1
|
Tanvir F, Singh S, Singh K, Onwuzo CN, Singh J, Antaal H, Sandhu APS, Kaur MS, Singh H, Singh A. The Underrecognized Role of Cannabis in the Etiology of Acute Pancreatitis. Cureus 2024; 16:e68612. [PMID: 39371741 PMCID: PMC11450675 DOI: 10.7759/cureus.68612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Cannabis-induced pancreatitis (CIP) is an emerging clinical entity that presents unique challenges in diagnosis and management. This narrative review explores the current understanding of CIP, synthesizing evidence from epidemiological, pathophysiological, and clinical studies. The rising prevalence of cannabis use worldwide has been paralleled by an increase in reported cases of CIP, particularly among younger populations. Pathophysiological mechanisms involve the interaction of exogenous cannabinoids with pancreatic cannabinoid receptors, potentially disrupting normal pancreatic function and triggering inflammation. Clinical presentation of CIP often mimics other forms of acute pancreatitis (AP), necessitating a high index of suspicion and thorough history-taking for accurate diagnosis. Management strategies align with established protocols for AP, with an emphasis on supportive care and cannabis cessation to prevent recurrence. While short-term outcomes are generally favorable, the risk of progression to chronic pancreatitis in cases of continued cannabis use underscores the importance of long-term follow-up and abstinence counseling. This review also highlights significant knowledge gaps, including the need for standardized diagnostic criteria, a better understanding of dose-response relationships, and potential interactions with other risk factors. Future research directions should focus on elucidating precise pathophysiological mechanisms, developing targeted therapies, and investigating the impact of different cannabis formulations and consumption methods on pancreatic health. As cannabis use continues to increase globally, a comprehensive understanding of its effects on pancreatic function is crucial for improving patient outcomes and informing public health policies.
Collapse
Affiliation(s)
- Fnu Tanvir
- Internal Medicine, Government Medical College Amritsar, Amritsar, IND
| | - Sumerjit Singh
- Diagnostic Radiology, Government Medical College Amritsar, Amritsar, IND
| | | | - Chidera N Onwuzo
- Internal Medicine, State University of New York Upstate Medical University, Syracuse, USA
- Internal Medicine, Benjamin S. Carson College of Health and Medical Sciences, Ilishan-Remo, NGA
- Internal Medicine, Lagos Island General Hospital, Lagos, NGA
| | - Jaskaran Singh
- Internal Medicine, Sri Guru Ram Das University of Health Sciences, Amritsar, IND
| | - Harman Antaal
- Internal Medicine, Government Medical College, Patiala, Patiala, IND
| | | | - Meet Sirjana Kaur
- Internal Medicine, Government Medical College, Patiala, Patiala, IND
| | - Harmanjot Singh
- Internal Medicine, The White Medical College and Hospital, Pathankot, IND
| | - Agamjit Singh
- Psychiatry, Punjab Institute of Medical Sciences, Jalandhar, IND
| |
Collapse
|
2
|
Lee S, Lee Y, Kim Y, Kim H, Rhyu H, Yoon K, Lee CD, Lee S. Beneficial effects of cannabidiol from Cannabis. APPLIED BIOLOGICAL CHEMISTRY 2024; 67:32. [DOI: 10.1186/s13765-024-00867-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/26/2024] [Indexed: 01/05/2025]
Abstract
AbstractCannabis, traditionally used for recreation due to psychoactive compounds in its leaves, flowers, and seeds, has not been thoroughly explored for potential therapeutic benefits. Δ9-trans-Tetrahydrocannabinol, a key cannabinoid in cannabis, causes hallucinogenic effects and delirium symptoms. In contrast, cannabidiol (CBD) does not induce hallucinations and has shown effectiveness in treating symptoms of various rare, incurable diseases. Cannabis exhibits neuroprotective, anti-inflammatory, anti-thrombotic, anti-bacterial, analgesic, and antiepileptic properties, recently attracting more attention. This review aims to summarize comprehensively the impact of cannabis on human health, focusing on endocannabinoids and their receptors. It also delves into recent CBD research advancements, highlighting the compound’s potential medical applications. Overall, this paper provides valuable insights into the prospective development of medical cannabis, with a particular emphasis on CBD.
Collapse
|
3
|
Bachari A, Nassar N, Telukutla S, Zomer R, Dekiwadia C, Piva TJ, Mantri N. In Vitro Antiproliferative Effect of Cannabis Extract PHEC-66 on Melanoma Cell Lines. Cells 2023; 12:2450. [PMID: 37887294 PMCID: PMC10605078 DOI: 10.3390/cells12202450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Melanoma, an aggressive form of skin cancer, can be fatal if not diagnosed and treated early. Melanoma is widely recognized to resist advanced cancer treatments, including immune checkpoint inhibitors, kinase inhibitors, and chemotherapy. Numerous studies have shown that various Cannabis sativa extracts exhibit potential anticancer effects against different types of tumours both in vitro and in vivo. This study is the first to report that PHEC-66, a Cannabis sativa extract, displays antiproliferative effects against MM418-C1, MM329 and MM96L melanoma cells. Although these findings suggest that PHEC-66 has promising potential as a pharmacotherapeutic agent for melanoma treatment, further research is necessary to evaluate its safety, efficacy, and clinical applications.
Collapse
Affiliation(s)
- Ava Bachari
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (A.B.); (S.T.)
| | - Nazim Nassar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (N.N.); (T.J.P.)
- Faculty of Health, Charles Darwin University, Casuarina, NT 0810, Australia
| | - Srinivasareddy Telukutla
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (A.B.); (S.T.)
| | - Roby Zomer
- MGC Pharmaceuticals Limited, West Perth, WA 6005, Australia;
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility, STEM College, RMIT University, Melbourne, VIC 3000, Australia;
| | - Terrence J. Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (N.N.); (T.J.P.)
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (A.B.); (S.T.)
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
4
|
Falasca V, Falasca M. Targeting the Endocannabinoidome in Pancreatic Cancer. Biomolecules 2022; 12:320. [PMID: 35204820 PMCID: PMC8869154 DOI: 10.3390/biom12020320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic Ductal adenocarcinoma (PDAC), the most common malignancy of the pancreas, is an aggressive and lethal form of cancer with a very high mortality rate. High heterogeneity, asymptomatic initial stages and a lack of specific diagnostic markers result in an end-stage diagnosis when the tumour has locally advanced or metastasised. PDAC is resistant to most of the available chemotherapy and radiation therapy treatments, making surgery the most potent curative treatment. The desmoplastic tumour microenvironment contributes to determining PDAC pathophysiology, immune response and therapeutic efficacy. The existing therapeutic approaches such as FDA-approved chemotherapeutics, gemcitabine, abraxane and folfirinox, prolong survival marginally and are accompanied by adverse effects. Several studies suggest the role of cannabinoids as anti-cancer agents. Cannabinoid receptors are known to be expressed in pancreatic cells, with a higher expression reported in pancreatic cancer patients. Therefore, pharmacological targeting of the endocannabinoid system might offer therapeutic benefits in pancreatic cancer. In addition, emerging data suggest that cannabinoids in combination with chemotherapy can increase survival in transgenic pancreatic cancer murine models. This review provides an overview of the regulation of the expanded endocannabinoid system, or endocannabinoidome, in PDAC and will explore the potential of targeting this system for novel anticancer approaches.
Collapse
Affiliation(s)
- Valerio Falasca
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
5
|
Correia-Sá IB, Carvalho CM, Serrão PV, Machado VA, Carvalho SO, Marques M, Vieira-Coelho MA. AM251, a cannabinoid receptor 1 antagonist, prevents human fibroblasts differentiation and collagen deposition induced by TGF-β - An in vitro study. Eur J Pharmacol 2020; 892:173738. [PMID: 33220269 DOI: 10.1016/j.ejphar.2020.173738] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 10/22/2022]
Abstract
Previous studies showed that cannabinoid 1 receptor (CB1) is linked with skin fibrosis and scar tissue formation in mice. Therefore, the topical use of cannabinoids may have a role in the prevention or treatment of local fibrotic and wound healing diseases as hypertrophic scars or keloids. In this study, we asked whether CB1 activation or inactivation would change fibroblast differentiation into myofibroblast and collagen deposition in skin human fibroblast. Primary cultures of adult human fibroblasts were obtained from abdominal human skin. Cells were stimulated with transforming growth factor-beta (TGF-β, 10ng/ml) and treated with a CB1 selective agonist (arachidonyl-2-chloroethylamide, ACEA 1 μM) and an antagonist (AM251 1, 5 and 10 μM). Alpha-smooth muscle actin (α-SMA) was quantified using Immunocytochemistry and Western Blot. Collagen was quantified with Sirius Red staining assay. Significance was assessed by One-way ANOVA. P < 0.05 was considered significant. TGF-β significantly increases α-SMA expression. ACEA 1 μM significantly increases collagen deposition but does not change α-SMA expression. AM251 10 μM added in the absence and the presence of ACEA reduces α-SMA expression and collagen content in TGF-β treated cells. AM251 shows a concentration-dependent effect over collagen deposition with a pIC50 of 5.5 (4.6-6.4). TGF-β significantly increases CB1 receptor expression. CB1 inactivation with AM251 prevents fibroblasts differentiation and collagen deposition, induced by TGF-β in human fibroblasts. The outcome supports that CB1 is a molecular target for wound healing disorders and in vivo and pre-clinical studies should be implemented to clarify this premise.
