1
|
Malone CA, Ziobro P, Khinno J, Tschida KA. Rates of female mouse ultrasonic vocalizations are low and are not modulated by estrous state during interactions with muted males. Sci Rep 2025; 15:6841. [PMID: 40000725 PMCID: PMC11862114 DOI: 10.1038/s41598-025-91479-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/20/2025] [Indexed: 02/27/2025] Open
Abstract
Adult male mice produce high rates of ultrasonic vocalizations (USVs) during courtship interactions with females. It was long thought that only males produced courtship USVs, but recent studies using microphone arrays to assign USVs to individual signalers report that females produce a portion (5-18%) of total courtship USVs. The factors that regulate female courtship USV production are poorly understood. Here, we tested the idea that female courtship USV production is regulated by estrous state. To facilitate the detection of female USVs, we paired females with males that were muted for USV production via caspase-mediated ablation of midbrain neurons that are required for USV production. We report that total USVs recorded during interactions between group-housed B6 females and muted males are low and are not modulated by female estrous state. Similar results were obtained for single-housed B6 females and for single-housed outbred wild-derived female mice paired with muted males. These findings suggest either that female mice produce substantial rates of courtship USVs only when interacting with vocal male partners or that prior studies have overestimated female courtship USV production. Studies employing methods that can unambiguously assign USVs to individual signalers, regardless of inter-mouse distances, are needed to distinguish between these possibilities.
Collapse
Affiliation(s)
- Cassidy A Malone
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | - Patryk Ziobro
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | - Julia Khinno
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | | |
Collapse
|
2
|
Leuner LR, Hurley LM. What matters to a mouse? Effects of internal and external context on male vocal response to female squeaks. PLoS One 2025; 20:e0312789. [PMID: 39970156 PMCID: PMC11838898 DOI: 10.1371/journal.pone.0312789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/11/2025] [Indexed: 02/21/2025] Open
Abstract
House mice adjust their signaling behavior depending on the social context of an interaction, but which aspects of context elicit the strongest responses from these individuals is often difficult to determine. To explore how internal and external contextual factors influence how house mice produce and respond to social signals, we assessed how dominant and subordinate male mice differed in their ultrasonic vocalization (USV) production in response to playback of broadband vocalizations (BBVs, or squeaks) when given limited access to a stimulus female. We used a repeated measures design in which each male was exposed to two types of trials with different odor conditions: either just female odors (Fem condition) or female odors in addition to the odors of potential competitors, other males (Fem+Male condition). The presence of odors from other males in this assay served as a proxy for an "audience" as the male interacted with the stimulus female. These conditions were replicated for two distinct cohorts of individuals: males exposed to the odor of familiar competitors in the Fem+Male condition (Familiar odor cohort), and males exposed to the odor of unfamiliar competitors in the Fem+Male condition (Unfamiliar odor cohort). By assessing dominance status of the focal individual and familiarity of the "audience", we are able to explore how these factors may affect one another as males respond to BBVs. Dominants and subordinates did not differ in their baseline vocal production (vocalizations produced prior to squeak playback) or response to squeaks. However, all groups, regardless of dominance status or odor condition, reduced their vocal production in response to BBV playback. The presence of unfamiliar male odor prompted mice to decrease their baseline level of calling and decrease the complexity of their vocal repertoire compared to trials that only included female odor, and this effect also did not differ across dominance status. Importantly, the presence of male odor did not affect vocal behavior when the male odor was familiar to the focal individual. These findings suggest that mice alter their vocal behavior during courtship interactions in response to cues that indicate the presence of potential competitors, and this response is modulated by the familiarity of these competitor cues.
Collapse
Affiliation(s)
- Lauren R. Leuner
- Department of Biology, Hurley Laboratory, Indiana University, Bloomington, Indiana, United States of America
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, United States of America
| | - Laura M. Hurley
- Department of Biology, Hurley Laboratory, Indiana University, Bloomington, Indiana, United States of America
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
3
|
Ghasemahmad Z, Perumal KD, Sharma B, Panditi R, Wenstrup JJ. Acoustic features of and behavioral responses to emotionally intense mouse vocalizations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.12.632636. [PMID: 39868082 PMCID: PMC11761797 DOI: 10.1101/2025.01.12.632636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Social vocalizations contain cues that reflect the motivational state of a vocalizing animal. Once perceived, these cues may in turn affect the internal state and behavioral responses of listening animals. Using the CBA/CAJ mouse model of acoustic communication, this study examined acoustic cues that signal intensity in male-female interactions, then compared behavioral responses to intense mating vocal sequences with those from another intense behavioral context, restraint. Experiment I in this study examined behaviors and vocalizations associated with male-female social interactions. Based on several behaviors, we distinguished more general, courtship-type interactions from mating interactions involving mounting or attempted mounting behaviors. We then compared vocalizations between courtship and mating. The increase in behavioral intensity from courtship to mating was associated with altered syllable composition, more harmonic structure, lower minimum frequency, longer duration, reduced inter-syllable interval, and increased sound intensity. We then used these features to construct highly salient playback stimuli associated with mating. In Experiment II, we compared behavioral responses to playback of these mating sequences with responses to playback of aversive vocal sequences produced by restrained mice, described in previous studies. Subjects were females in estrus and males. We observed a range of behavioral responses. Some (e.g., Attending and Stretch-Attend) showed similar responses across playback type and sex, while others were context dependent (e.g., Flinching, Locomotion). Still other behaviors showed either an effect of sex (e.g., Self-Grooming, Still-and-Alert) or an interaction between playback type and sex (Escape). These results demonstrate both state-dependent features of mouse vocalizations and their effectiveness in evoking a range of behavioral responses, independent of contextual cues provided by other sensory stimuli or behavioral interactions.
Collapse
|
4
|
Möhrle D, Murari K, Rho JM, Cheng N. Vocal communication in asocial BTBR mice is more malleable by a ketogenic diet in juveniles than adults. Neuroscience 2024; 561:43-64. [PMID: 39413868 DOI: 10.1016/j.neuroscience.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/28/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Deficits in social communication and language development are a hallmark of autism spectrum disorder currently with no effective approaches to reduce the negative impact. Interventional studies using animal models have been very limited in demonstrating improved vocal communication. Autism has been proposed to involve metabolic dysregulation. Ketogenic diet (KD) is a metabolism-based therapy for medically intractable epilepsy, and its applications in other neurological conditions have been increasingly tested. However, how KD would affect vocal communication has not been explored. The BTBR mouse strain is widely used to model asocial phenotypes. They display robust and pronounced deficits in vocalization during social interaction, and have metabolic changes implicated in autism. We investigated the effects of KD on ultrasonic vocalizations (USVs) in juvenile and adult BTBR mice during male-female social encounters. After a brief treatment with KD, the number, spectral bandwidth, and much of the temporal structure of USVs were robustly closer to control levels in both juvenile and adult BTBR mice. Composition of call categories and transitioning between individual call subtypes were more effectively altered to more closely align with the control group in juvenile BTBR mice. Together, our data provide further support to the hypothesis that metabolism-based dietary intervention could modify disease expression, including core symptoms, in autism. Future studies should tease apart the molecular mechanisms of KD's effects on vocalization.
