1
|
Williamson CHD, Roe CC, Terriquez J, Hornstra H, Lucero S, Nunnally AE, Vazquez AJ, Vinocur J, Plude C, Nienstadt L, Stone NE, Celona KR, Wagner DM, Keim P, Sahl JW. A local-scale One Health genomic surveillance of Clostridioides difficile demonstrates highly related strains from humans, canines, and the environment. Microb Genom 2023; 9. [PMID: 37347682 DOI: 10.1099/mgen.0.001046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
Although infections caused by Clostridioides difficile have historically been attributed to hospital acquisition, growing evidence supports the role of community acquisition in C. difficile infection (CDI). Symptoms of CDI can range from mild, self-resolving diarrhoea to toxic megacolon, pseudomembranous colitis, and death. In this study, we sampled C. difficile from clinical, environmental, and canine reservoirs in Flagstaff, Arizona, USA, to understand the distribution and transmission of the pathogen in a One Health framework; Flagstaff is a medium-sized, geographically isolated city with a single hospital system, making it an ideal site to characterize genomic overlap between sequenced C. difficile isolates across reservoirs. An analysis of 562 genomes from Flagstaff isolates identified 65 sequence types (STs), with eight STs being found across all three reservoirs and another nine found across two reservoirs. A screen of toxin genes in the pathogenicity locus identified nine STs where all isolates lost the toxin genes needed for CDI manifestation (tcdB, tcdA), demonstrating the widespread distribution of non-toxigenic C. difficile (NTCD) isolates in all three reservoirs; 15 NTCD genomes were sequenced from symptomatic, clinical samples, including two from mixed infections that contained both tcdB+ and tcdB- isolates. A comparative single nucleotide polymorphism (SNP) analysis of clinically derived isolates identified 78 genomes falling within clusters separated by ≤2 SNPs, indicating that ~19 % of clinical isolates are associated with potential healthcare-associated transmission clusters; only symptomatic cases were sampled in this study, and we did not sample asymptomatic transmission. Using this same SNP threshold, we identified genomic overlap between canine and soil isolates, as well as putative transmission between environmental and human reservoirs. The core genome of isolates sequenced in this study plus a representative set of public C. difficile genomes (n=136), was 2690 coding region sequences, which constitutes ~70 % of an individual C. difficile genome; this number is significantly higher than has been published in some other studies, suggesting that genome data quality is important in understanding the minimal number of genes needed by C. difficile. This study demonstrates the close genomic overlap among isolates sampled across reservoirs, which was facilitated by maximizing the genomic search space used for comprehensive identification of potential transmission events. Understanding the distribution of toxigenic and non-toxigenic C. difficile across reservoirs has implications for surveillance sampling strategies, characterizing routes of infections, and implementing mitigation measures to limit human infection.
Collapse
Affiliation(s)
| | - Chandler C Roe
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | | | - Heidie Hornstra
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Samantha Lucero
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Amalee E Nunnally
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Adam J Vazquez
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | | | | | | | - Nathan E Stone
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Kimberly R Celona
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - David M Wagner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Paul Keim
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Jason W Sahl
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
2
|
Torres-Puig S, García V, Stærk K, Andersen TE, Møller-Jensen J, Olsen JE, Herrero-Fresno A. “Omics” Technologies - What Have They Told Us About Uropathogenic Escherichia coli Fitness and Virulence During Urinary Tract Infection? Front Cell Infect Microbiol 2022; 12:824039. [PMID: 35237532 PMCID: PMC8882828 DOI: 10.3389/fcimb.2022.824039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the main etiological agent of urinary tract infection (UTI), a widespread infectious disease of great impact on human health. This is further emphasized by the rapidly increase in antimicrobial resistance in UPEC, which compromises UTI treatment. UPEC biology is highly complex since uropathogens must adopt extracellular and intracellular lifestyles and adapt to different niches in the host. In this context, the implementation of forefront ‘omics’ technologies has provided substantial insight into the understanding of UPEC pathogenesis, which has opened the doors for new therapeutics and prophylactics discovery programs. Thus, ‘omics’ technologies applied to studies of UPEC during UTI, or in models of UTI, have revealed extensive lists of factors that are important for the ability of UPEC to cause disease. The multitude of large ‘omics’ datasets that have been generated calls for scrutinized analysis of specific factors that may be of interest for further development of novel treatment strategies. In this review, we describe main UPEC determinants involved in UTI as estimated by ‘omics’ studies, and we compare prediction of factors across the different ‘omics’ technologies, with a focus on those that have been confirmed to be relevant under UTI-related conditions. We also discuss current challenges and future perspectives regarding analysis of data to provide an overview and better understanding of UPEC mechanisms involved in pathogenesis which should assist in the selection of target sites for future prophylaxis and treatment.
Collapse
Affiliation(s)
- Sergi Torres-Puig
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Vanesa García
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain
| | - Kristian Stærk
- Research Unit of Clinical Microbiology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Thomas E. Andersen
- Research Unit of Clinical Microbiology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - John E. Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ana Herrero-Fresno
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
- *Correspondence: Ana Herrero-Fresno,
| |
Collapse
|
3
|
Malik A, Kim YR, Kim SB. Genome Mining of the Genus Streptacidiphilus for Biosynthetic and Biodegradation Potential. Genes (Basel) 2020; 11:genes11101166. [PMID: 33022985 PMCID: PMC7601586 DOI: 10.3390/genes11101166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022] Open
Abstract
The genus Streptacidiphilus represents a group of acidophilic actinobacteria within the family Streptomycetaceae, and currently encompasses 15 validly named species, which include five recent additions within the last two years. Considering the potential of the related genera within the family, namely Streptomyces and Kitasatospora, these relatively new members of the family can also be a promising source for novel secondary metabolites. At present, 15 genome data for 11 species from this genus are available, which can provide valuable information on their biology including the potential for metabolite production as well as enzymatic activities in comparison to the neighboring taxa. In this study, the genome sequences of 11 Streptacidiphilus species were subjected to the comparative analysis together with selected Streptomyces and Kitasatospora genomes. This study represents the first comprehensive comparative genomic analysis of the genus Streptacidiphilus. The results indicate that the genomes of Streptacidiphilus contained various secondary metabolite (SM) producing biosynthetic gene clusters (BGCs), some of them exclusively identified in Streptacidiphilus only. Several of these clusters may potentially code for SMs that may have a broad range of bioactivities, such as antibacterial, antifungal, antimalarial and antitumor activities. The biodegradation capabilities of Streptacidiphilus were also explored by investigating the hydrolytic enzymes for complex carbohydrates. Although all genomes were enriched with carbohydrate-active enzymes (CAZymes), their numbers in the genomes of some strains such as Streptacidiphilus carbonis NBRC 100919T were higher as compared to well-known carbohydrate degrading organisms. These distinctive features of each Streptacidiphilus species make them interesting candidates for future studies with respect to their potential for SM production and enzymatic activities.
Collapse
Affiliation(s)
- Adeel Malik
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea; (A.M.); (Y.R.K.)
- Institute of Intelligence Informatics Technology, Sangmyung University, Seoul 03016, Korea
| | - Yu Ri Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea; (A.M.); (Y.R.K.)
| | - Seung Bum Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea; (A.M.); (Y.R.K.)
- Correspondence:
| |
Collapse
|
4
|
Yero D, Huedo P, Conchillo-Solé O, Martínez-Servat S, Mamat U, Coves X, Llanas F, Roca I, Vila J, Schaible UE, Daura X, Gibert I. Genetic Variants of the DSF Quorum Sensing System in Stenotrophomonas maltophilia Influence Virulence and Resistance Phenotypes Among Genotypically Diverse Clinical Isolates. Front Microbiol 2020; 11:1160. [PMID: 32582100 PMCID: PMC7283896 DOI: 10.3389/fmicb.2020.01160] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022] Open
Abstract
The pathogenicity of Stenotrophomonas maltophilia is regulated in part by its quorum sensing (QS) system. The main QS signaling molecule in S. maltophilia is known as diffusible signal factor (DSF), and the rpf gene cluster is responsible for its synthesis and perception. Two cluster variants have been previously described, rpf-1 and rpf-2, which differ basically in the conditions under which DSF is produced. Here, correlations between the rpf variant and antibiotic susceptibility, LPS electrophoretic profiles and virulence-related phenotypes were evaluated for a collection of 78 geographically and genetically diverse clinical strains of S. maltophilia. In general there were associations between previously established genogroups and the genetic variant of the rpf cluster. However, only few genotype-phenotype correlations could be observed. Resistance to the β-lactam antibiotics ceftazidime and ticarcillin was associated with strains carrying the rpf-1 variant, whereas strains of variant rpf-2, particularly those of genogroup C, showed higher resistance levels to colistin. Strains of variant rpf-2 were also significantly more virulent to Galleria mellonella larvae than those of rpf-1, most likely due to an increased ability of rpf-2 strains to form biofilms. A comparative genomic analysis revealed the presence of proteins unique to individual genogroups. In particular, the strains of genogroup C share an operon that encodes for a new virulence determinant in S. maltophilia related to the synthesis of an alternative Flp/Tad pilus. Overall, this study establishes a link between the DSF-based QS system and the virulence and resistance phenotypes in this species, and identifies potential high-risk clones circulating in European hospitals.
Collapse
Affiliation(s)
- Daniel Yero
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Pol Huedo
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Oscar Conchillo-Solé
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Sònia Martínez-Servat
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Uwe Mamat
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| | - Xavier Coves
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Ferran Llanas
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Ignasi Roca
- Department of Clinical Microbiology-ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Jordi Vila
- Department of Clinical Microbiology-ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Ulrich E Schaible
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Isidre Gibert
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
5
|
Rabe A, Gesell Salazar M, Michalik S, Fuchs S, Welk A, Kocher T, Völker U. Metaproteomics analysis of microbial diversity of human saliva and tongue dorsum in young healthy individuals. J Oral Microbiol 2019; 11:1654786. [PMID: 31497257 PMCID: PMC6720020 DOI: 10.1080/20002297.2019.1654786] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/29/2022] Open
Abstract
Background: The human oral microbiome influences initiation or progression of diseases like caries or periodontitis. Metaproteomics approaches enable the simultaneous investigation of microbial and host proteins and their interactions to improve understanding of oral diseases. Objective: In this study, we provide a detailed metaproteomics perspective of the composition of salivary and tongue microbial communities of young healthy subjects. Design: Stimulated saliva and tongue samples were collected from 24 healthy volunteers, subjected to shotgun nLC-MS/MS and analyzed by the Trans-Proteomic Pipeline and the Prophane tool. Results: 3,969 bacterial and 1,857 human proteins could be identified from saliva and tongue, respectively. In total, 1,971 bacterial metaproteins and 1,154 human proteins were shared in both sample types. Twice the amount of bacterial metaproteins were uniquely identified for the tongue dorsum compared to saliva. Overall, 107 bacterial genera of seven phyla formed the microbiome. Comparative analysis identified significant functional differences between the microbial biofilm on the tongue and the microbiome of saliva. Conclusion: Even if the microbial communities of saliva and tongue dorsum showed a strong similarity based on identified protein functions and deduced bacterial composition, certain specific characteristics were observed. Both microbiomes exhibit a great diversity with seven genera being most abundant.
