 05/13/2025] Open
Abstract
Chronic hypoxia events are a common occurrence in Atlantic salmon (Salmo salar) sea-cages, especially during the summer, and their frequency and severity are predicted to increase with climate change. Although hypoxia is considered a very important fish health and welfare issue by the aquaculture industry, few studies have investigated the impact of chronic hypoxia on the fish immune system and its response to pathogen exposure. We exposed post-smolt Atlantic salmon to hypoxia (40% air sat.) for 6 weeks. Thereafter, we sampled fish prior to (i.e., at Time 0, to assess constitutive immune function), and after they were intraperitoneally injected with PBS (phosphate buffered saline) or formalin-killed Aeromonas salmonicida. We measured several innate immune parameters including: hematological immune responses [respiratory burst (RB), hemolytic activity of alternate complement system and plasma lysozyme concentration], and the relative percentage of circulating blood cells (erythrocytes/immature erythrocytes, monocytes, and granulocytes and lymphocytes) at Time 0 and at 24 hours post-injection (hpi); and the transcript expression levels of 8 anti-bacterial biomarkers in the head kidney [interleukin-1 beta (il1b), interleukin-8a (il8a), cyclooxygenase-2 (cox2), toll-like receptor 5, secreted (strl5), CC chemokine-like 19b (ccl19b), serum amyloid A5 (saa5), hepcidin anti-microbial peptide a (hampa) and cathelicidin anti-microbial peptide b (campb)] at Time 0 and at 6 and 24 hpi. In addition, we measured serum immunoglobulin (IgM) levels at Time 0 and at 8 weeks post-injection (4 weeks after a 'boost' injection). Fish exposed to chronic hypoxia had greater numbers of monocytes, which was consistent with the increase in RB, plasma lysozyme concentration and upregulated head kidney anti-bacterial gene expression (i.e., campb, ccl19b, hampa, il8a, stlr5). In contrast, chronic hypoxia: reduced RB and leukocyte numbers at 24 hpi in Asal compared to PBS-injected fish, and the transcript levels of campb, il1b, saa5, il8a and stlr5 at 6- and/or 24- hpi; but had no effect on constitutive or post-stimulation serum IgM titers. Overall, our results indicate that chronic hypoxia has differential effects on salmon constitutive innate immune function vs. following antigen exposure, and thus, it is still unclear how chronic hypoxia will impact the capacity of fish to defend against pathogens.
Collapse
Affiliation(s)
- Isis Rojas
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Mariana M. M. de Mello
- Aquaculture Center of Universidade Estadual Paulista (UNESP), São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Fábio S. Zanuzzo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Rebeccah M. Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Jennifer R. Hall
- Aquatic Research Cluster, Core Research Equipment & Instrument Training Network (CREAIT) Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Elisabeth C. Urbinati
- Aquaculture Center of Universidade Estadual Paulista (UNESP), São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Anthony K. Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
2
|
Archontakis-Barakakis P, Mavridis T, Chlorogiannis DD, Barakakis G, Laou E, Sessler DI, Gkiokas G, Chalkias A. Intestinal oxygen utilisation and cellular adaptation during intestinal ischaemia-reperfusion injury. Clin Transl Med 2025; 15:e70136. [PMID: 39724463 DOI: 10.1002/ctm2.70136] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/06/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
The gastrointestinal tract can be deranged by ailments including sepsis, trauma and haemorrhage. Ischaemic injury provokes a common constellation of microscopic and macroscopic changes that, together with the paradoxical exacerbation of cellular dysfunction and death following restoration of blood flow, are collectively known as ischaemia-reperfusion injury (IRI). Although much of the gastrointestinal tract is normally hypoxemic, intestinal IRI results when there is inadequate oxygen availability due to poor supply (pathological hypoxia) or abnormal tissue oxygen use and metabolism (dysoxia). Intestinal oxygen uptake usually remains constant over a wide range of blood flows and pressures, with cellular function being substantively compromised when ischaemia leads to a >50% decline in intestinal oxygen consumption. Restoration of perfusion and oxygenation provokes additional injury, resulting in mucosal damage and disruption of intestinal barrier function. The primary cellular mechanism for sensing hypoxia and for activating a cascade of cellular responses to mitigate the injury is a family of heterodimer proteins called hypoxia-inducible factors (HIFs). The HIF system is connected to numerous biochemical and immunologic pathways induced by IRI and the concentration of those proteins increases during hypoxia and dysoxia. Activation of the HIF system leads to augmented transcription of specific genes in various types of affected cells, but may also augment apoptotic and inflammatory processes, thus aggravating gut injury. KEY POINTS: During intestinal ischaemia, mitochondrial oxygen uptake is reduced when cellular oxygen partial pressure decreases to below the threshold required to maintain normal oxidative metabolism. Upon reperfusion, intestinal hypoxia may persist because microcirculatory flow remains impaired and/or because available oxygen is consumed by enzymes, intestinal cells and neutrophils.
Collapse
Affiliation(s)
| | - Theodoros Mavridis
- Department of Neurology, Tallaght University Hospital (TUH)/The Adelaide and Meath Hospital incorporating the National Children's Hospital (AMNCH), Dublin, Ireland
| | | | - Georgios Barakakis
- Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Laou
- Department of Anesthesiology, Agia Sophia Children's Hospital, Athens, Greece
| | - Daniel I Sessler
- Center for Outcomes Research and Department of Anesthesiology, UTHealth, Houston, Texas, USA
- Outcomes Research Consortium®, Houston, Texas, USA
| | - George Gkiokas
- Second Department of Surgery, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Chalkias
- Outcomes Research Consortium®, Houston, Texas, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Critical Care Medicine, Tzaneio General Hospital, Piraeus, Greece
| |
Collapse
|
3
|
Pignatelli P, Mrakic-Sposta S, Bondi D, D’Antonio DL, Piattelli A, Santangelo C, Verratti V, Curia MC. The Effect of Acute High-Altitude Exposure on Oral Pathogenic Bacteria and Salivary Oxi-Inflammatory Markers. J Clin Med 2024; 13:6266. [PMID: 39458216 PMCID: PMC11508378 DOI: 10.3390/jcm13206266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The environment can alter the homeostasis of humans and human microbiota. Oral health is influenced by high altitude through symptoms of periodontitis, barodontalgia, dental barotrauma, and a decrease in salivary flow. Microbiota and inflammatory state are connected in the oral cavity. This study aimed to explore the effect of acute high-altitude exposure on the salivary microbiome and inflammatory indicators. Methods: Fifteen healthy expeditioners were subjected to oral examination, recording the plaque index (PII), gingival index (GI), the simplified oral hygiene index (OHI-S), and the number of teeth; unstimulated saliva samples were collected at an altitude of 1191 m (T1) and 4556 m (T2). TNF-α, sICAM1, ROS, and the oral bacterial species Porphyromonas gingivalis (Pg) and Fusobacterium nucleatum (Fn) were quantified. Results: At T2, slCAM, TNF, and ROS increased by 85.5% (IQR 74%), 84% (IQR 409.25%), and 53.5% (IQR 68%), respectively, while Pg decreased by 92.43% (IQR 102.5%). The decrease in Pg was greater in the presence of low OHI-S. The increase in slCAM1 correlated with the reduction in Fn. Individuals with high GI and OHI-S had a limited increase in TNF-α at T2. Conclusion: Short-term exposures can affect the concentration of pathogenic periodontal bacteria and promote local inflammation.
Collapse
Affiliation(s)
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20162 Milan, Italy;
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” Chieti—Pescara, 66100 Chieti, Italy; (D.B.); (C.S.)
| | - Domenica Lucia D’Antonio
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti—Pescara, 66100 Chieti, Italy;
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy;
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” Chieti—Pescara, 66100 Chieti, Italy; (D.B.); (C.S.)
| | - Vittore Verratti
- Department of Psychology, University “G. d’Annunzio” Chieti—Pescara, 66100 Chieti, Italy;
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti—Pescara, 66100 Chieti, Italy;
| |
Collapse
|
4
|
Sharma R, Raza GS, Sodum N, Walkowiak J, Herzig KH. Effect of hypoxia on GLP-1 secretion - an in vitro study using enteroendocrine STC-1 -cells as a model. Pflugers Arch 2024; 476:1613-1621. [PMID: 39075239 PMCID: PMC11381484 DOI: 10.1007/s00424-024-02996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
Glucagon-like peptide (GLP)-1 is a hormone released by enteroendocrine L-cells after food ingestion. L-cells express various receptors for nutrient sensing including G protein-coupled receptors (GPRs). Intestinal epithelial cells near the lumen have a lower O2 tension than at the base of the crypts, which leads to hypoxia in L-cells. We hypothesized that hypoxia affects nutrient-stimulated GLP-1 secretion from the enteroendocrine cell line STC-1, the most commonly used model. In this study, we investigated the effect of hypoxia (1% O2) on alpha-linolenic acid (αLA) stimulated GLP-1 secretion and their receptor expressions. STC-1 cells were incubated for 12 h under hypoxia (1% O2) and treated with αLA to stimulate GLP-1 secretion. 12 h of hypoxia did not change basal GLP-1 secretion, but significantly reduced nutrient (αLA) stimulated GLP-1 secretion. In normoxia, αLA (12.5 μM) significantly stimulated (~ 5 times) GLP-1 secretion compared to control, but under hypoxia, GLP-1 secretion was reduced by 45% compared to normoxia. αLA upregulated GPR120, also termed free fatty acid receptor 4 (FFAR4), expressions under normoxia as well as hypoxia. Hypoxia downregulated GPR120 and GPR40 expression by 50% and 60%, respectively, compared to normoxia. These findings demonstrate that hypoxia does not affect the basal GLP-1 secretion but decreases nutrient-stimulated GLP-1 secretion. The decrease in nutrient-stimulated GLP-1 secretion was due to decreased GPR120 and GPR40 receptors expression. Changes in the gut environment and inflammation might contribute to the hypoxia of the epithelial and L-cells.
Collapse
Affiliation(s)
- Ravikant Sharma
- Research Unit of Biomedicine and Internal Medicine, Biocenter of Oulu, Medical Research Center, University of Oulu, Aapistie 5, 90220, Oulu, Finland
| | - Ghulam Shere Raza
- Research Unit of Biomedicine and Internal Medicine, Biocenter of Oulu, Medical Research Center, University of Oulu, Aapistie 5, 90220, Oulu, Finland
| | - Nalini Sodum
- Research Unit of Biomedicine and Internal Medicine, Biocenter of Oulu, Medical Research Center, University of Oulu, Aapistie 5, 90220, Oulu, Finland
| | - Jaroslaw Walkowiak
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 60572, Poznań, Poland
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine and Internal Medicine, Biocenter of Oulu, Medical Research Center, University of Oulu, Aapistie 5, 90220, Oulu, Finland.