Collapse
Affiliation(s)
- Dorit Möhrle
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| | - Kartikeya Murari
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada; Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada.
| | - Jong M Rho
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Ning Cheng
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
5
|
Hutchens SED, Khurram I, Hurley LM. Solitude and serotonin: juvenile isolation alters the covariation between social behavior and cFos expression by serotonergic neurons. Front Neurosci 2024; 18:1446866. [PMID: 39502712 PMCID: PMC11535725 DOI: 10.3389/fnins.2024.1446866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/19/2024] [Indexed: 11/08/2024] Open
Abstract
Variation in the mutual responsiveness of social partners to each other can be reflected in behavioral suites that covary with neural activity in ways that track the salience or valence of interactions. Juvenile social isolation alters social behavior and neural activity during social interaction, but whether and how it alters the covariation between behavior and neural activity has not been as well explored. To address this issue, four classes of experimental subjects: isolated males, socially housed males, isolated females, and socially housed females, were paired with an opposite-sex social partner that had been socially housed. Social behaviors and c-Fos expression in the serotonergic dorsal raphe nucleus (DRN) were then measured in subjects following the social interactions. Relative to social housing, postweaning isolation led to a decrease in the density of neurons double-labeled for tryptophan hydroxylase and c-Fos in the dorsomedial subdivision of the DRN, regardless of sex. Vocal and non-vocal behaviors were also affected by isolation. In interactions with isolated males, both ultrasonic vocalization (USVs) and broadband vocalizations (squeaks) increased in conjunction with greater male investigation of females. Neural and behavioral measures also correlated with each other. In the isolated male group, the density of double-labeled neurons in the dorsomedial DRN was negatively correlated with USV production and positively correlated with a principal component of non-vocal behavior corresponding to greater defensive kicking by females and less investigation and mounting behavior. This correlation was reversed in direction for socially housed males, and for isolated males versus isolated females. These findings confirm that the dynamics of social interactions are reflected in c-Fos activation in the dorsomedial DRN, and suggest an altered responsiveness of serotonergic neurons to social interaction following social isolation in males, in parallel with an altered male response to female cues.
Collapse
Affiliation(s)
- Sarah E. D. Hutchens
- Hurley Laboratory, Department of Biology, Indiana University, Bloomington, IN, United States
| | - Izza Khurram
- Hurley Laboratory, Department of Biology, Indiana University, Bloomington, IN, United States
| | - Laura M. Hurley
- Hurley Laboratory, Department of Biology, Indiana University, Bloomington, IN, United States
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States
| |
Collapse
|
6
|
Saldanha TCS, Sanchez WN, Palombo P, Cruz FC, Galduróz JCF, Schwarting RKW, Andreatini R, da Cunha C, Pochapski JA. Biperiden reverses the increase in 50-kHz ultrasonic vocalizations but not the increase in locomotor activity induced by cocaine. Behav Brain Res 2024; 461:114841. [PMID: 38159887 PMCID: PMC10903531 DOI: 10.1016/j.bbr.2023.114841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Cocaine use disorder (CUD) is a worldwide public health problem, associated with severe psychosocial and economic impacts. Currently, no FDA-approved treatment is available for CUD. However, an emerging body of evidence from clinical and preclinical studies suggests that biperiden, an M1 muscarinic receptor antagonist, presents potential therapeutic use for CUD. These studies have suggested that biperiden may reduce the reinforcing effects of cocaine. It is well established that rodents emit 50-kHz ultrasonic vocalizations (USV) in response to natural rewards and stimulant drugs, including cocaine. Nonetheless, the effects of biperiden on the cocaine-induced increase of 50-kHz USV remains unknown. Here, we hypothesized that biperiden could antagonize the acute effects of cocaine administration on rat 50-kHz USV. To test this hypothesis, adult male Wistar rats were divided into four experimental groups: saline, 5 mg/kg biperiden, 10 mg/kg cocaine, and biperiden/cocaine (5 and 10 mg/kg, i.p., respectively). USV and locomotor activity were recorded in baseline and test sessions. As expected, cocaine administration significantly increased the number of 50-kHz USV. Biperiden administration effectively antagonized the increase in 50-kHz USV induced by cocaine. Cocaine administration also increased the emission of trill and mixed 50 kHz USV subtypes and this effect was antagonized by biperiden. Additionally, we showed that biperiden did not affect the cocaine-induced increase in locomotor activity, although biperiden administration per se increased locomotor activity. In conclusion, our findings indicate that administering biperiden acutely reduces the positive affective effects of cocaine, as demonstrated by its ability to inhibit the increase in 50-kHz USV.
Collapse
Affiliation(s)
- Thais C S Saldanha
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Paraná, Curitiba, Brazil
| | - William N Sanchez
- Integrative Neurobiology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Paola Palombo
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fábio C Cruz
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Marburg Center for Mind, Brain and Behavior (MCMBB), Philipps-University Marburg, 35032 Marburg, Germany
| | - Roberto Andreatini
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Claudio da Cunha
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Paraná, Curitiba, Brazil; Department of Biochemistry, Universidade Federal do Paraná, Curitiba, Brazil
| | - José Augusto Pochapski
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Paraná, Curitiba, Brazil; Department of Biochemistry, Universidade Federal do Paraná, Curitiba, Brazil.
| |
Collapse
|
7
|
Gal A, Raykin E, Giladi S, Lederman D, Kofman O, Golan HM. Temporal dynamics of isolation calls emitted by pups in environmental and genetic mouse models of autism spectrum disorder. Front Neurosci 2023; 17:1274039. [PMID: 37942134 PMCID: PMC10629105 DOI: 10.3389/fnins.2023.1274039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction Environmental and genetic factors contribute to the increased risk for neurodevelopmental disorders, including deficits in the development of social communication. In the mouse, ultrasonic vocalizations emitted by the pup stimulate maternal retrieval and potentiate maternal care. Therefore, isolation induced ultrasonic vocalization emitted by pups provides a means to evaluate deficits in communication during early development, before other ways of communication are apparent. Previous studies in our labs showed that gestational exposure to the pesticide chlorpyrifos (CPF) and the Methylenetetrahydrofolate (Mthfr)-knock-out mice are associated with impaired social preference, restricted or repetitive behavior and altered spectral properties of pups' ultrasonic vocalization. In this study, we explore the temporal dynamics of pups' vocalization in these Autism spectrum disorder (ASD) models. Methods We utilized the maternal potentiation protocol and analyzed the time course of pup vocalizations following isolation from the nest. Two models of ASD were studied: gestational exposure to the pesticide CPF and the Mthfr-knock-out mice. Results Vocalization emitted by pups of both ASD models were dynamically modified in quantity and spectral structure within each session and between the two isolation sessions. The first isolation session was characterized by a buildup of call quantity and significant effects of USV spectral structure variables, and the second isolation session was characterized by enhanced calls and vocalization time, but minute effect on USV properties. Moreover, in both models we described an increased usage of harmonic calls with time during the isolation sessions. Discussion Communication between two or more individuals requires an interplay between the two sides and depends on the response and the time since the stimulus. As such, the presence of dynamic changes in vocalization structure in the control pups, and the alteration observed in the pups of the ASD models, suggest impaired regulation of vocalization associated with the environmental and genetic factors. Last, we propose that temporal dynamics of ultrasonic vocalization communication should be considered in future analysis in rodent models of ASD to maximize the sensitivity of the study of vocalizations.