Collapse
Affiliation(s)
- Alexander Rabe
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Fuchs
- Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch-Institute, Wernigerode, Germany
| | - Alexander Welk
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
6
|
Palmer M, Venter SN, McTaggart AR, Coetzee MPA, Van Wyk S, Avontuur JR, Beukes CW, Fourie G, Santana QC, Van Der Nest MA, Blom J, Steenkamp ET. The synergistic effect of concatenation in phylogenomics: the case in Pantoea. PeerJ 2019; 7:e6698. [PMID: 31024760 PMCID: PMC6474361 DOI: 10.7717/peerj.6698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/26/2019] [Indexed: 11/29/2022] Open
Abstract
With the increased availability of genome sequences for bacteria, it has become routine practice to construct genome-based phylogenies. These phylogenies have formed the basis for various taxonomic decisions, especially for resolving problematic relationships between taxa. Despite the popularity of concatenating shared genes to obtain well-supported phylogenies, various issues regarding this combined-evidence approach have been raised. These include the introduction of phylogenetic error into datasets, as well as incongruence due to organism-level evolutionary processes, particularly horizontal gene transfer and incomplete lineage sorting. Because of the huge effect that this could have on phylogenies, we evaluated the impact of phylogenetic conflict caused by organism-level evolutionary processes on the established species phylogeny for Pantoea, a member of the Enterobacterales. We explored the presence and distribution of phylogenetic conflict at the gene partition and nucleotide levels, by identifying putative inter-lineage recombination events that might have contributed to such conflict. Furthermore, we determined whether smaller, randomly constructed datasets had sufficient signal to reconstruct the current species tree hypothesis or if they would be overshadowed by phylogenetic incongruence. We found that no individual gene tree was fully congruent with the species phylogeny of Pantoea, although many of the expected nodes were supported by various individual genes across the genome. Evidence of recombination was found across all lineages within Pantoea, and provides support for organism-level evolutionary processes as a potential source of phylogenetic conflict. The phylogenetic signal from at least 70 random genes recovered robust, well-supported phylogenies for the backbone and most species relationships of Pantoea, and was unaffected by phylogenetic conflict within the dataset. Furthermore, despite providing limited resolution among taxa at the level of single gene trees, concatenated analyses of genes that were identified as having no signal resulted in a phylogeny that resembled the species phylogeny of Pantoea. This distribution of signal and noise across the genome presents the ideal situation for phylogenetic inference, as the topology from a ≥70-gene concatenated species phylogeny is not driven by single genes, and our data suggests that this finding may also hold true for smaller datasets. We thus argue that, by using a concatenation-based approach in phylogenomics, one can obtain robust phylogenies due to the synergistic effect of the combined signal obtained from multiple genes.
Collapse
Affiliation(s)
- Marike Palmer
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Alistair R McTaggart
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa.,Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland, Australia
| | - Martin P A Coetzee
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Stephanie Van Wyk
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Juanita R Avontuur
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Chrizelle W Beukes
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Gerda Fourie
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Quentin C Santana
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Magriet A Van Der Nest
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig Universität Gießen, Giessen, Germany
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
7
|
Luo G, Li B, Yang C, Wang Y, Bian X, Li W, Liu F, Huo G. Major Traditional Probiotics: Comparative Genomic Analyses and Roles in Gut Microbiome of Eight Cohorts. Front Microbiol 2019; 10:712. [PMID: 31024492 PMCID: PMC6465617 DOI: 10.3389/fmicb.2019.00712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/21/2019] [Indexed: 12/26/2022] Open
Abstract
Modulating gut microbiota to promote host health is well recognized. Therefore, people consume dietary products containing traditional probiotics in wishing to improve their health, and they need more research-based advices on how to select products with suitable probiotic species. Probiotic designers are sometimes confused about how to design precision products for different consumers by taking advantages of different probiotic species’ strengths. Additionally, large-scale analyses on traditional probiotic complementarity potentials and their roles in gut microbiome related to common diseases are not well understood. Here, we comprehensively analyzed 444 genomes of major traditional probiotic (sub) species (MTPS, n = 15) by combining one newly sequenced genome with all of the public NCBI-available MTPS-related genomes. The public human fecal metagenomic data (n = 1,815) of eight cohorts were used to evaluate the roles of MTPS, compared to other main gut bacteria, in disease association by examining the species enrichment direction in disease group or the control group. Our work provided a comprehensive genetic landscape and complementarity relations for MTPS and shed light on personalized probiotic supplements for consumers with different health status and the necessity that researchers and manufactures could explore novel probiotics as well as traditional ones.
Collapse
Affiliation(s)
- Guangwen Luo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Cailu Yang
- Department of Ultrasound, Maternal and Child Health Hospital of Dapeng New District, Shenzhen, China
| | - Yutang Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xin Bian
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Wan Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
8
|
Skutkova H, Maderankova D, Sedlar K, Jugas R, Vitek M. A degeneration-reducing criterion for optimal digital mapping of genetic codes. Comput Struct Biotechnol J 2019; 17:406-414. [PMID: 30984363 PMCID: PMC6444178 DOI: 10.1016/j.csbj.2019.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/07/2019] [Accepted: 03/15/2019] [Indexed: 01/08/2023] Open
Abstract
Bioinformatics may seem to be a scientific field processing primarily large string datasets, as nucleotides and amino acids are represented with dedicated characters. On the other hand, many computational tasks that bioinformatics challenges are mathematical problems understandable as operations with digits. In fact, many computational tasks are solved this way in the background. One of the most widely used digital representations is mapping of nucleotides and amino acids with integers 0–3 and 0–20, respectively. The limitation of this mapping occurs when the digital signal of nucleotides has to be translated into a digital signal of amino acids as the genetic code is degenerated. This causes non-monotonies in a mapping function. Although map for reducing this undesirable effect has already been proposed, it is defined theoretically and for standard genetic codes only. In this study, we derived a novel optimal criterion for reducing the influence of degeneration by utilizing a large dataset of real sequences with various genetic codes. As a result, we proposed a new robust global optimal map suitable for any genetic code as well as specialized optimal maps for particular genetic codes. Optimization of 1D numerical representation for DNA to protein translation. Reducing genetic code degeneracy in numerical representation of DNA sequences. More robust numerical conversion used for genomic-proteomic analysis.
Collapse
Affiliation(s)
- Helena Skutkova
- Department of Biomedical Engineering, Brno University of Technology, Technicka 12, 616 00 Brno, Czech republic
| | - Denisa Maderankova
- Department of Biomedical Engineering, Brno University of Technology, Technicka 12, 616 00 Brno, Czech republic
| | - Karel Sedlar
- Department of Biomedical Engineering, Brno University of Technology, Technicka 12, 616 00 Brno, Czech republic
| | - Robin Jugas
- Department of Biomedical Engineering, Brno University of Technology, Technicka 12, 616 00 Brno, Czech republic
| | - Martin Vitek
- Department of Biomedical Engineering, Brno University of Technology, Technicka 12, 616 00 Brno, Czech republic
| |
Collapse
|
9
|
Zou Y, Xue W, Luo G, Deng Z, Qin P, Guo R, Sun H, Xia Y, Liang S, Dai Y, Wan D, Jiang R, Su L, Feng Q, Jie Z, Guo T, Xia Z, Liu C, Yu J, Lin Y, Tang S, Huo G, Xu X, Hou Y, Liu X, Wang J, Yang H, Kristiansen K, Li J, Jia H, Xiao L. 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat Biotechnol 2019; 37:179-185. [PMID: 30718868 PMCID: PMC6784896 DOI: 10.1038/s41587-018-0008-8] [Citation(s) in RCA: 346] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/13/2018] [Indexed: 12/22/2022]
Abstract
Reference genomes are essential for metagenomic analyses and functional characterization of the human gut microbiota. We present the Culturable Genome Reference (CGR), a collection of 1,520 nonredundant, high-quality draft genomes generated from >6,000 bacteria cultivated from fecal samples of healthy humans. Of the 1,520 genomes, which were chosen to cover all major bacterial phyla and genera in the human gut, 264 are not represented in existing reference genome catalogs. We show that this increase in the number of reference bacterial genomes improves the rate of mapping metagenomic sequencing reads from 50% to >70%, enabling higher-resolution descriptions of the human gut microbiome. We use the CGR genomes to annotate functions of 338 bacterial species, showing the utility of this resource for functional studies. We also carry out a pan-genome analysis of 38 important human gut species, which reveals the diversity and specificity of functional enrichment between their core and dispensable genomes. A resource of >1,500 bacterial reference genomes sheds light on the human gut microbiome.
