1
|
González-Torrent I, Giménez-Escamilla I, Pérez-Carrillo L, Delgado-Arija M, Portolés M, Tarazón E, Roselló-Lletí E. Alteration in Golgi apparatus fragmentation related genes in human dilated cardiomyopathy. Sci Rep 2025; 15:7704. [PMID: 40044985 PMCID: PMC11883028 DOI: 10.1038/s41598-025-92758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/03/2025] [Indexed: 03/09/2025] Open
Abstract
The Golgi apparatus (GA) plays a main role in the protein secretory pathway. Previously, we described a greater GA vesicle density in patients with dilated cardiomyopathy (DCM), as well as an increase in natriuretic peptide (NP) levels inside these vesicles. GA fragmentation could increase the rate of protein transport; for this reason, we aimed to delve deeper into these GA vesicle density alterations by studying the expression of genes related to GA architecture in DCM and its relationship with NP levels. We performed RNA-seq analysis on explanted hearts from DCM patients (n = 13) and control (CNT) individuals (n = 10). We detected alterations in molecules related to the structure and positioning of GA, highlighting the decrease in GM130 levels and increase in the p-GM130/GM130 ratio (p < 0.05) observed via Western blotting (DCM, n = 23; CNT, n = 7) and their correlation with NT-proBNP levels (r = - 0.473, p < 0.05; r = 0.455, p < 0.05; respectively). We also observed an upregulation of genes involved in anterograde transport and a downregulation of genes involved in retrograde transport. Moreover, we visualized GA fragmentation in doxorubicin-induced DCM in AC16 cells via immunofluorescence (70.2% of the cells had fragmented GA, p < 0.05) and corroborated the downregulation of GOLGA2 and the increase in NP levels observed in human tissue. Our results revealed dysregulation of genes that maintain GA structure, suggesting that GA fragmentation occurs in DCM patients. Therefore, the imbalance between anterograde and retrograde transport could also contribute to this situation and to increased formation of transport vesicles.
Collapse
Affiliation(s)
- Irene González-Torrent
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Isaac Giménez-Escamilla
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell, 106, 46026, Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Lorena Pérez-Carrillo
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell, 106, 46026, Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Marta Delgado-Arija
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell, 106, 46026, Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Manuel Portolés
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell, 106, 46026, Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Estefanía Tarazón
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell, 106, 46026, Valencia, Spain.
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain.
| | - Esther Roselló-Lletí
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell, 106, 46026, Valencia, Spain.
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain.
| |
Collapse
|
2
|
Mahanty S, Bergam P, Belapurkar V, Eluvathingal L, Gupta N, Goud B, Nair D, Raposo G, Setty SRG. Biogenesis of specialized lysosomes in differentiated keratinocytes relies on close apposition with the Golgi apparatus. Cell Death Dis 2024; 15:496. [PMID: 38992005 PMCID: PMC11239851 DOI: 10.1038/s41419-024-06710-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 07/13/2024]
Abstract
Intracellular organelles support cellular physiology in diverse conditions. In the skin, epidermal keratinocytes undergo differentiation with gradual changes in cellular physiology, accompanying remodeling of lysosomes and the Golgi apparatus. However, it was not known whether changes in Golgi and lysosome morphology and their redistribution were linked. Here, we show that disassembled Golgi is distributed in close physical apposition to lysosomes in differentiated keratinocytes. This atypical localization requires the Golgi tethering protein GRASP65, which is associated with both the Golgi and lysosome membranes. Depletion of GRASP65 results in the loss of Golgi-lysosome apposition and the malformation of lysosomes, defined by their aberrant morphology, size, and function. Surprisingly, a trans-Golgi enzyme and secretory Golgi cargoes are extensively localized to the lysosome lumen and secreted to the cell surface, contributing to total protein secretion of differentiated keratinocytes but not in proliferative precursors, indicating that lysosomes acquire specialization during differentiation. We further demonstrate that the secretory function of the Golgi apparatus is critical to maintain keratinocyte lysosomes. Our study uncovers a novel form of Golgi-lysosome cross-talk and its role in maintaining specialized secretory lysosomes in differentiated keratinocytes.
Collapse
Affiliation(s)
- Sarmistha Mahanty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India.
| | - Ptissam Bergam
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, F-75005, Paris, France
| | - Vivek Belapurkar
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | | | - Nikita Gupta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Bruno Goud
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, F-75005, Paris, France
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
3
|
Kumar K, Basak R, Rai A, Mukhopadhyay A. GRASP negatively regulates the secretion of the virulence factor gp63 in Leishmania. Mol Microbiol 2024; 121:1063-1078. [PMID: 38558112 DOI: 10.1111/mmi.15255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Metalloprotease-gp63 is a virulence factor secreted by Leishmania. However, secretory pathway in Leishmania is not well defined. Here, we cloned and expressed the GRASP homolog from Leishmania. We found that Leishmania expresses one GRASP homolog of 58 kDa protein (LdGRASP) which localizes in LdRab1- and LPG2-positive Golgi compartment in Leishmania. LdGRASP was found to bind with COPII complex, LdARF1, LdRab1 and LdRab11 indicating its role in ER and Golgi transport in Leishmania. To determine the function of LdGRASP, we generated LdGRASP knockout parasites using CRISPR-Cas9. We found fragmentation of Golgi in Ld:GRASPKO parasites. Our results showed enhanced transport of non-GPI-anchored gp63 to the cell surface leading to higher secretion of this form of gp63 in Ld:GRASPKO parasites in comparison to Ld:WT cells. In contrast, we found that transport of GPI-anchored gp63 to the cell surface is blocked in Ld:GRASPKO parasites and thereby inhibits its secretion. The overexpression of dominant-negative mutant of LdRab1 or LdSar1 in Ld:GRASPKO parasites significantly blocked the secretion of non-GPI-anchored gp63. Interestingly, we found that survival of transgenic parasites overexpressing Ld:GRASP-GFP is significantly compromised in macrophages in comparison to Ld:WT and Ld:GRASPKO parasites. These results demonstrated that LdGRASP differentially regulates Ldgp63 secretory pathway in Leishmania.
Collapse
Affiliation(s)
- Kamal Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Rituparna Basak
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Aakansha Rai
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Amitabha Mukhopadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
4
|
Zhang J, Kennedy A, de Melo Jorge DM, Xing L, Reid W, Bui S, Joppich J, Rose M, Ercan S, Tang Q, Tai AW, Wang Y. SARS-CoV-2 remodels the Golgi apparatus to facilitate viral assembly and secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2022.03.04.483074. [PMID: 35291301 PMCID: PMC8923104 DOI: 10.1101/2022.03.04.483074] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The COVID-19 pandemic is caused by SARS-CoV-2, an enveloped RNA virus. Despite extensive investigation, the molecular mechanisms for its assembly and secretion remain largely elusive. Here, we show that SARS-CoV-2 infection induces global alterations of the host endomembrane system, including dramatic Golgi fragmentation. SARS-CoV-2 virions are enriched in the fragmented Golgi. Disrupting Golgi function with small molecules strongly inhibits viral infection. Significantly, SARS-CoV-2 infection down-regulates GRASP55 but up-regulates TGN46 protein levels. Surprisingly, GRASP55 expression reduces both viral secretion and spike number on each virion, while GRASP55 depletion displays opposite effects. In contrast, TGN46 depletion only inhibits viral secretion without affecting spike incorporation into virions. TGN46 depletion and GRASP55 expression additively inhibit viral secretion, indicating that they act at different stages. Taken together, we show that SARS-CoV-2 alters Golgi structure and function to control viral assembly and secretion, highlighting the Golgi as a potential therapeutic target for blocking SARS-CoV-2 infection.
Collapse
|
5
|
Zhang J, Wang Y. Emerging roles of O-GlcNAcylation in protein trafficking and secretion. J Biol Chem 2024; 300:105677. [PMID: 38272225 PMCID: PMC10907171 DOI: 10.1016/j.jbc.2024.105677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
The emerging roles of O-GlcNAcylation, a distinctive post-translational modification, are increasingly recognized for their involvement in the intricate processes of protein trafficking and secretion. This modification exerts its influence on both conventional and unconventional secretory pathways. Under healthy and stress conditions, such as during diseases, it orchestrates the transport of proteins within cells, ensuring timely delivery to their intended destinations. O-GlcNAcylation occurs on key factors, like coat protein complexes (COPI and COPII), clathrin, SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), and GRASP55 (Golgi reassembly stacking protein of 55 kDa) that control vesicle budding and fusion in anterograde and retrograde trafficking and unconventional secretion. The understanding of O-GlcNAcylation offers valuable insights into its critical functions in cellular physiology and the progression of diseases, including neurodegeneration, cancer, and metabolic disorders. In this review, we summarize and discuss the latest findings elucidating the involvement of O-GlcNAc in protein trafficking and its significance in various human disorders.
Collapse
Affiliation(s)
- Jianchao Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA; Department of Neurology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA.
| |
Collapse
|
6
|
Zobaroğlu-Özer P, Bora-Akoğlu G. Split but merge: Golgi fragmentation in physiological and pathological conditions. Mol Biol Rep 2024; 51:214. [PMID: 38280063 DOI: 10.1007/s11033-023-09153-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/12/2023] [Indexed: 01/29/2024]
Abstract
The Golgi complex is a highly dynamic and tightly regulated cellular organelle with essential roles in the processing as well as the sorting of proteins and lipids. Its structure undergoes rapid disassembly and reassembly during normal physiological processes, including cell division, migration, polarization, differentiation, and cell death. Golgi dispersal or fragmentation also occurs in pathological conditions, such as neurodegenerative diseases, infectious diseases, congenital disorders of glycosylation diseases, and cancer. In this review, current knowledge about both structural organization and morphological alterations in the Golgi in physiological and pathological conditions is summarized together with the methodologies that help to reveal its structure.