Collapse
Affiliation(s)
- Ayelet Gal
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Eynav Raykin
- Psychology Department, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Shaked Giladi
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dror Lederman
- Faculty of Engineering, Holon Institute of Technology Holon, Holon, Israel
| | - Ora Kofman
- Psychology Department, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Hava M. Golan
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer Sheva, Israel
- National Center for Autism Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
8
|
Sterling ML, Teunisse R, Englitz B. Rodent ultrasonic vocal interaction resolved with millimeter precision using hybrid beamforming. eLife 2023; 12:e86126. [PMID: 37493217 PMCID: PMC10522333 DOI: 10.7554/elife.86126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023] Open
Abstract
Ultrasonic vocalizations (USVs) fulfill an important role in communication and navigation in many species. Because of their social and affective significance, rodent USVs are increasingly used as a behavioral measure in neurodevelopmental and neurolinguistic research. Reliably attributing USVs to their emitter during close interactions has emerged as a difficult, key challenge. If addressed, all subsequent analyses gain substantial confidence. We present a hybrid ultrasonic tracking system, Hybrid Vocalization Localizer (HyVL), that synergistically integrates a high-resolution acoustic camera with high-quality ultrasonic microphones. HyVL is the first to achieve millimeter precision (~3.4-4.8 mm, 91% assigned) in localizing USVs, ~3× better than other systems, approaching the physical limits (mouse snout ~10 mm). We analyze mouse courtship interactions and demonstrate that males and females vocalize in starkly different relative spatial positions, and that the fraction of female vocalizations has likely been overestimated previously due to imprecise localization. Further, we find that when two male mice interact with one female, one of the males takes a dominant role in the interaction both in terms of the vocalization rate and the location relative to the female. HyVL substantially improves the precision with which social communication between rodents can be studied. It is also affordable, open-source, easy to set up, can be integrated with existing setups, and reduces the required number of experiments and animals.
Collapse
Affiliation(s)
- Max L Sterling
- Computational Neuroscience Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
- Visual Neuroscience Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Ruben Teunisse
- Computational Neuroscience Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Bernhard Englitz
- Computational Neuroscience Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
9
|
Becker M, Gorobets D, Shmerkin E, Weinstein-Fudim L, Pinhasov A, Ornoy A. Prenatal SAMe Treatment Changes via Epigenetic Mechanism/s USVs in Young Mice and Hippocampal Monoamines Turnover at Adulthood in a Mouse Model of Social Hierarchy and Depression. Int J Mol Sci 2023; 24:10721. [PMID: 37445911 PMCID: PMC10361211 DOI: 10.3390/ijms241310721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The role of hippocampal monoamines and their related genes in the etiology and pathogenesis of depression-like behavior, particularly in impaired sociability traits and the meaning of changes in USVs emitted by pups, remains unknown. We assessed the effects of prenatal administration of S-adenosyl-methionine (SAMe) in Sub mice that exhibit depressive-like behavior on serotonergic, dopaminergic and noradrenergic metabolism and the activity of related genes in the hippocampus (HPC) in adulthood in comparison to saline-treated control Sub mice. During postnatal days 4 and 8, we recorded and analyzed the stress-induced USVs emitted by the pups and tried to understand how the changes in the USVs' calls may be related to the changes in the monoamines and the activity of related genes. The recordings of the USVs showed that SAMe induced a reduction in the emitted flat and one-frequency step-up call numbers in PND4 pups, whereas step-down type calls were significantly increased by SAMe in PND8 pups. The reduction in the number of calls induced by SAMe following separation from the mothers implies a reduction in anxiety, which is an additional sign of decreased depressive-like behavior. Prenatal SAMe increased the concentrations of serotonin in the HPC in both male and female mice without any change in the levels of 5HIAA. It also decreased the level of the dopamine metabolite DOPAC in females. There were no changes in the levels of norepinephrine and metabolites. Several changes in the expression of genes associated with monoamine metabolism were also induced by prenatal SAMe. The molecular and biochemical data obtained from the HPC studies are generally in accordance with our previously obtained data from the prefrontal cortex of similarly treated Sub mice on postnatal day 90. The changes in both monoamines and their gene expression observed 2-3 months after SAMe treatment are associated with the previously recorded behavioral improvement and seem to demonstrate that SAMe is effective via an epigenetic mechanism.
Collapse
Affiliation(s)
- Maria Becker
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Denis Gorobets
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Elena Shmerkin
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Liza Weinstein-Fudim
- Department of Medical Neurobiology Hebrew, University Hadassah Medical School, Jerusalem 9112102, Israel
| | - Albert Pinhasov
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Asher Ornoy
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Department of Medical Neurobiology Hebrew, University Hadassah Medical School, Jerusalem 9112102, Israel
| |
Collapse
|
10
|
Salles A, Neunuebel J. What do mammals have to say about the neurobiology of acoustic communication? MOLECULAR PSYCHOLOGY : BRAIN, BEHAVIOR, AND SOCIETY 2023; 2:5. [PMID: 38827277 PMCID: PMC11141777 DOI: 10.12688/molpsychol.17539.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Auditory communication is crucial across taxa, including humans, because it enables individuals to convey information about threats, food sources, mating opportunities, and other social cues necessary for survival. Comparative approaches to auditory communication will help bridge gaps across taxa and facilitate our understanding of the neural mechanisms underlying this complex task. In this work, we briefly review the field of auditory communication processing and the classical champion animal, the songbird. In addition, we discuss other mammalian species that are advancing the field. In particular, we emphasize mice and bats, highlighting the characteristics that may inform how we think about communication processing.