Collapse
Affiliation(s)
- Inês B Correia-Sá
- Department of Plastic, Reconstructive and Aesthetic Surgery and Burn Unit, Faculty of Medicine, University of Porto and Centro Hospitalar São João, EPE, Porto, Portugal; Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Oporto, Porto, Portugal.
| | - Cláudia M Carvalho
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Oporto, Porto, Portugal
| | - Paula V Serrão
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Oporto, Porto, Portugal
| | - Vera A Machado
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Oporto, Porto, Portugal
| | - Sofia O Carvalho
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Oporto, Porto, Portugal
| | - Marisa Marques
- Department of Plastic, Reconstructive and Aesthetic Surgery and Burn Unit, Faculty of Medicine, University of Porto and Centro Hospitalar São João, EPE, Porto, Portugal
| | - Maria A Vieira-Coelho
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Oporto, Porto, Portugal
| |
Collapse
|
6
|
Roife D, Sarcar B, Fleming JB. Stellate Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:67-84. [PMID: 32588324 DOI: 10.1007/978-3-030-44518-8_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As tumor microenvironments share many of the same qualities as chronic wounds, attention is turning to the wound-repair cells that support the growth of cancerous cells. Stellate cells are star-shaped cells that were first discovered in the perisinusoidal spaces in the liver and have been found to support wound healing by the secretion of growth factors and extracellular matrix. They have since been also found to serve a similar function in the pancreas. In both organs, the wound-healing process may become dysregulated and lead to pathological fibrosis (also known as cirrhosis in the liver). In recent years there has been increasing attention paid to the role of these cells in tumor formation and progression. They may be a factor in initiating the first steps of carcinogenesis such as with liver cirrhosis and hepatocellular carcinoma and also contribute to continued tumor growth, invasion, metastasis, evasion of the immune system, and resistance to chemotherapy, in cancers of both the liver and pancreas. In this chapter we aim to review the structure and function of hepatic and pancreatic stellate cells and their contributions to the tumor microenvironment in their respective cancers and also discuss potential new targets for cancer therapy based on our new understanding of these vital components of the tumor stroma.
Collapse
Affiliation(s)
- David Roife
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Bhaswati Sarcar
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
7
|
Correia-Sá I, Paiva A, Carvalho CM, Vieira-Coelho MA. Cutaneous endocannabinoid system: Does it have a role on skin wound healing bearing fibrosis? Pharmacol Res 2020; 159:104862. [PMID: 32454223 DOI: 10.1016/j.phrs.2020.104862] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Recently, the endocannabinoid system has been identified in skin and it has been linked with the formation of skin fibrosis and wound healing. We aimed to find and analyse reported data on compounds acting in the endocannabinoid system with significant effect in skin fibrosis. METHODS A literature search on PUBMED was conducted for studies published in English until February 2020 on cannabinoids and skin fibrosis. The initial search was performed with terms: "cannabinoid" AND "skin". This search retrieved 296 publications from which 18 directly related to skin fibrosis or wound healing process were included in this review. RESULTS CB1 receptor inactivation and CB2 receptor activation show anti-fibrotic effects on cellular and animal experimental models of cutaneous fibrosis. CB2 receptor activation also promotes re-epithelization. Other cannabinoid related receptors, like adenosine A2A receptors and PPAR-γ, are also involved. Their activation lead to a pro-fibrotic and anti-fibrotic effect, respectively. CONCLUSION Several molecular drug targets for endocannabinoid system were identified in skin. It may be a promising approach for the treatment of excessive skin fibrosis disorders.
Collapse
Affiliation(s)
- Inês Correia-Sá
- Department of Plastic, Reconstructive and Aesthetic Surgery and Burn Unit, Faculty of Medicine, University of Porto and Centro Hospitalar Universitário de São João, EPE, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Anita Paiva
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Cláudia M Carvalho
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maria A Vieira-Coelho
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
8
|
Thomas D, Radhakrishnan P. Pancreatic Stellate Cells: The Key Orchestrator of The Pancreatic Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1234:57-70. [PMID: 32040855 DOI: 10.1007/978-3-030-37184-5_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is one of the most challenging adenocarcinomas due to its hostile molecular behavior and complex tumor microenvironment. It has been recently postulated that pancreatic stellate cells (PSCs), the resident lipid-storing cells of the pancreas, are important components of the tumor microenvironment as they can transdifferentiate into highly proliferative myofibroblasts in the context of tissue injury. Targeting tumor-stromal crosstalk in the tumor microenvironment has emerged as a promising therapeutic strategy against pancreatic cancer progression and metastasis. This chapter brings a broad view on the biological and pathological role of PSCs in the pancreas, activated stellate cells in the onset of tissue fibrosis, and tumor progression with particular emphasis on the bidirectional interactions between tumor cells and PSCs. Further, potential therapeutic regimens targeting activated PSCs in the pre-clinical and clinical trials are discussed.
Collapse
Affiliation(s)
- Divya Thomas
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
9
|
|
10
|
Sharafi G, He H, Nikfarjam M. Potential Use of Cannabinoids for the Treatment of Pancreatic Cancer. J Pancreat Cancer 2019; 5:1-7. [PMID: 30706048 PMCID: PMC6352507 DOI: 10.1089/pancan.2018.0019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Cannabinoid extracts may have anticancer properties, which can improve cancer treatment outcomes. The aim of this review is to determine the potentially utility of cannabinoids in the treatment of pancreatic cancer. Methods: A literature review focused on the biological effects of cannabinoids in cancer treatment, with a focus on pancreatic cancer, was conducted. In vitro and in vivo studies that investigated the effects of cannabinoids in pancreatic cancer were identified and potential mechanisms of action were assessed. Results: Cannabinol receptors have been identified in pancreatic cancer with several studies showing in vitro antiproliferative and proapoptotic effects. The main active substances found in cannabis plants are cannabidiol (CBD) and tetrahydrocannabinol (THC). There effects are predominately mediated through, but not limited to cannabinoid receptor-1, cannabinoid receptor-2, and G-protein-coupled receptor 55 pathways. In vitro studies consistently demonstrated tumor growth-inhibiting effects with CBD, THC, and synthetic derivatives. Synergistic treatment effects have been shown in two studies with the combination of CBD/synthetic cannabinoid receptor ligands and chemotherapy in xenograft and genetically modified spontaneous pancreatic cancer models. There are, however, no clinical studies to date showing treatment benefits in patients with pancreatic cancer. Conclusions: Cannabinoids may be an effective adjunct for the treatment of pancreatic cancer. Data on the anticancer effectiveness of various cannabinoid formulations, treatment dosing, precise mode of action, and clinical studies are lacking.
Collapse
Affiliation(s)
- Golnaz Sharafi
- Department of Surgery, University of Melbourne, Austin Health, Melbourne, Australia
| | - Hong He
- Department of Surgery, University of Melbourne, Austin Health, Melbourne, Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, University of Melbourne, Austin Health, Melbourne, Australia
| |
Collapse
|
11
|
Tung CW, Ho C, Hsu YC, Huang SC, Shih YH, Lin CL. MicroRNA-29a Attenuates Diabetic Glomerular Injury through Modulating Cannabinoid Receptor 1 Signaling. Molecules 2019; 24:molecules24020264. [PMID: 30642005 PMCID: PMC6359641 DOI: 10.3390/molecules24020264] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 12/25/2022] Open
Abstract
Diabetic nephropathy often leads to end-stage renal disease and life-threatening morbidities. Simple control of risk factors is insufficient to prevent the progression of diabetic nephropathy, hence the need for discovering new treatments is of paramount importance. Recently, the dysregulation of microRNAs or the cannabinoid signaling pathway has been implicated in the pathogenesis of various renal tubulointerstitial fibrotic damages and thus novel therapeutic targets for chronic kidney diseases have emerged; however, the role of microRNAs or cannabinoid receptors on diabetes-induced glomerular injuries remains to be elucidated. In high-glucose-stressed renal mesangial cells, transfection of a miR-29a precursor sufficiently suppressed the mRNA and protein expressions of cannabinoid type 1 receptor (CB1R). Our data also revealed upregulated CB1R, interleukin-1β, interleukin-6, tumor necrosis factor-α, c-Jun, and type 4 collagen in the glomeruli of streptozotocin (STZ)-induced diabetic mice, whereas the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) was decreased. Importantly, using gain-of-function transgenic mice, we demonstrated that miR-29a acts as a negative regulator of CB1R, blocks the expressions of these proinflammatory and profibrogenic mediators, and attenuates renal hypertrophy. We also showed that overexpression of miR-29a restored PPAR-γ signaling in the renal glomeruli of diabetic animals. Collectively, our findings indicate that the interaction between miR-29a, CB1R, and PPAR-γ may play an important role in protecting diabetic renal glomeruli from fibrotic injuries.
Collapse
Affiliation(s)
- Chun-Wu Tung
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan.