Collapse
Affiliation(s)
- Pelin Zobaroğlu-Özer
- Faculty of Medicine, Department of Medical Biology, Hacettepe University, Ankara, Turkey
- Faculty of Medicine, Department of Medical Biology, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Gamze Bora-Akoğlu
- Faculty of Medicine, Department of Medical Biology, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
7
|
Berning L, Lenz T, Bergmann AK, Poschmann G, Brass HUC, Schlütermann D, Friedrich A, Mendiburo MJ, David C, Akgün S, Pietruszka J, Stühler K, Stork B. The Golgi stacking protein GRASP55 is targeted by the natural compound prodigiosin. Cell Commun Signal 2023; 21:275. [PMID: 37798768 PMCID: PMC10552397 DOI: 10.1186/s12964-023-01275-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/13/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND The bacterial secondary metabolite prodigiosin has been shown to exert anticancer, antimalarial, antibacterial and immunomodulatory properties. With regard to cancer, it has been reported to affect cancer cells but not non-malignant cells, rendering prodigiosin a promising lead compound for anticancer drug discovery. However, a direct protein target has not yet been experimentally identified. METHODS We used mass spectrometry-based thermal proteome profiling in order to identify target proteins of prodigiosin. For target validation, we employed a genetic knockout approach and electron microscopy. RESULTS We identified the Golgi stacking protein GRASP55 as target protein of prodigiosin. We show that prodigiosin treatment severely affects Golgi morphology and functionality, and that prodigiosin-dependent cytotoxicity is partially reduced in GRASP55 knockout cells. We also found that prodigiosin treatment results in decreased cathepsin activity and overall blocks autophagic flux, whereas co-localization of the autophagosomal marker LC3 and the lysosomal marker LAMP1 is clearly promoted. Finally, we observed that autophagosomes accumulate at GRASP55-positive structures, pointing towards an involvement of an altered Golgi function in the autophagy-inhibitory effect of this natural compound. CONCLUSION Taken together, we propose that prodigiosin affects autophagy and Golgi apparatus integrity in an interlinked mode of action involving the regulation of organelle alkalization and the Golgi stacking protein GRASP55. Video Abstract.
Collapse
Affiliation(s)
- Lena Berning
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Thomas Lenz
- Molecular Proteomics Laboratory, Biological Medical Research Centre, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Ann Kathrin Bergmann
- Core Facility for Electron Microscopy, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine I, Proteome Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Hannah U C Brass
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich and Bioeconomy Science Center (BioSC), 52426, Jülich, Germany
| | - David Schlütermann
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Annabelle Friedrich
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - María José Mendiburo
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Céline David
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Seda Akgün
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich and Bioeconomy Science Center (BioSC), 52426, Jülich, Germany
- Institute of Bio- and Geosciences: Biotechnology (IBG-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biological Medical Research Centre, Heinrich Heine University, 40225, Düsseldorf, Germany
- Institute of Molecular Medicine I, Proteome Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Björn Stork
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany.
| |
Collapse
|
8
|
J Tisdale E, R Artalejo C. Rab2 stimulates LC3 lipidation on secretory membranes by noncanonical autophagy. Exp Cell Res 2023; 429:113635. [PMID: 37201743 DOI: 10.1016/j.yexcr.2023.113635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
The Golgi complex is a highly dynamic organelle that regulates various cellular activities and yet maintains a distinct structure. Multiple proteins participate in Golgi structure/organization including the small GTPase Rab2. Rab2 is found on the cis/medial Golgi compartments and the endoplasmic reticulum-Golgi intermediate compartment. Interestingly, Rab2 gene amplification occurs in a wide range of human cancers and Golgi morphological alterations are associated with cellular transformation. To learn how Rab2 'gain of function' influences the structure/activity of membrane compartments in the early secretory pathway that may contribute to oncogenesis, NRK cells were transfected with Rab2B cDNA. We found that Rab2B overexpression had a dramatic effect on the morphology of pre- and early Golgi compartments that resulted in a decreased transport rate of VSV-G in the early secretory pathway. We monitored the cells for the autophagic marker protein LC3 based on the findings that depressed membrane trafficking affects homeostasis. Morphological and biochemical studies confirmed that Rab2 ectopic expression stimulated LC3-lipidation on Rab2-containing membranes that was dependent on GAPDH and utilized a non-canonical LC3-conjugation mechanism that is nondegradative. Golgi structural alterations are associated with changes in Golgi-associated signalling pathways. Indeed, Rab2 overexpressing cells had elevated Src activity. We propose that increased Rab2 expression facilitates cis Golgi structural changes that are maintained and tolerated by the cell due to LC3 tagging, and subsequent membrane remodeling triggers Golgi associated signaling pathways that may contribute to oncogenesis.
Collapse
Affiliation(s)
- Ellen J Tisdale
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48202, USA.
| | - Cristina R Artalejo
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48202, USA
| |
Collapse
|
9
|
Li J, Zhang J, Bui S, Ahat E, Kolli D, Reid W, Xing L, Wang Y. Common Assays in Mammalian Golgi Studies. Methods Mol Biol 2022; 2557:303-332. [PMID: 36512224 DOI: 10.1007/978-1-0716-2639-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Golgi is a complex structure characterized by stacks of tightly aligned flat cisternae. In mammalian cells, Golgi stacks often concentrate in the perinuclear region and link together to form a ribbon. This structure is dynamic to accommodate continuous cargo flow in and out of the Golgi in both directions and undergoes morphological changes under physiological and pathological conditions. The fine, stacked Golgi structure makes it difficult to study by conventional light or even super-resolution microscopy. Furthermore, efforts to understand how Golgi structural dynamics impact cellular processes have been slow because of the knowledge gap in the protein machinery that maintains the complex and dynamic Golgi structure. In this method article, we list the common assays used in our research to help new and established researchers select the most appropriate method to properly address their questions.
Collapse
Affiliation(s)
- Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jianchao Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sarah Bui
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Erpan Ahat
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Divya Kolli
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Whitney Reid
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Lijuan Xing
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Common Markers and Small Molecule Inhibitors in Golgi Studies. Methods Mol Biol 2022; 2557:453-493. [PMID: 36512231 PMCID: PMC10178357 DOI: 10.1007/978-1-0716-2639-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this chapter, we provide a detailed guide for the application of commonly used small molecules to study Golgi structure and function in vitro. Furthermore, we have curated a concise, validated list of endomembrane markers typically used in downstream assays to examine the consequent effect on the Golgi via microscopy and western blot after drug treatment. This chapter will be useful for researchers beginning their foray into the field of intracellular trafficking and Golgi biology.
Collapse
|
11
|
Ahat E, Song Y, Xia K, Reid W, Li J, Bui S, Zhang F, Linhardt RJ, Wang Y. GRASP depletion-mediated Golgi fragmentation impairs glycosaminoglycan synthesis, sulfation, and secretion. Cell Mol Life Sci 2022; 79:199. [PMID: 35312866 PMCID: PMC9164142 DOI: 10.1007/s00018-022-04223-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022]
Abstract
Synthesis of glycosaminoglycans, such as heparan sulfate (HS) and chondroitin sulfate (CS), occurs in the lumen of the Golgi, but the relationship between Golgi structural integrity and glycosaminoglycan synthesis is not clear. In this study, we disrupted the Golgi structure by knocking out GRASP55 and GRASP65 and determined its effect on the synthesis, sulfation, and secretion of HS and CS. We found that GRASP depletion increased HS synthesis while decreasing CS synthesis in cells, altered HS and CS sulfation, and reduced both HS and CS secretion. Using proteomics, RNA-seq and biochemical approaches, we identified EXTL3, a key enzyme in the HS synthesis pathway, whose level is upregulated in GRASP knockout cells; while GalNAcT1, an essential CS synthesis enzyme, is robustly reduced. In addition, we found that GRASP depletion decreased HS sulfation via the reduction of PAPSS2, a bifunctional enzyme in HS sulfation. Our study provides the first evidence that Golgi structural defect may significantly alter the synthesis and secretion of glycosaminoglycans.
Collapse
Affiliation(s)
- Erpan Ahat
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI, 48109-1085, USA
| | - Yuefan Song
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Whitney Reid
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI, 48109-1085, USA
| | - Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI, 48109-1085, USA
| | - Sarah Bui
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI, 48109-1085, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI, 48109-1085, USA.
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Yoon S, Choi JH, Shah M, Kwon SM, Yang J, Park YN, Wang HJ, Woo HG. USO1 isoforms differentially promote liver cancer progression by dysregulating the ER-Golgi network. Carcinogenesis 2021; 42:1208-1220. [PMID: 34293111 DOI: 10.1093/carcin/bgab067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/30/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022] Open
Abstract
Alternative splicing of RNA transcripts plays an important role in cancer development and progression. Recent advances in RNA-seq technology have made it possible to identify alternately spliced events in various types of cancer; however, research on hepatocellular carcinoma (HCC) is still limited. Here, by performing RNA-Seq profiling of HCC transcripts at isoform level, we identified tumor-specific and molecular subtype-dependent expression of the USO1 isoforms, which we designated as a normal form USO1-N (XM_001290049) and a tumor form USO1-T (NM_003715). The expression of USO1-T, but not USO1-N, was associated with worse prognostic outcomes of HCC patients. We confirmed that the expression of USO1-T promoted an aggressive phenotype of HCC, both in vitro and in vivo. In addition, structural modeling analyses revealed that USO1-T lacks an ARM10 loop encoded by exon 15, which may weaken the dimerization of USO1 and its tethering to GM130. We demonstrated that USO1-T ensured unstacking of the Golgi and accelerated the trafficking from ER to Golgi and plasma membrane in multiple liver cancer cells. ERK and GRASP65 were found to be involved in the USO1-T mediated Golgi dysfunction. Conclusively, we provide new mechanophysical insights into the USO1 isoforms that differentially regulate the ER-Golgi network, promoting the heterogeneous HCC progression.