Collapse
Affiliation(s)
- Yuanqiang Zou
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Wenbin Xue
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Guangwen Luo
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China.,Key Laboratory of Dairy Science, College of Food Sciences, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ziqing Deng
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Panpan Qin
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Ruijin Guo
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Haipeng Sun
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Yan Xia
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Suisha Liang
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China.,Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Ying Dai
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Daiwei Wan
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Rongrong Jiang
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Lili Su
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Qiang Feng
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Zhuye Jie
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Tongkun Guo
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Zhongkui Xia
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Chuan Liu
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China.,Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Jinghong Yu
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Yuxiang Lin
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Shanmei Tang
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Guicheng Huo
- Key Laboratory of Dairy Science, College of Food Sciences, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Yong Hou
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Xin Liu
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China.,BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, China.,James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China.,James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Qingdao-Europe Advanced Institute for Life Sciences, Qingdao, China
| | - Junhua Li
- BGI-Shenzhen, Shenzhen, China. .,China National Genebank, BGI-Shenzhen, Shenzhen, China. .,School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, China.
| | - Huijue Jia
- BGI-Shenzhen, Shenzhen, China. .,China National Genebank, BGI-Shenzhen, Shenzhen, China. .,Macau University of Science and Technology, Taipa, Macau, China.
| | - Liang Xiao
- BGI-Shenzhen, Shenzhen, China. .,China National Genebank, BGI-Shenzhen, Shenzhen, China. .,Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China. .,Qingdao-Europe Advanced Institute for Life Sciences, Qingdao, China. .,Department of Digestive Diseases, Huashan Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Kushner IK, Clair G, Purvine SO, Lee JY, Adkins JN, Payne SH. Individual Variability of Protein Expression in Human Tissues. J Proteome Res 2018; 17:3914-3922. [PMID: 30300549 DOI: 10.1021/acs.jproteome.8b00580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human tissues are known to exhibit interindividual variability, but a deeper understanding of the different factors affecting protein expression is necessary to further apply this knowledge. Our goal was to explore the proteomic variability between individuals as well as between healthy and diseased samples, and to test the efficacy of machine learning classifiers. In order to investigate whether disparate proteomics data sets may be combined, we performed a retrospective analysis of proteomics data from 9 different human tissues. These data sets represent several different sample prep methods, mass spectrometry instruments, and tissue health. Using these data, we examined interindividual and intertissue variability in peptide expression, and analyzed the methods required to build accurate tissue classifiers. We also evaluated the limits of tissue classification by downsampling the peptide data to simulate situations where less data is available, such as clinical biopsies, laser capture microdissection or potentially single-cell proteomics. Our findings reveal the strong potential for utilizing proteomics data to build robust tissue classifiers, which has many prospective clinical applications for evaluating the applicability of model clinical systems.
Collapse
Affiliation(s)
- Irena K Kushner
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99336 , United States
| | - Geremy Clair
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99336 , United States
| | - Samuel Owen Purvine
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99336 , United States
| | - Joon-Yong Lee
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99336 , United States
| | - Joshua N Adkins
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99336 , United States
| | - Samuel H Payne
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99336 , United States
| |
Collapse
|
11
|
Capelli R, Peri C, Villa R, Nithichanon A, Conchillo-Solé O, Yero D, Gagni P, Chiari M, Lertmemongkolchai G, Cretich M, Daura X, Bolognesi M, Colombo G, Gourlay LJ. BPSL1626: Reverse and Structural Vaccinology Reveal a Novel Candidate for Vaccine Design against Burkholderia pseudomallei. Antibodies (Basel) 2018; 7:antib7030026. [PMID: 31544878 PMCID: PMC6640674 DOI: 10.3390/antib7030026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 11/24/2022] Open
Abstract
Due to significant advances in computational biology, protein prediction, together with antigen and epitope design, have rapidly moved from conventional methods, based on experimental approaches, to in silico-based bioinformatics methods. In this context, we report a reverse vaccinology study that identified a panel of 104 candidate antigens from the Gram-negative bacterial pathogen Burkholderia pseudomallei, which is responsible for the disease melioidosis. B. pseudomallei can cause fatal sepsis in endemic populations in the tropical regions of the world and treatment with antibiotics is mostly ineffective. With the aim of identifying potential vaccine candidates, we report the experimental validation of predicted antigen and type I fimbrial subunit, BPSL1626, which we show is able to recognize and bind human antibodies from the sera of Burkholderia infected patients and to stimulate T-lymphocytes in vitro. The prerequisite for a melioidosis vaccine, in fact, is that both antibody- and cell-mediated immune responses must be triggered. In order to reveal potential antigenic regions of the protein that may aid immunogen re-design, we also report the crystal structure of BPSL1626 at 1.9 Å resolution on which structure-based epitope predictions were based. Overall, our data suggest that BPSL1626 and three epitope regions here-identified can represent viable candidates as potential antigenic molecules.
Collapse
Affiliation(s)
- Riccardo Capelli
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milano, Italy.
- Center for Complexity and Biosystems and Dipartimento di Fisica, Università degli Studi di Milano and INFN, 20133 Milano, Italy.
- Computational Biomedicine Section, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9 Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Claudio Peri
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milano, Italy.
| | - Riccardo Villa
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| | - Arnone Nithichanon
- Center for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Oscar Conchillo-Solé
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain.
| | - Daniel Yero
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain.
| | - Paola Gagni
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milano, Italy.
| | - Marcella Chiari
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milano, Italy.
| | - Ganjana Lertmemongkolchai
- Center for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Marina Cretich
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milano, Italy.
| | - Xavier Daura
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain.
| | - Martino Bolognesi
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Cryo Electron-Microscopy Laboratory, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milano, Italy.
- Department of Chemistry, Università di Pavia, 27100 Pavia, Italy.
| | - Louise J Gourlay
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
12
|
Palmer M, Steenkamp ET, Coetzee MPA, Avontuur JR, Chan WY, van Zyl E, Blom J, Venter SN. Mixta gen. nov., a new genus in the Erwiniaceae. Int J Syst Evol Microbiol 2018; 68:1396-1407. [DOI: 10.1099/ijsem.0.002540] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Marike Palmer
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emma T. Steenkamp
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Martin P. A. Coetzee
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Juanita R. Avontuur
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Wai-Yin Chan
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Biotechnology Platform (BTP), Agricultural Research Council Onderstepoort Veterinary Institute (ARC-OVI), Onderstepoort, South Africa
| | - Elritha van Zyl
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Stephanus N. Venter
- DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
13
|
Zeiner CA, Purvine SO, Zink EM, Paša-Tolić L, Chaput DL, Haridas S, Wu S, LaButti K, Grigoriev IV, Henrissat B, Santelli CM, Hansel CM. Comparative Analysis of Secretome Profiles of Manganese(II)-Oxidizing Ascomycete Fungi. PLoS One 2016; 11:e0157844. [PMID: 27434633 PMCID: PMC4951024 DOI: 10.1371/journal.pone.0157844] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/06/2016] [Indexed: 01/08/2023] Open
Abstract
Fungal secretomes contain a wide range of hydrolytic and oxidative enzymes, including cellulases, hemicellulases, pectinases, and lignin-degrading accessory enzymes, that synergistically drive litter decomposition in the environment. While secretome studies of model organisms such as Phanerochaete chrysosporium and Aspergillus species have greatly expanded our knowledge of these enzymes, few have extended secretome characterization to environmental isolates or conducted side-by-side comparisons of diverse species. Thus, the mechanisms of carbon degradation by many ubiquitous soil fungi remain poorly understood. Here we use a combination of LC-MS/MS, genomic, and bioinformatic analyses to characterize and compare the protein composition of the secretomes of four recently isolated, cosmopolitan, Mn(II)-oxidizing Ascomycetes (Alternaria alternata SRC1lrK2f, Stagonospora sp. SRC1lsM3a, Pyrenochaeta sp. DS3sAY3a, and Paraconiothyrium sporulosum AP3s5-JAC2a). We demonstrate that the organisms produce a rich yet functionally similar suite of extracellular enzymes, with species-specific differences in secretome composition arising from unique amino acid sequences rather than overall protein function. Furthermore, we identify not only a wide range of carbohydrate-active enzymes that can directly oxidize recalcitrant carbon, but also an impressive suite of redox-active accessory enzymes that suggests a role for Fenton-based hydroxyl radical formation in indirect, non-specific lignocellulose attack. Our findings highlight the diverse oxidative capacity of these environmental isolates and enhance our understanding of the role of filamentous Ascomycetes in carbon turnover in the environment.
Collapse
Affiliation(s)
- Carolyn A. Zeiner
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Samuel O. Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Erika M. Zink
- Biological Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Dominique L. Chaput
- Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of America
| | - Sajeet Haridas
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Si Wu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, UMR7257, Centre National de la Recherche Scientifique and Aix-Marseille Université, 13288 Marseille Cedex 9, France
- Department of Biological Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Cara M. Santelli
- Department of Earth Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Colleen M. Hansel
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Broadbent JA, Broszczak DA, Tennakoon IUK, Huygens F. Pan-proteomics, a concept for unifying quantitative proteome measurements when comparing closely-related bacterial strains. Expert Rev Proteomics 2016; 13:355-65. [PMID: 26889693 DOI: 10.1586/14789450.2016.1155986] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The comparison of proteomes between genetically heterogeneous bacterial strains may offer valuable insights into physiological diversity and function, particularly where such variation aids in the survival and virulence of clinically-relevant strains. However, reports of such comparisons frequently fail to account for underlying genetic variance. As a consequence, the current knowledge regarding bacterial physiological diversity at the protein level may be incomplete or inaccurate. To address this, greater consideration must be given to the impact of genetic heterogeneity on proteome comparisons. This may be possible through the use of pan-proteomics, an analytical concept that permits the ability to qualitatively and quantitatively compare the proteomes of genetically heterogeneous organisms. Limited examples of this emerging technology highlight currently unmet analytical challenges. In this article we define pan-proteomics, where its value lies in microbiology, and discuss the technical considerations critical to its successful execution and potential future application.
Collapse
Affiliation(s)
- James A Broadbent
- a Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Australia.,b Molecular Microbiological Pathogenesis Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Australia
| | - Daniel A Broszczak
- a Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Australia
| | - Imalka U K Tennakoon
- b Molecular Microbiological Pathogenesis Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Australia
| | - Flavia Huygens
- b Molecular Microbiological Pathogenesis Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Australia
| |
Collapse
|
15
|
Klima CL, Cook SR, Zaheer R, Laing C, Gannon VP, Xu Y, Rasmussen J, Potter A, Hendrick S, Alexander TW, McAllister TA. Comparative Genomic Analysis of Mannheimia haemolytica from Bovine Sources. PLoS One 2016; 11:e0149520. [PMID: 26926339 PMCID: PMC4771134 DOI: 10.1371/journal.pone.0149520] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/02/2016] [Indexed: 11/18/2022] Open
Abstract
Bovine respiratory disease is a common health problem in beef production. The primary bacterial agent involved, Mannheimia haemolytica, is a target for antimicrobial therapy and at risk for associated antimicrobial resistance development. The role of M. haemolytica in pathogenesis is linked to serotype with serotypes 1 (S1) and 6 (S6) isolated from pneumonic lesions and serotype 2 (S2) found in the upper respiratory tract of healthy animals. Here, we sequenced the genomes of 11 strains of M. haemolytica, representing all three serotypes and performed comparative genomics analysis to identify genetic features that may contribute to pathogenesis. Possible virulence associated genes were identified within 14 distinct prophage, including a periplasmic chaperone, a lipoprotein, peptidoglycan glycosyltransferase and a stress response protein. Prophage content ranged from 2–8 per genome, but was higher in S1 and S6 strains. A type I-C CRISPR-Cas system was identified in each strain with spacer diversity and organization conserved among serotypes. The majority of spacers occur in S1 and S6 strains and originate from phage suggesting that serotypes 1 and 6 may be more resistant to phage predation. However, two spacers complementary to the host chromosome targeting a UDP-N-acetylglucosamine 2-epimerase and a glycosyl transferases group 1 gene are present in S1 and S6 strains only indicating these serotypes may employ CRISPR-Cas to regulate gene expression to avoid host immune responses or enhance adhesion during infection. Integrative conjugative elements are present in nine of the eleven genomes. Three of these harbor extensive multi-drug resistance cassettes encoding resistance against the majority of drugs used to combat infection in beef cattle, including macrolides and tetracyclines used in human medicine. The findings here identify key features that are likely contributing to serotype related pathogenesis and specific targets for vaccine design intended to reduce the dependency on antibiotics to treat respiratory infection in cattle.