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 60572, Poznań, Poland.
| |
Collapse
|
5
|
Xu X, Wang Y, Song Q, Zheng H, Lv J, Fu Z, Mao X, Li Y, Wu H, Zhang B. Mechanism of Zhenwu Decoction modulating TLR4/NF-κB/HIF-1α loop through miR-451 to delay renal fibrosis in type 2 CRS. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155632. [PMID: 38851985 DOI: 10.1016/j.phymed.2024.155632] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/20/2024] [Accepted: 04/11/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Type 2 cardiorenal syndrome (CRS) is a progressive renal insufficiency in patients with chronic heart failure, but its pathophysiology is still unclear. The Chinese medicine Zhenwu Decoction plays an important role in the prevention and treatment of 2-CRS, however, its mechanism of action remains unknown. PURPOSE The aim of this study was to investigate whether the ameliorative effect of ZWD on 2-CRS renal fibrosis is related to the modulation of miR-451 expression and thus mediating the TLR4/NF-κB/HIF-1α loop. STUDY DESIGN AND METHODS A type 2 CRS rat model was constructed using ligation of the left anterior descending branch of the coronary artery + 3/4 nephrectomy, and randomly divided into Control, Sham, Model, Captopril, ZWD-L, ZWD-M and ZWD-H groups.After 4 weeks of ZWD intervention, its effects on cardiac and renal functions of type 2 CRS rats were observed by hematuria and cardiac ultrasonography. Changes in kidney tissue morphology were observed by HE, Masson and PASM staining. The protein and mRNA expression of TLR4, NF-κB, HIF-1α and IκBα in kidney tissues were detected by immunohistochemistry and qPCR. Immunofluorescence was used to detect the protein expression of NF-κB and HIF-1α in renal tissues. Western blot and qPCR were used to detect the protein expression of MCP-1, ICAM-1, IL-1β, IL-6, TGF-β, α-SMA, FN, Smad2, Smad3, and E-cadherin in renal tissues. PCR was used to detect the protein expression of miR-451mRNA expression level in kidney tissues. RESULTS In this study, we found that ZWD was able to reduce the expression of Scr, BUN, NT-proBNP, and 24-hour quantitative urine protein, elevate LVEF, FS, CO, and reduce the level of LVIDS in type 2 CRS rats, as well as attenuate renal interstitial fibrosis and improve tubular swelling. In addition, Zhenwu Decoction up-regulated the expression of miR-451 in renal tissues and inhibited the expression of TLR4, NF-κB, and HIF-1α proteins and genes, which in turn inhibited the expression of inflammatory factors and fibrosis-related factors. CONCLUSION ZWD was able to up-regulate the expression of miR-451 in renal tissues, inhibit the TLR4/NF-κB/HIF-1α response loop, and then inhibit the expression of inflammatory factors and fibrosis-related factors, improve renal fibrosis, and delay the pathological process of type 2 CRS.
Collapse
Affiliation(s)
- Xia Xu
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yajiao Wang
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingqiao Song
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Haoran Zheng
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Jiayu Lv
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenyue Fu
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xinxin Mao
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yumeng Li
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huaqin Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bingxuan Zhang
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Burtscher J, Pasha Q, Chanana N, Millet GP, Burtscher M, Strasser B. Immune consequences of exercise in hypoxia: A narrative review. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:297-310. [PMID: 37734549 PMCID: PMC11116970 DOI: 10.1016/j.jshs.2023.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023]
Abstract
Immune outcomes are key mediators of many health benefits of exercise and are determined by exercise type, dose (frequency/duration, intensity), and individual characteristics. Similarly, reduced availability of ambient oxygen (hypoxia) modulates immune functions depending on the hypoxic dose and the individual capacity to respond to hypoxia. How combined exercise and hypoxia (e.g., high-altitude training) sculpts immune responses is not well understood, although such combinations are becoming increasingly popular. Therefore, in this paper, we summarize the impact on immune responses of exercise and of hypoxia, both independently and together, with a focus on specialized cells in the innate and adaptive immune system. We review the regulation of the immune system by tissue oxygen levels and the overlapping and distinct immune responses related to exercise and hypoxia, then we discuss how they may be modulated by nutritional strategies. Mitochondrial, antioxidant, and anti-inflammatory mechanisms underlie many of the adaptations that can lead to improved cellular metabolism, resilience, and overall immune functions by regulating the survival, differentiation, activation, and migration of immune cells. This review shows that exercise and hypoxia can impair or complement/synergize with each other while regulating immune system functions. Appropriate acclimatization, training, and nutritional strategies can be used to avoid risks and tap into the synergistic potentials of the poorly studied immune consequences of exercising in a hypoxic state.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne 1015, Switzerland
| | - Qadar Pasha
- Institute of Hypoxia Research, New Delhi 110067, India
| | - Neha Chanana
- Department of Biochemistry, Jamia Hamdard, New Delhi 110062, India
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne 1015, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck 6020, Austria.
| | - Barbara Strasser
- Faculty of Medicine, Sigmund Freud Private University, Vienna 1020, Austria; Ludwig Boltzmann Institute for Rehabilitation Research, Vienna 1100, Austria
| |
Collapse
|
7
|
Rasouli M, Fattahi R, Nuoroozi G, Zarei-Behjani Z, Yaghoobi M, Hajmohammadi Z, Hosseinzadeh S. The role of oxygen tension in cell fate and regenerative medicine: implications of hypoxia/hyperoxia and free radicals. Cell Tissue Bank 2024; 25:195-215. [PMID: 37365484 DOI: 10.1007/s10561-023-10099-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
Oxygen pressure plays an integral role in regulating various aspects of cellular biology. Cell metabolism, proliferation, morphology, senescence, metastasis, and angiogenesis are some instances that are affected by different tensions of oxygen. Hyperoxia or high oxygen concentration, enforces the production of reactive oxygen species (ROS) that disturbs physiological homeostasis, and consequently, in the absence of antioxidants, cells and tissues are directed to an undesired fate. On the other side, hypoxia or low oxygen concentration, impacts cell metabolism and fate strongly through inducing changes in the expression level of specific genes. Thus, understanding the precise mechanism and the extent of the implication of oxygen tension and ROS in biological events is crucial to maintaining the desired cell and tissue function for application in regenerative medicine strategies. Herein, a comprehensive literature review has been performed to find out the impacts of oxygen tensions on the various behaviors of cells or tissues.
Collapse
Affiliation(s)
- Mehdi Rasouli
- Student Research Committee, Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Fattahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Ghader Nuoroozi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Zeinab Zarei-Behjani
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maliheh Yaghoobi
- Engineering Department, Faculty of Chemical Engineering, Zanjan University, Zanjan, Iran
| | - Zeinab Hajmohammadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran.
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Sivagurunathan N, Calivarathan L. SARS-CoV-2 Infection to Premature Neuronal Aging and Neurodegenerative Diseases: Is there any Connection with Hypoxia? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:431-448. [PMID: 37073650 DOI: 10.2174/1871527322666230418114446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 04/20/2023]
Abstract
The pandemic of coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, has become a global concern as it leads to a spectrum of mild to severe symptoms and increases death tolls around the world. Severe COVID-19 results in acute respiratory distress syndrome, hypoxia, and multi- organ dysfunction. However, the long-term effects of post-COVID-19 infection are still unknown. Based on the emerging evidence, there is a high possibility that COVID-19 infection accelerates premature neuronal aging and increases the risk of age-related neurodegenerative diseases in mild to severely infected patients during the post-COVID period. Several studies correlate COVID-19 infection with neuronal effects, though the mechanism through which they contribute to the aggravation of neuroinflammation and neurodegeneration is still under investigation. SARS-CoV-2 predominantly targets pulmonary tissues and interferes with gas exchange, leading to systemic hypoxia. The neurons in the brain require a constant supply of oxygen for their proper functioning, suggesting that they are more vulnerable to any alteration in oxygen saturation level that results in neuronal injury with or without neuroinflammation. We hypothesize that hypoxia is one of the major clinical manifestations of severe SARS-CoV-2 infection; it directly or indirectly contributes to premature neuronal aging, neuroinflammation, and neurodegeneration by altering the expression of various genes responsible for the survival of the cells. This review focuses on the interplay between COVID-19 infection, hypoxia, premature neuronal aging, and neurodegenerative diseases and provides a novel insight into the molecular mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Narmadhaa Sivagurunathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur - 610005, Tamil Nadu, India
| | - Latchoumycandane Calivarathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur - 610005, Tamil Nadu, India
| |
Collapse
|
9
|
Gonzalez-Avila G, Sommer B, Flores-Soto E, Aquino-Galvez A. Hypoxic Effects on Matrix Metalloproteinases' Expression in the Tumor Microenvironment and Therapeutic Perspectives. Int J Mol Sci 2023; 24:16887. [PMID: 38069210 PMCID: PMC10707261 DOI: 10.3390/ijms242316887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
The tumor microenvironment (TME) is characterized by an acidic pH and low oxygen concentrations. Hypoxia induces neoplastic cell evasion of the immune surveillance, rapid DNA repair, metabolic reprogramming, and metastasis, mainly as a response to the hypoxic inducible factors (HIFs). Likewise, cancer cells increase matrix metalloproteinases' (MMPs) expression in response to TME conditions, allowing them to migrate from the primary tumor to different tissues. Since HIFs and MMPs are augmented in the hypoxic TME, it is easy to consider that HIFs participate directly in their expression regulation. However, not all MMPs have a hypoxia response element (HRE)-HIF binding site. Moreover, different transcription factors and signaling pathways activated in hypoxia conditions through HIFs or in a HIF-independent manner participate in MMPs' transcription. The present review focuses on MMPs' expression in normal and hypoxic conditions, considering HIFs and a HIF-independent transcription control. In addition, since the hypoxic TME causes resistance to anticancer conventional therapy, treatment approaches using MMPs as a target alone, or in combination with other therapies, are also discussed.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio de Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico;
| | - Arnoldo Aquino-Galvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| |
Collapse
|
10
|
Liang Y, Ruan W, Jiang Y, Smalling R, Yuan X, Eltzschig HK. Interplay of hypoxia-inducible factors and oxygen therapy in cardiovascular medicine. Nat Rev Cardiol 2023; 20:723-737. [PMID: 37308571 PMCID: PMC11014460 DOI: 10.1038/s41569-023-00886-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2023] [Indexed: 06/14/2023]
Abstract
Mammals have evolved to adapt to differences in oxygen availability. Although systemic oxygen homeostasis relies on respiratory and circulatory responses, cellular adaptation to hypoxia involves the transcription factor hypoxia-inducible factor (HIF). Given that many cardiovascular diseases involve some degree of systemic or local tissue hypoxia, oxygen therapy has been used liberally over many decades for the treatment of cardiovascular disorders. However, preclinical research has revealed the detrimental effects of excessive use of oxygen therapy, including the generation of toxic oxygen radicals or attenuation of endogenous protection by HIFs. In addition, investigators in clinical trials conducted in the past decade have questioned the excessive use of oxygen therapy and have identified specific cardiovascular diseases in which a more conservative approach to oxygen therapy could be beneficial compared with a more liberal approach. In this Review, we provide numerous perspectives on systemic and molecular oxygen homeostasis and the pathophysiological consequences of excessive oxygen use. In addition, we provide an overview of findings from clinical studies on oxygen therapy for myocardial ischaemia, cardiac arrest, heart failure and cardiac surgery. These clinical studies have prompted a shift from liberal oxygen supplementation to a more conservative and vigilant approach to oxygen therapy. Furthermore, we discuss the alternative therapeutic strategies that target oxygen-sensing pathways, including various preconditioning approaches and pharmacological HIF activators, that can be used regardless of the level of oxygen therapy that a patient is already receiving.
Collapse
Affiliation(s)
- Yafen Liang
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Wei Ruan
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yandong Jiang
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Richard Smalling
- Department of Cardiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiaoyi Yuan
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Holger K Eltzschig
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Outcomes Research Consortium, Cleveland, OH, USA
| |
Collapse
|
11
|
Wang Y, Liu D, Wei M, Chen J, Li Y, Zhao F, Zhang Z, Ma Y. Genome-wide identification and expression analyses of Toll-like receptors provide new insights on adaptation to intertidal benthic environments in Urechis unicinctus (Annelida, Echiura). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106594. [PMID: 37263159 DOI: 10.1016/j.aquatox.2023.106594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/03/2023]
Abstract
Toll-like receptors (TLR) are an important class of pattern recognition receptors involved in innate immunity that recognize pathogen-associated and damage-associated molecular patterns. Although the role of TLRs in immunity has been extensively studied, a systematic investigation of their function in environmental adaptation is still in its infancy. In this study, a genome-wide search was conducted to systematically investigate TLR family members of Urechis unicinctus, a typical benthic organism in intertidal mudflats. A total of 28 TLR genes were identified in the U. unicinctus genome, and their fundamental physiological and biochemical properties were characterized. Gene copy number analysis among species in different habitats indicated that TLR family gene expansion may be probably related with benthic environmental adaptation. To further investigate the expression patterns of TLR members under environmental stress, transcriptome data was analyzed from different developmental stages and the hindgut under sulfide stress. Transcriptome analysis of different developmental stages showed that most TLR genes were highly expressed during a key period of benthic environment adaptation (worm-shaped larva). Transcriptome analysis of the hindgut under sulfide stress showed that the expression of 12 TLR members was significantly induced under sulfide stress. These results indicate that the regulation of TLR gene expression may be probably involved in the adaptation of U. unicinctus to the benthic intertidal zone environment. Taken together, this study may lay the foundation for future functional analysis of the specific role of TLRs in host immune responses against sulfide exposure and benthic environmental stress in annelid.