Collapse
Affiliation(s)
- Sarah Yoon
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Ji-Hye Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Masaud Shah
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - So Mee Kwon
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jieun Yang
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Young Nyun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hee-Jung Wang
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
13
|
Abstract
Cisternae of the Golgi apparatus adhere to each other to form stacks, which are aligned side by side to form the Golgi ribbon. Two proteins, GRASP65 and GRASP55, previously implicated in stacking of cisternae, are shown to be required for the formation of the Golgi ribbon.
Collapse
|
14
|
Zhang X, Wang Y. Nonredundant Roles of GRASP55 and GRASP65 in the Golgi Apparatus and Beyond. Trends Biochem Sci 2020; 45:1065-1079. [PMID: 32893104 PMCID: PMC7641999 DOI: 10.1016/j.tibs.2020.08.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/06/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022]
Abstract
It has been demonstrated that two Golgi stacking proteins, GRASP55 and GRASP65, self-interact to form trans-oligomers that tether adjacent Golgi membranes into stacks and ribbons in mammalian cells. This ensures proper functioning of the Golgi apparatus in protein trafficking and processing. More recently, GRASP proteins have drawn extensive attention from researchers due to their diverse and essential roles in and out of the Golgi in different organisms. In this review, we summarize their established roles in Golgi structure formation and function under physiological conditions. We then highlight the emerging and divergent roles for individual GRASP proteins, focusing on GRASP65 in cell migration and apoptosis and GRASP55 in unconventional protein secretion and autophagy under stress or pathological conditions.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Liao J, Guan Y, Chen W, Shi C, Yao D, Wang F, Lam SM, Shui G, Cao X. ACBD3 is required for FAPP2 transferring glucosylceramide through maintaining the Golgi integrity. J Mol Cell Biol 2020; 11:107-117. [PMID: 29750412 DOI: 10.1093/jmcb/mjy030] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/25/2018] [Accepted: 05/07/2018] [Indexed: 11/14/2022] Open
Abstract
Glycosphingolipid (GSL) metabolism is involved in various physiological processes, including all major cell signaling pathways, and its dysregulation is linked to some diseases. The four-phosphate adaptor protein FAPP2-mediated glucosylceramide (GlcCer) transport for complex GSL synthesis has been studied extensively. However, the molecular machinery of FAPP2 as a GlcCer-transferring protein remains poorly defined. Here, we identify a Golgi-resident protein, acyl-coenzyme A binding domain containing 3 (ACBD3), as an interacting partner of FAPP2. We find that ACBD3 knockdown leads to dramatic Golgi fragmentation, which subsequently causes FAPP2 dispersal throughout the cytoplasm and a decreased localization at trans-Golgi network. The further quantitative lipidomic analysis indicates that ACBD3 knockdown triggers abnormal sphingolipid metabolism. Interestingly, the expression of siRNA-resistant full-length ACBD3 can rescue these defects caused by ACBD3 knockdown. These data reveal critical roles for ACBD3 in maintaining the integrity of Golgi morphology and cellular sphingolipid homeostasis and establish the importance of the integrated Golgi complex for the transfer of GlcCer and complex GSL synthesis.
Collapse
Affiliation(s)
- Jing Liao
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Yuxiang Guan
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Wei Chen
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Can Shi
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Dongdong Yao
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Fengsong Wang
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xinwang Cao
- School of Life Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
16
|
Ireland S, Ramnarayanan S, Fu M, Zhang X, Zhang J, Li J, Emebo D, Wang Y. Cytosolic Ca 2+ Modulates Golgi Structure Through PKCα-Mediated GRASP55 Phosphorylation. iScience 2020; 23:100952. [PMID: 32179476 PMCID: PMC7078314 DOI: 10.1016/j.isci.2020.100952] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/31/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022] Open
Abstract
It has been well documented that the ER responds to cellular stresses through the unfolded protein response (UPR), but it is unknown how the Golgi responds to similar stresses. In this study, we treated HeLa cells with ER stress inducers, thapsigargin (TG), tunicamycin (Tm), and dithiothreitol (DTT), and found that only TG treatment resulted in Golgi fragmentation. TG induced Golgi fragmentation at a low dose and short time when UPR was undetectable, indicating that Golgi fragmentation occurs independently of ER stress. Further experiments demonstrated that TG induces Golgi fragmentation through elevating intracellular Ca2+ and protein kinase Cα (PKCα) activity, which phosphorylates the Golgi stacking protein GRASP55. Significantly, activation of PKCα with other activating or inflammatory agents, including phorbol 12-myristate 13-acetate and histamine, modulates Golgi structure in a similar fashion. Hence, our study revealed a novel mechanism through which increased cytosolic Ca2+ modulates Golgi structure and function. Thapsigargin (TG) treatment leads to Golgi fragmentation independent of ER stress TG induces Golgi fragmentation through elevated cytosolic Ca2+ TG-induced cytosolic Ca2+ spikes activate PKCα that phosphorylates GRASP55 Histamine modulates the Golgi structure and function by a similar mechanism
Collapse
Affiliation(s)
- Stephen Ireland
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Saiprasad Ramnarayanan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Mingzhou Fu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Xiaoyan Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Jianchao Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Dabel Emebo
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA; Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109-1085, USA.
| |
Collapse
|
17
|
Zhang X, Brachner A, Kukolj E, Slade D, Wang Y. SIRT2 deacetylates GRASP55 to facilitate post-mitotic Golgi assembly. J Cell Sci 2019; 132:jcs232389. [PMID: 31604796 PMCID: PMC6857597 DOI: 10.1242/jcs.232389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/01/2019] [Indexed: 01/25/2023] Open
Abstract
Sirtuin 2 (SIRT2) is an NAD-dependent sirtuin deacetylase that regulates microtubule and chromatin dynamics, gene expression and cell cycle progression, as well as nuclear envelope reassembly. Recent proteomic analyses have identified Golgi proteins as SIRT2 interactors, indicating that SIRT2 may also play a role in Golgi structure formation. Here, we show that SIRT2 depletion causes Golgi fragmentation and impairs Golgi reassembly at the end of mitosis. SIRT2 interacts with the Golgi reassembly stacking protein GRASP55 (also known as GORASP2) in mitosis when GRASP55 is highly acetylated on K50. Expression of wild-type and the K50R acetylation-deficient mutant of GRASP55, but not the K50Q acetylation-mimetic mutant, in GRASP55 and GRASP65 (also known as GORASP1) double-knockout cells, rescued the Golgi structure and post-mitotic Golgi reassembly. Acetylation-deficient GRASP55 exhibited a higher self-interaction efficiency, a property required for Golgi structure formation. These results demonstrate that SIRT2 regulates Golgi structure by modulating GRASP55 acetylation levels.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 4110 Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Andreas Brachner
- Department of Biochemistry, Max Perutz Labs, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Eva Kukolj
- Department of Biochemistry, Max Perutz Labs, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Dea Slade
- Department of Biochemistry, Max Perutz Labs, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 4110 Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| |
Collapse
|
18
|
Golgi Fragmentation in Neurodegenerative Diseases: Is There a Common Cause? Cells 2019; 8:cells8070748. [PMID: 31331075 PMCID: PMC6679019 DOI: 10.3390/cells8070748] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023] Open
Abstract
In most mammalian cells, the Golgi complex forms a continuous ribbon. In neurodegenerative diseases, the Golgi ribbon of a specific group of neurons is typically broken into isolated elements, a very early event which happens before clinical and other pathological symptoms become evident. It is not known whether this phenomenon is caused by mechanisms associated with cell death or if, conversely, it triggers apoptosis. When the phenomenon was studied in diseases such as Parkinson’s and Alzheimer’s or amyotrophic lateral sclerosis, it was attributed to a variety of causes, including the presence of cytoplasmatic protein aggregates, malfunctioning of intracellular traffic and/or alterations in the cytoskeleton. In the present review, we summarize the current findings related to these and other neurodegenerative diseases and try to search for clues on putative common causes.
Collapse
|
19
|
Ahat E, Li J, Wang Y. New Insights Into the Golgi Stacking Proteins. Front Cell Dev Biol 2019; 7:131. [PMID: 31380369 PMCID: PMC6660245 DOI: 10.3389/fcell.2019.00131] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
The Golgi stacking proteins, GRASP55 and GRASP65, are best known for their roles in Golgi structure formation. These peripheral Golgi proteins form trans-oligomers that hold the flat cisternal membranes into stacks. Depletion of both GRASP proteins in cells disrupts the Golgi stack structure, increases protein trafficking, but impairs accurate glycosylation, and sorting. Golgi unstacking by GRASPs depletion also reduces cell adhesion and migration in an integrin-dependent manner. In addition to Golgi structure formation and regulation of cellular activities, GRASPs, in particular GRASP55, have recently drawn attention in their roles in autophagy, and unconventional secretion. In autophagy, GRASP55 senses the energy level by O-GlcNAcylation, which regulates GRASP55 translocation from the Golgi to the autophagosome-lysosome interface, where it interacts with LC3 and LAMP2 to facilitate autophagosome-lysosome fusion. This newly discovered function of GRASP55 in autophagy may help explain its role in the stress-induced, autophagosome-dependent unconventional secretion. In this review, we summarize the emerging functions of the GRASP proteins, focusing on their roles in cell adhesion and migration, autophagy, unconventional secretion, as well as on novel GRASP-interacting proteins.