Collapse
Affiliation(s)
- Cassidy L. Klima
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
- Department of Large Animal Clinial Science, Western Colledge of Verterinary Medicine, University of Saskatoon, Saskatoon, Canada
| | - Shaun R. Cook
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
| | - Rahat Zaheer
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
| | - Chad Laing
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Lethbridge, Alberta, Canada
| | - Vick P. Gannon
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Lethbridge, Alberta, Canada
| | - Yong Xu
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jay Rasmussen
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
| | - Andrew Potter
- Vaccine and Infectious Disease Organization, Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Steve Hendrick
- Department of Large Animal Clinial Science, Western Colledge of Verterinary Medicine, University of Saskatoon, Saskatoon, Canada
| | - Trevor W. Alexander
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
- * E-mail: (TAM); (TWA)
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
- * E-mail: (TAM); (TWA)
| |
Collapse
|
16
|
Otwell AE, Callister SJ, Zink EM, Smith RD, Richardson RE. Comparative Proteomic Analysis of Desulfotomaculum reducens MI-1: Insights into the Metabolic Versatility of a Gram-Positive Sulfate- and Metal-Reducing Bacterium. Front Microbiol 2016; 7:191. [PMID: 26925055 PMCID: PMC4759654 DOI: 10.3389/fmicb.2016.00191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 02/03/2016] [Indexed: 11/30/2022] Open
Abstract
The proteomes of the metabolically versatile and poorly characterized Gram-positive bacterium Desulfotomaculum reducens MI-1 were compared across four cultivation conditions including sulfate reduction, soluble Fe(III) reduction, insoluble Fe(III) reduction, and pyruvate fermentation. Collectively across conditions, we observed at high confidence ~38% of genome-encoded proteins. Here, we focus on proteins that display significant differential abundance on conditions tested. To the best of our knowledge, this is the first full-proteome study focused on a Gram-positive organism cultivated either on sulfate or metal-reducing conditions. Several proteins with uncharacterized function encoded within heterodisulfide reductase (hdr)-containing loci were upregulated on either sulfate (Dred_0633-4, Dred_0689-90, and Dred_1325-30) or Fe(III)-citrate-reducing conditions (Dred_0432-3 and Dred_1778-84). Two of these hdr-containing loci display homology to recently described flavin-based electron bifurcation (FBEB) pathways (Dred_1325-30 and Dred_1778-84). Additionally, we propose that a cluster of proteins, which is homologous to a described FBEB lactate dehydrogenase (LDH) complex, is performing lactate oxidation in D. reducens (Dred_0367-9). Analysis of the putative sulfate reduction machinery in D. reducens revealed that most of these proteins are constitutively expressed across cultivation conditions tested. In addition, peptides from the single multiheme c-type cytochrome (MHC) in the genome were exclusively observed on the insoluble Fe(III) condition, suggesting that this MHC may play a role in reduction of insoluble metals.
Collapse
Affiliation(s)
- Anne E Otwell
- Department of Microbiology, Cornell University Ithaca, NY, USA
| | - Stephen J Callister
- Pacific Northwest National Laboratory, Biological Sciences Division Richland, WA, USA
| | - Erika M Zink
- Pacific Northwest National Laboratory, Biological Sciences Division Richland, WA, USA
| | - Richard D Smith
- Pacific Northwest National Laboratory, Biological Sciences Division Richland, WA, USA
| | - Ruth E Richardson
- Department of Civil and Environmental Engineering, Cornell University Ithaca, NY, USA
| |
Collapse
|
17
|
The Pacific Northwest National Laboratory library of bacterial and archaeal proteomic biodiversity. Sci Data 2015; 2:150041. [PMID: 26306205 PMCID: PMC4540001 DOI: 10.1038/sdata.2015.41] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/22/2015] [Indexed: 01/09/2023] Open
Abstract
This Data Descriptor announces the submission to public repositories of the PNNL Biodiversity Library, a large collection of global proteomics data for 112 bacterial and archaeal organisms. The data comprises 35,162 tandem mass spectrometry (MS/MS) datasets from ~10 years of research. All data has been searched, annotated and organized in a consistent manner to promote reuse by the community. Protein identifications were cross-referenced with KEGG functional annotations which allows for pathway oriented investigation. We present the data as a freely available community resource. A variety of data re-use options are described for computational modelling, proteomics assay design and bioengineering. Instrument data and analysis files are available at ProteomeXchange via the MassIVE partner repository under the identifiers PXD001860 and MSV000079053.
Collapse
|
18
|
Abstract
The concept of the minimal cell has fascinated scientists for a long time, from both fundamental and applied points of view. This broad concept encompasses extreme reductions of genomes, the last universal common ancestor (LUCA), the creation of semiartificial cells, and the design of protocells and chassis cells. Here we review these different areas of research and identify common and complementary aspects of each one. We focus on systems biology, a discipline that is greatly facilitating the classical top-down and bottom-up approaches toward minimal cells. In addition, we also review the so-called middle-out approach and its contributions to the field with mathematical and computational models. Owing to the advances in genomics technologies, much of the work in this area has been centered on minimal genomes, or rather minimal gene sets, required to sustain life. Nevertheless, a fundamental expansion has been taking place in the last few years wherein the minimal gene set is viewed as a backbone of a more complex system. Complementing genomics, progress is being made in understanding the system-wide properties at the levels of the transcriptome, proteome, and metabolome. Network modeling approaches are enabling the integration of these different omics data sets toward an understanding of the complex molecular pathways connecting genotype to phenotype. We review key concepts central to the mapping and modeling of this complexity, which is at the heart of research on minimal cells. Finally, we discuss the distinction between minimizing the number of cellular components and minimizing cellular complexity, toward an improved understanding and utilization of minimal and simpler cells.
Collapse
|
19
|
Almeida M, Hébert A, Abraham AL, Rasmussen S, Monnet C, Pons N, Delbès C, Loux V, Batto JM, Leonard P, Kennedy S, Ehrlich SD, Pop M, Montel MC, Irlinger F, Renault P. Construction of a dairy microbial genome catalog opens new perspectives for the metagenomic analysis of dairy fermented products. BMC Genomics 2014; 15:1101. [PMID: 25496341 PMCID: PMC4320590 DOI: 10.1186/1471-2164-15-1101] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 12/04/2014] [Indexed: 11/10/2022] Open
Abstract
Background Microbial communities of traditional cheeses are complex and insufficiently characterized. The origin, safety and functional role in cheese making of these microbial communities are still not well understood. Metagenomic analysis of these communities by high throughput shotgun sequencing is a promising approach to characterize their genomic and functional profiles. Such analyses, however, critically depend on the availability of appropriate reference genome databases against which the sequencing reads can be aligned. Results We built a reference genome catalog suitable for short read metagenomic analysis using a low-cost sequencing strategy. We selected 142 bacteria isolated from dairy products belonging to 137 different species and 67 genera, and succeeded to reconstruct the draft genome of 117 of them at a standard or high quality level, including isolates from the genera Kluyvera, Luteococcus and Marinilactibacillus, still missing from public database. To demonstrate the potential of this catalog, we analysed the microbial composition of the surface of two smear cheeses and one blue-veined cheese, and showed that a significant part of the microbiota of these traditional cheeses was composed of microorganisms newly sequenced in our study. Conclusions Our study provides data, which combined with publicly available genome references, represents the most expansive catalog to date of cheese-associated bacteria. Using this extended dairy catalog, we revealed the presence in traditional cheese of dominant microorganisms not deliberately inoculated, mainly Gram-negative genera such as Pseudoalteromonas haloplanktis or Psychrobacter immobilis, that may contribute to the characteristics of cheese produced through traditional methods. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1101) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Pierre Renault
- Institut National de la Recherche Agronomique, UMR 1319 MICALIS, 78352 Jouy-en-Josas, France.
| |
Collapse
|
20
|
Genomic encyclopedia of type strains of the genus Bifidobacterium. Appl Environ Microbiol 2014; 80:6290-302. [PMID: 25085493 DOI: 10.1128/aem.02308-14] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bifidobacteria represent one of the dominant microbial groups that are present in the gut of various animals, being particularly prevalent during the suckling stage of life of humans and other mammals. However, the overall genome structure of this group of microorganisms remains largely unexplored. Here, we sequenced the genomes of 42 representative (sub)species across the Bifidobacterium genus and used this information to explore the overall genetic picture of this bacterial group. Furthermore, the genomic data described here were used to reconstruct the evolutionary development of the Bifidobacterium genus. This reconstruction suggests that its evolution was substantially influenced by genetic adaptations to obtain access to glycans, thereby representing a common and potent evolutionary force in shaping bifidobacterial genomes.