Collapse
Affiliation(s)
- Yunjian Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Danwen Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Maokai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiao Chen
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yunpeng Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Feng Zhao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
12
|
Xu X, Zhang B, Wang Y, Shi S, Lv J, Fu Z, Gao X, Li Y, Wu H, Song Q. Renal fibrosis in type 2 cardiorenal syndrome: An update on mechanisms and therapeutic opportunities. Biomed Pharmacother 2023; 164:114901. [PMID: 37224755 DOI: 10.1016/j.biopha.2023.114901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
Cardiorenal syndrome (CRS) is a state of coexisting heart failure and renal insufficiency in which acute or chronic dysfunction of the heart or kidney lead to acute or chronic dysfunction of the other organ.It was found that renal fibrosis is an important pathological process in the progression of type 2 CRS to end-stage renal disease, and progressive renal impairment accelerates the deterioration of cardiac function and significantly increases the hospitalization and mortality rates of patients. Previous studies have found that Hemodynamic Aiteration, RAAS Overactivation, SNS Dysfunction, Endothelial Dysfunction and Imbalance of natriuretic peptide system contribute to the development of renal disease in the decompensated phase of heart failure, but the exact mechanisms is not clear. Therefore, in this review, we focus on the molecular pathways involved in the development of renal fibrosis due to heart failure and identify the canonical and non-canonical TGF-β signaling pathways and hypoxia-sensing pathways, oxidative stress, endoplasmic reticulum stress, pro-inflammatory cytokines and chemokines as important triggers and regulators of fibrosis development, and summarize the therapeutic approaches for the above signaling pathways, including SB-525334 Sfrp1, DKK1, IMC, rosarostat, 4-PBA, etc. In addition, some potential natural drugs for this disease are also summarized, including SQD4S2, Wogonin, Astragaloside, etc.
Collapse
Affiliation(s)
- Xia Xu
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bingxuan Zhang
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yajiao Wang
- College of Traditional Chinese Medicine, China Academy of Chinese Medical Science, Beijing, China
| | - Shuqing Shi
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayu Lv
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenyue Fu
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xiya Gao
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Yumeng Li
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Huaqin Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qingqiao Song
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
13
|
Qiu ZK, Zhang MZ, Zhang WC, Li ZJ, Si LB, Long X, Yu NZ, Wang XJ. Role of HIF-1α in pathogenic mechanisms of keloids. J Cosmet Dermatol 2023; 22:1436-1448. [PMID: 36718786 DOI: 10.1111/jocd.15601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUDS AND OBJECTIVE Keloids are defined as overrepairing products that develop after skin lesions. Keloids are characterized by the proliferation of fibroblasts and the overaccumulation of extracellular matrix components (mainly collagen), leading to a locally hypoxic microenvironment. Hence, this article was aimed to review hypoxia in pathogenesis of keloids. METHODS We reviewed and summarized the relevant published studies. RESULTS Hypoxia results in the accumulation of hypoxia-inducible factor 1α (HIF-1α) in keloids, contributing to overactivation of the fibrotic signaling pathway, epithelial-mesenchymal transition, and changes in metabolism, eventually leading to aggravated fibrosis, infiltrative growth, and radiotherapy resistance. CONCLUSION It is, therefore, essential to understand the role of HIF-1α in the pathogenic mechanisms of keloids in order to develop new therapeutic approaches.
Collapse
Affiliation(s)
- Zi-Kai Qiu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Zi Zhang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen-Chao Zhang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Jin Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lou-Bin Si
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan-Ze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Jun Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Liu Q, Wang H, Ge J, Luo J, He K, Yan H, Zhang X, Tahir R, Luo W, Li Z, Yang S, Zhao L. Enhance energy supply of largemouth bass (Micropterus salmoides) in gills during acute hypoxia exposure. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1649-1663. [PMID: 36417053 DOI: 10.1007/s10695-022-01139-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Gills are the location of gas exchange and also the first target organ of fish response for environmental stress. As a multifunctional organ, its energy supply, when faced with insufficient dissolved oxygen in the water, remains unclear. In this study, largemouth bass was subjected to hypoxia stress (1.2 mg/L) for 24 h and 12 h reoxygenation (R12) to evaluate energy supply strategy of gills. Under hypoxia exposure, the respiratory rate of largemouth bass increased by an average of 20 breaths per minute. A total of 2026, 1744, 1003, 579, 485, and 265 differentially expressed genes (DGEs) were identified at 0 h, 4 h, 8 h, 12 h, 24 h, and R12h in gills after hypoxia exposure. KEGG functional analysis of DEGs revealed that the glycolysis/gluconeogenesis pathway was enriched across all the sampling points (0, 4, 8, 12, 24 h, R12). The gene expression and enzyme activity of three rate-limiting enzymes (hexokinase, phosphofructokinase-6, pyruvate kinase) in glycolysis pathway were significantly increased. Increased levels of glycolysis products pyruvate and lactic acid, as well as the number of mitochondria (1.8-fold), suggesting an enhancement of aerobic and anaerobic metabolism of glucose in gills. These results suggest that the gill of largemouth bass enhanced the energy supply during acute exposure to hypoxia stress.
Collapse
Affiliation(s)
- Qiao Liu
- Sichuan Agricultural University, Chengdu, China
| | - Hong Wang
- Sichuan Agricultural University, Chengdu, China
| | - Jiayu Ge
- Sichuan Agricultural University, Chengdu, China
| | - Jie Luo
- Sichuan Agricultural University, Chengdu, China
| | - Kuo He
- Sichuan Agricultural University, Chengdu, China
| | - Haoxiao Yan
- Sichuan Agricultural University, Chengdu, China
| | - Xin Zhang
- Sichuan Agricultural University, Chengdu, China
| | - Rabia Tahir
- Sichuan Agricultural University, Chengdu, China
| | - Wei Luo
- Sichuan Agricultural University, Chengdu, China
| | - Zhiqiong Li
- Sichuan Agricultural University, Chengdu, China
| | - Song Yang
- Sichuan Agricultural University, Chengdu, China.
| | - Liulan Zhao
- Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
15
|
Zhang Y, Shen W, Ding J, Gao X, Wu X, Zhu J. Comparative Transcriptome Analysis of Head Kidney of Aeromonas hydrophila-infected Hypoxia-tolerant and Normal Large Yellow Croaker. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:1039-1054. [PMID: 36129638 DOI: 10.1007/s10126-022-10158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The large yellow croaker (Larimichthys crocea) is one of the most economically important marine fish on the southeast coast of China and much of its yield is usually lost by hypoxia. To address this problem and lay a foundation for culturing a new strain of large yellow croaker with hypoxia tolerance, our research group screened a hypoxia-tolerant population of L. crocea. Surprisingly, we also found that hypoxia-tolerant population exhibited higher survival when infected with pathogens compared to the normal population during the farming operation. In order to understand the mechanism underlying the higher survival rate of the hypoxia-tolerant population and enrich the head kidney immune mechanism of L. crocea infected with pathogens, we compared and analyzed the head kidney transcriptome of the hypoxia-tolerant and normal individuals under Aeromonas hydrophila infection. We obtained 159.68 GB high-quality reads, of which more than 87.61% were successfully localized to the reference genome of L. crocea. KEGG analysis revealed differentially expressed genes in the signaling pathways involving immunity, cell growth and death, transport and catabolism, and metabolism. Among these, the toll-like receptor signaling pathway, Nod-like receptor signaling pathway, cytokine-cytokine receptor interaction, phagosome, apoptosis, and OXPHOS pathways were enriched in both groups after infection compared to before, and were enriched in infected tolerant individuals compared to normal individuals. In addition, we found that the expression of hif1α and its downstream genes were higher in the hypoxia-sensitive group of fish than in the normal group. In conclusion, our results showed some signaling pathways and hub genes, which may participate in A. hydrophila defense in the head kidney of two populations, and may contribute to the higher survival rate in the hypoxia-tolerant population. Overall, these findings increase our understanding of the defense mechanism within the head kidney of L. crocea under A. hydrophila infection, and suggest a preliminary hypothesis for why hypoxia-tolerant individuals may exhibit a higher survival rates after infection. Our study provides scientific evidence for the breeding of a new hypoxia-tolerant strain of L. crocea for aquaculture.
Collapse
Affiliation(s)
- Yibo Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Weiliang Shen
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China.
| | - Jie Ding
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Xinming Gao
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xiongfei Wu
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Junquan Zhu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
16
|
Yang C, Zhou Y, Liu H, Xu P. The Role of Inflammation in Cognitive Impairment of Obstructive Sleep Apnea Syndrome. Brain Sci 2022; 12:brainsci12101303. [PMID: 36291237 PMCID: PMC9599901 DOI: 10.3390/brainsci12101303] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) has become a major worldwide public health concern, given its global prevalence. It has clear links with multiple comorbidities and mortality. Cognitive impairment is one related comorbidity causing great pressure on individuals and society. The clinical manifestations of cognitive impairment in OSAS include decline in attention/vigilance, verbal–visual memory loss, visuospatial/structural ability impairment, and executive dysfunction. It has been proven that chronic intermittent hypoxia (CIH) may be a main cause of cognitive impairment in OSAS. Inflammation plays important roles in CIH-induced cognitive dysfunction. Furthermore, the nuclear factor kappa B and hypoxia-inducible factor 1 alpha pathways play significant roles in this inflammatory mechanism. Continuous positive airway pressure is an effective therapy for OSAS; however, its effect on cognitive impairment is suboptimal. Therefore, in this review, we address the role inflammation plays in the development of neuro-impairment in OSAS and the association between OSAS and cognitive impairment to provide an overview of its pathophysiology. We believe that furthering the understanding of the inflammatory mechanisms involved in OSAS-associated cognitive impairment could lead to the development of appropriate and effective therapy.
Collapse
|
17
|
Pulido-Escribano V, Torrecillas-Baena B, Camacho-Cardenosa M, Dorado G, Gálvez-Moreno MÁ, Casado-Díaz A. Role of hypoxia preconditioning in therapeutic potential of mesenchymal stem-cell-derived extracellular vesicles. World J Stem Cells 2022; 14:453-472. [PMID: 36157530 PMCID: PMC9350626 DOI: 10.4252/wjsc.v14.i7.453] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/02/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
The use of mesenchymal stem-cells (MSC) in cell therapy has received considerable attention because of their properties. These properties include high expansion and differentiation in vitro, low immunogenicity, and modulation of biological processes, such as inflammation, angiogenesis and hematopoiesis. Curiously, the regenerative effect of MSC is partly due to their paracrine activity. This has prompted numerous studies, to investigate the therapeutic potential of their secretome in general, and specifically their extracellular vesicles (EV). The latter contain proteins, lipids, nucleic acids, and other metabolites, which can cause physiological changes when released into recipient cells. Interestingly, contents of EV can be modulated by preconditioning MSC under different culture conditions. Among them, exposure to hypoxia stands out; these cells respond by activating hypoxia-inducible factor (HIF) at low O2 concentrations. HIF has direct and indirect pleiotropic effects, modulating expression of hundreds of genes involved in processes such as inflammation, migration, proliferation, differentiation, angiogenesis, metabolism, and cell apoptosis. Expression of these genes is reflected in the contents of secreted EV. Interestingly, numerous studies show that MSC-derived EV conditioned under hypoxia have a higher regenerative capacity than those obtained under normoxia. In this review, we show the implications of hypoxia responses in relation to tissue regeneration. In addition, hypoxia preconditioning of MSC is being evaluated as a very attractive strategy for isolation of EV, with a high potential for clinical use in regenerative medicine that can be applied to different pathologies.