Collapse
Affiliation(s)
- Erpan Ahat
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| |
Collapse
|
20
|
Ahat E, Xiang Y, Zhang X, Bekier ME, Wang Y. GRASP depletion-mediated Golgi destruction decreases cell adhesion and migration via the reduction of α5β1 integrin. Mol Biol Cell 2019; 30:766-777. [PMID: 30649990 PMCID: PMC6589770 DOI: 10.1091/mbc.e18-07-0462] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/03/2018] [Accepted: 01/09/2019] [Indexed: 11/21/2022] Open
Abstract
The Golgi apparatus is a membrane-bound organelle that serves as the center for trafficking and processing of proteins and lipids. To perform these functions, the Golgi forms a multilayer stacked structure held by GRASP55 and GRASP65 trans-oligomers and perhaps their binding partners. Depletion of GRASP proteins disrupts Golgi stack formation and impairs critical functions of the Golgi, such as accurate protein glycosylation and sorting. However, how Golgi destruction affects other cellular activities is so far unknown. Here, we report that depletion of GRASP proteins reduces cell attachment and migration. Interestingly, GRASP depletion reduces the protein level of α5β1 integrin, the major cell adhesion molecule at the surface of HeLa and MDA-MB-231 cells, due to decreased integrin protein synthesis. GRASP depletion also increases cell growth and total protein synthesis. These new findings enrich our understanding on the role of the Golgi in cell physiology and provide a potential target for treating protein-trafficking disorders.
Collapse
Affiliation(s)
- Erpan Ahat
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Yi Xiang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Xiaoyan Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Michael E. Bekier
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109-1085
| |
Collapse
|
21
|
Komura H, Kakio S, Sasahara T, Arai Y, Takino N, Sato M, Satomura K, Ohnishi T, Nabeshima YI, Muramatsu SI, Kii I, Hoshi M. Alzheimer Aβ Assemblies Accumulate in Excitatory Neurons upon Proteasome Inhibition and Kill Nearby NAKα3 Neurons by Secretion. iScience 2019; 13:452-477. [PMID: 30827871 PMCID: PMC6443839 DOI: 10.1016/j.isci.2019.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/14/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Abstract
We identified ∼30-mer amyloid-β protein (Aβ) assemblies, termed amylospheroids, from brains of patients with Alzheimer disease (AD) as toxic entities responsible for neurodegeneration and showed that Na+,K+-ATPase α3 (NAKα3) is the sole target of amylospheroid-mediated neurodegeneration. However, it remains unclear where in neurons amylospheroids form and how they reach their targets to induce neurodegeneration. Here, we present an in vitro culture system designed to chronologically follow amylospheroid formation in mature neurons expressing amyloid precursor protein bearing early-onset AD mutations. Amylospheroids were found to accumulate mainly in the trans-Golgi network of excitatory neurons and were initially transported in axons. Proteasome inhibition dramatically increased amylospheroid amounts in trans-Golgi by increasing Aβ levels and induced dendritic transport. Amylospheroids were secreted and caused the degeneration of adjacent NAKα3-expressing neurons. Interestingly, the ASPD-producing neurons later died non-apoptotically. Our findings demonstrate a link between ASPD levels and proteasome function, which may have important implications for AD pathophysiology.
Collapse
Affiliation(s)
- Hitomi Komura
- Department of Brain and Neurodegenerative Disease Research, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan; TAO Health Life Pharma Co., Ltd., Med-Pharma Collaboration Bldg, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shota Kakio
- Department of Brain and Neurodegenerative Disease Research, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan; TAO Health Life Pharma Co., Ltd., Med-Pharma Collaboration Bldg, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomoya Sasahara
- Department of Brain and Neurodegenerative Disease Research, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan; TAO Health Life Pharma Co., Ltd., Med-Pharma Collaboration Bldg, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshie Arai
- Department of Brain and Neurodegenerative Disease Research, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan; TAO Health Life Pharma Co., Ltd., Med-Pharma Collaboration Bldg, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Naomi Takino
- Division of Neurology, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Michio Sato
- Meiji University, Graduate School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Kaori Satomura
- Department of Brain and Neurodegenerative Disease Research, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan; TAO Health Life Pharma Co., Ltd., Med-Pharma Collaboration Bldg, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takayuki Ohnishi
- Department of Brain and Neurodegenerative Disease Research, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan; TAO Health Life Pharma Co., Ltd., Med-Pharma Collaboration Bldg, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yo-Ichi Nabeshima
- Department of Gerontology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurology, Jichi Medical University, Shimotsuke 329-0498, Japan; Center for Gene & Cell Therapy, The Institute of Medical Science, University of Tokyo, Tokyo 108-0071, Japan
| | - Isao Kii
- RIKEN Center for Life Science Technologies, Division of Bio-Function Dynamics Imaging, Kobe 650-0047, Japan
| | - Minako Hoshi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
22
|
Abstract
The Golgi apparatus is a central intracellular membrane-bound organelle with key functions in trafficking, processing, and sorting of newly synthesized membrane and secretory proteins and lipids. To best perform these functions, Golgi membranes form a unique stacked structure. The Golgi structure is dynamic but tightly regulated; it undergoes rapid disassembly and reassembly during the cell cycle of mammalian cells and is disrupted under certain stress and pathological conditions. In the past decade, significant amount of effort has been made to reveal the molecular mechanisms that regulate the Golgi membrane architecture and function. Here we review the major discoveries in the mechanisms of Golgi structure formation, regulation, and alteration in relation to its functions in physiological and pathological conditions to further our understanding of Golgi structure and function in health and diseases.
Collapse
Affiliation(s)
- Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Erpan Ahat
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
23
|
Li J, Tang D, Ireland SC, Wang Y. DjA1 maintains Golgi integrity via interaction with GRASP65. Mol Biol Cell 2018; 30:478-490. [PMID: 30566031 PMCID: PMC6594443 DOI: 10.1091/mbc.e18-10-0613] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In mammalian cells, the Golgi reassembly stacking protein of 65 kDa (GRASP65) has been implicated in both Golgi stacking and ribbon linking by forming trans-oligomers. To better understand its function and regulation, we used biochemical methods to identify the DnaJ homolog subfamily A member 1 (DjA1) as a novel GRASP65-binding protein. In cells, depletion of DjA1 resulted in Golgi fragmentation, short and improperly aligned cisternae, and delayed Golgi reassembly after nocodazole washout. In vitro, immunodepletion of DjA1 from interphase cytosol reduced its activity to enhance GRASP65 oligomerization and Golgi membrane fusion, while adding purified DjA1 enhanced GRASP65 oligomerization. DjA1 is a cochaperone of Heat shock cognate 71-kDa protein (Hsc70), but the activity of DjA1 in Golgi structure formation is independent of its cochaperone activity or Hsc70, rather, through DjA1-GRASP65 interaction to promote GRASP65 oligomerization. Thus, DjA1 interacts with GRASP65 to enhance Golgi structure formation through the promotion of GRASP65 trans-oligomerization.
Collapse
Affiliation(s)
- Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Danming Tang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Stephen C Ireland
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085.,Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109-1085
| |
Collapse
|
24
|
Antón-Fernández A, Merchán-Rubira J, Avila J, Hernández F, DeFelipe J, Muñoz A. Phospho-Tau Accumulation and Structural Alterations of the Golgi Apparatus of Cortical Pyramidal Neurons in the P301S Tauopathy Mouse Model. J Alzheimers Dis 2018; 60:651-661. [PMID: 28922155 PMCID: PMC5611801 DOI: 10.3233/jad-170332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Golgi apparatus (GA) is a highly dynamic organelle involved in the processing and sorting of cellular proteins. In Alzheimer’s disease (AD), it has been shown to decrease in size and become fragmented in neocortical and hippocampal neuronal subpopulations. This fragmentation and decrease in size of the GA in AD has been related to the accumulation of hyperphosphorylated tau. However, the involvement of other pathological factors associated with the course of the disease, such as the extracellular accumulation of amyloid-β (Aβ) aggregates, cannot be ruled out, since both pathologies are present in AD patients. Here we use the P301S tauopathy mouse model to examine possible alterations of the GA in neurons that overexpress human tau (P301S mutated gene) in neocortical and hippocampal neurons, using double immunofluorescence techniques and confocal microscopy. Quantitative analysis revealed that neurofibrillary tangle (NFT)-bearing neurons had important morphological alterations and reductions in the surface area and volume of the GA compared with NFT-free neurons. Since in this mouse model there are no Aβ aggregates typical of AD, the present findings support the idea that the progressive accumulation of phospho-tau is associated with structural alterations of the GA, and that these changes may occur in the absence of Aβ pathology.
Collapse
Affiliation(s)
- Alejandro Antón-Fernández
- Instituto Cajal, CSIC, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Jesús Avila
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Spain
| | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Spain
| | - Javier DeFelipe
- Instituto Cajal, CSIC, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Spain
| | - Alberto Muñoz
- Instituto Cajal, CSIC, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Spain.,Department of Cell Biology, Complutense University, Madrid, Spain
| |
Collapse
|
25
|
Vagne Q, Sens P. Stochastic Model of Maturation and Vesicular Exchange in Cellular Organelles. Biophys J 2018; 114:947-957. [PMID: 29490254 PMCID: PMC5984994 DOI: 10.1016/j.bpj.2017.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 11/21/2022] Open
Abstract
The dynamical organization of membrane-bound organelles along intracellular transport pathways relies on vesicular exchange between organelles and on the maturation of the organelle's composition by enzymatic reactions or exchange with the cytoplasm. The relative importance of each mechanism in controlling organelle dynamics remains controversial, in particular for transport through the Golgi apparatus. Using a stochastic model, we identify two classes of dynamical behavior that can lead to full maturation of membrane-bound compartments. In the first class, maturation corresponds to the stochastic escape from a steady state in which export is dominated by vesicular exchange, and is very unlikely for large compartments. In the second class, it occurs in a quasi-deterministic fashion and is almost size independent. Whether a system belongs to the first or second class is largely controlled by homotypic fusion.