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 61363, Taiwan.
| | - Cheng Ho
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 61363, Taiwan.
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan.
| | - Yung-Chien Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan.
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 61363, Taiwan.
| | - Shun-Chen Huang
- Department of Anatomic Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan.
| | - Ya-Hsueh Shih
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan.
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 61363, Taiwan.
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan.
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 61363, Taiwan.
- 10507, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan.
| |
Collapse
|
12
|
Adejumo AC, Akanbi O, Adejumo KL, Bukong TN. Reduced Risk of Alcohol-Induced Pancreatitis With Cannabis Use. Alcohol Clin Exp Res 2018; 43:277-286. [DOI: 10.1111/acer.13929] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Adeyinka Charles Adejumo
- Department of Medicine ; North Shore Medical Center; Salem Massachusetts
- Department of Medicine ; University of Massachusetts Medical School; Worcester Massachusetts
- School of Public Health ; University of Massachusetts Lowell; Lowell Massachusetts
| | - Olalekan Akanbi
- Division of Hospital Medicine ; University of Kentucky College of Medicine; Lexington Kentucky
| | | | - Terence Ndonyi Bukong
- Department of Medicine ; University of Massachusetts Medical School; Worcester Massachusetts
- INRS-Institut Armand-Frappier ; Institut National de la Recherche Scientifique; Laval Québec Canada
| |
Collapse
|
13
|
da Silva-Leite KES, Girão DKFB, de Freitas Pires A, Assreuy AMS, de Moraes PAF, Cunha AP, Ricardo NMPS, Criddle DN, de Souza MHLP, Pereira MG, Soares PMG. Ximenia americana heteropolysaccharides ameliorate inflammation and visceral hypernociception in murine caerulein-induced acute pancreatitis: Involvement of CB2 receptors. Biomed Pharmacother 2018; 106:1317-1324. [DOI: 10.1016/j.biopha.2018.07.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 01/12/2023] Open
|
14
|
The Fatty Acid Amide Hydrolase Inhibitor URB937 Ameliorates Radiation-Induced Lung Injury in a Mouse Model. Inflammation 2018; 40:1254-1263. [PMID: 28478515 DOI: 10.1007/s10753-017-0568-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Radiation-induced lung injury (RILI) is a potentially life-threatening complication of radiotherapy. In the current study, we examined the potential protective effects of URB937, an inhibitor of fatty acid amide hydrolase using a mouse model of RILI. Briefly, male C57BL/6 mice received 16Gy irradiation to the thoracic region and then intraperitoneal injection of either URB937 (1 mg/kg) or vehicle every 2 days for 30 days. The extent of the lung injury was evaluated histologically at the end of the drug treatment as well as 3 months after the cessation of the treatment. The data showed URB937 attenuated radiation-induced lung injury and increased endocannabinoid concentration in lung tissue. Treatment with URB937 decreased leukocyte migration and inflammatory cytokines in bronchoalveolar lavage fluid and plasma at day 30. Histopathological examination revealed URB937 could restore lung structure and restrain inflammatory cell and fibroblast accumulation caused by irradiation in lung tissue. URB937 also decreased radiation-induced pro-inflammatory (e.g., interleukin-1β, interleukin-6, tumor necrosis factor-α) and pro-fibrotic cytokines (e.g., transforming growth factor-β1) level in lung tissue, as well as lipid peroxidation in the lungs. Mouse survival examined in a separate group of experimental subjects indicated that URB937 could prolong animal survival. Experiments using a mouse bearing Lewis lung carcinoma cells showed that URB937 does not affect irradiation-induced inhibition of tumor growth. These results suggest that inhibiting fatty acid amide hydrolase could ameliorate RILI without compromising the efficacy of irradiation on tumor control.
Collapse
|
15
|
Pezzilli R, Ciuffreda P, Ottria R, Ravelli A, Melzi d'Eril G, Barassi A. Serum endocannabinoids in assessing pain in patients with chronic pancreatitis and in those with pancreatic ductal adenocarcinoma. Scand J Gastroenterol 2017. [PMID: 28631495 DOI: 10.1080/00365521.2017.1342139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The endocannabinoid system plays a substantial role in analgesia. AIM To analyze N-arachidonoylethanolamine (AEA), N-oleoylethanolamine (OEA), linoleoyl ethanolamide (LEA), α-linoleoyl ethanolamine (α-LNEA), N-palmitoylethanolamine (PEA) and N-stearoyl ethanolamine (SEA) in two groups of patients having chronic pancreatic diseases. PATIENTS AND METHODS Twenty-six patients with chronic pancreatitis, 26 patients with pancreatic ductal adenocarcinoma and 36 healthy subjects were studied. The visual analogic scale (VAS) was used for assessing pain immediately before the venipuncture to obtain blood in all subjects. Six endocannabinoids were measured in serum of the patients enrolled. RESULTS Only OEA, LEA and PEA serum levels were significantly higher in patients with pain as compared to those without. Using the cutoff values, the sensitivity and specificity of the various endocannabinoids in evaluating pain in patients with chronic pancreatitis and in those with pancreatic ductal adenocarcinoma were: 44.2% and 95.6% for AEA, 83.7% and 73.3% for LEA, 88.4% and 91.1% for LNEA, 81.4% and 82.2% for OEA, 81.4% and 88.9% for PEA, 86.0% and 88.9% for SEA, respectively. CONCLUSION Endocannabinoids are not useful in assessing pain in patients with chronic pancreatic diseases and they cannot replace a simple method such as VAS for assessing the pain and its intensity.
Collapse
Affiliation(s)
- Raffaele Pezzilli
- a Department of Digestive Diseases , Sant'Orsola-Malpighi Hospital , Bologna , Italy
| | - Pierangela Ciuffreda
- b L. Sacco, Department of Biomedical and Clinical Sciences , University of Milan , Milan , Italy
| | - Roberta Ottria
- b L. Sacco, Department of Biomedical and Clinical Sciences , University of Milan , Milan , Italy
| | - Alessandro Ravelli
- c Department of Biomedical, Surgical and Dental Sciences , University of Milan , Milan , Italy
| | - Gianvico Melzi d'Eril
- d Department of Health Sciences , San Paolo Hospital, University of Milan , Milan , Italy
| | - Alessandra Barassi
- d Department of Health Sciences , San Paolo Hospital, University of Milan , Milan , Italy
| |
Collapse
|
16
|
Utomo WK, de Vries M, Braat H, Bruno MJ, Parikh K, Comalada M, Peppelenbosch MP, van Goor H, Fuhler GM. Modulation of Human Peripheral Blood Mononuclear Cell Signaling by Medicinal Cannabinoids. Front Mol Neurosci 2017; 10:14. [PMID: 28174520 PMCID: PMC5258717 DOI: 10.3389/fnmol.2017.00014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/11/2017] [Indexed: 01/28/2023] Open
Abstract
Medical marijuana is increasingly prescribed as an analgesic for a growing number of indications, amongst which terminal cancer and multiple sclerosis. However, the mechanistic aspects and properties of cannabis remain remarkably poorly characterized. In this study we aimed to investigate the immune-cell modulatory properties of medical cannabis. Healthy volunteers were asked to ingest medical cannabis, and kinome profiling was used to generate comprehensive descriptions of the cannabis challenge on inflammatory signal transduction in the peripheral blood of these volunteers. Results were related to both short term and long term effects in patients experimentally treated with a medical marijuana preparation for suffering from abdominal pain as a result of chronic pancreatitis or other causes. The results reveal an immunosuppressive effect of cannabinoid preparations via deactivation of signaling through the pro-inflammatory p38 MAP kinase and mTOR pathways and a concomitant deactivation of the pro-mitogenic ERK pathway. However, long term cannabis exposure in two patients resulted in reversal of this effect. While these data provide a powerful mechanistic rationale for the clinical use of medical marijuana in inflammatory and oncological disease, caution may be advised with sustained use of such preparations.
Collapse
Affiliation(s)
- Wesley K Utomo
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University of Rotterdam Rotterdam, Netherlands
| | - Marjan de Vries
- Department of Surgery, Radboud University Medical Center Nijmegen, Netherlands
| | - Henri Braat
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University of Rotterdam Rotterdam, Netherlands
| | - Marco J Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University of Rotterdam Rotterdam, Netherlands
| | - Kaushal Parikh
- Department of Cell Biology, University Medical Center Groningen Groningen, Netherlands
| | | | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University of Rotterdam Rotterdam, Netherlands
| | - Harry van Goor
- Department of Surgery, Radboud University Medical Center Nijmegen, Netherlands
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University of Rotterdam Rotterdam, Netherlands
| |
Collapse
|
17
|
Bynigeri RR, Jakkampudi A, Jangala R, Subramanyam C, Sasikala M, Rao GV, Reddy DN, Talukdar R. Pancreatic stellate cell: Pandora's box for pancreatic disease biology. World J Gastroenterol 2017; 23:382-405. [PMID: 28210075 PMCID: PMC5291844 DOI: 10.3748/wjg.v23.i3.382] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/09/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic stellate cells (PSCs) were identified in the early 1980s, but received much attention after 1998 when the methods to isolate and culture them from murine and human sources were developed. PSCs contribute to a small proportion of all pancreatic cells under physiological condition, but are essential for maintaining the normal pancreatic architecture. Quiescent PSCs are characterized by the presence of vitamin A laden lipid droplets. Upon PSC activation, these perinuclear lipid droplets disappear from the cytosol, attain a myofibroblast like phenotype and expresses the activation marker, alpha smooth muscle actin. PSCs maintain their activated phenotype via an autocrine loop involving different cytokines and contribute to progressive fibrosis in chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC). Several pathways (e.g., JAK-STAT, Smad, Wnt signaling, Hedgehog etc.), transcription factors and miRNAs have been implicated in the inflammatory and profibrogenic function of PSCs. The role of PSCs goes much beyond fibrosis/desmoplasia in PDAC. It is now shown that PSCs are involved in significant crosstalk between the pancreatic cancer cells and the cancer stroma. These interactions result in tumour progression, metastasis, tumour hypoxia, immune evasion and drug resistance. This is the rationale for therapeutic preclinical and clinical trials that have targeted PSCs and the cancer stroma.