Collapse
|
21
|
Aryal UK, Callister SJ, McMahon BH, McCue LA, Brown J, Stöckel J, Liberton M, Mishra S, Zhang X, Nicora CD, Angel TE, Koppenaal DW, Smith RD, Pakrasi HB, Sherman LA. Proteomic Profiles of Five Strains of Oxygenic Photosynthetic Cyanobacteria of the Genus Cyanothece. J Proteome Res 2014; 13:3262-76. [DOI: 10.1021/pr5000889] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Uma K. Aryal
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Stephen J. Callister
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | - Lee-Ann McCue
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Joseph Brown
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jana Stöckel
- Department
of Biology, Washington University, St. Louis, Missouri 63130, United States
- MOgene Green Chemicals LC, St. Louis, Missouri 63132, United States
| | - Michelle Liberton
- Department
of Biology, Washington University, St. Louis, Missouri 63130, United States
| | - Sujata Mishra
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaohui Zhang
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carrie D. Nicora
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Thomas E. Angel
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Kinemed, Inc., Horton Street, Emeryville, California 94608, United States
| | - David W. Koppenaal
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Richard D. Smith
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Himadri B. Pakrasi
- Department
of Biology, Washington University, St. Louis, Missouri 63130, United States
| | - Louis A. Sherman
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
22
|
Curtis DS, Phillips AR, Callister SJ, Conlan S, McCue LA. SPOCS: software for predicting and visualizing orthology/paralogy relationships among genomes. Bioinformatics 2013; 29:2641-2. [PMID: 23956303 DOI: 10.1093/bioinformatics/btt454] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
SUMMARY At the rate that prokaryotic genomes can now be generated, comparative genomics studies require a flexible method for quickly and accurately predicting orthologs among the rapidly changing set of genomes available. SPOCS implements a graph-based ortholog prediction method to generate a simple tab-delimited table of orthologs and in addition, html files that provide a visualization of the predicted ortholog/paralog relationships to which gene/protein expression metadata may be overlaid. AVAILABILITY AND IMPLEMENTATION A SPOCS web application is freely available at http://cbb.pnnl.gov/portal/tools/spocs.html. Source code for Linux systems is also freely available under an open source license at http://cbb.pnnl.gov/portal/software/spocs.html; the Boost C++ libraries and BLAST are required.
Collapse
Affiliation(s)
- Darren S Curtis
- Computational & Statistical Analytics Division, Pacific Northwest National Laboratory, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA, Genetics and Molecular Biology Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA and Computational Sciences & Mathematics Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | |
Collapse
|
23
|
Larson MA, Ding SJ, Slater SR, Hanway A, Bartling AM, Fey PD, Lockridge O, Francesconi SC, Hinrichs SH. Application of chromosomal DNA and protein targeting for the identification ofYersinia pestis. Proteomics Clin Appl 2013; 7:416-23. [DOI: 10.1002/prca.201200092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/12/2012] [Accepted: 12/01/2012] [Indexed: 01/05/2023]
Affiliation(s)
- Marilynn A. Larson
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha; NE; USA
| | - Shi-Jian Ding
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha; NE; USA
| | - Shawn R. Slater
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha; NE; USA
| | - Anna Hanway
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha; NE; USA
| | - Amanda M. Bartling
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha; NE; USA
| | - Paul D. Fey
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha; NE; USA
| | - Oksana Lockridge
- Eppley Institute; University of Nebraska Medical Center; Omaha; NE; USA
| | | | - Steven H. Hinrichs
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha; NE; USA
| |
Collapse
|
24
|
Wilkins MJ, Wrighton KC, Nicora CD, Williams KH, McCue LA, Handley KM, Miller CS, Giloteaux L, Montgomery AP, Lovley DR, Banfield JF, Long PE, Lipton MS. Fluctuations in species-level protein expression occur during element and nutrient cycling in the subsurface. PLoS One 2013; 8:e57819. [PMID: 23472107 PMCID: PMC3589452 DOI: 10.1371/journal.pone.0057819] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/26/2013] [Indexed: 11/18/2022] Open
Abstract
While microbial activities in environmental systems play a key role in the utilization and cycling of essential elements and compounds, microbial activity and growth frequently fluctuates in response to environmental stimuli and perturbations. To investigate these fluctuations within a saturated aquifer system, we monitored a carbon-stimulated in situ Geobacter population while iron reduction was occurring, using 16S rRNA abundances and high-resolution tandem mass spectrometry proteome measurements. Following carbon amendment, 16S rRNA analysis of temporally separated samples revealed the rapid enrichment of Geobacter-like environmental strains with strong similarity to G. bemidjiensis. Tandem mass spectrometry proteomics measurements suggest high carbon flux through Geobacter respiratory pathways, and the synthesis of anapleurotic four carbon compounds from acetyl-CoA via pyruvate ferredoxin oxidoreductase activity. Across a 40-day period where Fe(III) reduction was occurring, fluctuations in protein expression reflected changes in anabolic versus catabolic reactions, with increased levels of biosynthesis occurring soon after acetate arrival in the aquifer. In addition, localized shifts in nutrient limitation were inferred based on expression of nitrogenase enzymes and phosphate uptake proteins. These temporal data offer the first example of differing microbial protein expression associated with changing geochemical conditions in a subsurface environment.
Collapse
Affiliation(s)
- Michael J Wilkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Meysman P, Sánchez-Rodríguez A, Fu Q, Marchal K, Engelen K. Expression divergence between Escherichia coli and Salmonella enterica serovar Typhimurium reflects their lifestyles. Mol Biol Evol 2013; 30:1302-14. [PMID: 23427276 PMCID: PMC3649669 DOI: 10.1093/molbev/mst029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Escherichia coli K12 is a commensal bacteria and one of the best-studied model organisms. Salmonella enterica serovar Typhimurium, on the other hand, is a facultative intracellular pathogen. These two prokaryotic species can be considered related phylogenetically, and they share a large amount of their genetic material, which is commonly termed the "core genome." Despite their shared core genome, both species display very different lifestyles, and it is unclear to what extent the core genome, apart from the species-specific genes, plays a role in this lifestyle divergence. In this study, we focus on the differences in expression domains for the orthologous genes in E. coli and S. Typhimurium. The iterative comparison of coexpression methodology was used on large expression compendia of both species to uncover the conservation and divergence of gene expression. We found that gene expression conservation occurs mostly independently from amino acid similarity. According to our estimates, at least more than one quarter of the orthologous genes has a different expression domain in E. coli than in S. Typhimurium. Genes involved with key cellular processes are most likely to have conserved their expression domains, whereas genes showing diverged expression are associated with metabolic processes that, although present in both species, are regulated differently. The expression domains of the shared "core" genome of E. coli and S. Typhimurium, consisting of highly conserved orthologs, have been tuned to help accommodate the differences in lifestyle and the pathogenic potential of Salmonella.
Collapse
Affiliation(s)
- Pieter Meysman
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
26
|
Pasternak Z, Pietrokovski S, Rotem O, Gophna U, Lurie-Weinberger MN, Jurkevitch E. By their genes ye shall know them: genomic signatures of predatory bacteria. ISME JOURNAL 2012. [PMID: 23190728 DOI: 10.1038/ismej.2012.149] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Predatory bacteria are taxonomically disparate, exhibit diverse predatory strategies and are widely distributed in varied environments. To date, their predatory phenotypes cannot be discerned in genome sequence data thereby limiting our understanding of bacterial predation, and of its impact in nature. Here, we define the 'predatome,' that is, sets of protein families that reflect the phenotypes of predatory bacteria. The proteomes of all sequenced 11 predatory bacteria, including two de novo sequenced genomes, and 19 non-predatory bacteria from across the phylogenetic and ecological landscapes were compared. Protein families discriminating between the two groups were identified and quantified, demonstrating that differences in the proteomes of predatory and non-predatory bacteria are large and significant. This analysis allows predictions to be made, as we show by confirming from genome data an over-looked bacterial predator. The predatome exhibits deficiencies in riboflavin and amino acids biosynthesis, suggesting that predators obtain them from their prey. In contrast, these genomes are highly enriched in adhesins, proteases and particular metabolic proteins, used for binding to, processing and consuming prey, respectively. Strikingly, predators and non-predators differ in isoprenoid biosynthesis: predators use the mevalonate pathway, whereas non-predators, like almost all bacteria, use the DOXP pathway. By defining predatory signatures in bacterial genomes, the predatory potential they encode can be uncovered, filling an essential gap for measuring bacterial predation in nature. Moreover, we suggest that full-genome proteomic comparisons are applicable to other ecological interactions between microbes, and provide a convenient and rational tool for the functional classification of bacteria.
Collapse
Affiliation(s)
- Zohar Pasternak
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot, Israel.
| | | | | | | | | | | |
Collapse
|
27
|
Leprince A, van Passel MWJ, dos Santos VAPM. Streamlining genomes: toward the generation of simplified and stabilized microbial systems. Curr Opin Biotechnol 2012; 23:651-8. [DOI: 10.1016/j.copbio.2012.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/01/2012] [Accepted: 05/02/2012] [Indexed: 02/07/2023]
|
28
|
Reyes LH, Winkler J, Kao KC. Visualizing evolution in real-time method for strain engineering. Front Microbiol 2012; 3:198. [PMID: 22661973 PMCID: PMC3362087 DOI: 10.3389/fmicb.2012.00198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 05/14/2012] [Indexed: 11/13/2022] Open
Abstract
The adaptive landscape for an industrially relevant phenotype is determined by the effects of the genetic determinants on the fitness of the microbial system. Identifying the underlying adaptive landscape for a particular phenotype of interest will greatly enhance our abilities to engineer more robust microbial strains. Visualizing evolution in real-time (VERT) is a recently developed method based on in vitro adaptive evolution that facilitates the identification of fitter mutants throughout the course of evolution. Combined with high-throughput genomic tools, VERT can greatly enhance the mapping of adaptive landscapes of industrially relevant phenotypes in microbial systems, thereby expanding our knowledge on the parameters that can be used for strain engineering.
Collapse
Affiliation(s)
| | | | - Katy C. Kao
- Department of Chemical Engineering, Texas A&M University, College Station,TX, USA
| |
Collapse
|
29
|
Schrimpe-Rutledge AC, Jones MB, Chauhan S, Purvine SO, Sanford JA, Monroe ME, Brewer HM, Payne SH, Ansong C, Frank BC, Smith RD, Peterson SN, Motin VL, Adkins JN. Comparative omics-driven genome annotation refinement: application across Yersiniae. PLoS One 2012; 7:e33903. [PMID: 22479471 PMCID: PMC3313959 DOI: 10.1371/journal.pone.0033903] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 02/19/2012] [Indexed: 02/03/2023] Open
Abstract
Genome sequencing continues to be a rapidly evolving technology, yet most downstream aspects of genome annotation pipelines remain relatively stable or are even being abandoned. The annotation process is now performed almost exclusively in an automated fashion to balance the large number of sequences generated. One possible way of reducing errors inherent to automated computational annotations is to apply data from omics measurements (i.e. transcriptional and proteomic) to the un-annotated genome with a proteogenomic-based approach. Here, the concept of annotation refinement has been extended to include a comparative assessment of genomes across closely related species. Transcriptomic and proteomic data derived from highly similar pathogenic Yersiniae (Y. pestis CO92, Y. pestis Pestoides F, and Y. pseudotuberculosis PB1/+) was used to demonstrate a comprehensive comparative omic-based annotation methodology. Peptide and oligo measurements experimentally validated the expression of nearly 40% of each strain's predicted proteome and revealed the identification of 28 novel and 68 incorrect (i.e., observed frameshifts, extended start sites, and translated pseudogenes) protein-coding sequences within the three current genome annotations. Gene loss is presumed to play a major role in Y. pestis acquiring its niche as a virulent pathogen, thus the discovery of many translated pseudogenes, including the insertion-ablated argD, underscores a need for functional analyses to investigate hypotheses related to divergence. Refinements included the discovery of a seemingly essential ribosomal protein, several virulence-associated factors, a transcriptional regulator, and many hypothetical proteins that were missed during annotation.