Collapse
Affiliation(s)
- Victoria Pulido-Escribano
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Bárbara Torrecillas-Baena
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Marta Camacho-Cardenosa
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, CIBERFES, Córdoba 14071, Spain
| | - María Ángeles Gálvez-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| |
Collapse
|
18
|
Pham K, Frost S, Parikh K, Puvvula N, Oeung B, Heinrich EC. Inflammatory gene expression during acute high‐altitude exposure. J Physiol 2022; 600:4169-4186. [PMID: 35875936 PMCID: PMC9481729 DOI: 10.1113/jp282772] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
Abstract The molecular signalling pathways that regulate inflammation and the response to hypoxia share significant crosstalk and appear to play major roles in high‐altitude acclimatization and adaptation. Several studies demonstrate increases in circulating candidate inflammatory markers during acute high‐altitude exposure, but significant gaps remain in our understanding of how inflammation and immune function change at high altitude and whether these responses contribute to high‐altitude pathologies, such as acute mountain sickness. To address this, we took an unbiased transcriptomic approach, including RNA sequencing and direct digital mRNA detection with NanoString, to identify changes in the inflammatory profile of peripheral blood throughout 3 days of high‐altitude acclimatization in healthy sea‐level residents (n = 15; five women). Several inflammation‐related genes were upregulated on the first day of high‐altitude exposure, including a large increase in HMGB1 (high mobility group box 1), a damage‐associated molecular pattern (DAMP) molecule that amplifies immune responses during tissue injury. Differentially expressed genes on the first and third days of acclimatization were enriched for several inflammatory pathways, including nuclear factor‐κB and Toll‐like receptor (TLR) signalling. Indeed, both TLR4 and LY96, which encodes the lipopolysaccharide binding protein (MD‐2), were upregulated at high altitude. Finally, FASLG and SMAD7 were associated with acute mountain sickness scores and peripheral oxygen saturation levels on the first day at high altitude, suggesting a potential role of immune regulation in response to high‐altitude hypoxia. These results indicate that acute high‐altitude exposure upregulates inflammatory signalling pathways and might sensitize the TLR4 signalling pathway to subsequent inflammatory stimuli.
![]() Key points Inflammation plays a crucial role in the physiological response to hypoxia. High‐altitude hypoxia exposure causes alterations in the inflammatory profile that might play an adaptive or maladaptive role in acclimatization. In this study, we characterized changes in the inflammatory profile following acute high‐altitude exposure. We report upregulation of novel inflammation‐related genes in the first 3 days of high‐altitude exposure, which might play a role in immune system sensitization. These results provide insight into how hypoxia‐induced inflammation might contribute to high‐altitude pathologies and exacerbate inflammatory responses in critical illnesses associated with hypoxaemia.
Collapse
Affiliation(s)
- Kathy Pham
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Shyleen Frost
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Keval Parikh
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Nikhil Puvvula
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Britney Oeung
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Erica C. Heinrich
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| |
Collapse
|
19
|
O’Brien KA, Murray AJ, Simonson TS. Notch Signaling and Cross-Talk in Hypoxia: A Candidate Pathway for High-Altitude Adaptation. Life (Basel) 2022; 12:437. [PMID: 35330188 PMCID: PMC8954738 DOI: 10.3390/life12030437] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/17/2022] Open
Abstract
Hypoxia triggers complex inter- and intracellular signals that regulate tissue oxygen (O2) homeostasis, adjusting convective O2 delivery and utilization (i.e., metabolism). Human populations have been exposed to high-altitude hypoxia for thousands of years and, in doing so, have undergone natural selection of multiple gene regions supporting adaptive traits. Some of the strongest selection signals identified in highland populations emanate from hypoxia-inducible factor (HIF) pathway genes. The HIF pathway is a master regulator of the cellular hypoxic response, but it is not the only regulatory pathway under positive selection. For instance, regions linked to the highly conserved Notch signaling pathway are also top targets, and this pathway is likely to play essential roles that confer hypoxia tolerance. Here, we explored the importance of the Notch pathway in mediating the cellular hypoxic response. We assessed transcriptional regulation of the Notch pathway, including close cross-talk with HIF signaling, and its involvement in the mediation of angiogenesis, cellular metabolism, inflammation, and oxidative stress, relating these functions to generational hypoxia adaptation.
Collapse
Affiliation(s)
- Katie A. O’Brien
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK;
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK;
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
20
|
Bhattacharya S, Agarwal S, Shrimali NM, Guchhait P. Interplay between hypoxia and inflammation contributes to the progression and severity of respiratory viral diseases. Mol Aspects Med 2021; 81:101000. [PMID: 34294412 PMCID: PMC8287505 DOI: 10.1016/j.mam.2021.101000] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/07/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
History of pandemics is dominated by viral infections and specifically respiratory viral diseases like influenza and COVID-19. Lower respiratory tract infection is the fourth leading cause of death worldwide. Crosstalk between resultant inflammation and hypoxic microenvironment may impair ventilatory response of lungs. This reduces arterial partial pressure of oxygen, termed as hypoxemia, which is observed in a section of patients with respiratory virus infections including SARS-CoV-2 (COVID-19). In this review, we describe the interplay between inflammation and hypoxic microenvironment in respiratory viral infection and its contribution to disease pathogenesis.
Collapse
Affiliation(s)
- Sulagna Bhattacharya
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India; School of Biotechnology, Kalinga Institute of Industrial Technology, Orissa, India
| | - Sakshi Agarwal
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Nishith M Shrimali
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
21
|
Liang L, Lin R, Xie Y, Lin H, Shao F, Rui W, Chen H. The Role of Cyclophilins in Inflammatory Bowel Disease and Colorectal Cancer. Int J Biol Sci 2021; 17:2548-2560. [PMID: 34326693 PMCID: PMC8315013 DOI: 10.7150/ijbs.58671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclophilins (Cyps) is a kind of ubiquitous protein family in organisms, which has biological functions such as promoting intracellular protein folding and participating in the pathological processes of inflammation and tumor. Inflammatory bowel disease (IBD) and colorectal cancer (CRC) are two common intestinal diseases, but the etiology and pathogenesis of these two diseases are still unclear. IBD and CRC are closely associated, IBD has always been considered as one of the main risks of CRC. However, the role of Cyps in these two related intestinal diseases is rarely studied and reported. In this review, the expression of CypA, CypB and CypD in IBD, especially ulcerative colitis (UC), and CRC, their relationship with the development of these two intestinal diseases, as well as the possible pathogenesis, were briefly summarized, so as to provide modest reference for clinical researches and treatments in future.
Collapse
Affiliation(s)
- Lifang Liang
- Department of Pathogenic Biology and Immunology, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Rongxiao Lin
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Ying Xie
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Huaqing Lin
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- GDPU-HKU Zhongshan Biomedical Innovation Plaform, Zhongshan 528437, Guangdong Province, PR China
- Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Fangyuan Shao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Wen Rui
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, Guangdong Province, PR China
- Guangdong Cosmetics Engineering & Technology Research Center,Guangzhou 510006, Guangdong Province, PR China
| | - Hongyuan Chen
- Department of Pathogenic Biology and Immunology, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- GDPU-HKU Zhongshan Biomedical Innovation Plaform, Zhongshan 528437, Guangdong Province, PR China
- Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, Guangdong Province, PR China
- Guangdong Cosmetics Engineering & Technology Research Center,Guangzhou 510006, Guangdong Province, PR China
| |
Collapse
|
22
|
Dapat C, Kumaki S, Sakurai H, Nishimura H, Labayo HKM, Okamoto M, Saito M, Oshitani H. Gene signature of children with severe respiratory syncytial virus infection. Pediatr Res 2021; 89:1664-1672. [PMID: 33510411 PMCID: PMC8249238 DOI: 10.1038/s41390-020-01347-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/15/2020] [Accepted: 12/14/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND The limited treatment options for children with severe respiratory syncytial virus (RSV) infection highlights the need for a comprehensive understanding of the host cellular response during infection. We aimed to identify host genes that are associated with severe RSV disease and to identify drugs that can be repurposed for the treatment of severe RSV infection. METHODS We examined clinical data and blood samples from 37 hospitalized children (29 mild and 8 severe) with RSV infection. We tested RNA from blood samples using next-generation sequencing to profile global mRNA expression and identify cellular processes. RESULTS Retractions, decreased breath sounds, and tachypnea were associated with disease severity. We observed upregulation of genes related to neutrophil, inflammatory response, blood coagulation, and downregulation of genes related to T cell response in children with severe RSV. Using network-based approach, 43 drugs were identified that are predicted to interact with the gene products of these differentially expressed genes. CONCLUSIONS These results suggest that the changes in the expression pattern in the innate and adaptive immune responses may be associated with RSV clinical severity. Compounds that target these cellular processes can be repositioned as candidate drugs in the treatment of severe RSV. IMPACT Neutrophil, inflammation, and blood coagulation genes are upregulated in children with severe RSV infection. Expression of T cell response genes are suppressed in cases of severe RSV. Genes identified in this study can contribute in understanding the pathogenesis of RSV disease severity. Drugs that target cellular processes associated with severe RSV can be repositioned as potential therapeutic options.
Collapse
Affiliation(s)
- Clyde Dapat
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Satoru Kumaki
- grid.415495.8Department of Pediatrics, Sendai Medical Center, 11-12 Miyagino 2-chome, Miyagino-ku, Sendai, 983-8520 Japan
| | - Hiroki Sakurai
- grid.415988.90000 0004 0471 4457Department of General Pediatrics, Miyagi Children’s Hospital, 3-17 Ochiai 4-chome, Aoba-ku, Sendai, 989-3126 Japan
| | - Hidekazu Nishimura
- grid.415495.8Virus Research Center, Sendai Medical Center, 11-12 Miyagino 2-chome, Miyagino-ku, Sendai, 983-8520 Japan
| | - Hannah Karen Mina Labayo
- grid.69566.3a0000 0001 2248 6943Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Michiko Okamoto
- grid.69566.3a0000 0001 2248 6943Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Mayuko Saito
- grid.69566.3a0000 0001 2248 6943Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Hitoshi Oshitani
- grid.69566.3a0000 0001 2248 6943Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| |
Collapse
|
23
|
Han Y, Ding L, Cheng X, Zhao M, Zhao T, Guo L, Li X, Geng Y, Fan M, Liao H, Zhu L. Hypoxia Augments Cerebral Inflammation in a Dextran Sulfate Sodium-Induced Colitis Mouse Model. Front Cell Neurosci 2020; 14:611764. [PMID: 33362475 PMCID: PMC7756107 DOI: 10.3389/fncel.2020.611764] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/18/2020] [Indexed: 11/23/2022] Open
Abstract
The importance of hypoxia in the pathophysiology of inflammatory bowel disease (IBD) is increasingly being realized; also, hypoxia seems to be an important accelerator of brain inflammation, as has been reported by our group and others. IBD is a chronic intestinal disorder that leads to the development of inflammation, which is related to brain dysfunction. However, no studies have reported whether hypoxia is associated with IBD-induced neuroinflammation. Therefore, the objective of the present study was to determine whether hypoxia augments cerebral inflammation in a DSS-induced colitis mouse model. The mouse model was developed using 3% DSS for five days combined with exposure to hypoxic conditions (6,000 m) for two days. Mice were randomly divided into four groups: control group, DSS group, hypoxia group, and DSS plus hypoxia group. The results demonstrated that DSS combined with hypoxia resulted in up-regulation of colonic and plasmatic proinflammatory cytokines. Meanwhile, DSS plus hypoxia increased expression of Iba1, which is a marker of activated microglia, accompanied by increased expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in the brain. Moreover, the expression of tight junction proteins, such as zonula occludens-1 (ZO-1), occludin, and claudin-5, was markedly downregulated. The current study provides new insight into how hypoxia exposure induces excessive inflammatory responses andpathophysiological consequences in the brain in a DSS-induced colitis model.