Collapse
Affiliation(s)
- Quentin Vagne
- Institut Curie, PSL Research University, CNRS, UMR 168, Paris, France
| | - Pierre Sens
- Institut Curie, PSL Research University, CNRS, UMR 168, Paris, France.
| |
Collapse
|
26
|
Vagne Q, Sens P. Stochastic Model of Vesicular Sorting in Cellular Organelles. PHYSICAL REVIEW LETTERS 2018; 120:058102. [PMID: 29481197 DOI: 10.1103/physrevlett.120.058102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Indexed: 06/08/2023]
Abstract
The proper sorting of membrane components by regulated exchange between cellular organelles is crucial to intracellular organization. This process relies on the budding and fusion of transport vesicles, and should be strongly influenced by stochastic fluctuations, considering the relatively small size of many organelles. We identify the perfect sorting of two membrane components initially mixed in a single compartment as a first passage process, and we show that the mean sorting time exhibits two distinct regimes as a function of the ratio of vesicle fusion to budding rates. Low ratio values lead to fast sorting but result in a broad size distribution of sorted compartments dominated by small entities. High ratio values result in two well-defined sorted compartments but sorting is exponentially slow. Our results suggest an optimal balance between vesicle budding and fusion for the rapid and efficient sorting of membrane components and highlight the importance of stochastic effects for the steady-state organization of intracellular compartments.
Collapse
Affiliation(s)
- Quentin Vagne
- Institut Curie, PSL Research University, CNRS, UMR 168, 26 rue d'Ulm, F-75005 Paris, France
| | - Pierre Sens
- Institut Curie, PSL Research University, CNRS, UMR 168, 26 rue d'Ulm, F-75005 Paris, France
| |
Collapse
|
27
|
Huang S, Wang Y. Golgi structure formation, function, and post-translational modifications in mammalian cells. F1000Res 2017; 6:2050. [PMID: 29225785 PMCID: PMC5710388 DOI: 10.12688/f1000research.11900.1] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2017] [Indexed: 01/04/2023] Open
Abstract
The Golgi apparatus is a central membrane organelle for trafficking and post-translational modifications of proteins and lipids in cells. In mammalian cells, it is organized in the form of stacks of tightly aligned flattened cisternae, and dozens of stacks are often linked laterally into a ribbon-like structure located in the perinuclear region of the cell. Proper Golgi functionality requires an intact architecture, yet Golgi structure is dynamically regulated during the cell cycle and under disease conditions. In this review, we summarize our current understanding of the relationship between Golgi structure formation, function, and regulation, with focus on how post-translational modifications including phosphorylation and ubiquitination regulate Golgi structure and on how Golgi unstacking affects its functions, in particular, protein trafficking, glycosylation, and sorting in mammalian cells.
Collapse
Affiliation(s)
- Shijiao Huang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
28
|
Land-locked mammalian Golgi reveals cargo transport between stable cisternae. Nat Commun 2017; 8:432. [PMID: 28874656 PMCID: PMC5585379 DOI: 10.1038/s41467-017-00570-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 07/10/2017] [Indexed: 12/19/2022] Open
Abstract
The Golgi is composed of a stack of cis, medial, trans cisternae that are biochemically distinct. The stable compartments model postulates that permanent cisternae communicate through bi-directional vesicles, while the cisternal maturation model postulates that transient cisternae biochemically mature to ensure anterograde transport. Testing either model has been constrained by the diffraction limit of light microscopy, as the cisternae are only 10-20 nm thick and closely stacked in mammalian cells. We previously described the unstacking of Golgi by the ectopic adhesion of Golgi cisternae to mitochondria. Here, we show that cargo processing and transport continue-even when individual Golgi cisternae are separated and "land-locked" between mitochondria. With the increased spatial separation of cisternae, we show using three-dimensional live imaging that cis-Golgi and trans-Golgi remain stable in their composition and size. Hence, we provide new evidence in support of the stable compartments model in mammalian cells.The different composition of Golgi cisternae gave rise to two different models for intra-Golgi traffic: one where stable cisternae communicate via vesicles and another one where cisternae biochemically mature to ensure anterograde transport. Here, the authors provide evidence in support of the stable compartments model.
Collapse
|
29
|
Bekier ME, Wang L, Li J, Huang H, Tang D, Zhang X, Wang Y. Knockout of the Golgi stacking proteins GRASP55 and GRASP65 impairs Golgi structure and function. Mol Biol Cell 2017; 28:2833-2842. [PMID: 28814501 PMCID: PMC5638586 DOI: 10.1091/mbc.e17-02-0112] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 11/24/2022] Open
Abstract
GRASP55 and GRASP65 were knocked out, and it was found that double knockout of GRASP proteins disperses the Golgi stack into single cisternae and tubulovesicular structures, accelerates protein trafficking, and impairs accurate glycosylation of proteins and lipids. Golgi reassembly stacking protein of 65 kDa (GRASP65) and Golgi reassembly stacking protein of 55 kDa (GRASP55) were originally identified as Golgi stacking proteins; however, subsequent GRASP knockdown experiments yielded inconsistent results with respect to the Golgi structure, indicating a limitation of RNAi-based depletion. In this study, we have applied the recently developed clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology to knock out GRASP55 and GRASP65, individually or in combination, in HeLa and HEK293 cells. We show that double knockout of GRASP proteins disperses the Golgi stack into single cisternae and tubulovesicular structures, accelerates protein trafficking, and impairs accurate glycosylation of proteins and lipids. These results demonstrate a critical role for GRASPs in maintaining the stacked structure of the Golgi, which is required for accurate posttranslational modifications in the Golgi. Additionally, the GRASP knockout cell lines developed in this study will be useful tools for studying the role of GRASP proteins in other important cellular processes.
Collapse
Affiliation(s)
- Michael E Bekier
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Leibin Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Haoran Huang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Danming Tang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Xiaoyan Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048 .,Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
30
|
Ignashkova TI, Gendarme M, Peschk K, Eggenweiler HM, Lindemann RK, Reiling JH. Cell survival and protein secretion associated with Golgi integrity in response to Golgi stress-inducing agents. Traffic 2017; 18:530-544. [PMID: 28485883 DOI: 10.1111/tra.12493] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/29/2022]
Abstract
The Golgi apparatus is part of the secretory pathway and of central importance for modification, transport and sorting of proteins and lipids. ADP-ribosylation factors, whose activation can be blocked by brefeldin A (BFA), play a major role in functioning of the Golgi network and regulation of membrane traffic and are also involved in proliferation and migration of cancer cells. Due to high cytotoxicity and poor bioavailability, BFA has not passed the preclinical stage of drug development. Recently, AMF-26 and golgicide A have been described as novel inhibitors of the Golgi system with antitumor or bactericidal properties. We provide here further evidence that AMF-26 closely mirrors the mode of action of BFA but is less potent. Using several human cancer cell lines, we studied the effects of AMF-26, BFA and golgicide A on cell homeostasis including Golgi structure, endoplasmic reticulum (ER) stress markers, secretion and viability, and found overall a significant correlation between these parameters. Furthermore, modulation of ADP-ribosylation factor expression has a profound impact on Golgi organization and survival in response to Golgi stress inducers.
Collapse
Affiliation(s)
- Tatiana I Ignashkova
- Metabolism and Signaling in Cancer, BioMed X Innovation Center, Heidelberg, Germany
| | - Mathieu Gendarme
- Metabolism and Signaling in Cancer, BioMed X Innovation Center, Heidelberg, Germany
| | - Katrin Peschk
- Medicinal Chemistry, Merck Biopharma, Merck KGaA, Darmstadt, Germany
| | | | - Ralph K Lindemann
- Translational Innovation Platform Oncology, Merck Biopharma, Merck KGaA, Darmstadt, Germany
| | - Jan H Reiling
- Metabolism and Signaling in Cancer, BioMed X Innovation Center, Heidelberg, Germany
| |
Collapse
|
31
|
Wei JH, Seemann J. Golgi ribbon disassembly during mitosis, differentiation and disease progression. Curr Opin Cell Biol 2017; 47:43-51. [PMID: 28390244 DOI: 10.1016/j.ceb.2017.03.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 11/16/2022]
Abstract
The Golgi apparatus is tightly integrated into the cellular system where it plays essential roles required for a variety of cellular processes. Its vital functions include not only processing and sorting of proteins and lipids, but also serving as a signaling hub and a microtubule-organizing center. Golgi stacks in mammalian cells are interconnected into a compact ribbon in the perinuclear region. However, the ribbon can undergo distinct disassembly processes that reflect the cellular state or environmental demands and stress. For instance, its most dramatic change takes place in mitosis when the ribbon is efficiently disassembled into vesicles through a combination of ribbon unlinking, cisternal unstacking and vesiculation. Furthermore, the ribbon can also be detached and positioned at specific cellular locations to gain additional functionalities during differentiation, or fragmented to different degrees along disease progression or upon cell death. Here, we describe the major morphological alterations of Golgi ribbon disassembly under physiological and pathological conditions and discuss the underlying mechanisms that drive these changes.