Collapse
Affiliation(s)
| | - Marcus B. Jones
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Sadhana Chauhan
- University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Samuel O. Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - James A. Sanford
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Matthew E. Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Heather M. Brewer
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Samuel H. Payne
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Bryan C. Frank
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Scott N. Peterson
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Vladimir L. Motin
- University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Joshua N. Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- * E-mail:
| |
Collapse
|
30
|
Haft DH, Varghese N. GlyGly-CTERM and rhombosortase: a C-terminal protein processing signal in a many-to-one pairing with a rhomboid family intramembrane serine protease. PLoS One 2011; 6:e28886. [PMID: 22194940 PMCID: PMC3237569 DOI: 10.1371/journal.pone.0028886] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/16/2011] [Indexed: 11/30/2022] Open
Abstract
The rhomboid family of serine proteases occurs in all domains of life. Its members contain at least six hydrophobic membrane-spanning helices, with an active site serine located deep within the hydrophobic interior of the plasma membrane. The model member GlpG from Escherichia coli is heavily studied through engineered mutant forms, varied model substrates, and multiple X-ray crystal studies, yet its relationship to endogenous substrates is not well understood. Here we describe an apparent membrane anchoring C-terminal homology domain that appears in numerous genera including Shewanella, Vibrio, Acinetobacter, and Ralstonia, but excluding Escherichia and Haemophilus. Individual genomes encode up to thirteen members, usually homologous to each other only in this C-terminal region. The domain's tripartite architecture consists of motif, transmembrane helix, and cluster of basic residues at the protein C-terminus, as also seen with the LPXTG recognition sequence for sortase A and the PEP-CTERM recognition sequence for exosortase. Partial Phylogenetic Profiling identifies a distinctive rhomboid-like protease subfamily almost perfectly co-distributed with this recognition sequence. This protease subfamily and its putative target domain are hereby renamed rhombosortase and GlyGly-CTERM, respectively. The protease and target are encoded by consecutive genes in most genomes with just a single target, but far apart otherwise. The signature motif of the Rhombo-CTERM domain, often SGGS, only partially resembles known cleavage sites of rhomboid protease family model substrates. Some protein families that have several members with C-terminal GlyGly-CTERM domains also have additional members with LPXTG or PEP-CTERM domains instead, suggesting there may be common themes to the post-translational processing of these proteins by three different membrane protein superfamilies.
Collapse
Affiliation(s)
- Daniel H Haft
- Department of Bioinformatics, J. Craig Venter Institute, Rockville, Maryland, United States of America.
| | | |
Collapse
|
31
|
Archaeosortases and exosortases are widely distributed systems linking membrane transit with posttranslational modification. J Bacteriol 2011; 194:36-48. [PMID: 22037399 DOI: 10.1128/jb.06026-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple new prokaryotic C-terminal protein-sorting signals were found that reprise the tripartite architecture shared by LPXTG and PEP-CTERM: motif, TM helix, basic cluster. Defining hidden Markov models were constructed for all. PGF-CTERM occurs in 29 archaeal species, some of which have more than 50 proteins that share the domain. PGF-CTERM proteins include the major cell surface protein in Halobacterium, a glycoprotein with a partially characterized diphytanylglyceryl phosphate linkage near its C terminus. Comparative genomics identifies a distant exosortase homolog, designated archaeosortase A (ArtA), as the likely protein-processing enzyme for PGF-CTERM. Proteomics suggests that the PGF-CTERM region is removed. Additional systems include VPXXXP-CTERM/archeaosortase B in two of the same archaea and PEF-CTERM/archaeosortase C in four others. Bacterial exosortases often fall into subfamilies that partner with very different cohorts of extracellular polymeric substance biosynthesis proteins; several species have multiple systems. Variant systems include the VPDSG-CTERM/exosortase C system unique to certain members of the phylum Verrucomicrobia, VPLPA-CTERM/exosortase D in several alpha- and deltaproteobacterial species, and a dedicated (single-target) VPEID-CTERM/exosortase E system in alphaproteobacteria. Exosortase-related families XrtF in the class Flavobacteria and XrtG in Gram-positive bacteria mark distinctive conserved gene neighborhoods. A picture emerges of an ancient and now well-differentiated superfamily of deeply membrane-embedded protein-processing enzymes. Their target proteins are destined to transit cellular membranes during their biosynthesis, during which most undergo additional posttranslational modifications such as glycosylation.
Collapse
|
32
|
Chitsaz H, Yee-Greenbaum JL, Tesler G, Lombardo MJ, Dupont CL, Badger JH, Novotny M, Rusch DB, Fraser LJ, Gormley NA, Schulz-Trieglaff O, Smith GP, Evers DJ, Pevzner PA, Lasken RS. Efficient de novo assembly of single-cell bacterial genomes from short-read data sets. Nat Biotechnol 2011; 29:915-21. [PMID: 21926975 PMCID: PMC3558281 DOI: 10.1038/nbt.1966] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 08/09/2011] [Indexed: 11/09/2022]
Abstract
Whole genome amplification by the multiple displacement amplification (MDA) method allows sequencing of DNA from single cells of bacteria that cannot be cultured. Assembling a genome is challenging, however, because MDA generates highly nonuniform coverage of the genome. Here we describe an algorithm tailored for short-read data from single cells that improves assembly through the use of a progressively increasing coverage cutoff. Assembly of reads from single Escherichia coli and Staphylococcus aureus cells captures >91% of genes within contigs, approaching the 95% captured from an assembly based on many E. coli cells. We apply this method to assemble a genome from a single cell of an uncultivated SAR324 clade of Deltaproteobacteria, a cosmopolitan bacterial lineage in the global ocean. Metabolic reconstruction suggests that SAR324 is aerobic, motile and chemotaxic. Our approach enables acquisition of genome assemblies for individual uncultivated bacteria using only short reads, providing cell-specific genetic information absent from metagenomic studies.
Collapse
Affiliation(s)
- Hamidreza Chitsaz
- Department of Computer Science, University of California, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Beck DAC, Hendrickson EL, Vorobev A, Wang T, Lim S, Kalyuzhnaya MG, Lidstrom ME, Hackett M, Chistoserdova L. An integrated proteomics/transcriptomics approach points to oxygen as the main electron sink for methanol metabolism in Methylotenera mobilis. J Bacteriol 2011; 193:4758-65. [PMID: 21764938 PMCID: PMC3165657 DOI: 10.1128/jb.05375-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 07/05/2011] [Indexed: 11/20/2022] Open
Abstract
Methylotenera species, unlike their close relatives in the genera Methylophilus, Methylobacillus, and Methylovorus, neither exhibit the activity of methanol dehydrogenase nor possess mxaFI genes encoding this enzyme, yet they are able to grow on methanol. In this work, we integrated a genome-wide proteomics approach, shotgun proteomics, and a genome-wide transcriptomics approach, shotgun transcriptome sequencing (RNA-seq), of Methylotenera mobilis JLW8 to identify genes and enzymes potentially involved in methanol oxidation, with special attention to alternative nitrogen sources, to address the question of whether nitrate could play a role as an electron acceptor in place of oxygen. Both proteomics and transcriptomics identified a limited number of genes and enzymes specifically responding to methanol. This set includes genes involved in oxidative stress response systems, a number of oxidoreductases, including XoxF-type alcohol dehydrogenases, a type II secretion system, and proteins without a predicted function. Nitrate stimulated expression of some genes in assimilatory nitrate reduction and denitrification pathways, while ammonium downregulated some of the nitrogen metabolism genes. However, none of these genes appeared to respond to methanol, which suggests that oxygen may be the main electron sink during growth on methanol. This study identifies initial targets for future focused physiological studies, including mutant analysis, which will provide further details into this novel process.
Collapse
Affiliation(s)
| | | | | | - Tiansong Wang
- Department of Microbiology, University of Washington, Box 355014, Seattle, Washington 98195
| | - Sujung Lim
- Department of Microbiology, University of Washington, Box 355014, Seattle, Washington 98195
| | - Marina G. Kalyuzhnaya
- Department of Microbiology, University of Washington, Box 355014, Seattle, Washington 98195
| | - Mary E. Lidstrom
- Department of Chemical Engineering
- Department of Microbiology, University of Washington, Box 355014, Seattle, Washington 98195
| | | | | |
Collapse
|
34
|
Fisunov GY, Alexeev DG, Bazaleev NA, Ladygina VG, Galyamina MA, Kondratov IG, Zhukova NA, Serebryakova MV, Demina IA, Govorun VM. Core proteome of the minimal cell: comparative proteomics of three mollicute species. PLoS One 2011; 6:e21964. [PMID: 21818284 PMCID: PMC3139596 DOI: 10.1371/journal.pone.0021964] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 06/14/2011] [Indexed: 11/19/2022] Open
Abstract
Mollicutes (mycoplasmas) have been recognized as highly evolved prokaryotes with an extremely small genome size and very limited coding capacity. Thus, they may serve as a model of a 'minimal cell': a cell with the lowest possible number of genes yet capable of autonomous self-replication. We present the results of a comparative analysis of proteomes of three mycoplasma species: A. laidlawii, M. gallisepticum, and M. mobile. The core proteome components found in the three mycoplasma species are involved in fundamental cellular processes which are necessary for the free living of cells. They include replication, transcription, translation, and minimal metabolism. The members of the proteome core seem to be tightly interconnected with a number of interactions forming core interactome whether or not additional species-specific proteins are located on the periphery. We also obtained a genome core of the respective organisms and compared it with the proteome core. It was found that the genome core encodes 73 more proteins than the proteome core. Apart of proteins which may not be identified due to technical limitations, there are 24 proteins that seem to not be expressed under the optimal conditions.