Collapse
Affiliation(s)
- Ying Han
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China.,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Liping Ding
- National Nanjing Center for Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xiang Cheng
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Ming Zhao
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Tong Zhao
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Liang Guo
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Xinyang Li
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Yanan Geng
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China.,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Ming Fan
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China.,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Hong Liao
- National Nanjing Center for Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Lingling Zhu
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
24
|
Mu Y, Li W, Wei Z, He L, Zhang W, Chen X. Transcriptome analysis reveals molecular strategies in gills and heart of large yellow croaker (Larimichthys crocea) under hypoxia stress. FISH & SHELLFISH IMMUNOLOGY 2020; 104:304-313. [PMID: 32544557 DOI: 10.1016/j.fsi.2020.06.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/07/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
The gills and heart are two major targets of hypoxia in fish. However, the molecular responses in fish gills and heart to hypoxia challenge remain unclear. Here, RNA-Seq technology was used to study the gene expression profiles in gills and heart of large yellow croaker (Larimichthys crocea) at 6, 24, and 48 h after hypoxia stress. A total of 1,546 and 2,746 differentially expressed genes (DEGs) were identified in gills and heart, respectively. Expression changes of nine genes in each tissue were further validated by the qPCR. Based on KEGG and Gene ontology enrichments, we found that various innate immunity-related genes, such as complement components (C1qs, C2, C3, C6, and C7), chemokines (CCL3, CCL17, CCL19, CCL25, and CXCL8_L3), chemokine receptors (CCR9, CXCR1, and CXCR3), and nitric oxide synthase (NOS), were significantly down-regulated in gills and/or heart, suggesting that innate immune processes mediated by these genes may be inhibited by hypoxia. The genes involved in both glycolysis pathway (LDHA) and tricarboxylic acid cycle (IDH2 and OGDH) were up-regulated in gills and heart of hypoxic large yellow croakers, possibly because gill and heart tissues need enough energy to accelerate gas exchange and blood circulation. Hypoxia also affected the ion transport in gills of large yellow croaker, through down-regulating the expression levels of numerous classical ion transporters, including HVCN1, SLC20A2, SLC4A4, RHBG, RHCG, and SCN4A, suggesting an energy conservation strategy to hypoxia stress. All these results indicate that the immune processes, glycolytic pathways, and ion transport were significantly altered in gills and/or heart of large yellow croaker under hypoxia, possibly contributing to maintain cellular energy balance during hypoxia. Our data, therefore, afford new information to understand the tissue-specific molecular responses of bony fish to hypoxia stress.
Collapse
Affiliation(s)
- Yinnan Mu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Wanru Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Zuyun Wei
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Lianghua He
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China.
| |
Collapse
|
25
|
Strapcova S, Takacova M, Csaderova L, Martinelli P, Lukacikova L, Gal V, Kopacek J, Svastova E. Clinical and Pre-Clinical Evidence of Carbonic Anhydrase IX in Pancreatic Cancer and Its High Expression in Pre-Cancerous Lesions. Cancers (Basel) 2020; 12:E2005. [PMID: 32707920 PMCID: PMC7464147 DOI: 10.3390/cancers12082005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Hypoxia is a common phenomenon that occurs in most solid tumors. Regardless of tumor origin, the evolution of a hypoxia-adapted phenotype is critical for invasive cancer development. Pancreatic ductal adenocarcinoma is also characterized by hypoxia, desmoplasia, and the presence of necrosis, predicting poor outcome. Carbonic anhydrase IX (CAIX) is one of the most strict hypoxia regulated genes which plays a key role in the adaptation of cancer cells to hypoxia and acidosis. Here, we summarize clinical data showing that CAIX expression is associated with tumor necrosis, vascularization, expression of Frizzled-1, mucins, or proteins involved in glycolysis, and inevitably, poor prognosis of pancreatic cancer patients. We also describe the transcriptional regulation of CAIX in relation to signaling pathways activated in pancreatic cancers. A large part deals with the preclinical evidence supporting the relevance of CAIX in processes leading to the aggressive behavior of pancreatic tumors. Furthermore, we focus on CAIX occurrence in pre-cancerous lesions, and for the first time, we describe CAIX expression within intraductal papillary mucinous neoplasia. Our review concludes with a detailed account of clinical trials implicating that treatment consisting of conventionally used therapies combined with CAIX targeting could result in an improved anti-cancer response in pancreatic cancer patients.
Collapse
Affiliation(s)
- Sabina Strapcova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Martina Takacova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Lucia Csaderova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Paola Martinelli
- Institute of Cancer Research, Clinic of Internal Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
- Cancer Cell Signaling, Boehringer-Ingelheim RCV Vienna, A-1121 Vienna, Austria
| | - Lubomira Lukacikova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Viliam Gal
- Alpha Medical Pathology, Ruzinovska 6, 82606 Bratislava, Slovakia;
| | - Juraj Kopacek
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Eliska Svastova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| |
Collapse
|
26
|
Raggi F, Bosco MC. Targeting Mononuclear Phagocyte Receptors in Cancer Immunotherapy: New Perspectives of the Triggering Receptor Expressed on Myeloid Cells (TREM-1). Cancers (Basel) 2020; 12:cancers12051337. [PMID: 32456204 PMCID: PMC7281211 DOI: 10.3390/cancers12051337] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory cells are major players in the onset of cancer. The degree of inflammation and type of inflammatory cells in the tumor microenvironment (TME) are responsible for tilting the balance between tumor progression and regression. Cancer-related inflammation has also been shown to influence the efficacy of conventional therapy. Mononuclear phagocytes (MPs) represent a major component of the inflammatory circuit that promotes tumor progression. Despite their potential to activate immunosurveillance and exert anti-tumor responses, MPs are subverted by the tumor to support its growth, immune evasion, and spread. MP responses in the TME are dictated by a network of stimuli integrated through the cross-talk between activatory and inhibitory receptors. Alterations in receptor expression/signaling can create excessive inflammation and, when chronic, promote tumorigenesis. Research advances have led to the development of new therapeutic strategies aimed at receptor targeting to induce a tumor-infiltrating MP switch from a cancer-supportive toward an anti-tumor phenotype, demonstrating efficacy in different human cancers. This review provides an overview of the role of MP receptors in inflammation-mediated carcinogenesis and discusses the most recent updates regarding their targeting for immunotherapeutic purposes. We focus in particular on the TREM-1 receptor, a major amplifier of MP inflammatory responses, highlighting its relevance in the development and progression of several types of inflammation-associated malignancies and the promises of its inhibition for cancer immunotherapy.
Collapse
|
27
|
Mu Y, Li W, Wu B, Chen J, Chen X. Transcriptome analysis reveals new insights into immune response to hypoxia challenge of large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2020; 98:738-747. [PMID: 31730929 DOI: 10.1016/j.fsi.2019.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
Fish live in direct contact with aquatic environment, which exhibits much wider temporal and spatial variations in oxygen content. The molecular mechanisms underlying fish response to hypoxia have become a subject of great concern in recent years. In the present study, we performed transcriptome analysis of spleen and head kidney tissues from large yellow croaker (Larimichthys crocea) at 6 h, 24 h and 48 h after hypoxia challenge. A total of 2,499 and 3,685 differentially expressed genes (DEGs) were obtained in spleen and head kidney, respectively. The expression changes of 10 selected genes in each tissue were further validated by quantitative real-time PCR. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichments revealed that numerous DEGs were immune genes, involved in multiple immune-relevant pathways. In spleen, several pattern recognition receptors (PRRs), including Toll-like receptors (TLR1, TLR2-1, TLR2-2, TLR5 and TLR8), Fucolectins (FUCL1, FUCL4 and FUCL5) and macrophage mannose receptor (MRC1), were significantly down-regulated, suggesting that the immune processes mediated by these PRRs may be suppressed by hypoxia stress. However, some PRRs (FUCL4, FUCL5 and MRC1) and other innate immunity genes, such as C-type lectin domain gene family members, chemokines, chemokine receptors and complement components were up-regulated in head kidney, which may be due to the increases in phagocytosis and cytokine secretion by macrophages after hypoxic stimulus. The expression of genes involved in B cell receptor signaling pathway, Natural killer cell-mediated cytotoxicity and NF-κB signaling pathway decreased rapidly, but regained normal or increased over time, suggesting an early adjustment pattern of fish immune response to cope with hypoxia stress. Moreover, the anaerobic ATP-generating pathway was activated and energy consumption processes were repressed concurrently in both spleen and head kidney. These data provide valuable information for understanding the tissue-specific and temporal changes of immune gene expression in hypoxic large yellow croakers.
Collapse
Affiliation(s)
- Yinnan Mu
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Wanru Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Bin Wu
- Fujian Fisheries Technology Extension Center, Fuzhou, 350002, PR China
| | - Jiong Chen
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China.
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| |
Collapse
|
28
|
Huang KT, Chen YC, Tseng CC, Chang HC, Su MC, Wang TY, Lin YY, Zheng YX, Chang JC, Chin CH, Hsiao CC, Lin MC. Aberrant DNA methylation of the toll-like receptors 2 and 6 genes in patients with obstructive sleep apnea. PLoS One 2020; 15:e0228958. [PMID: 32069296 PMCID: PMC7028278 DOI: 10.1371/journal.pone.0228958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 01/27/2020] [Indexed: 11/18/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a syndrome leading to chronic intermittent hypoxia, and the up-regulation of toll-like receptors (TLR) 2 and 6 on peripheral blood cells has been reported. We hypothesized that DNA methylation in TLR2 and TLR6 genes may play a role in the development of OSA and its excessive daytime sleepiness (EDS) phenotype. DNA methylation over 28 cytosine-phosphate-guanine (CpG) sites of the TLR2 promoter region and 3 CpG sites of the TLR6 gene body, and their protein expressions were measured by using pyrosequencing and ELISA methods in 18 heathy subjects (HS) and 58 patients with severe OSA (divided into 18 non-EDS and 40 EDS group). Patients with severe OSA had higher DNA methylation levels over five CpG sites (#1, #2, #3, #25 and #28) and lower DNA methylation levels over CpG site #18 of the TLR2 promoter region, higher DNA methylation levels over two CpG sites (#1 and #3) of the TLR6 gene body, and higher protein expressions of TLR6 than HS. The CpG site #2 of the TLR6 gene body was hypermethylated in severe OSA patients with EDS. Both DNA methylation levels over CpG site #1 of the TLR6 gene body and protein expressions of TLR6 were reduced after more than 6 months of nasal CPAP treatment in seven selected patients. Aberrant DNA methylation of the TLR2 promoter region and TLR6 gene body are associated with the consequence of severe OSA and its EDS phenotype.
Collapse
Affiliation(s)
- Kuo-Tung Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Nursing, Meiho University, Pingtung, Taiwan
| | - Yung-Che Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chia-Cheng Tseng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Huang-Chih Chang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Mao-Chang Su
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Chang Gung University of Science and Technology, Chia-yi, Taiwan
| | - Ting-Ya Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yong-Yong Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Xin Zheng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jen-Chieh Chang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chien-Hung Chin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chang-Chun Hsiao
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Chang Gung University of Science and Technology, Chia-yi, Taiwan
| |
Collapse
|
29
|
McDonald FB, Dempsey EM, O'Halloran KD. The impact of preterm adversity on cardiorespiratory function. Exp Physiol 2019; 105:17-43. [PMID: 31626357 DOI: 10.1113/ep087490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the topic of this review? We review the influence of prematurity on the cardiorespiratory system and examine the common sequel of alterations in oxygen tension, and immune activation in preterm infants. What advances does it highlight? The review highlights neonatal animal models of intermittent hypoxia, hyperoxia and infection that contribute to our understanding of the effect of stress on neurodevelopment and cardiorespiratory homeostasis. We also focus on some of the important physiological pathways that have a modulatory role on the cardiorespiratory system in early life. ABSTRACT Preterm birth is one of the leading causes of neonatal mortality. Babies that survive early-life stress associated with immaturity have significant prevailing short- and long-term morbidities. Oxygen dysregulation in the first few days and weeks after birth is a primary concern as the cardiorespiratory system slowly adjusts to extrauterine life. Infants exposed to rapid alterations in oxygen tension, including exposures to hypoxia and hyperoxia, have altered redox balance and active immune signalling, leading to altered stress responses that impinge on neurodevelopment and cardiorespiratory homeostasis. In this review, we explore the clinical challenges posed by preterm birth, followed by an examination of the literature on animal models of oxygen dysregulation and immune activation in the context of early-life stress.