Collapse
Affiliation(s)
- Jen-Hsuan Wei
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Joachim Seemann
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
32
|
Antón-Fernández A, Aparicio-Torres G, Tapia S, DeFelipe J, Muñoz A. Morphometric alterations of Golgi apparatus in Alzheimer's disease are related to tau hyperphosphorylation. Neurobiol Dis 2016; 97:11-23. [PMID: 27793637 PMCID: PMC5176038 DOI: 10.1016/j.nbd.2016.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 10/03/2016] [Accepted: 10/23/2016] [Indexed: 12/19/2022] Open
Abstract
The Golgi apparatus (GA) is a highly dynamic organelle, which is mainly involved in the post-translational processing and targeting of cellular proteins and which undergoes significant morphological changes in response to different physiological and pathological conditions. In the present study, we have analyzed the possible alterations of GA in neurons from the temporal neocortex and hippocampus of Alzheimer's disease (AD) patients, using double immunofluorescence techniques, confocal microscopy and 3D quantification techniques. We found that in AD patients, the percentage of temporal neocortical and CA1 hippocampal pyramidal neurons with a highly altered GA is much higher (approximately 65%) in neurons with neurofibrillary tangles (NFT) than in NFT-free neurons (approximately 6%). Quantitative analysis of the surface area and volume of GA elements in neurons revealed that, compared with NFT-free neurons, NFT-bearing neurons had a reduction of approximately one half in neocortical neurons and one third in CA1 neurons. In both regions, neurons with a pre-tangle stage of phospho-tau accumulation had surface area and GA volume values that were intermediate, that is, between those of NFT-free and NFT-bearing neurons. These findings support the idea that the progressive accumulation of phospho-tau is associated with structural alterations of the GA including fragmentation and a decrease in the surface area and volume of GA elements. These alterations likely impact the processing and trafficking of proteins, which might contribute to neuronal dysfunction in AD.
Collapse
Affiliation(s)
- Alejandro Antón-Fernández
- Instituto Cajal, CSIC, Madrid, Spain; Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Guillermo Aparicio-Torres
- Instituto Cajal, CSIC, Madrid, Spain; Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Silvia Tapia
- Instituto Cajal, CSIC, Madrid, Spain; Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Javier DeFelipe
- Instituto Cajal, CSIC, Madrid, Spain; Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain; CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Spain
| | - Alberto Muñoz
- Instituto Cajal, CSIC, Madrid, Spain; Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain; Department of Cell Biology, Complutense University, Madrid, Spain.
| |
Collapse
|
33
|
Zhang X, Wang Y. Glycosylation Quality Control by the Golgi Structure. J Mol Biol 2016; 428:3183-3193. [PMID: 26956395 PMCID: PMC4983240 DOI: 10.1016/j.jmb.2016.02.030] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/27/2016] [Accepted: 02/28/2016] [Indexed: 01/04/2023]
Abstract
Glycosylation is a ubiquitous modification that occurs on proteins and lipids in all living cells. Consistent with their high complexity, glycans play crucial biological roles in protein quality control and recognition events. Asparagine-linked protein N-glycosylation, the most complex glycosylation, initiates in the endoplasmic reticulum and matures in the Golgi apparatus. This process not only requires an accurate distribution of processing machineries, such as glycosyltransferases, glycosidases, and nucleotide sugar transporters, but also needs an efficient and well-organized factory that is responsible for the fidelity and quality control of sugar chain processing. In addition, accurate glycosylation must occur in coordination with protein trafficking and sorting. These activities are carried out by the Golgi apparatus, a membrane organelle in the center of the secretory pathway. To accomplish these tasks, the Golgi has developed into a unique stacked structure of closely aligned, flattened cisternae in which Golgi enzymes reside; in mammalian cells, dozens of Golgi stacks are often laterally linked into a ribbon-like structure. Here, we review our current knowledge of how the Golgi structure is formed and why its formation is required for accurate glycosylation, with the focus on how the Golgi stacking factors GRASP55 and GRASP65 generate the Golgi structure and how the conserved oligomeric Golgi complex maintains Golgi enzymes in different Golgi subcompartments by retrograde protein trafficking.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048, USA; Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
34
|
Zhang X, Wang Y. GRASPs in Golgi Structure and Function. Front Cell Dev Biol 2016; 3:84. [PMID: 26779480 PMCID: PMC4701983 DOI: 10.3389/fcell.2015.00084] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/14/2015] [Indexed: 12/26/2022] Open
Abstract
The Golgi apparatus is a central intracellular membrane organelle for trafficking and modification of proteins and lipids. Its basic structure is a stack of tightly aligned flat cisternae. In mammalian cells, dozens of stacks are concentrated in the pericentriolar region and laterally connected to form a ribbon. Despite extensive research in the last decades, how this unique structure is formed and why its formation is important for proper Golgi functioning remain largely unknown. The Golgi ReAssembly Stacking Proteins, GRASP65, and GRASP55, are so far the only proteins shown to function in Golgi stacking. They are peripheral membrane proteins on the cytoplasmic face of the Golgi cisternae that form trans-oligomers through their N-terminal GRASP domain, and thereby function as the “glue” to stick adjacent cisternae together into a stack and to link Golgi stacks into a ribbon. Depletion of GRASPs in cells disrupts the Golgi structure and results in accelerated protein trafficking and defective glycosylation. In this minireview we summarize our current knowledge on how GRASPs function in Golgi structure formation and discuss why Golgi structure formation is important for its function.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan Ann Arbor, MI, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of MichiganAnn Arbor, MI, USA; Department of Neurology, University of Michigan School of MedicineAnn Arbor, MI, USA
| |
Collapse
|
35
|
Tang D, Zhang X, Huang S, Yuan H, Li J, Wang Y. Mena-GRASP65 interaction couples actin polymerization to Golgi ribbon linking. Mol Biol Cell 2015; 27:137-52. [PMID: 26538023 PMCID: PMC4694753 DOI: 10.1091/mbc.e15-09-0650] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/27/2015] [Indexed: 01/08/2023] Open
Abstract
GRASP65 plays a role in Golgi ribbon formation. Because the gaps between Golgi stacks are heterogeneous and large, it is possible that other proteins may help GRASP65 in ribbon linking. Mena is a novel GRASP65-binding protein that promotes actin elongation and enhances GRASP65 oligomerization to link Golgi stacks into a ribbon. In mammalian cells, the Golgi reassembly stacking protein 65 (GRASP65) has been implicated in both Golgi stacking and ribbon linking by forming trans-oligomers through the N-terminal GRASP domain. Because the GRASP domain is globular and relatively small, but the gaps between stacks are large and heterogeneous, it remains puzzling how GRASP65 physically links Golgi stacks into a ribbon. To explore the possibility that other proteins may help GRASP65 in ribbon linking, we used biochemical methods and identified the actin elongation factor Mena as a novel GRASP65-binding protein. Mena is recruited onto the Golgi membranes through interaction with GRASP65. Depleting Mena or disrupting actin polymerization resulted in Golgi fragmentation. In cells, Mena and actin were required for Golgi ribbon formation after nocodazole washout; in vitro, Mena and microfilaments enhanced GRASP65 oligomerization and Golgi membrane fusion. Thus Mena interacts with GRASP65 to promote local actin polymerization, which facilitates Golgi ribbon linking.
Collapse
Affiliation(s)
- Danming Tang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Xiaoyan Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Shijiao Huang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Hebao Yuan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048 Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109-1048
| |
Collapse
|
36
|
Joshi G, Bekier ME, Wang Y. Golgi fragmentation in Alzheimer's disease. Front Neurosci 2015; 9:340. [PMID: 26441511 PMCID: PMC4585163 DOI: 10.3389/fnins.2015.00340] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/08/2015] [Indexed: 11/24/2022] Open
Abstract
The Golgi apparatus is an essential cellular organelle for post-translational modifications, sorting, and trafficking of membrane and secretory proteins. Proper functionality of the Golgi requires the formation of its unique cisternal-stacking morphology. The Golgi structure is disrupted in a variety of neurodegenerative diseases, suggesting a common mechanism and contribution of Golgi defects in neurodegenerative disorders. A recent study on Alzheimer's disease (AD) revealed that phosphorylation of the Golgi stacking protein GRASP65 disrupts its function in Golgi structure formation, resulting in Golgi fragmentation. Inhibiting GRASP65 phosphorylation restores the Golgi morphology from Aβ-induced fragmentation and reduces Aβ production. Perturbing Golgi structure and function in neurons may directly impact trafficking, processing, and sorting of a variety of proteins essential for synaptic and dendritic integrity. Therefore, Golgi defects may ultimately promote the development of AD. In the current review, we focus on the cellular impact of impaired Golgi morphology and its potential relationship to AD disease development.
Collapse
Affiliation(s)
- Gunjan Joshi
- Department of Molecular, Cellular and Developmental Biology, University of Michigan Ann Arbor, MI, USA
| | - Michael E Bekier
- Department of Molecular, Cellular and Developmental Biology, University of Michigan Ann Arbor, MI, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan Ann Arbor, MI, USA ; Department of Neurology, University of Michigan School of Medicine Ann Arbor, MI, USA
| |
Collapse
|
37
|
Abstract
Increased amyloid beta (Aβ) production by sequential cleavage of the amyloid precursor protein (APP) by the β- and γ-secretases contributes to the etiological basis of Alzheimer's disease (AD). This process requires APP and the secretases to be in the same subcellular compartments, such as the endosomes. Since all membrane organelles in the endomembrane system are kinetically and functionally linked, any defects in the trafficking and sorting machinery would be expected to change the functional properties of the whole system. The Golgi is a primary organelle for protein trafficking, sorting and modifications, and Golgi defects have been reported in AD. Here we hypothesize that Golgi fragmentation in AD accelerates APP trafficking and Aβ production. Furthermore, Golgi defects may perturb the proper trafficking and processing of many essential neuronal proteins, resulting in compromised neuronal function. Therefore, molecular tools that can restore Golgi structure and function could prove useful as potential drugs for AD treatment.