Collapse
Affiliation(s)
- Gleb Y Fisunov
- Scientific Research Institute of Physical-Chemical Medicine, Federal Bio-Medical Agency of Russia, Moscow, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Polacco BJ, Purvine SO, Zink EM, Lavoie SP, Lipton MS, Summers AO, Miller SM. Discovering mercury protein modifications in whole proteomes using natural isotope distributions observed in liquid chromatography-tandem mass spectrometry. Mol Cell Proteomics 2011; 10:M110.004853. [PMID: 21532010 DOI: 10.1074/mcp.m110.004853] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The identification of peptides that result from post-translational modifications is critical for understanding normal pathways of cellular regulation as well as identifying damage from, or exposures to xenobiotics, i.e. the exposome. However, because of their low abundance in proteomes, effective detection of modified peptides by mass spectrometry (MS) typically requires enrichment to eliminate false identifications. We present a new method for confidently identifying peptides with mercury (Hg)-containing adducts that is based on the influence of mercury's seven stable isotopes on peptide isotope distributions detected by high-resolution MS. Using a pure protein and E. coli cultures exposed to phenyl mercuric acetate, we show the pattern of peak heights in isotope distributions from primary MS single scans efficiently identified Hg adducts in data from chromatographic separation coupled with tandem mass spectrometry with sensitivity and specificity greater than 90%. Isotope distributions are independent of peptide identifications based on peptide fragmentation (e.g. by SEQUEST), so both methods can be combined to eliminate false positives. Summing peptide isotope distributions across multiple scans improved specificity to 99.4% and sensitivity above 95%, affording identification of an unexpected Hg modification. We also illustrate the theoretical applicability of the method for detection of several less common elements including the essential element, selenium, as selenocysteine in peptides.
Collapse
Affiliation(s)
- Benjamin J Polacco
- Department of Pharmaceutical Chemistry, University of California San Francisco, UCSF MC 2280, San Francisco, CA 94158-2517, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Stewart FJ, Sharma AK, Bryant JA, Eppley JM, DeLong EF. Community transcriptomics reveals universal patterns of protein sequence conservation in natural microbial communities. Genome Biol 2011; 12:R26. [PMID: 21426537 PMCID: PMC3129676 DOI: 10.1186/gb-2011-12-3-r26] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/28/2011] [Accepted: 03/22/2011] [Indexed: 12/02/2022] Open
Abstract
Background Combined metagenomic and metatranscriptomic datasets make it possible to study the molecular evolution of diverse microbial species recovered from their native habitats. The link between gene expression level and sequence conservation was examined using shotgun pyrosequencing of microbial community DNA and RNA from diverse marine environments, and from forest soil. Results Across all samples, expressed genes with transcripts in the RNA sample were significantly more conserved than non-expressed gene sets relative to best matches in reference databases. This discrepancy, observed for many diverse individual genomes and across entire communities, coincided with a shift in amino acid usage between these gene fractions. Expressed genes trended toward GC-enriched amino acids, consistent with a hypothesis of higher levels of functional constraint in this gene pool. Highly expressed genes were significantly more likely to fall within an orthologous gene set shared between closely related taxa (core genes). However, non-core genes, when expressed above the level of detection, were, on average, significantly more highly expressed than core genes based on transcript abundance normalized to gene abundance. Finally, expressed genes showed broad similarities in function across samples, being relatively enriched in genes of energy metabolism and underrepresented by genes of cell growth. Conclusions These patterns support the hypothesis, predicated on studies of model organisms, that gene expression level is a primary correlate of evolutionary rate across diverse microbial taxa from natural environments. Despite their complexity, meta-omic datasets can reveal broad evolutionary patterns across taxonomically, functionally, and environmentally diverse communities.
Collapse
Affiliation(s)
- Frank J Stewart
- School of Biology, Georgia Institute of Technology, Ford ES&T Building, Rm 1242, 311 Ferst Drive, Atlanta, GA 30332, USA
| | | | | | | | | |
Collapse
|
37
|
Kislyuk AO, Haegeman B, Bergman NH, Weitz JS. Genomic fluidity: an integrative view of gene diversity within microbial populations. BMC Genomics 2011; 12:32. [PMID: 21232151 PMCID: PMC3030549 DOI: 10.1186/1471-2164-12-32] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 01/13/2011] [Indexed: 02/08/2023] Open
Abstract
Background The dual concepts of pan and core genomes have been widely adopted as means to assess the distribution of gene families within microbial species and genera. The core genome is the set of genes shared by a group of organisms; the pan genome is the set of all genes seen in any of these organisms. A variety of methods have provided drastically different estimates of the sizes of pan and core genomes from sequenced representatives of the same groups of bacteria. Results We use a combination of mathematical, statistical and computational methods to show that current predictions of pan and core genome sizes may have no correspondence to true values. Pan and core genome size estimates are problematic because they depend on the estimation of the occurrence of rare genes and genomes, respectively, which are difficult to estimate precisely because they are rare. Instead, we introduce and evaluate a robust metric - genomic fluidity - to categorize the gene-level similarity among groups of sequenced isolates. Genomic fluidity is a measure of the dissimilarity of genomes evaluated at the gene level. Conclusions The genomic fluidity of a population can be estimated accurately given a small number of sequenced genomes. Further, the genomic fluidity of groups of organisms can be compared robustly despite variation in algorithms used to identify genes and their homologs. As such, we recommend that genomic fluidity be used in place of pan and core genome size estimates when assessing gene diversity within genomes of a species or a group of closely related organisms.
Collapse
Affiliation(s)
- Andrey O Kislyuk
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | |
Collapse
|
38
|
Implications of Human Microbiome Research for the Developing World. METAGENOMICS OF THE HUMAN BODY 2011. [PMCID: PMC7120668 DOI: 10.1007/978-1-4419-7089-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The human microbiome refers to all of the species that inhabit the human body, residing both on and in it. Over the past several years, there has been a significantly increased interest directed to the understanding of the microorganisms that reside on and in the human body. These studies of the human microbiome promise to reveal all these species and increase our understanding of the normal inhabitants, those that trigger disease and those that vary in response to disease conditions. It is anticipated that these directed research efforts, coupled with new technological advances, will ultimately allow one to gain a greater understanding of the relationships of these species with their human hosts. The various chapters in this book present a range of aspects of human microbiome research, explain the scientific and technological rationale, and highlight the significant potential that the results from these studies hold. In this chapter, we begin to address the potential and long-term implications of the knowledge gained from human microbiome research (which currently is centered in the developed world) for the developing world, which has often lagged behind in the benefits of these new technologies and their implications to new research areas.
Collapse
|
39
|
An empirical strategy for characterizing bacterial proteomes across species in the absence of genomic sequences. PLoS One 2010; 5:e13968. [PMID: 21103051 PMCID: PMC2980473 DOI: 10.1371/journal.pone.0013968] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 08/24/2010] [Indexed: 01/08/2023] Open
Abstract
Global protein identification through current proteomics methods typically depends on the availability of sequenced genomes. In spite of increasingly high throughput sequencing technologies, this information is not available for every microorganism and rarely available for entire microbial communities. Nevertheless, the protein-level homology that exists between related bacteria makes it possible to extract biological information from the proteome of an organism or microbial community by using the genomic sequences of a near neighbor organism. Here, we demonstrate a trans-organism search strategy for determining the extent to which near-neighbor genome sequences can be applied to identify proteins in unsequenced environmental isolates. In proof of concept testing, we found that within a CLUSTAL W distance of 0.089, near-neighbor genomes successfully identified a high percentage of proteins within an organism. Application of this strategy to characterize environmental bacterial isolates lacking sequenced genomes, but having 16S rDNA sequence similarity to Shewanella resulted in the identification of 300-500 proteins in each strain. The majority of identified pathways mapped to core processes, as well as to processes unique to the Shewanellae, in particular to the presence of c-type cytochromes. Examples of core functional categories include energy metabolism, protein and nucleotide synthesis and cofactor biosynthesis, allowing classification of bacteria by observation of conserved processes. Additionally, within these core functionalities, we observed proteins involved in the alternative lactate utilization pathway, recently described in Shewanella.
Collapse
|
40
|
Schrimpf SP, Hengartner MO. A worm rich in protein: Quantitative, differential, and global proteomics in Caenorhabditis elegans. J Proteomics 2010; 73:2186-97. [DOI: 10.1016/j.jprot.2010.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 03/29/2010] [Indexed: 12/26/2022]
|
41
|
Rudney JD, Xie H, Rhodus NL, Ondrey FG, Griffin TJ. A metaproteomic analysis of the human salivary microbiota by three-dimensional peptide fractionation and tandem mass spectrometry. Mol Oral Microbiol 2010; 25:38-49. [PMID: 20331792 PMCID: PMC2849974 DOI: 10.1111/j.2041-1014.2009.00558.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Metagenomics uses gene expression patterns to understand the taxonomy and metabolic activities of microbial communities. Metaproteomics applies the same approach to community proteomes. Previously, we used a novel three-dimensional peptide separation method to identify over 2000 salivary proteins. This study used those data to carry out the first metaproteomic analysis of the human salivary microbiota. The metagenomic software MEGAN generated a phylogenetic tree, which was checked against the Human Oral Microbiome Database (HOMD). Pathway analyses were performed with the Clusters of Orthologous Groups and MetaCyc databases. Thirty-seven per cent of the peptides were identifiable only at the level of cellular organisms or bacteria. The rest were distributed among five bacterial phyla (61%), archea (0.5%), and viruses (0.8%); 29% were assignable at the genus level, and most belonged to Streptococcus (17%). Eleven per cent of all peptides could be assigned to species. Most taxa were represented in HOMD and they included well-known species such as periodontal pathogens. However, there also were 'exotic' species including aphid endosymbionts; plant, water, and soil bacteria; extremophiles; and archea. The pathway analysis indicated that peptides were linked to translation (37%), followed by glycolysis (19%), amino acid metabolism (8%), and energy production (8%). The taxonomic structure of the salivary metaproteome is very diverse but is dominated by streptococci. 'Exotic' species may actually represent close relatives that have not yet been sequenced. Salivary microbes appear to be actively engaged in protein synthesis, and the pathway analysis is consistent with the metabolism of salivary glycoproteins.