Collapse
Affiliation(s)
- Angeles Salles
- Biological Sciences, University of Illinois Chicago, Chicago, Illinois, USA
| | - Joshua Neunuebel
- Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
11
|
Allen A, Heisler E, Kittelberger JM. Dopamine injections to the midbrain periaqueductal gray inhibit vocal-motor production in a teleost fish. Physiol Behav 2023; 263:114131. [PMID: 36796532 DOI: 10.1016/j.physbeh.2023.114131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Across vertebrates, the midbrain periaqueductal gray (PAG) plays a critical role in social and vocal behavior. Dopaminergic neurotransmission also modulates these behaviors, and dopaminergic innervation of the PAG has been well documented. Nonetheless, the potential role of dopamine in shaping vocal production at the level of the PAG is not well understood. Here, we tested the hypothesis that dopamine modulates vocal production in the PAG, using a well-characterized vertebrate model system for the study of vocal communication, the plainfin midshipman fish, Porichthys notatus. We found that focal dopamine injections to the midshipman PAG rapidly and reversibly inhibited vocal production triggered by stimulation of known vocal-motor structures in the preoptic area / anterior hypothalamus. While dopamine inhibited vocal-motor output, it did not alter behaviorally-relevant parameters of this output, such as vocalization duration and frequency. Dopamine-induced inhibition of vocal production was prevented by the combined blockade of D1- and D2-like receptors but was unaffected by isolated blockade of either D1-receptors or D2-receptors. Our results suggest dopamine neuromodulation in the midshipman PAG may inhibit natural vocal behavior, in courtship and/or agonistic social contexts.
Collapse
Affiliation(s)
- Alexander Allen
- Department of Biology, Gettysburg College, Gettysburg, PA 17325, United States
| | - Elizabeth Heisler
- Department of Biology, Gettysburg College, Gettysburg, PA 17325, United States
| | | |
Collapse
|
12
|
Hood KE, Long E, Navarro E, Hurley LM. Playback of broadband vocalizations of female mice suppresses male ultrasonic calls. PLoS One 2023; 18:e0273742. [PMID: 36603000 PMCID: PMC9815654 DOI: 10.1371/journal.pone.0273742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 08/15/2022] [Indexed: 01/06/2023] Open
Abstract
Although male vocalizations during opposite- sex interaction have been heavily studied as sexually selected signals, the understanding of the roles of female vocal signals produced in this context is more limited. During intersexual interactions between mice, males produce a majority of ultrasonic vocalizations (USVs), while females produce a majority of human-audible squeaks, also called broadband vocalizations (BBVs). BBVs may be produced in conjunction with defensive aggression, making it difficult to assess whether males respond to BBVs themselves. To assess the direct effect of BBVs on male behavior, we used a split-cage paradigm in which high rates of male USVs were elicited by female presence on the other side of a barrier, but which precluded extensive male-female contact and the spontaneous production of BBVs. In this paradigm, playback of female BBVs decreased USV production, which recovered after the playback period. Trials in which female vocalizations were prevented by the use of female bedding alone or of anesthetized females as stimuli also showed a decrease in response to BBV playback. No non-vocal behaviors declined during playback, although digging behavior increased. Similar to BBVs, WNs also robustly suppressed USV production, albeit to a significantly larger extent. USVs suppression had two distinct temporal components. When grouped in 5-second bins, USVs interleaved with bursts of stimulus BBVs. USV suppression also adapted to BBV playback on the order of minutes. Adaptation occurred more rapidly in males that were housed individually as opposed to socially for a week prior to testing, suggesting that the adaptation trajectory is sensitive to social experience. These findings suggest the possibility that vocal interaction between male and female mice, with males suppressing USVs in response to BBVs, may influence the dynamics of communicative behavior.
Collapse
Affiliation(s)
- Kayleigh E. Hood
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, United States of America
| | - Eden Long
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Eric Navarro
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, United States of America
| | - Laura M. Hurley
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
13
|
Dixon TA, Muotri AR. Advancing preclinical models of psychiatric disorders with human brain organoid cultures. Mol Psychiatry 2023; 28:83-95. [PMID: 35948659 PMCID: PMC9812789 DOI: 10.1038/s41380-022-01708-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/11/2023]
Abstract
Psychiatric disorders are often distinguished from neurological disorders in that the former do not have characteristic lesions or findings from cerebrospinal fluid, electroencephalograms (EEGs), or brain imaging, and furthermore do not have commonly recognized convergent mechanisms. Psychiatric disorders commonly involve clinical diagnosis of phenotypic behavioral disturbances of mood and psychosis, often with a poorly understood contribution of environmental factors. As such, psychiatric disease has been challenging to model preclinically for mechanistic understanding and pharmaceutical development. This review compares commonly used animal paradigms of preclinical testing with evolving techniques of induced pluripotent cell culture with a focus on emerging three-dimensional models. Advances in complexity of 3D cultures, recapitulating electrical activity in utero, and disease modeling of psychosis, mood, and environmentally induced disorders are reviewed. Insights from these rapidly expanding technologies are discussed as they pertain to the utility of human organoid and other models in finding novel research directions, validating pharmaceutical action, and recapitulating human disease.
Collapse
Affiliation(s)
- Thomas Anthony Dixon
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA 92093 USA
| | - Alysson R. Muotri
- grid.266100.30000 0001 2107 4242Department of Pediatrics and Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, Archealization Center (ArchC), La Jolla, CA 92037 USA
| |
Collapse
|
14
|
Wilson EN, Mabry S, Bradshaw JL, Gardner JJ, Rybalchenko N, Engelland R, Fadeyibi O, Osikoya O, Cushen SC, Goulopoulou S, Cunningham RL. Gestational hypoxia in late pregnancy differentially programs subcortical brain maturation in male and female rat offspring. Biol Sex Differ 2022; 13:54. [PMID: 36175941 PMCID: PMC9524087 DOI: 10.1186/s13293-022-00463-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Hypoxia is associated with pregnancy complications, such as preeclampsia, placental abruption, and gestational sleep apnea. Hypoxic insults during gestation can impact the brain maturation of cortical and subcortical pathways, such as the nigrostriatal pathway. However, the long-term effects of in utero hypoxic stress exposure on brain maturation in offspring are unclear, especially exposure during late gestation. The purpose of this study was to determine the impact of gestational hypoxia in late pregnancy on developmental programming of subcortical brain maturation by focusing on the nigrostriatal pathway. METHODS Timed pregnant Long-Evans rats were exposed to chronic intermittent hypoxia or room air normoxia from gestational day (GD) 15-19 (term 22-23 days). Male and female offspring were assessed during two critical periods: puberty from postnatal day (PND) 40-45 or young adulthood (PND 60-65). Brain maturation was quantified by examining (1) the structural development of the nigrostriatal pathway via analysis of locomotor behaviors and the substantia nigra dopaminergic neuronal cell bodies and (2) the refinement of the nigrostriatal pathway by quantifying ultrasonic vocalizations (USVs). RESULTS The major findings of this study are gestational hypoxia has age- and sex-dependent effects on subcortical brain maturation in offspring by adversely impacting the refinement of the nigrostriatal pathway in the absence of any effects on the structural development of the pathway. During puberty, female offspring were impacted more than male offspring, as evidenced by decreased USV call frequency, chirp USV call duration, and simple call frequency. In contrast, male offspring were impacted more than female offspring during young adulthood, as evidenced by increased latency to first USV, decreased simple USV call intensity, and increased harmonic USV call bandwidth. No effects of gestational hypoxia on the structural development of the nigrostriatal pathway were observed. CONCLUSIONS These novel findings demonstrate hypoxic insults during pregnancy mediate developmental programming of the cortical and subcortical pathways, in which male offspring exhibit long-term adverse effects compared to female offspring. Impairment of cortical and subcortical pathways maturation, such as the nigrostriatal pathway, may increase risk for neuropsychiatric disorders (e.g., mood disorders, cognitive dysfunction, brain connectivity dysfunction).