Collapse
|
18
|
Zhang J, Dai EH, Jiang HQ. Cannabinoid receptor 2 and several digestive system diseases. Shijie Huaren Xiaohua Zazhi 2016; 24:400-407. [DOI: 10.11569/wcjd.v24.i3.400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The endocannabinoid system is made up of endocannabinoid, cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2). A multitude of physiological effects and putative pathophysiological roles have been proposed for the endogenous cannabinoid system in the gastrointestinal tract, liver, pancreas and tumors. This paper aims to review the endocannabinoid system and the relations of CB2 with irritable bowel syndrome, inflammatory bowel disease, pancreatitis, hepatic disease and digestive system tumors.
Collapse
|
19
|
Volz MS, Siegmund B, Häuser W. Wirksamkeit, Verträglichkeit und Sicherheit von Cannabinoiden in der Gastroenterologie. Schmerz 2016; 30:37-46. [DOI: 10.1007/s00482-015-0087-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Response to Utomo et al. Am J Gastroenterol 2015; 110:1245-6. [PMID: 26263368 DOI: 10.1038/ajg.2015.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Stangel D, Erkan M, Buchholz M, Gress T, Michalski C, Raulefs S, Friess H, Kleeff J. Kif20a inhibition reduces migration and invasion of pancreatic cancer cells. J Surg Res 2015; 197:91-100. [PMID: 25953216 DOI: 10.1016/j.jss.2015.03.070] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/10/2015] [Accepted: 03/25/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND The Translational Genome Research Network in Pancreatic Cancer performed a meta-analysis of publicly available various high-throughput gene analysis panels to identify drugable targets. There, the most differentially expressed gene between normal and cancerous pancreas was Kif20a. The aim of the study was to verify this expression pattern and further characterize Kif20a in pancreatic cancer. MATERIALS AND METHODS Detailed expression analyses were carried out in pancreatic tissues and in a wide panel of pancreatic cells including ductal adenocarcinoma (PDAC) and neuroendocrine-cancer cell lines as well as immortalized human pancreatic ductal epithelial and primary stellate cells using quantitative real-time polymerase chain reaction, immunohistochemistry, immunofluorescence, and immunoblot analyses. Effects on proliferation, apoptosis, and cell cycle were assessed by MTT assays, caspase-cleavage assays, and fluorescence-activated cell sorting analysis after Kif20a silencing. Cell motility was assessed by migration and invasion assays as well as time-lapse microscopy. RESULTS Mean Kif20a messenger RNA expression was 18.4-fold upregulated in PDAC tissues compared with that in the normal pancreas. In line, neuroendocrine-cancer cell lines display a 1.6-fold increase and ductal adenocarcinoma cell lines a 11-fold increase of Kif20a messenger RNA (P = 0.009) in comparison with primary stellate cells. A 7.3-fold overexpression was also found in immortalized pancreatic ductal epithelial cells. Kif20a silencing with small interfering RNA molecules resulted in an inhibition of proliferation, motility, and invasion of pancreatic cancer cell lines. CONCLUSIONS Targeting Kif20a reduces proliferation, migration, and invasion of pancreatic cancer cells. Together with its significant overexpression in PDAC, this makes it a potential target for diagnostic and interventional purposes.
Collapse
Affiliation(s)
- Daniela Stangel
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Mert Erkan
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany; Department of Surgery, Koc School of Medicine, Istanbul, Turkey.
| | - Malte Buchholz
- Department of Gastroenterology and Endocrinology, University Hospital, Philipps-University, Marburg, Germany
| | - Thomas Gress
- Department of Gastroenterology and Endocrinology, University Hospital, Philipps-University, Marburg, Germany
| | - Christoph Michalski
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany; Department of Surgery, University of Heidelberg, Heidelberg, Germany
| | - Susanne Raulefs
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Jörg Kleeff
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
22
|
Pacher P, Kunos G. Modulating the endocannabinoid system in human health and disease--successes and failures. FEBS J 2013; 280:1918-1943. [PMID: 23551849 PMCID: PMC3684164 DOI: 10.1111/febs.12260] [Citation(s) in RCA: 285] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/11/2013] [Accepted: 03/19/2013] [Indexed: 12/20/2022]
Abstract
The discovery of the endocannabinoid system, comprising the G-protein coupled cannabinoid 1 and 2 receptors (CB1/2), their endogenous lipid ligands or endocannabinoids, and synthetic and metabolizing enzymes, has triggered an avalanche of experimental studies implicating the endocannabinoid system in a growing number of physiological/pathological functions. These studies have also suggested that modulating the activity of the endocannabinoid system holds therapeutic promise for a broad range of diseases, including neurodegenerative, cardiovascular and inflammatory disorders; obesity/metabolic syndrome; cachexia; chemotherapy-induced nausea and vomiting; and tissue injury and pain, amongst others. However, clinical trials with globally acting CB1 antagonists in obesity/metabolic syndrome, and other studies with peripherally-restricted CB1/2 agonists and inhibitors of the endocannabinoid metabolizing enzyme in pain, have introduced unexpected complexities, suggesting that a better understanding of the pathophysiological role of the endocannabinoid system is required to devise clinically successful treatment strategies.
Collapse
Affiliation(s)
- Pál Pacher
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-9413, USA.
| | | |
Collapse
|
23
|
Michler T, Storr M, Kramer J, Ochs S, Malo A, Reu S, Göke B, Schäfer C. Activation of cannabinoid receptor 2 reduces inflammation in acute experimental pancreatitis via intra-acinar activation of p38 and MK2-dependent mechanisms. Am J Physiol Gastrointest Liver Physiol 2013; 304:G181-92. [PMID: 23139224 DOI: 10.1152/ajpgi.00133.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The endocannabinoid system has been shown to mediate beneficial effects on gastrointestinal inflammation via cannabinoid receptors 1 (CB(1)) and 2 (CB(2)). These receptors have also been reported to activate the MAP kinases p38 and c-Jun NH(2)-terminal kinase (JNK), which are involved in early acinar events leading to acute pancreatitis and induction of proinflammatory cytokines. Our aim was to examine the role of cannabinoid receptor activation in an experimental model of acute pancreatitis and the potential involvement of MAP kinases. Cerulein pancreatitis was induced in wild-type, CB(1)-/-, and MK2-/- mice pretreated with selective cannabinoid receptor agonists or antagonists. Severity of pancreatitis was determined by serum amylase and IL-6 levels, intracellular activation of pancreatic trypsinogen, lung myeloperoxidase activity, pancreatic edema, and histological examinations. Pancreatic lysates were investigated by Western blotting using phospho-specific antibodies against p38 and JNK. Quantitative PCR data, Western blotting experiments, and immunohistochemistry clearly show that CB(1) and CB(2) are expressed in mouse pancreatic acini. During acute pancreatitis, an upregulation especially of CB(2) on apoptotic cells occurred. The unselective CB(1)/CB(2) agonist HU210 ameliorated pancreatitis in wild-type and CB(1)-/- mice, indicating that this effect is mediated by CB(2). Furthermore, blockade of CB(2), not CB(1), with selective antagonists engraved pathology. Stimulation with a selective CB(2) agonist attenuated acute pancreatitis and an increased activation of p38 was observed in the acini. With use of MK2-/- mice, it could be demonstrated that this attenuation is dependent on MK2. Hence, using the MK2-/- mouse model we reveal a novel CB(2)-activated and MAP kinase-dependent pathway that modulates cytokine expression and reduces pancreatic injury and affiliated complications.