Collapse
Affiliation(s)
- Gunjan Joshi
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
38
|
Ito Y, Uemura T, Nakano A. Formation and maintenance of the Golgi apparatus in plant cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:221-87. [PMID: 24725428 DOI: 10.1016/b978-0-12-800180-6.00006-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Golgi apparatus plays essential roles in intracellular trafficking, protein and lipid modification, and polysaccharide synthesis in eukaryotic cells. It is well known for its unique stacked structure, which is conserved among most eukaryotes. However, the mechanisms of biogenesis and maintenance of the structure, which are deeply related to ER-Golgi and intra-Golgi transport systems, have long been mysterious. Now having extremely powerful microscopic technologies developed for live-cell imaging, the plant Golgi apparatus provides an ideal system to resolve the question. The plant Golgi apparatus has unique features that are not conserved in other kingdoms, which will also give new insights into the Golgi functions in plant life. In this review, we will summarize the features of the plant Golgi apparatus and transport mechanisms around it, with a focus on recent advances in Golgi biogenesis by live imaging of plants cells.
Collapse
Affiliation(s)
- Yoko Ito
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan; Live Cell Molecular Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan.
| |
Collapse
|
39
|
Aβ-induced Golgi fragmentation in Alzheimer's disease enhances Aβ production. Proc Natl Acad Sci U S A 2014; 111:E1230-9. [PMID: 24639524 DOI: 10.1073/pnas.1320192111] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Golgi fragmentation occurs in neurons of patients with Alzheimer's disease (AD), but the underlying molecular mechanism causing the defects and the subsequent effects on disease development remain unknown. In this study, we examined the Golgi structure in APPswe/PS1E9 transgenic mouse and tissue culture models. Our results show that accumulation of amyloid beta peptides (Aβ) leads to Golgi fragmentation. Further biochemistry and cell biology studies revealed that Golgi fragmentation in AD is caused by phosphorylation of Golgi structural proteins, such as GRASP65, which is induced by Aβ-triggered cyclin-dependent kinase-5 activation. Significantly, both inhibition of cyclin-dependent kinase-5 and expression of nonphosphorylatable GRASP65 mutants rescued the Golgi structure and reduced Aβ secretion by elevating α-cleavage of the amyloid precursor protein. Our study demonstrates a molecular mechanism for Golgi fragmentation and its effects on amyloid precursor protein trafficking and processing in AD, suggesting Golgi as a potential drug target for AD treatment.
Collapse
|
40
|
Bisel B, Calamai M, Vanzi F, Pavone FS. Decoupling polarization of the Golgi apparatus and GM1 in the plasma membrane. PLoS One 2013; 8:e80446. [PMID: 24312472 PMCID: PMC3846482 DOI: 10.1371/journal.pone.0080446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/03/2013] [Indexed: 01/19/2023] Open
Abstract
Cell polarization is a process of coordinated cellular rearrangements that prepare the cell for migration. GM1 is synthesized in the Golgi apparatus and localized in membrane microdomains that appear at the leading edge of polarized cells, but the mechanism by which GM1 accumulates asymmetrically is unknown. The Golgi apparatus itself becomes oriented toward the leading edge during cell polarization, which is thought to contribute to plasma membrane asymmetry. Using quantitative image analysis techniques, we measure the extent of polarization of the Golgi apparatus and GM1 in the plasma membrane simultaneously in individual cells subject to a wound assay. We find that GM1 polarization starts just 10 min after stimulation with growth factors, while Golgi apparatus polarization takes 30 min. Drugs that block Golgi polarization or function have no effect on GM1 polarization, and, conversely, inhibiting GM1 polarization does not affect Golgi apparatus polarization. Evaluation of Golgi apparatus and GM1 polarization in single cells reveals no correlation between the two events. Our results indicate that Golgi apparatus and GM1 polarization are controlled by distinct intracellular cascades involving the Ras/Raf/MEK/ERK and the PI3K/Akt/mTOR pathways, respectively. Analysis of cell migration and invasion suggest that MEK/ERK activation is crucial for two dimensional migration, while PI3K activation drives three dimensional invasion, and no cumulative effect is observed from blocking both simultaneously. The independent biochemical control of GM1 polarity by PI3K and Golgi apparatus polarity by MEK/ERK may act synergistically to regulate and reinforce directional selection in cell migration.
Collapse
Affiliation(s)
- Blaine Bisel
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
- * E-mail:
| | - Martino Calamai
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council of Italy (CNR), Florence, Italy
| | - Francesco Vanzi
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
- Department of Evolutionary Biology “Leo Pardi”, University of Florence, Florence, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
41
|
Tang D, Wang Y. Cell cycle regulation of Golgi membrane dynamics. Trends Cell Biol 2013; 23:296-304. [PMID: 23453991 DOI: 10.1016/j.tcb.2013.01.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/21/2013] [Accepted: 01/30/2013] [Indexed: 01/12/2023]
Abstract
The Golgi apparatus is a membranous organelle in the cell that plays essential roles in protein and lipid trafficking, sorting, processing, and modification. Its basic structure is a stack of closely aligned flattened cisternae. In mammalian cells, dozens of Golgi stacks are often laterally linked into a ribbon-like structure. Biogenesis of the Golgi during cell division occurs through a sophisticated disassembly and reassembly process that can be divided into three distinct but cooperative steps, including the deformation and reformation of the Golgi cisternae, stacks, and ribbon. Here, we review our current understanding of the protein machineries that control these three steps in the cycle of mammalian cell division: GRASP65 and GRASP55 in Golgi stack and ribbon formation; ubiquitin and AAA ATPases in postmitotic Golgi membrane fusion; and golgins and cytoskeleton in Golgi ribbon formation.
Collapse
Affiliation(s)
- Danming Tang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
42
|
Xiang Y, Zhang X, Nix DB, Katoh T, Aoki K, Tiemeyer M, Wang Y. Regulation of protein glycosylation and sorting by the Golgi matrix proteins GRASP55/65. Nat Commun 2013; 4:1659. [PMID: 23552074 PMCID: PMC3620728 DOI: 10.1038/ncomms2669] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/27/2013] [Indexed: 12/27/2022] Open
Abstract
The Golgi receives the entire output of newly synthesized cargo from the endoplasmic reticulum, processes it in the stack largely through modification of bound oligosaccharides, and sorts it in the trans-Golgi network. GRASP65 and GRASP55, two proteins localized to the Golgi stack and early secretory pathway, mediate processes including Golgi stacking, Golgi ribbon linking and unconventional secretion. Previously, we have shown that GRASP depletion in cells disrupts Golgi stack formation. Here we report that knockdown of the GRASP proteins, alone or combined, accelerates protein trafficking through the Golgi membranes but also has striking negative effects on protein glycosylation and sorting. These effects are not caused by Golgi ribbon unlinking, unconventional secretion or endoplasmic reticulum stress. We propose that GRASP55/65 are negative regulators of exocytic transport and that this slowdown helps to ensure more complete protein glycosylation in the Golgi stack and proper sorting at the trans-Golgi network.
Collapse
Affiliation(s)
- Yi Xiang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048, USA
| | - Xiaoyan Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048, USA
| | - David B. Nix
- The Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602-4712, USA
- The Department of Biochemistry and Molecular Biology, B122 Life Sciences Building, University of Georgia, Athens, GA 30602-5016, USA
| | - Toshihiko Katoh
- The Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602-4712, USA
| | - Kazuhiro Aoki
- The Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602-4712, USA
| | - Michael Tiemeyer
- The Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602-4712, USA
- The Department of Biochemistry and Molecular Biology, B122 Life Sciences Building, University of Georgia, Athens, GA 30602-5016, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048, USA
| |
Collapse
|
43
|
Modular organization of the mammalian Golgi apparatus. Curr Opin Cell Biol 2012; 24:467-74. [PMID: 22726585 DOI: 10.1016/j.ceb.2012.05.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/29/2012] [Indexed: 02/07/2023]
Abstract
The Golgi apparatus is essential for post-translational modifications and sorting of proteins in the secretory pathway. In addition, it further performs a broad range of specialized functions. This functional diversity is achieved by combining basic morphological modules of cisternae into higher ordered structures. Linking cisternae into stacks that are further connected through tubules into a continuous Golgi ribbon greatly increases its efficiency and expands its repertoire of functions. During cell division, the different modules of the Golgi are inherited by different mechanisms to maintain its functional and morphological composition.
Collapse
|
44
|
Naydenov NG, Brown B, Harris G, Dohn MR, Morales VM, Baranwal S, Reynolds AB, Ivanov AI. A membrane fusion protein αSNAP is a novel regulator of epithelial apical junctions. PLoS One 2012; 7:e34320. [PMID: 22485163 PMCID: PMC3317505 DOI: 10.1371/journal.pone.0034320] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/28/2012] [Indexed: 12/31/2022] Open
Abstract
Tight junctions (TJs) and adherens junctions (AJs) are key determinants of the structure and permeability of epithelial barriers. Although exocytic delivery to the cell surface is crucial for junctional assembly, little is known about the mechanisms controlling TJ and AJ exocytosis. This study was aimed at investigating whether a key mediator of exocytosis, soluble N-ethylmaleimide sensitive factor (NSF) attachment protein alpha (αSNAP), regulates epithelial junctions. αSNAP was enriched at apical junctions in SK-CO15 and T84 colonic epithelial cells and in normal human intestinal mucosa. siRNA-mediated knockdown of αSNAP inhibited AJ/TJ assembly and establishment of the paracellular barrier in SK-CO15 cells, which was accompanied by a significant down-regulation of p120-catenin and E-cadherin expression. A selective depletion of p120 catenin effectively disrupted AJ and TJ structure and compromised the epithelial barrier. However, overexpression of p120 catenin did not rescue the defects of junctional structure and permeability caused by αSNAP knockdown thereby suggesting the involvement of additional mechanisms. Such mechanisms did not depend on NSF functions or induction of cell death, but were associated with disruption of the Golgi complex and down-regulation of a Golgi-associated guanidine nucleotide exchange factor, GBF1. These findings suggest novel roles for αSNAP in promoting the formation of epithelial AJs and TJs by controlling Golgi-dependent expression and trafficking of junctional proteins.