Collapse
Affiliation(s)
- E Nicole Wilson
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Steve Mabry
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Jessica L Bradshaw
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Jennifer J Gardner
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Nataliya Rybalchenko
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Rachel Engelland
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Oluwadarasimi Fadeyibi
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Oluwatobiloba Osikoya
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Spencer C Cushen
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Department of Basic Sciences, Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA.
| |
Collapse
|
15
|
Lenschow C, Mendes ARP, Lima SQ. Hearing, touching, and multisensory integration during mate choice. Front Neural Circuits 2022; 16:943888. [PMID: 36247731 PMCID: PMC9559228 DOI: 10.3389/fncir.2022.943888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/28/2022] [Indexed: 12/27/2022] Open
Abstract
Mate choice is a potent generator of diversity and a fundamental pillar for sexual selection and evolution. Mate choice is a multistage affair, where complex sensory information and elaborate actions are used to identify, scrutinize, and evaluate potential mating partners. While widely accepted that communication during mate assessment relies on multimodal cues, most studies investigating the mechanisms controlling this fundamental behavior have restricted their focus to the dominant sensory modality used by the species under examination, such as vision in humans and smell in rodents. However, despite their undeniable importance for the initial recognition, attraction, and approach towards a potential mate, other modalities gain relevance as the interaction progresses, amongst which are touch and audition. In this review, we will: (1) focus on recent findings of how touch and audition can contribute to the evaluation and choice of mating partners, and (2) outline our current knowledge regarding the neuronal circuits processing touch and audition (amongst others) in the context of mate choice and ask (3) how these neural circuits are connected to areas that have been studied in the light of multisensory integration.
Collapse
Affiliation(s)
- Constanze Lenschow
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Ana Rita P Mendes
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Susana Q Lima
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| |
Collapse
|
16
|
Razidlo JA, Fausner SML, Ingebretson AE, Wang LC, Petersen CL, Mirza S, Swank IN, Alvarez VA, Lemos JC. Chronic Loss of Muscarinic M5 Receptor Function Manifests Disparate Impairments in Exploratory Behavior in Male and Female Mice despite Common Dopamine Regulation. J Neurosci 2022; 42:6917-6930. [PMID: 35896424 PMCID: PMC9463982 DOI: 10.1523/jneurosci.1424-21.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
There are five cloned muscarinic acetylcholine receptors (M1-M5). Of these, the muscarinic type 5 receptor (M5) is the only one localized to dopamine neurons in the ventral tegmental area and substantia nigra. Unlike M1-M4, the M5 receptor has relatively restricted expression in the brain, making it an attractive therapeutic target. Here, we performed an in-depth characterization of M5-dependent potentiation of dopamine transmission in the nucleus accumbens and accompanying exploratory behaviors in male and female mice. We show that M5 receptors potentiate dopamine transmission by acting directly on the terminals within the nucleus accumbens. Using the muscarinic agonist oxotremorine, we revealed a unique concentration-response curve and a sensitivity to repeated forced swim stress or restraint stress exposure. We found that constitutive deletion of M5 receptors reduced exploration of the center of an open field while at the same time impairing normal habituation only in male mice. In addition, M5 deletion reduced exploration of salient stimuli, especially under conditions of high novelty, yet had no effect on hedonia assayed using the sucrose preference test or on stress-coping strategy assayed using the forced swim test. We conclude that M5 receptors are critical for both engaging with the environment and updating behavioral output in response to environment cues, specifically in male mice. A cardinal feature of mood and anxiety disorders is withdrawal from the environment. These data indicate that boosting M5 receptor activity may be a useful therapeutic target for ameliorating these symptoms of depression and anxiety.SIGNIFICANCE STATEMENT The basic physiological and behavioral functions of the muscarinic M5 receptor remain understudied. Furthermore, its presence on dopamine neurons, relatively restricted expression in the brain, and recent crystallization make it an attractive target for therapeutic development. Yet, most preclinical studies of M5 receptor function have primarily focused on substance use disorders in male rodents. Here, we characterized the role of M5 receptors in potentiating dopamine transmission in the nucleus accumbens, finding impaired functioning after stress exposure. Furthermore, we show that M5 receptors can modulate exploratory behavior in a sex-specific manner, without affecting hedonic behavior. These findings further illustrate the therapeutic potential of the M5 receptor, warranting further research in the context of treating mood disorders.
Collapse
Affiliation(s)
- John A Razidlo
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Skylar M L Fausner
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Anna E Ingebretson
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Liuchang C Wang
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Christopher L Petersen
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Salahudeen Mirza
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Isabella N Swank
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-9411
| | - Julia C Lemos
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
17
|
Autistic-like behavioral effects of prenatal stress in juvenile Fmr1 mice: the relevance of sex differences and gene-environment interactions. Sci Rep 2022; 12:7269. [PMID: 35508566 PMCID: PMC9068699 DOI: 10.1038/s41598-022-11083-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Fragile X Syndrome (FXS) is the most common heritable form of mental retardation and monogenic cause of autism spectrum disorder (ASD). FXS is due to a mutation in the X-linked FMR1 gene and is characterized by motor, cognitive and social alterations, mostly overlapping with ASD behavioral phenotypes. The severity of these symptoms and their timing may be exacerbated and/or advanced by environmental adversity interacting with the genetic mutation. We therefore tested the effects of the prenatal exposure to unpredictable chronic stress on the behavioral phenotype of juveniles of both sexes in the Fmr1 knock-out (KO) mouse model of FXS. Mice underwent behavioral tests at 7-8 weeks of age, that is, when most of the relevant behavioral alterations are absent or mild in Fmr1-KOs. Stress induced the early appearance of deficits in spontaneous alternation in KO male mice, without exacerbating the behavioral phenotype of mutant females. In males stress also altered social interaction and communication, but mostly in WT mice, while in females it induced effects on locomotion and communication in mice of both genotypes. Our data therefore highlight the sex-dependent relevance of early environmental stressors to interact with genetic factors to influence the appearance of selected FXS- and ASD-like phenotypes.