Collapse
Affiliation(s)
- J D Rudney
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, 515 Delaware Street SE, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
42
|
Armengaud J. Proteogenomics and systems biology: quest for the ultimate missing parts. Expert Rev Proteomics 2010; 7:65-77. [DOI: 10.1586/epr.09.104] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
43
|
Auberry KJ, Kiebel GR, Monroe ME, Adkins JN, Anderson GA, Smith RD. Omics.pnl.gov: A Portal for the Distribution and Sharing of Multi-Disciplinary Pan-Omics Information. ACTA ACUST UNITED AC 2010; 3:1-4. [PMID: 20585472 DOI: 10.4172/jpb.1000114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ken J Auberry
- Biological Sciences Division, Mail Stop: K8-98, Pacific Northwest National Laboratory, P. O. Box 999, 3335 Q Avenue, Richland, WA 99352
| | | | | | | | | | | |
Collapse
|
44
|
Kim W, Silby MW, Purvine SO, Nicoll JS, Hixson KK, Monroe M, Nicora CD, Lipton MS, Levy SB. Proteomic detection of non-annotated protein-coding genes in Pseudomonas fluorescens Pf0-1. PLoS One 2009; 4:e8455. [PMID: 20041161 PMCID: PMC2794547 DOI: 10.1371/journal.pone.0008455] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 12/02/2009] [Indexed: 11/18/2022] Open
Abstract
Genome sequences are annotated by computational prediction of coding sequences, followed by similarity searches such as BLAST, which provide a layer of possible functional information. While the existence of processes such as alternative splicing complicates matters for eukaryote genomes, the view of bacterial genomes as a linear series of closely spaced genes leads to the assumption that computational annotations that predict such arrangements completely describe the coding capacity of bacterial genomes. We undertook a proteomic study to identify proteins expressed by Pseudomonas fluorescens Pf0-1 from genes that were not predicted during the genome annotation. Mapping peptides to the Pf0-1 genome sequence identified sixteen non-annotated protein-coding regions, of which nine were antisense to predicted genes, six were intergenic, and one read in the same direction as an annotated gene but in a different frame. The expression of all but one of the newly discovered genes was verified by RT-PCR. Few clues as to the function of the new genes were gleaned from informatic analyses, but potential orthologs in other Pseudomonas genomes were identified for eight of the new genes. The 16 newly identified genes improve the quality of the Pf0-1 genome annotation, and the detection of antisense protein-coding genes indicates the under-appreciated complexity of bacterial genome organization.
Collapse
Affiliation(s)
- Wook Kim
- Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Mark W. Silby
- Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Sam O. Purvine
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Julie S. Nicoll
- Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Kim K. Hixson
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Matt Monroe
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Carrie D. Nicora
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Mary S. Lipton
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Stuart B. Levy
- Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
45
|
Schleifer KH. Classification of Bacteria and Archaea: Past, present and future. Syst Appl Microbiol 2009; 32:533-42. [DOI: 10.1016/j.syapm.2009.09.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 09/08/2009] [Indexed: 11/25/2022]
|
46
|
Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation. Appl Environ Microbiol 2009; 75:6591-9. [PMID: 19717633 DOI: 10.1128/aem.01064-09] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Implementation of uranium bioremediation requires methods for monitoring the membership and activities of the subsurface microbial communities that are responsible for reduction of soluble U(VI) to insoluble U(IV). Here, we report a proteomics-based approach for simultaneously documenting the strain membership and microbial physiology of the dominant Geobacter community members during in situ acetate amendment of the U-contaminated Rifle, CO, aquifer. Three planktonic Geobacter-dominated samples were obtained from two wells down-gradient of acetate addition. Over 2,500 proteins from each of these samples were identified by matching liquid chromatography-tandem mass spectrometry spectra to peptides predicted from seven isolate Geobacter genomes. Genome-specific peptides indicate early proliferation of multiple M21 and Geobacter bemidjiensis-like strains and later possible emergence of M21 and G. bemidjiensis-like strains more closely related to Geobacter lovleyi. Throughout biostimulation, the proteome is dominated by enzymes that convert acetate to acetyl-coenzyme A and pyruvate for central metabolism, while abundant peptides matching tricarboxylic acid cycle proteins and ATP synthase subunits were also detected, indicating the importance of energy generation during the period of rapid growth following the start of biostimulation. Evolving Geobacter strain composition may be linked to changes in protein abundance over the course of biostimulation and may reflect changes in metabolic functioning. Thus, metagenomics-independent community proteogenomics can be used to diagnose the status of the subsurface consortia upon which remediation biotechnology relies.
Collapse
|
47
|
Zivanovic Y, Armengaud J, Lagorce A, Leplat C, Guérin P, Dutertre M, Anthouard V, Forterre P, Wincker P, Confalonieri F. Genome analysis and genome-wide proteomics of Thermococcus gammatolerans, the most radioresistant organism known amongst the Archaea. Genome Biol 2009; 10:R70. [PMID: 19558674 PMCID: PMC2718504 DOI: 10.1186/gb-2009-10-6-r70] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/29/2009] [Accepted: 06/26/2009] [Indexed: 11/15/2022] Open
Abstract
The genome sequence of Thermococcus gammatolerans, a radioresistant archaeon, is described; a proteomic analysis reveals that radioresistance may be due to unknown DNA repair enzymes. Background Thermococcus gammatolerans was isolated from samples collected from hydrothermal chimneys. It is one of the most radioresistant organisms known amongst the Archaea. We report the determination and annotation of its complete genome sequence, its comparison with other Thermococcales genomes, and a proteomic analysis. Results T. gammatolerans has a circular chromosome of 2.045 Mbp without any extra-chromosomal elements, coding for 2,157 proteins. A thorough comparative genomics analysis revealed important but unsuspected genome plasticity differences between sequenced Thermococcus and Pyrococcus species that could not be attributed to the presence of specific mobile elements. Two virus-related regions, tgv1 and tgv2, are the only mobile elements identified in this genome. A proteogenome analysis was performed by a shotgun liquid chromatography-tandem mass spectrometry approach, allowing the identification of 10,931 unique peptides corresponding to 951 proteins. This information concurrently validates the accuracy of the genome annotation. Semi-quantification of proteins by spectral count was done on exponential- and stationary-phase cells. Insights into general catabolism, hydrogenase complexes, detoxification systems, and the DNA repair toolbox of this archaeon are revealed through this genome and proteome analysis. Conclusions This work is the first archaeal proteome investigation done at the stage of primary genome annotation. This archaeon is shown to use a large variety of metabolic pathways even under a rich medium growth condition. This proteogenomic study also indicates that the high radiotolerance of T. gammatolerans is probably due to proteins that remain to be characterized rather than a larger arsenal of known DNA repair enzymes.
Collapse
Affiliation(s)
- Yvan Zivanovic
- Laboratoire de Génomique des Archae, Université Paris-Sud 11, CNRS, UMR8621, Bât400 F-91405 Orsay, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Proteomic investigation of the time course responses of RAW 264.7 macrophages to infection with Salmonella enterica. Infect Immun 2009; 77:3227-33. [PMID: 19528222 DOI: 10.1128/iai.00063-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
To investigate the extent to which macrophages respond to Salmonella infection, we infected RAW 264.7 macrophages with Salmonella enterica serotype Typhimurium and analyzed macrophage proteins at various time points following infection by using a global proteomic approach. A total of 1,006 macrophage and 115 Salmonella proteins were identified with high confidence. Most of the Salmonella proteins were observed in the late stage of the infection time course, which is consistent with the fact that the bacterial cells proliferate inside RAW 264.7 macrophages. The peptide abundances of most of the identified macrophage proteins remained relatively constant over the time course of infection. Compared to those of the control, the peptide abundances of 244 macrophage proteins (i.e., 24% of the total identified macrophage proteins) changed significantly after infection. The functions of these Salmonella-affected macrophage proteins were diverse, including production of antibacterial nitric oxide (i.e., inducible nitric oxide synthase), production of prostaglandin H(2) (i.e., cyclooxygenase 2), and regulation of intracellular traffic (e.g., sorting nexin 5 [SNX5], SNX6, and SNX9). Diverse functions of the Salmonella-affected macrophage proteins demonstrate a global macrophage response to Salmonella infection. Western blot analysis not only confirmed the proteomic results for a selected set of proteins but also revealed that (i) the protein abundance of mitochondrial superoxide dismutase increased following macrophage infection, indicating an infection-induced oxidative stress in mitochondria, and (ii) in contrast to infection of macrophages by wild-type Salmonella, infection by the sopB deletion mutant had no negative impact on the abundance of SNX6, suggesting a role for SopB in regulating the abundance of SNX6.
Collapse
|
49
|
Kowalczewska M, Villard C, Lafitte D, Fenollar F, Raoult D. Global proteomic pattern of Tropheryma whipplei: a Whipple's disease bacterium. Proteomics 2009; 9:1593-616. [PMID: 19253299 DOI: 10.1002/pmic.200700889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The proteome of Tropheryma whipplei, the intracellular bacterium responsible for Whipple's disease (WD), was analyzed using two complementary approaches: 2-DE coupled with MALDI-TOF and SDS-PAGE with nanoLC-MS/MS. This strategy led to the identification of 206 proteins of 808 predicted ORFs, resolving some questions raised by the genomic sequence of this bacterium. We successfully identified antibiotic targets and proteins with predicted N-terminal signal sequences. Additionally, we identified a family of surface proteins (known as T. whipplei surface proteins (WiSPs)), which are encoded by a unique group of species-specific genes and serve as both coding regions and DNA repeats that promote genomic recombination. Comparison of the protein expression profiles of the intracellular facultative host-associated WD bacterium with other host-associated, intracellular obligate, and environmental bacteria revealed that T. whipplei shares a proteomic expression profile with other host-associated facultative intracellular bacteria. In summary, this study describes the global protein expression pattern of T. whipplei and reveals some specific features of the T. whipplei proteome.
Collapse
|
50
|
Bosch G, Wang T, Latypova E, Kalyuzhnaya MG, Hackett M, Chistoserdova L. Insights into the physiology of Methylotenera mobilis as revealed by metagenome-based shotgun proteomic analysis. Microbiology (Reading) 2009; 155:1103-1110. [DOI: 10.1099/mic.0.024968-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While the shotgun proteomics approach is gaining momentum in understanding microbial physiology, it remains limited by the paucity of high-quality genomic data, especially when it comes to poorly characterized newly identified phyla. At the same time, large-scale metagenomic sequencing projects produce datasets representing genomes of a variety of environmental microbes, although with lower sequence coverage and sequence quality. In this work we tested the utility of a metagenomic dataset enriched in sequences of environmental strains of Methylotenera mobilis, to assess the protein profile of a laboratory-cultivated strain, M. mobilis JLW8, as a proof of principle. We demonstrate that a large portion of the proteome predicted from the metagenomic sequence (approx. 20 %) could be identified with high confidence (three or more peptide sequences), thus gaining insights into the physiology of this bacterium, which represents a new genus within the family Methylophilaceae.
Collapse
Affiliation(s)
- Gundula Bosch
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Tiansong Wang
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Ekaterina Latypova
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | | | - Murray Hackett
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Ludmila Chistoserdova
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|