Collapse
Affiliation(s)
- Nayden G. Naydenov
- Department of Medicine, University of Rochester, Rochester, New York, United States of America
| | - Bryan Brown
- Department of Medicine, University of Rochester, Rochester, New York, United States of America
| | - Gianni Harris
- Department of Medicine, University of Rochester, Rochester, New York, United States of America
| | - Michael R. Dohn
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Victor M. Morales
- Department of Medicine, University of Rochester, Rochester, New York, United States of America
| | - Somesh Baranwal
- Department of Medicine, University of Rochester, Rochester, New York, United States of America
| | - Albert B. Reynolds
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Andrei I. Ivanov
- Department of Medicine, University of Rochester, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
45
|
Abstract
The Golgi is an essential membrane-bound organelle in the secretary pathway of eukaryotic cells. In mammalian cells, the Golgi stacks are integrated into a continuous perinuclear ribbon, which poses a challenge for the daughter cells to inherit this membrane organelle during cell division. To facilitate proper partitioning, the mammalian Golgi ribbon is disassembled into vesicles in early mitosis. Following segregation into the daughter cells, a functional Golgi is reformed. Here we summarize our current understanding of the molecular mechanisms that control the mitotic Golgi disassembly and postmitotic reassembly cycle in mammalian cells.
Collapse
Affiliation(s)
- Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
46
|
Wei JH, Seemann J. Remodeling of the Golgi structure by ERK signaling. Commun Integr Biol 2011; 2:35-6. [PMID: 19704864 DOI: 10.4161/cib.2.1.7421] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 11/17/2008] [Indexed: 11/19/2022] Open
Abstract
Emerging evidence suggests that the Golgi functions as a regulatory node for various signaling cascades. Modules of the MAPK pathway are targeted to the Golgi upon stimulation of cells with mitogens. The target for activated ERK on the Golgi membranes is GRASP65, a peripheral membrane protein required for Golgi cisternal stacking. Phosphorylation of GRASP65 at Serine 277 results in a loss of its oligomerization and causes unstacking of Golgi cisternae. This reorganization of the Golgi structure is required for the polarization of the Golgi and the centrosomes towards the leading edge in migrating cells. Preventing GRASP65 phosphorylation with mutants lacking the phosphorylation site blocks Golgi and centrosome orientation. This demonstrates a mechanism for cell polarization involving dynamic remodeling of the Golgi mediated by local phosphorylation of a Golgi protein induced by mitogen signaling.
Collapse
Affiliation(s)
- Jen-Hsuan Wei
- Department of Cell Biology; University of Texas Southwestern Medical Center; Dallas, Texas USA
| | | |
Collapse
|
47
|
Litterman N, Ikeuchi Y, Gallardo G, O'Connell BC, Sowa ME, Gygi SP, Harper JW, Bonni A. An OBSL1-Cul7Fbxw8 ubiquitin ligase signaling mechanism regulates Golgi morphology and dendrite patterning. PLoS Biol 2011; 9:e1001060. [PMID: 21572988 PMCID: PMC3091842 DOI: 10.1371/journal.pbio.1001060] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 03/25/2011] [Indexed: 12/22/2022] Open
Abstract
The elaboration of dendrites in neurons requires secretory trafficking through the Golgi apparatus, but the mechanisms that govern Golgi function in neuronal morphogenesis in the brain have remained largely unexplored. Here, we report that the E3 ubiquitin ligase Cul7Fbxw8 localizes to the Golgi complex in mammalian brain neurons. Inhibition of Cul7Fbxw8 by independent approaches including Fbxw8 knockdown reveals that Cul7Fbxw8 is selectively required for the growth and elaboration of dendrites but not axons in primary neurons and in the developing rat cerebellum in vivo. Inhibition of Cul7Fbxw8 also dramatically impairs the morphology of the Golgi complex, leading to deficient secretory trafficking in neurons. Using an immunoprecipitation/mass spectrometry screening approach, we also uncover the cytoskeletal adaptor protein OBSL1 as a critical regulator of Cul7Fbxw8 in Golgi morphogenesis and dendrite elaboration. OBSL1 forms a physical complex with the scaffold protein Cul7 and thereby localizes Cul7 at the Golgi apparatus. Accordingly, OBSL1 is required for the morphogenesis of the Golgi apparatus and the elaboration of dendrites. Finally, we identify the Golgi protein Grasp65 as a novel and physiologically relevant substrate of Cul7Fbxw8 in the control of Golgi and dendrite morphogenesis in neurons. Collectively, these findings define a novel OBSL1-regulated Cul7Fbxw8 ubiquitin signaling mechanism that orchestrates the morphogenesis of the Golgi apparatus and patterning of dendrites, with fundamental implications for our understanding of brain development. The growth and elaboration of dendrites is an essential step in the establishment of neuronal circuits in the brain. Because dendrites house the receptive components of neurotransmission and actively integrate synaptic inputs, variations in dendrite architecture have important consequences for information processing. The development of dendrites relies on secretory trafficking through the Golgi apparatus. In this study, we have identified an E3 ubiquitin ligase, Cul7Fbxw8, that localizes to the Golgi apparatus in neurons. E3 ubiquitin ligases regulate the abundance of target proteins by directing ubiquitin-dependent proteolysis of specific targets. We have found that Cul7Fbxw8 operates at the Golgi apparatus to control Golgi integrity and dendrite patterning. We have also identified the cytoskeletal adaptor protein OBSL1 as an important regulator of Cul7Fbxw8 function in neurons. OBSL1 promotes the function of Cul7Fbxw8 by localizing Cul7 at the Golgi apparatus. Finally, we have found that Cul7Fbxw8 induces the ubiquitination and degradation of the Golgi protein Grasp65 to control Golgi morphology and dendrite elaboration. We conclude that the signaling cascade from OBSL1 to Cul7Fbxw8 to Grasp65 is an important means of regulating Golgi morphology and consequently the shape and size of dendrite arbors in neurons.
Collapse
Affiliation(s)
- Nadia Litterman
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yoshiho Ikeuchi
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gilbert Gallardo
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brenda C. O'Connell
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mathew E. Sowa
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - J. Wade Harper
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Azad Bonni
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
48
|
Abstract
The mammalian GRASPs (Golgi reassembly stacking proteins) GRASP65 and GRASP55 were first discovered more than a decade ago as factors involved in the stacking of Golgi cisternae. Since then, orthologues have been identified in many different organisms and GRASPs have been assigned new roles that may seem disconnected. In vitro, GRASPs have been shown to have the biochemical properties of Golgi stacking factors, but the jury is still out as to whether they act as such in vivo. In mammalian cells, GRASP65 and GRASP55 are required for formation of the Golgi ribbon, a structure which is fragmented in mitosis owing to the phosphorylation of a number of serine and threonine residues situated in its C-terminus. Golgi ribbon unlinking is in turn shown to be part of a mitotic checkpoint. GRASP65 also seems to be the key target of signalling events leading to re-orientation of the Golgi during cell migration and its breakdown during apoptosis. Interestingly, the Golgi ribbon is not a feature of lower eukaryotes, yet a GRASP homologue is present in the genome of Encephalitozoon cuniculi, suggesting they have other roles. GRASPs have no identified function in bulk anterograde protein transport along the secretory pathway, but some cargo-specific trafficking roles for GRASPs have been discovered. Furthermore, GRASP orthologues have recently been shown to mediate the unconventional secretion of the cytoplasmic proteins AcbA/Acb1, in both Dictyostelium discoideum and yeast, and the Golgi bypass of a number of transmembrane proteins during Drosophila development. In the present paper, we review the multiple roles of GRASPs.
Collapse
|
49
|
Abstract
The Golgi apparatus lies at the heart of the secretory pathway where it receives, modifies and sorts protein cargo to the proper intracellular or extracellular location. Although this secretory function is highly conserved throughout the eukaryotic kingdom, the structure of the Golgi complex is arranged very differently among species. In particular, Golgi membranes in vertebrate cells are integrated into a single compact entity termed the Golgi ribbon that is normally localized in the perinuclear area and in close vicinity to the centrosomes. This organization poses a challenge for cell division when the single Golgi ribbon needs to be partitioned into the two daughter cells. To ensure faithful inheritance in the progeny, the Golgi ribbon is divided in three consecutive steps in mitosis, namely disassembly, partitioning and reassembly. However, the structure of the Golgi ribbon is only present in higher animals and Golgi disassembly during mitosis is not ubiquitous in all organisms. Therefore, there must be unique reasons to build up the Golgi in this particular conformation and to preserve it over generations. In this review, we first highlight the diversity of the Golgi architecture in different organisms and revisit the concept of the Golgi ribbon. Following on, we discuss why the ribbon is needed and how it forms in vertebrate cells. Lastly, we conclude with likely purposes of mitotic ribbon disassembly and further propose mechanisms by which it regulates mitosis.
Collapse
Affiliation(s)
- Jen-Hsuan Wei
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
50
|
Structural organization of the Golgi apparatus. Curr Opin Cell Biol 2011; 23:85-93. [DOI: 10.1016/j.ceb.2010.10.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/07/2010] [Accepted: 10/17/2010] [Indexed: 11/21/2022]
|