Collapse
|
18
|
Bouguiyoud N, Morales-Grahl E, Bronchti G, Frasnelli J, Roullet FI, Al Aïn S. Effects of Congenital Blindness on Ultrasonic Vocalizations and Social Behaviors in the ZRDBA Mouse. Front Behav Neurosci 2022; 16:884688. [PMID: 35592638 PMCID: PMC9110969 DOI: 10.3389/fnbeh.2022.884688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/29/2022] [Indexed: 11/25/2022] Open
Abstract
Mice produce ultrasonic vocalizations (USVs) at different ages and social contexts, including maternal-pup separation, social play in juveniles, social interactions, and mating in adults. The USVs' recording can be used as an index of sensory detection, internal state, and social motivation. While sensory deprivation may alter USVs' emission and some social behaviors in deaf and anosmic rodents, little is known about the effects of visual deprivation in rodents. This longitudinal study aimed to assess acoustic communication and social behaviors using a mouse model of congenital blindness. Anophthalmic and sighted mice were assayed to a series of behavioral tests at three different ages, namely, the maternal isolation-induced pup USV test and the home odor discrimination and preference test on postnatal day (PND) 7, the juvenile social test on PND 30-35, and the female urine-induced USVs and scent-marking behavior at 2-3 months. Our results evidenced that (1) at PND 7, USVs' total number between both groups was similar, all mice vocalized less during the second isolation period than the first period, and both phenotypes showed similar discrimination and preference, favoring exploration of the home bedding odor; (2) at PND 30-35, anophthalmic mice engaged less in social behaviors in the juvenile play test than sighted ones, but the number of total USVs produced is not affected; and (3) at adulthood, when exposed to a female urine spot, anophthalmic male mice displayed faster responses in terms of USVs' emission and sniffing behavior, associated with a longer time spent exploring the female urinary odor. Interestingly, acoustic behavior in the pups and adults was correlated in sighted mice only. Together, our study reveals that congenital visual deprivation had no effect on the number of USVs emitted in the pups and juveniles, but affected the USVs' emission in the adult male and impacted the social behavior in juvenile and adult mice.
Collapse
Affiliation(s)
- Nouhaila Bouguiyoud
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Cognition, Neurosciences, Affect et Comportement (CogNAC) Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | | | - Gilles Bronchti
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Johannes Frasnelli
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Cognition, Neurosciences, Affect et Comportement (CogNAC) Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Florence I. Roullet
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Syrina Al Aïn
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Cognition, Neurosciences, Affect et Comportement (CogNAC) Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
19
|
Abbasi R, Balazs P, Marconi MA, Nicolakis D, Zala SM, Penn DJ. Capturing the songs of mice with an improved detection and classification method for ultrasonic vocalizations (BootSnap). PLoS Comput Biol 2022; 18:e1010049. [PMID: 35551265 PMCID: PMC9098080 DOI: 10.1371/journal.pcbi.1010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 03/22/2022] [Indexed: 12/02/2022] Open
Abstract
House mice communicate through ultrasonic vocalizations (USVs), which are above the range of human hearing (>20 kHz), and several automated methods have been developed for USV detection and classification. Here we evaluate their advantages and disadvantages in a full, systematic comparison, while also presenting a new approach. This study aims to 1) determine the most efficient USV detection tool among the existing methods, and 2) develop a classification model that is more generalizable than existing methods. In both cases, we aim to minimize the user intervention required for processing new data. We compared the performance of four detection methods in an out-of-the-box approach, pretrained DeepSqueak detector, MUPET, USVSEG, and the Automatic Mouse Ultrasound Detector (A-MUD). We also compared these methods to human visual or 'manual' classification (ground truth) after assessing its reliability. A-MUD and USVSEG outperformed the other methods in terms of true positive rates using default and adjusted settings, respectively, and A-MUD outperformed USVSEG when false detection rates were also considered. For automating the classification of USVs, we developed BootSnap for supervised classification, which combines bootstrapping on Gammatone Spectrograms and Convolutional Neural Networks algorithms with Snapshot ensemble learning. It successfully classified calls into 12 types, including a new class of false positives that is useful for detection refinement. BootSnap outperformed the pretrained and retrained state-of-the-art tool, and thus it is more generalizable. BootSnap is freely available for scientific use.
Collapse
Affiliation(s)
- Reyhaneh Abbasi
- Acoustic Research Institute, Austrian Academy of Sciences, Vienna, Austria
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
- Vienna Doctoral School of Cognition, Behaviour and Neuroscience, University of Vienna, Vienna, Austria
| | - Peter Balazs
- Acoustic Research Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Maria Adelaide Marconi
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Doris Nicolakis
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Sarah M Zala
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Dustin J Penn
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
20
|
Transgenerational Effects of Prenatal Endocrine Disruption on Reproductive and Sociosexual Behaviors in Sprague Dawley Male and Female Rats. TOXICS 2022; 10:toxics10020047. [PMID: 35202233 PMCID: PMC8875130 DOI: 10.3390/toxics10020047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) lead to endocrine and neurobehavioral changes, particularly due to developmental exposures during gestation and early life. Moreover, intergenerational and transgenerational phenotypic changes may be induced by germline exposure (F2) and epigenetic germline transmission (F3) generation, respectively. Here, we assessed reproductive and sociosexual behavioral outcomes of prenatal Aroclor 1221 (A1221), a lightly chlorinated mix of PCBs known to have weakly estrogenic mechanisms of action; estradiol benzoate (EB), a positive control; or vehicle (3% DMSO in sesame oil) in F1-, F2-, and F3-generation male and female rats. Treatment with EDCs was given on embryonic day (E) 16 and 18, and F1 offspring monitored for development and adult behavior. F2 offspring were generated by breeding with untreated rats, phenotyping of F2s was performed in adulthood, and the F3 generation were similarly produced and phenotyped. Although no effects of treatment were found on F1 or F3 development and physiology, in the F2 generation, body weight in males and uterine weight in females were increased by A1221. Mating behavior results in F1 and F2 generations showed that F1 A1221 females had a longer latency to lordosis. In males, the F2 generation showed decreased mount frequency in the EB group. In the F3 generation, numbers of ultrasonic vocalizations were decreased by EB in males, and by EB and A1221 when the sexes were combined. Finally, partner preference tests in the F3 generation revealed that naïve females preferred F3-EB over untreated males, and that naïve males preferred untreated over F3-EB or F3-A1221 males. As a whole, these results show that each generation has a unique, sex-specific behavioral phenotype due to direct or ancestral EDC exposure.