Collapse
Affiliation(s)
- Fiona B McDonald
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.,Irish Centre for Fetal and Neonatal Translational Research (INFANT) Research Centre, University College Cork, Cork, Ireland
| | - Eugene M Dempsey
- Irish Centre for Fetal and Neonatal Translational Research (INFANT) Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics & Child Health, School of Medicine, College of Medicine & Health, Cork University Hospital, Wilton, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.,Irish Centre for Fetal and Neonatal Translational Research (INFANT) Research Centre, University College Cork, Cork, Ireland
| |
Collapse
|
30
|
Li B, Hou DQ, Xu SB, Zhang JY, Zhu LF, Wang Q, Pan L, Yu M, Shen WL, Zhu WW, Zhang W, Sun YM, Liu LK. TLR2 deficiency enhances susceptibility to oral carcinogenesis by promoting an inflammatory environment. Am J Cancer Res 2019; 9:2599-2617. [PMID: 31911849 PMCID: PMC6943345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023] Open
Abstract
Inflammation is closely related to oral squamous cell carcinoma (OSCC). However, its mechanism is still obscure. Toll-like receptor 2 (TLR2) plays an important role in oral chronic inflammatory diseases, but the role of TLR2 in OSCC is unclear. Here, we investigated the expression of TLR2 expression in OSCCs and examined the potential role of TLR2 in OSCC through its association with clinicopathological features and patient outcome. We used 4-nitroquinoline 1-oxide (4-NQO) to induce a tongue cancer model in TLR2-/- and wild type (WT) mice. Histological and clinical results both indicated that TLR2 played a protective role in oral tumorigenesis. The results of a cytometric bead array (CBA) indicated that TLR2 deficiency resulted in Th1 and Th2 cytokine abnormalities, especially Th2 abnormalities. Immunohistochemistry also showed that TLR2 deficiency increases the number of tongue-infiltrating M2 macrophages. Overall, our results demonstrated that TLR2 plays an important role in the prevention of oral tumorigenesis and affects the levels of Th2 cytokines and tongue-infiltrating M2 macrophages; therefore, it may be used to prevent the development of oral cancer.
Collapse
Affiliation(s)
- Bang Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, People’s Republic of China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
- Department of Stomatology, Wuxi Clinical College of Anhui Medical UniversityWuxi 214044, Jiangsu, People’s Republic of China
| | - De-Qiang Hou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, People’s Republic of China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
| | - Shuang-Bo Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, People’s Republic of China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
| | - Jia-Yi Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, People’s Republic of China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
| | - Li-Fang Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, People’s Republic of China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
- Department of Stomatology, The First Affiliated Hospital of Soochow UniversitySuzhou, People’s Republic of China
| | - Qiong Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, People’s Republic of China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
| | - Lu Pan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, People’s Republic of China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
| | - Miao Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, People’s Republic of China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
| | - Wei-Li Shen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, People’s Republic of China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
| | - Wei-Wen Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, People’s Republic of China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
| | - Wei Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, People’s Republic of China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
| | - Ying-Ming Sun
- Department of Stomatology, Wuxi Clinical College of Anhui Medical UniversityWuxi 214044, Jiangsu, People’s Republic of China
| | - Lai-Kui Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, People’s Republic of China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
| |
Collapse
|
31
|
Regulation of glyceraldehyde-3-phosphate dehydrogenase by hypoxia inducible factor 1 in the white shrimp Litopenaeus vannamei during hypoxia and reoxygenation. Comp Biochem Physiol A Mol Integr Physiol 2019; 235:56-65. [PMID: 31100464 DOI: 10.1016/j.cbpa.2019.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022]
Abstract
Hypoxia is a frequent source of stress in the estuarine habitat of the white shrimp Litopenaeus vannamei. During hypoxia, L. vannamei gill cells rely more heavily on anaerobic glycolysis to obtain ATP. This is mediated by transcriptional up-regulation of glycolytic enzymes including glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The hypoxia inducible factor 1 (HIF-1) is an important transcriptional activator of several glycolytic enzymes during hypoxia in diverse animals, including crustaceans. In this work, we cloned and sequenced a fragment corresponding to the 5' flank of the GAPDH gene and identified a putative HIF-1 binding site, as well as sites for other transcription factors involved in the hypoxia signaling pathway. To investigate the role of HIF-1 in GAPDH regulation, we simultaneously injected double-stranded RNA (dsRNA) into shrimp to silence HIF-1α and HIF-1β under normoxia, hypoxia, and hypoxia followed by reoxygenation, and then measured gill HIF-1α, HIF-1β expression, GAPDH expression and activity, and glucose and lactate concentrations at 0, 3, 24 and 48 h. During normoxia, HIF-1 silencing induced up-regulation of GAPDH transcripts and activity, suggesting that expression is down-regulated via HIF-1 under these conditions. In contrast, HIF-1 silencing during hypoxia abolished the increases in GAPDH expression and activity, glucose and lactate concentrations. Finally, HIF-1 silencing during hypoxia-reoxygenation prevented the increase in GAPDH expression, however, those changes were not reflected in GAPDH activity and lactate accumulation. Altogether, these results indicate that GAPDH and glycolysis are transcriptionally regulated by HIF-1 in gills of white shrimp.
Collapse
|
32
|
Ahechu P, Zozaya G, Martí P, Hernández-Lizoáin JL, Baixauli J, Unamuno X, Frühbeck G, Catalán V. NLRP3 Inflammasome: A Possible Link Between Obesity-Associated Low-Grade Chronic Inflammation and Colorectal Cancer Development. Front Immunol 2018; 9:2918. [PMID: 30619282 PMCID: PMC6297839 DOI: 10.3389/fimmu.2018.02918] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/28/2018] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence reveals that adipose tissue-associated inflammation is a main mechanism whereby obesity promotes colorectal cancer risk and progression. Increased inflammasome activity in adipose tissue has been proposed as an important mediator of obesity-induced inflammation and insulin resistance development. Chronic inflammation in tumor microenvironments has a great impact on tumor development and immunity, representing a key factor in the response to therapy. In this context, the inflammasomes, main components of the innate immune system, play an important role in cancer development showing tumor promoting or tumor suppressive actions depending on the type of tumor, the specific inflammasome involved, and the downstream effector molecules. The inflammasomes are large multiprotein complexes with the capacity to regulate the activation of caspase-1. In turn, caspase-1 enhances the proteolytic cleavage and the secretion of the inflammatory cytokines interleukin (IL)-1β and IL-18, leading to infiltration of more immune cells and resulting in the generation and maintenance of an inflammatory microenvironment surrounding cancer cells. The inflammasomes also regulate pyroptosis, a rapid and inflammation-associated form of cell death. Recent studies indicate that the inflammasomes can be activated by fatty acids and high glucose levels linking metabolic danger signals to the activation of inflammation and cancer development. These data suggest that activation of the inflammasomes may represent a crucial step in the obesity-associated cancer development. This review will also focus on the potential of inflammasome-activated pathways to develop new therapeutic strategies for the prevention and treatment of obesity-associated colorectal cancer development.
Collapse
Affiliation(s)
- Patricia Ahechu
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gabriel Zozaya
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pablo Martí
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Jorge Baixauli
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Xabier Unamuno
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
33
|
Abstract
Hypoxia causes a cascade of activity from the level of the individual down to the regulation and function of the cell nucleus. Prolonged periods of low oxygen tension are a core feature of several disease states. Advances in the study of molecular biology have begun to bridge the gap between the cellular response to hypoxia and physiology. Hyperbaric oxygen therapy is a treatment for hypoxic- and inflammatory-driven conditions, in which patients are treated with 100% oxygen at pressures greater than atmospheric pressure. This review discusses hypoxia, the physiologic changes associated with hypoxia, the responses that occur in the cells during hypoxic conditions, and the role that hyperbaric oxygen therapy can play as part of the treatment for many patients suffering from diseases with underlying hypoxia.
Collapse
Affiliation(s)
- Ryan Choudhury
- Department of Internal Medicine, Graduate Medical Education, St Vincent Charity Medical Center, Cleveland, OH, USA,
| |
Collapse
|
34
|
Stothers CL, Luan L, Fensterheim BA, Bohannon JK. Hypoxia-inducible factor-1α regulation of myeloid cells. J Mol Med (Berl) 2018; 96:1293-1306. [PMID: 30386909 DOI: 10.1007/s00109-018-1710-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/02/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022]
Abstract
Hematopoietic myeloblasts give rise to macrophages, dendritic cells, and neutrophils. Circulating myeloid cells detect invading microbes using pattern recognition receptors and subsequently orchestrate an innate immune response to contain and kill the pathogens. This innate immune response establishes an inflammatory niche characterized by hypoxia due to host and pathogen factors. Hypoxia-inducible factor (HIF) transcription factors are the primary regulators of the myeloid response to hypoxia. In particular, HIF-1α is a critical hub that integrates hypoxic and immunogenic signals during infection or inflammation. Hypoxia induces HIF-1α stabilization, which drives metabolic and phenotypic reprogramming of myeloid cells to maximize antimicrobial potential. HIF-1α activity in myeloid-derived cells enhances the host response to infection, but may also play a role in pathogenic inflammatory processes, such as atherosclerosis. In this review, we summarize recent advances that have elucidated the mechanism by which myeloid cells regulate HIF-1α activity and, in turn, how HIF-1α shapes myeloid cell function.
Collapse
Affiliation(s)
- C L Stothers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - L Luan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - B A Fensterheim
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - J K Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
35
|
Leppänen J, Helminen O, Huhta H, Kauppila JH, Isohookana J, Haapasaari KM, Karihtala P, Parkkila S, Saarnio J, Lehenkari PP, Karttunen TJ. Toll-like receptors 2, 4 and 9 and hypoxia markers HIF-1alpha and CAIX in pancreatic intraepithelial neoplasia. APMIS 2018; 126:852-863. [PMID: 30357962 DOI: 10.1111/apm.12894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer arises from precursor lesions called pancreatic intraepithelial neoplasia (PanIN) characterized by inflammatory microenvironment. In pancreatic cancer, strong innate immunity and hypoxia responses are typical. Occurrence and relationship of these responses in human PanINs is unknown. We have studied the expression of toll-like receptors (TLR) TLR2, TLR4 and TLR9, and hypoxia markers HIF-1alpha and Carbonic anhydrase IX (CAIX) in normal and inflamed pancreatic ducts, in PanINs and in cancers. The samples of 69 surgically resected pancreatic ductal adenocarcinoma patients were stained using immunohistochemistry. We found TLR2, TLR9, HIF-1alpha and CAIX to be prominently expressed in pancreatic intraepithelial neoplasia. Expression of TLR2 showed a linear increase from PanIN1 to PanIN3, while the highest TLR4 expression was detected in inflamed ducts, and TLR9 expression in PanIN1 lesions. Within the PanIN1-group, nuclear HIF-1alpha correlated with membranous and cytoplasmic TLR2 expression (ρ = 0.982 and 0.815; p < 0.001 and p = 0.025, respectively), and in the PanIN2-group nuclear HIF-1alpha correlated with nuclear TLR9 expression 0.636, p = 0.026). Our findings show that the expression of TLRs 2, 4 and 9, and hypoxia markers HIF-1alpha and CAIX is abnormal in pancreatic intraepithelial neoplasia suggesting that both the innate immunity activation and hypoxia response are involved in early pancreatic carcinogenesis. However, these processes might be independent.