Collapse
Affiliation(s)
- Thomas Michler
- Department of Medicine II, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Zheng JL, Yu TS, Li XN, Fan YY, Ma WX, Du Y, Zhao R, Guan DW. Cannabinoid receptor type 2 is time-dependently expressed during skin wound healing in mice. Int J Legal Med 2012; 126:807-814. [PMID: 22814434 DOI: 10.1007/s00414-012-0741-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/03/2012] [Indexed: 12/23/2022]
Abstract
Dynamic localization of CB2R and quantitative analysis of CB2R mRNA during skin wound healing in mice were performed. Co-localization of CB2R with F4/80 or α-SMA was detected by double-color immunofluorescence microscopy. A total of 110 male mice were divided into control, injury, and postmortem groups. Sixty-five mice were sacrificed, followed by sampling at 0.5 h-21 days post-injury. Five mice without incision were used as control. The other 40 mice that received incised wound were sacrificed at 5 days after injury. The samples were collected at 0 h-3 days postmortem. In the uninjured controls, CB2R immunoreactivity was detected in the epidermis, hair follicles, sebaceous glands, dermomuscular layer, and vascular smooth muscle. In the incision groups, polymorphonulcear cells, macrophages, and myofibroblasts showed positive staining for CB2R. Morphometrically, the average ratios of CB2R-positive cells were more than 50 % at 5 days post-wounding, whereas it was <50 % at the other posttraumatic intervals. The average ratios of CB2R-positive macrophages maximized at 3 days post-wounding, and the average ratios of CB2R-positive myofibroblasts peaked at 5 days post-wounding. The relative quantity of CB2R mRNA expression maximized at posttraumatic 5 days in comparison with control as detected by real-time PCR, with an average ratio of >4.10, which was also confirmed by Western blotting. There was no significant change for CB2R protein within 6 h postmortem and for mRNA within 3 h postmortem as compared with the control group. In conclusion, dynamic distribution and expression of CB2R suggest that CB2R is involved in modulating macrophages and myofibroblasts in response to inflammatory event and repair process in mouse skin wound healing, and CB2R is available as a marker for wound age determination.
Collapse
Affiliation(s)
- Ji-Long Zheng
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.92, Beier Road, Heping District, Shenyang, Liaoning Province, 110001, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Gonzalez EG, Selvi E, Balistreri E, Akhmetshina A, Palumbo K, Lorenzini S, Lazzerini PE, Montilli C, Capecchi PL, Lucattelli M, Baldi C, Gianchecchi E, Galeazzi M, Pasini FL, Distler JHW. Synthetic cannabinoid ajulemic acid exerts potent antifibrotic effects in experimental models of systemic sclerosis. Ann Rheum Dis 2012; 71:1545-51. [PMID: 22492781 DOI: 10.1136/annrheumdis-2011-200314] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Cannabinoids modulate fibrogenesis in scleroderma. Ajulemic acid (AjA) is a non-psychoactive synthetic analogue of tetrahydrocannabinol that can bind the peroxisome proliferator-activated receptor-γ (PPAR-γ). Recent evidence suggests a key role for PPAR-γ in fibrogenesis. OBJECTIVE To determine whether AjA can modulate fibrogenesis in murine models of scleroderma. MATERIAL AND METHODS Bleomycin-induced experimental fibrosis was used to assess the antifibrotic effects of AjA in vivo. In addition, the efficacy of AjA in pre-established fibrosis was analysed in a modified model of bleomycin-induced dermal fibrosis and in mice overexpressing a constitutively active transforming growth factor β (TGFβ) receptor I. Skin fibrosis was evaluated by quantification of skin thickness and hydroxyproline content. As a marker of fibroblast activation, α-smooth muscle actin was examined. To study the direct effect of AjA in collagen neosynthesis, skin fibroblasts from patients with scleroderma were treated with increasing concentrations of AjA. Protein expression of PPAR-γ, and its endogenous ligand 15d-PGJ2, and TGFβ were assessed before and after AjA treatment. RESULTS AjA significantly prevented experimental bleomycin-induced dermal fibrosis and modestly reduced its progression when started 3 weeks into the disease. AjA strongly reduced collagen neosynthesis by scleroderma fibroblasts in vitro, an action which was reversed completely by co-treatment with a selective PPAR-γ antagonist. CONCLUSIONS AjA prevents progression of fibrosis in vivo and inhibits fibrogenesis in vitro by stimulating PPAR-γ signalling. Since therapeutic doses of AjA are well tolerated in humans, it is suggested that AjA as an interesting molecule targeting fibrosis in patients with scleroderma.
Collapse
Affiliation(s)
- Estrella Garcia Gonzalez
- Correspondence to Estrella Garcia Gonzalez, Rheumatology Unit, Department of Clinical Medicine and Immunological Sciences, Siena 53100, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Erkan M, Hausmann S, Michalski CW, Fingerle AA, Dobritz M, Kleeff J, Friess H. The role of stroma in pancreatic cancer: diagnostic and therapeutic implications. Nat Rev Gastroenterol Hepatol 2012; 9:454-67. [PMID: 22710569 DOI: 10.1038/nrgastro.2012.115] [Citation(s) in RCA: 486] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the five most lethal malignancies worldwide and survival has not improved substantially in the past 30 years. Desmoplasia (abundant fibrotic stroma) is a typical feature of PDAC in humans, and stromal activation commonly starts around precancerous lesions. It is becoming clear that this stromal tissue is not a bystander in disease progression. Cancer-stroma interactions effect tumorigenesis, angiogenesis, therapy resistance and possibly the metastatic spread of tumour cells. Therefore, targeting the tumour stroma, in combination with chemotherapy, is a promising new option for the treatment of PDAC. In this Review, we focus on four issues. First, how can stromal activity be used to detect early steps of pancreatic carcinogenesis? Second, what is the effect of perpetual pancreatic stellate cell activity on angiogenesis and tissue perfusion? Third, what are the (experimental) antifibrotic therapy options in PDAC? Fourth, what lessons can be learned from Langton's Ant (a simple mathematical model) regarding the unpredictability of genetically engineered mouse models?
Collapse
Affiliation(s)
- Mert Erkan
- Department of General Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 12, 81675 Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
27
|
Rocha ALL, Reis FM, Petraglia F. New trends for the medical treatment of endometriosis. Expert Opin Investig Drugs 2012; 21:905-19. [PMID: 22568855 DOI: 10.1517/13543784.2012.683783] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Endometriosis is a benign sex hormone-dependent gynecological disease, characterized by the presence and growth of endometrial tissue outside the uterus; it affects 10% of women of reproductive age and is associated with infertility and pain. Treatment of endometriosis involves conservative or radical surgery, or medical therapies. The goals for endometriosis treatment may be the relief of pain and/or a successful pregnancy achievement in infertile patients. Treatment must be individualized with a multidisciplinary approach. The classical treatments carry adverse side effects and in some cases a negative impact on quality of life. New agents promise a distinct perspective in endometriosis treatment. AREAS COVERED The aim of this paper is to systematically review the literature evidence of new medical treatments for endometriosis, defined as pharmacological treatments not yet commonly available and currently under investigation. EXPERT OPINION These new medical therapies would be used associated with surgical treatment and, in the future, will render possible the association of hormone therapy with non-hormonal treatment for endometriosis.
Collapse
Affiliation(s)
- Ana Luiza L Rocha
- Department of Pediatrics, Obstetrics and Reproductive Medicine, University of Siena, Policlinico Santa Maria alle Scotte, Siena, Italy
| | | | | |
Collapse
|
28
|
Syndecan-2 promotes perineural invasion and cooperates with K-ras to induce an invasive pancreatic cancer cell phenotype. Mol Cancer 2012; 11:19. [PMID: 22471946 PMCID: PMC3350462 DOI: 10.1186/1476-4598-11-19] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 04/03/2012] [Indexed: 12/16/2022] Open
Abstract
Background We have identified syndecan-2 as a protein potentially involved in perineural invasion of pancreatic adenocarcinoma (PDAC) cells. Methods Syndecan-2 (SDC-2) expression was analyzed in human normal pancreas, chronic pancreatitis and PDAC tissues. Functional in vitro assays were carried out to determine its role in invasion, migration and signaling. Results SDC-2 was expressed in the majority of the tested pancreatic cancer cell lines while it was upregulated in nerve-invasive PDAC cell clones. There were 2 distinct expression patterns of SDC-2 in PDAC tissue samples: SDC-2 positivity in the cancer cell cytoplasm and a peritumoral expression. Though SDC-2 silencing (using specific siRNA oligonucleotides) did not affect anchorage-dependent growth, it significantly reduced cell motility and invasiveness in the pancreatic cancer cell lines T3M4 and Su8686. On the transcriptional level, migration-and invasion-associated genes were down-regulated following SDC-2 RNAi. Furthermore, SDC-2 silencing reduced K-ras activity, phosphorylation of Src and - further downstream - phosphorylation of ERK2 while levels of the putative SDC-2 signal transducer p120GAP remained unaltered. Conclusion SDC-2 is a novel (perineural) invasion-associated gene in PDAC which cooperates with K-ras to induce a more invasive phenotype.