Collapse
|
21
|
Myslivecek J. Social Isolation: How Can the Effects on the Cholinergic System Be Isolated? Front Pharmacol 2021; 12:716460. [PMID: 34916930 PMCID: PMC8670609 DOI: 10.3389/fphar.2021.716460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/15/2021] [Indexed: 01/31/2023] Open
Abstract
Social species form organizations that support individuals because the consequent social behaviors help these organisms survive. The isolation of these individuals may be a stressor. We reviewed the potential mechanisms of the effects of social isolation on cholinergic signaling and vice versa how changes in cholinergic signaling affect changes due to social isolation.There are two important problems regarding this topic. First, isolation schemes differ in their duration (1–165 days) and initiation (immediately after birth to adulthood). Second, there is an important problem that is generally not considered when studying the role of the cholinergic system in neurobehavioral correlates: muscarinic and nicotinic receptor subtypes do not differ sufficiently in their affinity for orthosteric site agonists and antagonists. Some potential cholinesterase inhibitors also affect other targets, such as receptors or other neurotransmitter systems. Therefore, the role of the cholinergic system in social isolation should be carefully considered, and multiple receptor systems may be involved in the central nervous system response, although some subtypes are involved in specific functions. To determine the role of a specific receptor subtype, the presence of a specific subtype in the central nervous system should be determined using search in knockout studies with the careful application of specific agonists/antagonists.
Collapse
Affiliation(s)
- Jaromir Myslivecek
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
22
|
Hepbasli D, Gredy S, Ullrich M, Reigl A, Abeßer M, Raabe T, Schuh K. Genotype- and Age-Dependent Differences in Ultrasound Vocalizations of SPRED2 Mutant Mice Revealed by Machine Deep Learning. Brain Sci 2021; 11:brainsci11101365. [PMID: 34679429 PMCID: PMC8533915 DOI: 10.3390/brainsci11101365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/25/2022] Open
Abstract
Vocalization is an important part of social communication, not only for humans but also for mice. Here, we show in a mouse model that functional deficiency of Sprouty-related EVH1 domain-containing 2 (SPRED2), a protein ubiquitously expressed in the brain, causes differences in social ultrasound vocalizations (USVs), using an uncomplicated and reliable experimental setting of a short meeting of two individuals. SPRED2 mutant mice show an OCD-like behaviour, accompanied by an increased release of stress hormones from the hypothalamic–pituitary–adrenal axis, both factors probably influencing USV usage. To determine genotype-related differences in USV usage, we analyzed call rate, subtype profile, and acoustic parameters (i.e., duration, bandwidth, and mean peak frequency) in young and old SPRED2-KO mice. We recorded USVs of interacting male and female mice, and analyzed the calls with the deep-learning DeepSqueak software, which was trained to recognize and categorize the emitted USVs. Our findings provide the first classification of SPRED2-KO vs. wild-type mouse USVs using neural networks and reveal significant differences in their development and use of calls. Our results show, first, that simple experimental settings in combination with deep learning are successful at identifying genotype-dependent USV usage and, second, that SPRED2 deficiency negatively affects the vocalization usage and social communication of mice.
Collapse
Affiliation(s)
- Denis Hepbasli
- Institute of Physiology I, University Wuerzburg, Roentgenring 9, 97070 Wuerzburg, Germany; (S.G.); (A.R.); (M.A.)
- Correspondence: (D.H.); (K.S.)
| | - Sina Gredy
- Institute of Physiology I, University Wuerzburg, Roentgenring 9, 97070 Wuerzburg, Germany; (S.G.); (A.R.); (M.A.)
| | - Melanie Ullrich
- Center for Rare Diseases, University Clinic Wuerzburg, Josef-Schneider-Strasse 2, 97080 Wuerzburg, Germany;
- Center for Medical Informatics, University Clinic Wuerzburg, Schweinfurter Strasse 4, 97080 Wuerzburg, Germany
| | - Amelie Reigl
- Institute of Physiology I, University Wuerzburg, Roentgenring 9, 97070 Wuerzburg, Germany; (S.G.); (A.R.); (M.A.)
| | - Marco Abeßer
- Institute of Physiology I, University Wuerzburg, Roentgenring 9, 97070 Wuerzburg, Germany; (S.G.); (A.R.); (M.A.)
| | - Thomas Raabe
- Institute for Medical Radiation and Cell Research, Campus Hubland, University Wuerzburg, Biozentrum, 97074 Wuerzburg, Germany;
| | - Kai Schuh
- Institute of Physiology I, University Wuerzburg, Roentgenring 9, 97070 Wuerzburg, Germany; (S.G.); (A.R.); (M.A.)
- Correspondence: (D.H.); (K.S.)
| |
Collapse
|
23
|
Gentile Polese A, Nigam S, Hurley LM. 5-HT1A Receptors Alter Temporal Responses to Broadband Vocalizations in the Mouse Inferior Colliculus Through Response Suppression. Front Neural Circuits 2021; 15:718348. [PMID: 34512276 PMCID: PMC8430226 DOI: 10.3389/fncir.2021.718348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/19/2021] [Indexed: 01/21/2023] Open
Abstract
Neuromodulatory systems may provide information on social context to auditory brain regions, but relatively few studies have assessed the effects of neuromodulation on auditory responses to acoustic social signals. To address this issue, we measured the influence of the serotonergic system on the responses of neurons in a mouse auditory midbrain nucleus, the inferior colliculus (IC), to vocal signals. Broadband vocalizations (BBVs) are human-audible signals produced by mice in distress as well as by female mice in opposite-sex interactions. The production of BBVs is context-dependent in that they are produced both at early stages of interactions as females physically reject males and at later stages as males mount females. Serotonin in the IC of males corresponds to these events, and is elevated more in males that experience less female rejection. We measured the responses of single IC neurons to five recorded examples of BBVs in anesthetized mice. We then locally activated the 5-HT1A receptor through iontophoretic application of 8-OH-DPAT. IC neurons showed little selectivity for different BBVs, but spike trains were characterized by local regions of high spike probability, which we called "response features." Response features varied across neurons and also across calls for individual neurons, ranging from 1 to 7 response features for responses of single neurons to single calls. 8-OH-DPAT suppressed spikes and also reduced the numbers of response features. The weakest response features were the most likely to disappear, suggestive of an "iceberg"-like effect in which activation of the 5-HT1A receptor suppressed weakly suprathreshold response features below the spiking threshold. Because serotonin in the IC is more likely to be elevated for mounting-associated BBVs than for rejection-associated BBVs, these effects of the 5-HT1A receptor could contribute to the differential auditory processing of BBVs in different behavioral subcontexts.