Collapse
Affiliation(s)
- Joni Leppänen
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Olli Helminen
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Heikki Huhta
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Joonas H Kauppila
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Upper Gastrointestinal Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Joel Isohookana
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Kirsi-Maria Haapasaari
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Peeter Karihtala
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Seppo Parkkila
- School of Medicine, University of Tampere, Tampere, Finland.,Fimlab Ltd., Tampere University Hospital, Tampere, Finland
| | - Juha Saarnio
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Petri P Lehenkari
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Tuomo J Karttunen
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
36
|
Pokorski M, Poździk M, Mazzatenta A. Antioxidant treatment for impaired hypoxic ventilatory responses in experimental diabetes in the rat. Respir Physiol Neurobiol 2018; 255:30-38. [DOI: 10.1016/j.resp.2018.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/05/2018] [Accepted: 05/08/2018] [Indexed: 12/19/2022]
|
37
|
Rossaint J, Unruh M, Zarbock A. Fibroblast growth factor 23 actions in inflammation: a key factor in CKD outcomes. Nephrol Dial Transplant 2018; 32:1448-1453. [PMID: 27659127 DOI: 10.1093/ndt/gfw331] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 02/07/2023] Open
Abstract
During chronic kidney disease (CKD), bone mineral metabolism is disturbed owing in part to the endogenous hormone fibroblast growth factor 23 (FGF23). Elevated FGF23 levels are seen in CKD patients. Current research has demonstrated that FGF23 directly modulates the immune response and host defense to bacterial infections. FGF23 also impairs the activation and recruitment of neutrophils, which are the main immune effector cells required for host defense against bacterial infections. In addition, while FGF23 levels reduce leukocyte recruitment and functions, inflammatory conditions may also-in a reverse fashion-contribute to elevated FGF23 levels in the circulation. In this context, altered hypoxia inducible factor 1α signaling and iron metabolism may contribute to intact FGF23 (iFGF23) production. This review examines evidence on the role of FGF23 in inflammation, immune cell function and recruitment as well as the regulation of FGF23 during inflammation and the clinical implications of this process for the immune system in individuals with CKD. Clinical observations and laboratory investigations indicate an important role of FGF23 in directly modulating leukocyte activation and recruitment behavior with consequences on host defense against bacterial infections. This novel observation may in part explain the increased infectious risk among patients with CKD. However, studies of FGF23 neutralization also revealed increased mortality after sustained administration over several weeks in rats. Thus, therapeutic interventions targeting FGF23 must be carefully evaluated.
Collapse
Affiliation(s)
- Jan Rossaint
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Mark Unruh
- Division of Nephrology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA.,Section of Neprology, New Mexico Veteran Affairs Hospital, Albuquerque, NM, USA
| | - Alexander Zarbock
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| |
Collapse
|
38
|
Neudecker V, Brodsky KS, Clambey ET, Schmidt EP, Packard TA, Davenport B, Standiford TJ, Weng T, Fletcher AA, Barthel L, Masterson JC, Furuta GT, Cai C, Blackburn MR, Ginde AA, Graner MW, Janssen WJ, Zemans RL, Evans CM, Burnham EL, Homann D, Moss M, Kreth S, Zacharowski K, Henson PM, Eltzschig HK. Neutrophil transfer of miR-223 to lung epithelial cells dampens acute lung injury in mice. Sci Transl Med 2018; 9:9/408/eaah5360. [PMID: 28931657 DOI: 10.1126/scitranslmed.aah5360] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 05/23/2017] [Indexed: 12/11/2022]
Abstract
Intercellular transfer of microRNAs can mediate communication between critical effector cells. We hypothesized that transfer of neutrophil-derived microRNAs to pulmonary epithelial cells could alter mucosal gene expression during acute lung injury. Pulmonary-epithelial microRNA profiling during coculture of alveolar epithelial cells with polymorphonuclear neutrophils (PMNs) revealed a selective increase in lung epithelial cell expression of microRNA-223 (miR-223). Analysis of PMN-derived supernatants showed activation-dependent release of miR-223 and subsequent transfer to alveolar epithelial cells during coculture in vitro or after ventilator-induced acute lung injury in mice. Genetic studies indicated that miR-223 deficiency was associated with severe lung inflammation, whereas pulmonary overexpression of miR-223 in mice resulted in protection during acute lung injury induced by mechanical ventilation or by infection with Staphylococcus aureus Studies of putative miR-223 gene targets implicated repression of poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) in the miR-223-dependent attenuation of lung inflammation. Together, these findings suggest that intercellular transfer of miR-223 from neutrophils to pulmonary epithelial cells may dampen acute lung injury through repression of PARP-1.
Collapse
Affiliation(s)
- Viola Neudecker
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA. .,Department of Anesthesiology, University Hospital, Ludwig-Maximilian University of Munich, 81377 Munich, Germany
| | - Kelley S Brodsky
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Eric T Clambey
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Eric P Schmidt
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA.,Program in Translational Lung Research, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Thomas A Packard
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine and National Jewish Health, Denver, CO 80206, USA
| | - Bennett Davenport
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Theodore J Standiford
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tingting Weng
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030, USA
| | - Ashley A Fletcher
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Lea Barthel
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Joanne C Masterson
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children's Hospital Colorado; Mucosal Inflammation Program, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Glenn T Furuta
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children's Hospital Colorado; Mucosal Inflammation Program, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Chunyan Cai
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030, USA
| | - Adit A Ginde
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael W Graner
- Department of Neurosurgery, University of Colorado Denver, Aurora, CO 80045, USA
| | - William J Janssen
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Rachel L Zemans
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Christopher M Evans
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA.,Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Ellen L Burnham
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Dirk Homann
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Marc Moss
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Simone Kreth
- Department of Anesthesiology, University Hospital, Ludwig-Maximilian University of Munich, 81377 Munich, Germany
| | - Kai Zacharowski
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany
| | - Peter M Henson
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Immunology and Microbiology, University of Colorado Denver School of Medicine and National Jewish Health, Denver, CO 80206, USA
| | - Holger K Eltzschig
- Organ Protection Program, Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
39
|
Dosch M, Gerber J, Jebbawi F, Beldi G. Mechanisms of ATP Release by Inflammatory Cells. Int J Mol Sci 2018; 19:ijms19041222. [PMID: 29669994 PMCID: PMC5979498 DOI: 10.3390/ijms19041222] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 02/06/2023] Open
Abstract
Extracellular nucleotides (e.g., ATP, ADP, UTP, UDP) released by inflammatory cells interact with specific purinergic P2 type receptors to modulate their recruitment and activation. The focus of this review is on stimuli and mechanisms of extracellular nucleotide release and its consequences during inflammation. Necrosis leads to non-specific release of nucleotides, whereas specific release mechanisms include vesicular exocytosis and channel-mediated release via connexin or pannexin hemichannels. These release mechanisms allow stimulated inflammatory cells such as macrophages, neutrophils, and endothelial cells to fine-tune autocrine/paracrine responses during acute and chronic inflammation. Key effector functions of inflammatory cells are therefore regulated by purinergic signaling in acute and chronic diseases, making extracellular nucleotide release a promising target for the development of new therapies.
Collapse
Affiliation(s)
- Michel Dosch
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland.
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, CH-3008 Bern, Switzerland.
| | - Joël Gerber
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland.
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, CH-3008 Bern, Switzerland.
| | - Fadi Jebbawi
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland.
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, CH-3008 Bern, Switzerland.
| | - Guido Beldi
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland.
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, CH-3008 Bern, Switzerland.
| |
Collapse
|
40
|
Ow CPC, Ngo JP, Ullah MM, Hilliard LM, Evans RG. Renal hypoxia in kidney disease: Cause or consequence? Acta Physiol (Oxf) 2018; 222:e12999. [PMID: 29159875 DOI: 10.1111/apha.12999] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023]
Abstract
Tissue hypoxia has been proposed as an important factor in the pathophysiology of both chronic kidney disease (CKD) and acute kidney injury (AKI), initiating and propagating a vicious cycle of tubular injury, vascular rarefaction, and fibrosis and thus exacerbation of hypoxia. Here, we critically evaluate this proposition by systematically reviewing the literature relevant to the following six questions: (i) Is kidney disease always associated with tissue hypoxia? (ii) Does tissue hypoxia drive signalling cascades that lead to tissue damage and dysfunction? (iii) Does tissue hypoxia per se lead to kidney disease? (iv) Does tissue hypoxia precede pathology? (v) Does tissue hypoxia colocalize with pathology? (vi) Does prevention of tissue hypoxia prevent kidney disease? We conclude that tissue hypoxia is a common feature of both AKI and CKD. Furthermore, at least under in vitro conditions, renal tissue hypoxia drives signalling cascades that lead to tissue damage and dysfunction. Tissue hypoxia itself can lead to renal pathology, independent of other known risk factors for kidney disease. There is also some evidence that tissue hypoxia precedes renal pathology, at least in some forms of kidney disease. However, we have made relatively little progress in determining the spatial relationships between tissue hypoxia and pathological processes (i.e. colocalization) or whether therapies targeted to reduce tissue hypoxia can prevent or delay the progression of renal disease. Thus, the hypothesis that tissue hypoxia is a "common pathway" to both AKI and CKD still remains to be adequately tested.
Collapse
Affiliation(s)
- C. P. C. Ow
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| | - J. P. Ngo
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| | - M. M. Ullah
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| | - L. M. Hilliard
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| | - R. G. Evans
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| |
Collapse
|
41
|
Ebersole JL, Novak MJ, Orraca L, Martinez-Gonzalez J, Kirakodu S, Chen KC, Stromberg A, Gonzalez OA. Hypoxia-inducible transcription factors, HIF1A and HIF2A, increase in aging mucosal tissues. Immunology 2018; 154:452-464. [PMID: 29338076 DOI: 10.1111/imm.12894] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/22/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023] Open
Abstract
Hypoxia (i.e. oxygen deprivation) activates the hypoxia-signalling pathway, primarily via hypoxia-inducible transcription factors (HIF) for numerous target genes, which mediate angiogenesis, metabolism and coagulation, among other processes to try to replenish tissues with blood and oxygen. Hypoxia signalling dysregulation also commonly occurs during chronic inflammation. We sampled gingival tissues from rhesus monkeys (Macaca mulatta; 3-25 years old) and total RNA was isolated for microarray analysis. HIF1A, HIF1B and HIF2A were significantly different in healthy aged tissues, and both HIF1A and HIF3A were positively correlated with aging. Beyond these transcription factor alterations, analysis of patterns of gene expression involved in hypoxic changes in tissues showed specific increases in metabolic pathway hypoxia-inducible genes, whereas angiogenesis pathway gene changes were more variable in healthy aging tissues across the animals. With periodontitis, aging tissues showed decreases in metabolic gene expression related to carbohydrate/lipid utilization (GBE1, PGAP1, TPI1), energy metabolism and cell cycle regulation (IER3, CCNG2, PER1), with up-regulation of transcription genes and cellular proliferation genes (FOS, EGR1, MET, JMJD6) that are hypoxia-inducible. The potential clinical implications of these results are related to the epidemiological findings of increased susceptibility and expression of periodontitis with aging. More specifically the findings describe that hypoxic stress may exist in aging gingival tissues before documentation of clinical changes of periodontitis and, so, may provide an explanatory molecular risk factor for an elevated capacity of the tissues to express destructive processes in response to changes in the microbial biofilms characteristic of a more pathogenic microbial challenge.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Michael John Novak
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Luis Orraca
- School of Dentistry, University of Puerto Rico, Sabana Seca, PR, USA
| | | | - Sreenatha Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Kuey C Chen
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Arnold Stromberg
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Fibroblast growth factor 23 (FGF23) is a hormone secreted by osteocytes and osteoblasts that regulates phosphorus and vitamin D homeostasis. FGF23 levels increase progressively in chronic kidney disease (CKD), and FGF23 excess might be a causal factor of left ventricular hypertrophy, CKD progression and death. Therefore, understanding the molecular mechanisms that control FGF23 production is critical to design therapies to lower FGF23 levels. The present review focuses on the role of inflammatory stimuli on FGF23 regulation and summarizes recent studies that support a novel framework linking inflammation to FGF23 regulation. RECENT FINDINGS Inflammation and iron deficiency, which are common occurrences in CKD, have emerged as novel FGF23 regulators. Recent findings show that inflammation increases FGF23 production in bone through direct and iron-related indirect mechanisms. In these settings, hypoxia-inducible factor (HIF)-1α orchestrates FGF23 transcription in response to inflammation and is primarily responsible for coordinating FGF23 production and cleavage. SUMMARY We demonstrate that inflammation increases FGF23 production and may contribute to elevated FGF23 levels in CKD. Osseous HIF-1α may represent a therapeutic target to lower FGF23 levels in CKD patients and minimize the negative consequences associated with FGF23 excess.