Collapse
|
29
|
Lazzerini PE, Natale M, Gianchecchi E, Capecchi PL, Montilli C, Zimbone S, Castrichini M, Balistreri E, Ricci G, Selvi E, Garcia-Gonzalez E, Galeazzi M, Laghi-Pasini F. Adenosine A2A receptor activation stimulates collagen production in sclerodermic dermal fibroblasts either directly and through a cross-talk with the cannabinoid system. J Mol Med (Berl) 2011; 90:331-42. [PMID: 22033526 DOI: 10.1007/s00109-011-0824-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 09/30/2011] [Accepted: 10/10/2011] [Indexed: 01/16/2023]
Abstract
Systemic sclerosis (SSc) is a connective tissue disease characterised by exaggerated collagen deposition in the skin and visceral organs. Adenosine A2A receptor stimulation (A2Ar) promotes dermal fibrosis, while the cannabinoid system modulates fibrogenesis in vitro and in animal models of SSc. Moreover, evidence in central nervous system suggests that A2A and cannabinoid (CB1) receptors may physically and functionally interact. On this basis, we investigated A2Ar expression and function in modulating collagen biosynthesis from SSc dermal fibroblasts and analysed the cross-talk with cannabinoid receptors. In sclerodermic cells, A2Ar expression (RT-PCR, Western blotting) was evaluated together with the effects of A2A agonists and/or antagonists on collagen biosynthesis (EIA, Western blotting). Putative physical and functional interactions between the A2A and cannabinoid receptors were respectively assessed by co-immuno-precipitation and co-incubating the cells with the unselective cannabinoid agonist WIN55,212-2, and the selective A2A antagonist ZM-241385. In SSc fibroblasts, (1) the A2Ar is overexpressed and its occupancy with the selective agonist CGS-21680 increases collagen production, myofibroblast trans-differentiation, and ERK-1/2 phosphorylation; (2) the A2Ar forms an heteromer with the cannabinoid CB1 receptor; and (3) unselective cannabinoid receptor stimulation with a per se ineffective dose of WIN55,212-2, results in a marked anti-fibrotic effect after A2Ar blockage. In conclusion, A2Ar stimulation induces a pro-fibrotic phenotype in SSc dermal fibroblasts, either directly, and indirectly, by activating the CB1 cannabinoid receptor. These findings increase our knowledge of the pathophysiology of sclerodermic fibrosis also further suggesting a new therapeutic approach to the disease.
Collapse
Affiliation(s)
- Pietro Enea Lazzerini
- Department of Clinical Medicine and Immunological Sciences, Division of Clinical Immunology, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Herner A, Sauliunaite D, Michalski CW, Erkan M, Oliveira TD, Abiatari I, Kong B, Esposito I, Friess H, Kleeff J. Glutamate increases pancreatic cancer cell invasion and migration via AMPA receptor activation and Kras-MAPK signaling. Int J Cancer 2011; 129:2349-59. [DOI: 10.1002/ijc.25898] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 11/29/2010] [Indexed: 12/19/2022]
|
31
|
Balistreri E, Garcia-Gonzalez E, Selvi E, Akhmetshina A, Palumbo K, Lorenzini S, Maggio R, Lucattelli M, Galeazzi M, Distler JWH. The cannabinoid WIN55, 212-2 abrogates dermal fibrosis in scleroderma bleomycin model. Ann Rheum Dis 2011; 70:695-9. [PMID: 21177293 DOI: 10.1136/ard.2010.137539] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES There is increasing evidence that the endocannabinoid system may be involved in pathological fibrosis, and that its modulation might limit fibrotic responses. The aim of this study was to examine the capacity of a synthetic cannabinoid receptor agonist to modify skin fibrosis in the bleomycin mouse model of scleroderma. METHODS Skin fibrosis was induced by local injections of bleomycin in two groups of DBA/2J mice. One group was cotreated with the synthetic cannabinoid WIN55,212-2 at 1 mg/kg/day. Skin fibrosis was evaluated by histology and skin thickness and hydroxyproline content were quantified. Markers of fibroblast activation, including α smooth muscle actin and the profibrotic cytokines transforming growth factor (TGF)β, connective tissue growth factor (CTGF) and platelet-derived growth factor (PDGF)-BB, were examined. Levels of PSMAD2/3, which are crucial in extracellular matrix overproduction, were analysed. RESULTS Bleomycin treatment induced typical skin fibrosis. Upon WIN55,212-2 treatment dermal fibrosis was completely prevented. Subcutaneous inflammatory cell infiltration, dermal thickness and collagen content resulted similar to those of the control group. The synthetic cannabinoid prevented fibroblasts activation induced by bleomycin, paralleled by a strong inhibition of TGFβ, CTGF and PDGF-BB expression. Phosphorylation of SMAD2/3 was significantly downregulated after WIN55,212-2 exposure. CONCLUSIONS Taken together, the results indicate that the synthetic cannabinoid WIN55,212-2 is capable of preventing skin fibrosis in a mouse model of scleroderma.
Collapse
Affiliation(s)
- Epifania Balistreri
- Rheumatology Unit, Department of Clinical Medicine and Immunological Sciences, University of Siena, Viale Bracci 1, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pacher P, Mechoulam R. Is lipid signaling through cannabinoid 2 receptors part of a protective system? Prog Lipid Res 2011; 50:193-211. [PMID: 21295074 PMCID: PMC3062638 DOI: 10.1016/j.plipres.2011.01.001] [Citation(s) in RCA: 319] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 01/26/2011] [Accepted: 01/26/2011] [Indexed: 12/19/2022]
Abstract
The mammalian body has a highly developed immune system which guards against continuous invading protein attacks and aims at preventing, attenuating or repairing the inflicted damage. It is conceivable that through evolution analogous biological protective systems have been evolved against non-protein attacks. There is emerging evidence that lipid endocannabinoid signaling through cannabinoid 2 (CB₂) receptors may represent an example/part of such a protective system/armamentarium. Inflammation/tissue injury triggers rapid elevations in local endocannabinoid levels, which in turn regulate signaling responses in immune and other cells modulating their critical functions. Changes in endocannabinoid levels and/or CB₂ receptor expressions have been reported in almost all diseases affecting humans, ranging from cardiovascular, gastrointestinal, liver, kidney, neurodegenerative, psychiatric, bone, skin, autoimmune, lung disorders to pain and cancer, and modulating CB₂ receptor activity holds tremendous therapeutic potential in these pathologies. While CB₂ receptor activation in general mediates immunosuppressive effects, which limit inflammation and associated tissue injury in large number of pathological conditions, in some disease states activation of the CB₂ receptor may enhance or even trigger tissue damage, which will also be discussed alongside the protective actions of the CB₂ receptor stimulation with endocannabinoids or synthetic agonists, and the possible biological mechanisms involved in these effects.
Collapse
Affiliation(s)
- P. Pacher
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, MD, USA
| | - R. Mechoulam
- Institute of Drug Research, Hebrew University Medical Faculty, Jerusalem, Israel
| |
Collapse
|
33
|
Leconte M, Nicco C, Ngô C, Arkwright S, Chéreau C, Guibourdenche J, Weill B, Chapron C, Dousset B, Batteux F. Antiproliferative effects of cannabinoid agonists on deep infiltrating endometriosis. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2963-70. [PMID: 21057002 DOI: 10.2353/ajpath.2010.100375] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Deep infiltrating endometriosis (DIE) is characterized by chronic pain, hyperproliferation of endometriotic cells and fibrosis. Since cannabinoids are endowed with antiproliferative and antifibrotic properties, in addition to their psychogenic and analgesic effects, cannabinoid agonists have been evaluated in DIE both in vitro and in vivo. The in vitro effects of the cannabinoid agonist WIN 55212-2 were evaluated on primary endometriotic and endometrial stromal and epithelial cell lines extracted from patients with or without DIE. Cell proliferation was determined by thymidine incorporation and production of reactive oxygen species by spectrofluorometry. ERK and Akt pathways were studied by immunoblotting. Immunoblotting of α-smooth muscle actin was studied as evidence of myofibroblastic transformation. The in vivo effects of WIN 55212-2 were evaluated on Nude mice implanted with human deep infiltrating endometriotic nodules. The in vitro treatment of stromal endometriotic cells by WIN 55212-2 decreased cell proliferation, reactive oxygen species production, and α-smooth muscle actin expression. The decrease in cell proliferation induced by WIN 55212-2 was not associated with a decrease in ERK activation, but was associated with the inhibition of Akt activation. WIN 55212-2 abrogated the growth of endometriotic tissue implanted in Nude mice. Cannabinoid agonists exert anti-proliferative effects on stromal endometriotic cells linked to the inhibition of the Akt pathway. These beneficial effects of cannabinoid agonists on DIE have been confirmed in vivo.
Collapse
Affiliation(s)
- Mahaut Leconte
- Laboratoire d'immunologie, Université Paris Descartes, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang W, Reiser-Erkan C, Michalski CW, Raggi MC, Quan L, Yupei Z, Friess H, Erkan M, Kleeff J. Hypoxia inducible BHLHB2 is a novel and independent prognostic marker in pancreatic ductal adenocarcinoma. Biochem Biophys Res Commun 2010; 401:422-8. [PMID: 20863812 DOI: 10.1016/j.bbrc.2010.09.070] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 12/12/2022]
Abstract
AIMS The cyclic adenosine monophosphate-inducible basic helix-loop-helix (bHLH) domain containing class-B2 transcriptional factor BHLHB2 is differentially expressed in a number of human malignancies. In the present study, the expression, regulation, functions and prognostic impact of BHLHB2 in pancreatic cancer were investigated. METHODS Expression analyses were carried out in tissues of the normal pancreas (n=10) and pancreatic ductal adenocarcinoma (n=77) as well as in eight pancreatic cancer cell lines using quantitative RT-PCR, semiquantitative immunohistochemistry, and immunoblot analyses. In vitro functional experiments were conducted using siRNA transfection, hypoxia, serum starvation, apoptosis induction with gemcitabine and actinomycin-D, and invasion assays. Survival analysis was performed using the Kaplan-Meier method. Prognostic factors were determined in a multivariable analysis using a Cox proportional hazards model. RESULTS BHLHB2 mRNA and protein expressions were strongly induced by hypoxia and by serum starvation in pancreatic cancer cell lines. BHLHB2 silencing with RNAi had no significant effects on growth and invasion but increased apoptosis resistance against gemcitabine by reducing caspace-3 cleavage. In BHLHB2 silenced cells the ED50 of gemcitabine increased from 13.95 ± 1.353 to 38.70 ± 5.262 nM (p<0.05). Ex vivo, the weak/absent nuclear staining in normal pancreatic ducts and acinar cells was replaced by moderate to strong nuclear/cytoplasmic staining in PanIN lesions and pancreatic cancer cells. Patients with weak/absent nuclear BHLHB2 staining had significantly worse median survival compared to those with strong staining (13 months vs. 27 months, p=0.03). In a multivariable analysis, BHLHB2 staining was an independent prognostic factor (Hazard-Ratio=2.348, 95% CI=1.250-4.411, p=0.008). CONCLUSIONS Hypoxia-inducible BHLHB2 expression is a novel independent prognostic marker in pancreatic cancer patients and indicates increased chemosensitivity towards gemcitabine.
Collapse
Affiliation(s)
- Weibin Wang
- Department of Surgery, Technische Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Marquart S, Zerr P, Akhmetshina A, Palumbo K, Reich N, Tomcik M, Horn A, Dees C, Engel M, Zwerina J, Distler O, Schett G, Distler JHW. Inactivation of the cannabinoid receptor CB1 prevents leukocyte infiltration and experimental fibrosis. ACTA ACUST UNITED AC 2010; 62:3467-76. [DOI: 10.1002/art.27642] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Kong B, Michalski CW, Hong X, Valkovskaya N, Rieder S, Abiatari I, Streit S, Erkan M, Esposito I, Friess H, Kleeff J. AZGP1 is a tumor suppressor in pancreatic cancer inducing mesenchymal-to-epithelial transdifferentiation by inhibiting TGF-β-mediated ERK signaling. Oncogene 2010; 29:5146-58. [PMID: 20581862 DOI: 10.1038/onc.2010.258] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epithelial-to-mesenchymal transdifferentiation (EMT) mediated by transforming growth factor-β (TGF-β) signaling leads to aggressive cancer progression. In this study, we identified zinc-α2-glycoprotein (AZGP1, ZAG) as a tumor suppressor in pancreatic ductal adenocarcinoma whose expression is lost due to histone deacetylation. In vitro, ZAG silencing strikingly increased invasiveness of pancreatic cancer cells accompanied by the induction of a mesenchymal phenotype. Expression analysis of a set of EMT markers showed an increase in the expression of mesenchymal markers (vimentin (VIM) and integrin-α5) and a concomitant reduction in the expression of epithelial markers (cadherin 1 (CDH1), desmoplakin and keratin-19). Blockade of endogenous TGF-β signaling inhibited these morphological changes and the downregulation of CDH1, as elicited by ZAG silencing. In a ZAG-negative cell line, human recombinant ZAG (rZAG) specifically inhibited exogenous TGF-β-mediated tumor cell invasion and VIM expression. Furthermore, rZAG blocked TGF-β-mediated ERK2 phosphorylation. PCR array analysis revealed that ZAG-induced epithelial transdifferentiation was accompanied by a series of concerted cellular events including a shift in the energy metabolism and prosurvival signals. Thus, epigenetically regulated ZAG is a novel tumor suppressor essential for maintaining an epithelial phenotype.
Collapse
Affiliation(s)
- B Kong
- Department of Surgery, Technische Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hong X, Michalski CW, Kong B, Zhang W, Raggi MC, Sauliunaite D, De Oliveira T, Friess H, Kleeff J. ALCAM is associated with chemoresistance and tumor cell adhesion in pancreatic cancer. J Surg Oncol 2010; 101:564-9. [PMID: 20461761 DOI: 10.1002/jso.21538] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIMS Cell-cell adhesion is a major factor in integrity of epithelia which is frequently disturbed in cancer leading to local invasion and distant metastasis. METHODS To define expression and function of activated leukocyte cell adhesion molecule (ALCAM, CD166) in pancreatic cancer and in pancreatic neuroendocrine tumors (PNET), microarray analyses, RT-PCR, immunohistochemistry, RNAi, adhesion, migration, invasion, and chemoresistance assays were used. RESULTS We demonstrate that expression of ALCAM is altered and its serum levels are increased in pancreatic ductal adenocarcinoma (PDAC). ALCAM was expressed on the membranes of islet cells in the normal pancreas whereas normal pancreatic ducts were ALCAM-negative. In PDAC, ALCAM expression was generally rare though in some tumors, membranous, or cytoplasmic ALCAM was found. PNET were mostly ALCAM-positive with a cytoplasmic staining pattern which was in contrast to the membrane expression observed in non-transformed islet cells. In vitro, ALCAM silencing using RNAi had no effects on growth or invasion of pancreatic cancer cells but reduced cell adhesion and induced chemoresistance. In neuroendocrine tumor cell lines, silencing of ALCAM decreased cell growth. CONCLUSIONS We propose ALCAM as a novel serum biomarker in human pancreatic tumors which is associated with cell adhesion, growth and chemoresistance.
Collapse
Affiliation(s)
- Xin Hong
- Department of Surgery, Technische Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Erkan M, Weis N, Pan Z, Schwager C, Samkharadze T, Jiang X, Wirkner U, Giese NA, Ansorge W, Debus J, Huber PE, Friess H, Abdollahi A, Kleeff J. Organ-, inflammation- and cancer specific transcriptional fingerprints of pancreatic and hepatic stellate cells. Mol Cancer 2010; 9:88. [PMID: 20416094 PMCID: PMC2876060 DOI: 10.1186/1476-4598-9-88] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 04/23/2010] [Indexed: 12/12/2022] Open
Abstract
Background Tissue fibrosis is an integral component of chronic inflammatory (liver and pancreas) diseases and pancreatic cancer. Activated pancreatic- (PSC) and hepatic- (HSC) stellate cells play a key role in fibrogenesis. To identify organ- and disease-specific stellate cell transcriptional fingerprints, we employed genome-wide transcriptional analysis of primary human PSC and HSC isolated from patients with chronic inflammation or cancer. Methods Stellate cells were isolated from patients with pancreatic ductal adenocarcinoma (n = 5), chronic pancreatitis (n = 6), liver cirrhosis (n = 5) and liver metastasis of pancreatic ductal adenocarcinoma (n = 6). Genome-wide transcriptional profiles of stellate cells were generated using our 51K human cDNA microarray platform. The identified organ- and disease specific genes were validated by quantitative RT-PCR, immunoblot, ELISA, immunocytochemistry and immunohistochemistry. Results Expression profiling identified 160 organ- and 89 disease- specific stellate cell transcripts. Collagen type 11a1 (COL11A1) was discovered as a novel PSC specific marker with up to 65-fold higher expression levels in PSC compared to HSC (p < 0.0001). Likewise, the expression of the cytokine CCL2 and the cell adhesion molecule VCAM1 were confined to HSC. PBX1 expression levels tend to be increased in inflammatory- vs. tumor- stellate cells. Intriguingly, tyrosine kinase JAK2 and a member of cell contact-mediated communication CELSR3 were found to be selectively up-regulated in tumor stellate cells. Conclusions We identified and validated HSC and PSC specific markers. Moreover, novel target genes of tumor- and inflammation associated stellate cells were discovered. Our data may be instrumental in developing new tailored organ- or disease-specific targeted therapies and stellate cell biomarkers.