Collapse
|
43
|
Puddighinu G, D'Amario D, Foglio E, Manchi M, Siracusano A, Pontemezzo E, Cordella M, Facchiano F, Pellegrini L, Mangoni A, Tafani M, Crea F, Germani A, Russo MA, Limana F. Molecular mechanisms of cardioprotective effects mediated by transplanted cardiac ckit + cells through the activation of an inflammatory hypoxia-dependent reparative response. Oncotarget 2017; 9:937-957. [PMID: 29416668 PMCID: PMC5787525 DOI: 10.18632/oncotarget.22946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 11/12/2017] [Indexed: 12/16/2022] Open
Abstract
The regenerative effects of cardiac ckit+ stem cells (ckit+CSCs) in acute myocardial infarction (MI) have been studied extensively, but how these cells exert a protective effect on cardiomyocytes is not well known. Growing evidences suggest that in adult stem cells injury triggers inflammatory signaling pathways which control tissue repair and regeneration. Aim of the present study was to determine the mechanisms underlying the cardioprotective effects of ckit+CSCs following transplantation in a murine model of MI. Following isolation and in vitro expansion, cardiac ckit+CSCs were subjected to normoxic and hypoxic conditions and assessed at different time points. These cells adapted to hypoxia as showed by the activation of HIF-1α and the expression of a number of genes, such as VEGF, GLUT1, EPO, HKII and, importantly, of alarmin receptors, such as RAGE, P2X7R, TLR2 and TLR4. Activation of these receptors determined an NFkB-dependent inflammatory and reparative gene response (IRR). Importantly, hypoxic ckit+CSCs increased the secretion of the survival growth factors IGF-1 and HGF. To verify whether activation of the IRR in a hypoxic microenvironment could exert a beneficial effect in vivo, autologous ckit+CSCs were transplanted into mouse heart following MI. Interestingly, transplantation of ckit+CSCs lowered apoptotic rates and induced autophagy in the peri-infarct area; further, it reduced hypertrophy and fibrosis and, most importantly, improved cardiac function. ckit+CSCs are able to adapt to a hypoxic environment and activate an inflammatory and reparative response that could account, at least in part, for a protective effect on stressed cardiomyocytes following transplantation in the infarcted heart.
Collapse
Affiliation(s)
- Giovanni Puddighinu
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Domenico D'Amario
- Department of Cardiovascular Sciences, Catholic University of The Sacred Heart, Rome, Italy
| | - Eleonora Foglio
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Melissa Manchi
- Department of Cardiovascular Sciences, Catholic University of The Sacred Heart, Rome, Italy
| | - Andrea Siracusano
- Department of Cardiovascular Sciences, Catholic University of The Sacred Heart, Rome, Italy
| | - Elena Pontemezzo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Martina Cordella
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Pellegrini
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico (CCP), Milan, Italy
| | - Antonella Mangoni
- Department of Pathological Anatomy, Catholic University of The Sacred Heart, Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular Sciences, Catholic University of The Sacred Heart, Rome, Italy
| | - Antonia Germani
- Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, Rome, Italy
| | - Matteo Antonio Russo
- IRCCS San Raffaele Pisana, Rome, Italy.,MEBIC Consortium, San Raffaele Roma Open University, Rome, Italy
| | - Federica Limana
- IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele Roma Open University, Rome, Italy
| |
Collapse
|
44
|
Patidar A, Selvaraj S, Sarode A, Chauhan P, Chattopadhyay D, Saha B. DAMP-TLR-cytokine axis dictates the fate of tumor. Cytokine 2017; 104:114-123. [PMID: 29032985 DOI: 10.1016/j.cyto.2017.10.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022]
Abstract
Random mutations leading to loss of cell cycle control is not a rare occurrence in an organism but the mutated cells are recognized and eliminated preventing the development of a tumor. These potentially tumorigenic cells release damage-associated molecular patterns (DAMPs), which are recognized by toll-like receptors (TLRs) on macrophages and dendritic cells. The initial TLR-DAMP interactions lead to different responses such as altered antigen presentation and cytokine release that directly affect T cell activation and removal of the tumorigenic cells. The indirect effects of TLR-DAMP interaction include chemokine-directed altered T cell trafficking, angiogenesis for both T cell infiltration and tumor cell metastasis, and alteration of intra-tumoral milieu contributing to the development of tumor cells heterogeneity. Thus, the initial TLR-DAMP interaction has a set of local effects that modulate tumor cell growth and heterogeneity and a disseminating set of central effects that dynamically affect T cell trafficking and functions. Herein, we argue that the DAMP-TLR-cytokine axis in the tumor microenvironment serves as the mainstay that orchestrates and regulates the pro- and anti-tumor elements which dynamically interact between themselves eventuating in tumor regression or growth. The knowledge of this TLR-based immuno-surveillance framework is a key to developing a novel immunotherapy against cancer.
Collapse
Affiliation(s)
- Ashok Patidar
- National Centre for Cell Science, Ganeshkhind, Pune, India
| | | | - Aditya Sarode
- National Centre for Cell Science, Ganeshkhind, Pune, India
| | | | | | - Bhaskar Saha
- National Institute of Traditional Medicine, Belagavi, Karnataka, India.
| |
Collapse
|
45
|
Abstract
Although it is generally believed that oxidative phosphorylation and adequate oxygenation are essential for life, human development occurs in a profoundly hypoxic environment and "normal" levels of oxygen during embryogenesis are even harmful. The ability of embryos not only to survive but also to thrive in such an environment is made possible by adaptations related to metabolic pathways. Similarly, cancerous cells are able not only to survive but also to grow and spread in environments that would typically be fatal for healthy adult cells. Many biological states, both normal and pathological, share underlying similarities related to metabolism, the electron transport chain, and reactive species. The purpose of Part I of this review is to review the similarities among embryogenesis, mammalian adaptions to hypoxia (primarily driven by hypoxia-inducible factor-1), ischemia-reperfusion injury (and its relationship with reactive oxygen species), hibernation, diving animals, cancer, and sepsis, with a particular focus on the common characteristics that allow cells and organisms to survive in these states.
Collapse
Affiliation(s)
- Robert H Thiele
- From the Department of Anesthesiology, University of Virginia, Charlottesville, VA
| |
Collapse
|
46
|
Bowser JL, Lee JW, Yuan X, Eltzschig HK. The hypoxia-adenosine link during inflammation. J Appl Physiol (1985) 2017; 123:1303-1320. [PMID: 28798196 DOI: 10.1152/japplphysiol.00101.2017] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/18/2017] [Accepted: 08/06/2017] [Indexed: 12/23/2022] Open
Abstract
Hypoxic tissue conditions occur during a number of inflammatory diseases and are associated with the breakdown of barriers and induction of proinflammatory responses. At the same time, hypoxia is also known to induce several adaptive and tissue-protective pathways that dampen inflammation and protect tissue integrity. Hypoxia-inducible factors (HIFs) that are stabilized during inflammatory or hypoxic conditions are at the center of mediating these responses. In the past decade, several genes regulating extracellular adenosine metabolism and signaling have been identified as being direct targets of HIFs. Here, we discuss the relationship between inflammation, hypoxia, and adenosine and that HIF-driven adenosine metabolism and signaling is essential in providing tissue protection during inflammatory conditions, including myocardial injury, inflammatory bowel disease, and acute lung injury. We also discuss how the hypoxia-adenosine link can be targeted therapeutically in patients as a future treatment approach for inflammatory diseases.
Collapse
Affiliation(s)
- Jessica L Bowser
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| | - Jae W Lee
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| | - Xiaoyi Yuan
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| | - Holger K Eltzschig
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| |
Collapse
|
47
|
Eskandani M, Vandghanooni S, Barar J, Nazemiyeh H, Omidi Y. Cell physiology regulation by hypoxia inducible factor-1: Targeting oxygen-related nanomachineries of hypoxic cells. Int J Biol Macromol 2017; 99:46-62. [DOI: 10.1016/j.ijbiomac.2016.10.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/26/2016] [Indexed: 12/27/2022]
|
48
|
Kiernan EA, Smith SMC, Mitchell GS, Watters JJ. Mechanisms of microglial activation in models of inflammation and hypoxia: Implications for chronic intermittent hypoxia. J Physiol 2017; 594:1563-77. [PMID: 26890698 DOI: 10.1113/jp271502] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 01/16/2016] [Indexed: 12/12/2022] Open
Abstract
Chronic intermittent hypoxia (CIH) is a hallmark of sleep apnoea, a condition associated with diverse clinical disorders. CIH and sleep apnoea are characterized by increased reactive oxygen species formation, peripheral and CNS inflammation, neuronal death and neurocognitive deficits. Few studies have examined the role of microglia, the resident CNS immune cells, in models of CIH. Thus, little is known concerning their direct contributions to neuropathology or the cellular mechanisms regulating their activities during or following pathological CIH. In this review, we identify gaps in knowledge regarding CIH-induced microglial activation, and propose mechanisms based on data from related models of hypoxia and/or hypoxia-reoxygenation. CIH may directly affect microglia, or may have indirect effects via the periphery or other CNS cells. Peripheral inflammation may indirectly activate microglia via entry of pro-inflammatory molecules into the CNS, and/or activation of vagal afferents that trigger CNS inflammation. CIH-induced release of damage-associated molecular patterns from injured CNS cells may also activate microglia via interactions with pattern recognition receptors expressed on microglia. For example, Toll-like receptors activate mitogen-activated protein kinase/transcription factor pathways required for microglial inflammatory gene expression. Although epigenetic effects from CIH have not yet been studied in microglia, potential epigenetic mechanisms in microglial regulation are discussed, including microRNAs, histone modifications and DNA methylation. Epigenetic effects can occur during CIH, or long after it has ended. A better understanding of CIH effects on microglial activities may be important to reverse CIH-induced neuropathology in patients with sleep disordered breathing.
Collapse
Affiliation(s)
- Elizabeth A Kiernan
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Stephanie M C Smith
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gordon S Mitchell
- Department of Physical Therapy, University of Florida, Gainesville, FL, 32610, USA
| | - Jyoti J Watters
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
49
|
David V, Francis C, Babitt JL. Ironing out the cross talk between FGF23 and inflammation. Am J Physiol Renal Physiol 2017; 312:F1-F8. [PMID: 27582104 PMCID: PMC5283889 DOI: 10.1152/ajprenal.00359.2016] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/20/2016] [Indexed: 01/10/2023] Open
Abstract
The bone-secreted hormone fibroblast growth factor 23 (FGF23) has an essential role in phosphate homeostasis by regulating expression of the kidney proximal tubule sodium-phosphate cotransporters as well as parathyroid hormone levels. Induction of FGF23 early in chronic kidney disease (CKD) helps to maintain normal phosphorous levels. However, high FGF23 levels become pathological as kidney disease progresses and are associated with an increased risk of CKD progression, cardiovascular events, and death. The factors responsible for increasing FGF23 levels early in CKD are unknown, but recent work has proposed a role for inflammation and disordered iron homeostasis. Notably, FGF23 has recently been shown to elicit an inflammatory response and to display immunomodulatory properties. Here, we will review emerging evidence on the cross talk between inflammation, iron, FGF23, and bone and mineral metabolism and discuss the relevance for CKD patients.
Collapse
Affiliation(s)
- Valentin David
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and
| | - Connor Francis
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and
| | - Jodie L Babitt
- Nephrology Division, Program in Membrane Biology, and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
50
|
Salomon RG. Carboxyethylpyrroles: From Hypothesis to the Discovery of Biologically Active Natural Products. Chem Res Toxicol 2016; 30:105-113. [PMID: 27750413 DOI: 10.1021/acs.chemrestox.6b00304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Our research on the roles of lipid oxidation in human disease is guided by chemical intuition. For example, we postulated that 2-(ω-carboxyethyl)pyrrole (CEP) derivatives of primary amines would be produced through covalent adduction of a γ-hydroxyalkenal generated, in turn, through oxidative fragmentation of docosahexaenoates. Our studies confirmed the natural occurrence of this chemistry, and the biological activities of these natural products and their extensive involvements in human physiology (wound healing) and pathology (age-related macular degeneration, autism, atherosclerosis, sickle cell disease, and tumor growth) continue to emerge. This perspective recounts these discoveries and proposes new frontiers where further developments are likely. Perhaps more significantly, it depicts an effective chemistry-based approach to the discovery of novel biochemistry.
Collapse
Affiliation(s)
- Robert G Salomon
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| |
Collapse
|