Collapse
Affiliation(s)
- Mert Erkan
- Department of General Surgery, Technische Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Saunders CI, Fassett RG, Geraghty DP. Up-regulation of TRPV1 in mononuclear cells of end-stage kidney disease patients increases susceptibility to N-arachidonoyl-dopamine (NADA)-induced cell death. Biochim Biophys Acta Mol Basis Dis 2009; 1792:1019-26. [PMID: 19619644 DOI: 10.1016/j.bbadis.2009.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/19/2009] [Accepted: 07/13/2009] [Indexed: 01/06/2023]
Abstract
Transient receptor potential vanilloid (TRPV) 1 channels function as sensors for a variety of noxious and inflammatory signals, including capsaicin, heat and protons, and are up-regulated under inflammatory conditions. As end-stage kidney disease (ESKD) is associated with chronic inflammation, impaired immunity and depressed lymphocyte numbers, we sought to determine whether altered TRPV1 (and related TRPV2) expression in immune cells might be a contributing factor. TRPV1 and TRPV2 mRNA expression in peripheral blood mononuclear cells (PBMC) was similar in controls and ESKD patients by quantitative real-time RT-PCR. However, using immunocytochemistry, TRPV1-immunoreactivity was significantly higher and TRPV2-immunoreactivity was significantly lower in PBMC from ESKD patients compared to controls. The plant-derived TRPV1 agonists, capsaicin and resiniferatoxin (RTX) and the putative endovanilloid/endocannabinoids, N-arachidonoyl-dopamine (NADA) and N-oleoyl-dopamine (OLDA), induced concentration-dependent death of PBMC from healthy donors with a rank order of potency of RTX>NADA>OLDA>>capsaicin. TRPV1 (5'-iodoresiniferatoxin) and cannabinoid (CB2; AM630) receptor antagonists blocked the cytotoxic effect of NADA. In subsequent experiments, PBMC from ESKD patients exhibited significantly increased susceptibility to NADA-induced death compared to PBMC from controls. The apparent up-regulation of TRPV1 may be a response to the inflammatory milieu in which PBMC exist in ESKD and may be responsible for the increased susceptibility of these cells to NADA-induced death, providing a possible explanation as to why ESKD patients have reduced lymphocyte counts and impaired immune function. Thus, TRPV1 (and possibly CB2) antagonists may have potential for the treatment of immune dysfunction in ESKD.
Collapse
Affiliation(s)
- Cassandra I Saunders
- School of Human Life Sciences, University of Tasmania, Locked Bag 1320, Launceston, Tasmania, 7250, Australia
| | | | | |
Collapse
|
40
|
Garcia-Gonzalez E, Selvi E, Balistreri E, Lorenzini S, Maggio R, Natale MR, Capecchi PL, Lazzerini PE, Bardelli M, Laghi-Pasini F, Galeazzi M. Cannabinoids inhibit fibrogenesis in diffuse systemic sclerosis fibroblasts. Rheumatology (Oxford) 2009; 48:1050-6. [PMID: 19589890 DOI: 10.1093/rheumatology/kep189] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE It has been demonstrated that the endocannabinoid system is up-regulated in pathologic fibrosis and that modulation of the cannabinoid receptors might limit the progression of uncontrolled fibrogenesis. The aim of this study was to investigate whether the synthetic cannabinoid receptor agonist WIN55,212-2 could modulate fibrogenesis in an in vitro model of dcSSc. METHODS The expression of cannabinoid receptors CB1 and CB2 was assessed in dcSSc fibroblasts and healthy control fibroblasts. To investigate the effect of WIN55,212-2 on dcSSc fibrogenesis, we studied type I collagen, profibrotic cytokines, fibroblast transdifferentiation into myofibroblasts, apoptotic processes and activation of the extracellular signal-related kinase 1/2 pathway prior to and after the treatment with the synthetic cannabinoid at increasing concentrations. RESULTS Both CB1 and CB2 receptors were over-expressed in dcSSc fibroblasts compared with healthy controls. WIN55,212-2 caused a reduction in extracellular matrix deposition and counteracted several behavioural abnormalities of scleroderma fibroblasts including transdifferentiation into myofibroblasts and resistance to apoptosis. The anti-fibrogenic effect of WIN55,212-2 was not reverted by selective cannabinoid antagonists. CONCLUSIONS Our preliminary findings suggest that cannabinoids are provided with an anti-fibrotic activity, thereby possibly representing a new class of agents targeting fibrosis diseases.
Collapse
Affiliation(s)
- Estrella Garcia-Gonzalez
- Department of Clinical Medicine and Immunological Science, Rheumatology Unit, University of Siena, Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Aust S, Jäger W, Kirschner H, Klimpfinger M, Thalhammer T. Pancreatic stellate/myofibroblast cells express G-protein-coupled melatonin receptor 1. Wien Med Wochenschr 2009; 158:575-8. [PMID: 18998076 DOI: 10.1007/s10354-008-0599-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 07/22/2008] [Indexed: 01/25/2023]
Abstract
In chronic pancreatitis and pancreatic cancer, progressive fibrosis with the accumulation of extracellular matrix occurs. The main extracellular matrix-producing cell types are retinoid-storing pancreatic stellate cells (PSCs) of mesenchymal origin. Similar to liver stellate cells, quiescent PSCs undergo activation and acquire a myofibroblast-like phenotype in response to pro-fibrogenic mediators (reactive oxygen species, cytokines and toxic metabolites). Activated PSCs differ in their differentiation stage and are characterized by the expression of glial fibrillary-acidic protein, alpha-smooth muscle actin, and nestin. As G-protein-coupled receptors were described to regulate PSC differentiation, we investigated tissue samples from patients with pancreatitis and ductal pancreatic adenocarcinoma for the expression of G-protein-coupled melatonin receptors MT1 and MT2 by double immunofluorescence staining. We show that MT1, but not MT2, is occasionally expressed in PSCs in normal tissue, while in the diseased tissue MT1 is found at high rates in activated PSCs at all stages, and, additionally, in ductal epithelial cells. It is speculated that MT1 activation by its ligand melatonin regulates proliferation and differentiation of PSCs. Prevention of myofibroblast formation by MT1 activation could explain favourable effects of the pineal hormone melatonin on the outcome of pancreatic fibrosis in animal models.
Collapse
Affiliation(s)
- Sylvia Aust
- Department of Pathophysiology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
42
|
Akhmetshina A, Dees C, Busch N, Beer J, Sarter K, Zwerina J, Zimmer A, Distler O, Schett G, Distler JHW. The cannabinoid receptor CB2 exerts antifibrotic effects in experimental dermal fibrosis. ACTA ACUST UNITED AC 2009; 60:1129-36. [PMID: 19333940 DOI: 10.1002/art.24395] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The cannabinoid receptor CB2 is predominantly expressed in non-neuronal tissue and exerts potent immunomodulatory effects. This study was undertaken to evaluate the role of CB2 in the pathogenesis of dermal fibrosis. METHODS Mice deficient in CB2 (CB2(-/-) mice) and their wild-type littermates (CB2(+/+) mice) were injected with bleomycin to induce experimental fibrosis. Mice were treated with selective agonists and antagonists of CB2. Lesional skin was evaluated for dermal thickness and numbers of infiltrating leukocytes. Bone marrow transplantation experiments were performed. RESULTS CB2(-/-) mice were more sensitive to bleomycin-induced dermal fibrosis than were CB2(+/+) mice, and showed increased dermal thickness. Leukocyte counts were significantly higher in the lesional skin of CB2(+/+) mice. Increased dermal fibrosis was also observed upon treatment with the CB2 antagonist AM-630. In contrast, the selective CB2 agonist JWH-133 reduced leukocyte infiltration and dermal thickening. The phenotype of CB2(-/-) mice was mimicked by transplantation of CB2(-/-) bone marrow into CB2(+/+) mice, whereas CB2(-/-) mice transplanted with bone marrow from CB2(+/+) mice did not display an increased sensitivity to bleomycin-induced fibrosis, indicating that leukocyte expression of CB2 critically influences experimental fibrosis. CONCLUSION Our findings indicate that CB2 limits leukocyte infiltration and tissue fibrosis in experimental dermal fibrosis. Since selective CB2 agonists are available and well tolerated, CB2 might be an interesting molecular target for the treatment of early inflammatory stages of systemic sclerosis.
Collapse
|
43
|
Guturu P, Shah V, Urrutia R. Interplay of tumor microenvironment cell types with parenchymal cells in pancreatic cancer development and therapeutic implications. J Gastrointest Cancer 2009; 40:1-9. [PMID: 19513861 DOI: 10.1007/s12029-009-9071-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 05/27/2009] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The process of "induction," namely, the formation of a tissue by the functional interaction between the epithelial layer and the stroma, is key for the development of many organs, in particular to the pancreas. DISCUSSION In diseases like pancreatic cancer, most studies performed to date, in the area of pancreatic cancer, have focused on studying epithelial cells and their contribution to this disease. Strikingly, until recently, the stroma that surrounds cancer cells in pancreatic tumors (desmoplastic reaction-tumor microenvironment) has remained an underrepresented area of research. However, several laboratories are increasingly posing questions as what is the role of this tumor microenvironment in the development and progression of this fatal disease. Therefore, in the current article, we define and describe the components of this desmoplastic reaction and the pancreatic tumor microenvironment and briefly review advances being made. More importantly, we highlight the urgent need of research in this field. CONCLUSION We anticipate that, because of the paucity of knowledge on this subject, studies on the pancreatic tumor microenvironment will bring new concepts which will ultimately impact in designing new diagnosis and treatment for this disease.
Collapse
Affiliation(s)
- Praveen Guturu
- Gastroenterology Research Unit and Fiterman Center for Digestive Diseases, Mayo Clinic Rochester-MN, 200 First Street SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
44
|
Ketterer K, Kong B, Frank D, Giese NA, Bauer A, Hoheisel J, Korc M, Kleeff J, Michalski CW, Friess H. Neuromedin U is overexpressed in pancreatic cancer and increases invasiveness via the hepatocyte growth factor c-Met pathway. Cancer Lett 2009; 277:72-81. [DOI: 10.1016/j.canlet.2008.11.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 11/10/2008] [Accepted: 11/17/2008] [Indexed: 11/17/2022]
|