Collapse
Affiliation(s)
- Arianna Gentile Polese
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Biology, Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, United States
| | - Sunny Nigam
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Physics, Indiana University Bloomington, Bloomington, IN, United States
| | - Laura M. Hurley
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
24
|
Ahadullah, Yau SY, Lu HX, Lee TMC, Guo H, Chan CCH. PM 2.5 as a potential risk factor for autism spectrum disorder: Its possible link to neuroinflammation, oxidative stress and changes in gene expression. Neurosci Biobehav Rev 2021; 128:534-548. [PMID: 34216652 DOI: 10.1016/j.neubiorev.2021.06.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/10/2021] [Accepted: 06/29/2021] [Indexed: 10/21/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by behavioral deficits including impairments in social communication, social interaction, and repetitive behaviors. Because the etiology of ASD is still largely unknown, there is no cure for ASD thus far. Although it has been established that genetic components play a vital role in ASD development, the influence of epigenetic regulation induced by environmental factors could also contribute to ASD susceptibility. Accumulated evidence has suggested that exposure to atmospheric particulate matter (PM) in polluted air could affect neurodevelopment, thus possibly leading to ASD. Particles with a size of 2.5 μm (PM2.5) or less have been shown to have negative effects on human health, and could be linked to ASD symptoms in children. This review summarizes evidence from clinical and animal studies to demonstrate the possible linkage between PM2.5 exposure and the incidence of ASD in children. An attempt was made to explore the possible mechanisms of this linkage, including changes of gene expression, oxidative stress and neuroinflammation induced by PM2.5 exposure.
Collapse
Affiliation(s)
- Ahadullah
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou 510515, China.
| | - Hao-Xian Lu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China
| | - Hai Guo
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China.
| | - Chetwyn C H Chan
- Department of Psychology, The Education University of Hong Kong, Tai Po, Hong Kong, China
| |
Collapse
|
25
|
Fyke W, Premoli M, Echeverry Alzate V, López-Moreno JA, Lemaire-Mayo V, Crusio WE, Marsicano G, Wöhr M, Pietropaolo S. Communication and social interaction in the cannabinoid-type 1 receptor null mouse: Implications for autism spectrum disorder. Autism Res 2021; 14:1854-1872. [PMID: 34173729 DOI: 10.1002/aur.2562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/04/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022]
Abstract
Clinical and preclinical findings have suggested a role of the endocannabinoid system (ECS) in the etiopathology of autism spectrum disorder (ASD). Previous mouse studies have investigated the role of ECS in several behavioral domains; however, none of them has performed an extensive assessment of social and communication behaviors, that is, the main core features of ASD. This study employed a mouse line lacking the primary endocannabinoid receptor (CB1r) and characterized ultrasonic communication and social interaction in CB1-/- , CB1+/- , and CB1+/+ males and females. Quantitative and qualitative alterations in ultrasonic vocalizations (USVs) were observed in CB1 null mice both during early development (i.e., between postnatal days 4 and 10), and at adulthood (i.e., at 3 months of age). Adult mutants also showed marked deficits in social interest in the three-chamber test and social investigation in the direct social interaction test. These behavioral alterations were mostly observed in both sexes and appeared more marked in CB1-/- than CB1+/- mutant mice. Importantly, the adult USV alterations could not be attributed to differences in anxiety or sensorimotor abilities, as assessed by the elevated plus maze and auditory startle tests. Our findings demonstrate the role of CB1r in social communication and behavior, supporting the use of the CB1 full knockout mouse in preclinical research on these ASD-relevant core domains. LAY SUMMARY: The endocannabinoid system (ECS) is important for brain development and neural function and is therefore likely to be involved in neurodevelopmental disorders such as Autism Spectrum Disorder (ASD). Here we investigated changes in social behavior and communication, which are core features of ASD, in male and female mice lacking the chief receptor of this system. Our results show that loss of this receptor results in several changes in social behavior and communication both during early development and in adulthood, thus supporting the role of the ECS in these ASD-core behavioral domains.
Collapse
Affiliation(s)
- William Fyke
- University of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France.,Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Marika Premoli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Victor Echeverry Alzate
- Department of Psychobiology and Methodology on Behavioral Sciences, Faculty of Psychology, Madrid Complutense University, Spain.,Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Malaga University, Spain
| | - José A López-Moreno
- Department of Psychobiology and Methodology on Behavioral Sciences, Faculty of Psychology, Madrid Complutense University, Spain
| | | | - Wim E Crusio
- University of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France
| | - Giovanni Marsicano
- University of Bordeaux, INSERM, U862 NeuroCentre Magendie, Group Endocannabinoids and Neuroadaptation, Bordeaux, France
| | - Markus Wöhr
- KU Leuven, Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, Leuven, Belgium.,KU Leuven, Leuven Brain Institute, Leuven, Belgium.,Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-University of Marburg, Marburg, Germany
| | | |
Collapse
|
26
|
Serra M, Marongiu J, Simola N. Lack of drug- and cue-stimulated emissions of ultrasonic vocalizations in C57BL/6J mice repeatedly treated with amphetamine. Neurosci Lett 2021; 749:135733. [PMID: 33592304 DOI: 10.1016/j.neulet.2021.135733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 11/24/2022]
Abstract
The emission of ultrasonic vocalizations (USVs) is thought to communicate the behavioral and emotional states elicited in rodents by social and non-social stimuli. On this basis, studies of psychopharmacology in rats are increasingly utilizing USVs as a behavioral marker to evaluate the effects of drugs on the emotional state. Conversely, very limited information is available as to whether psychoactive drugs influence USV emissions in mice. To provide new insights in this respect, we evaluated the emission of USVs in C57BL/6J mice subjected to repeated treatment with the dopaminergic psychostimulant of abuse amphetamine. Mice were first allowed to perform social contacts in dyads, and 2 days later they received amphetamine (1-4 mg/kg, i.p.) in a test cage (× 5 administrations) on alternate days. Seven days after treatment discontinuation, mice were re-exposed to the test cage to evaluate whether the presentation of drug-paired environmental cues elicited calling behavior, and thereafter received an amphetamine challenge. An additional group of animals received the dopamine receptor agonist apomorphine (1-4 mg/kg, i.p.), to further clarify the role of dopamine transmission in calling behavior of mice. C57BL/6J mice emitted USVs during social contacts, but did not significantly vocalize after amphetamine administration, in response to amphetamine-paired environmental cues, and after apomorphine administration. These results indicate that C57BL/6J mice may respond differently to social and pharmacological stimuli in terms of USV emissions, and may lay the foundation for future studies aimed at clarifying whether USVs may be a useful behavioral marker in studies of psychopharmacology in mice.
Collapse
Affiliation(s)
- Marcello Serra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Jacopo Marongiu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy.
| |
Collapse
|
27
|
Zala SM, Nicolakis D, Marconi MA, Noll A, Ruf T, Balazs P, Penn DJ. Primed to vocalize: Wild-derived male house mice increase vocalization rate and diversity after a previous encounter with a female. PLoS One 2020; 15:e0242959. [PMID: 33296411 PMCID: PMC7725367 DOI: 10.1371/journal.pone.0242959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/13/2020] [Indexed: 01/21/2023] Open
Abstract
Males in a wide variety of taxa, including insects, birds and mammals, produce vocalizations to attract females. Male house mice emit ultrasonic vocalizations (USVs), especially during courtship and mating, which are surprising complex. It is often suggested that male mice vocalize at higher rates after interacting with a female, but the evidence is mixed depending upon the strain of mice. We conducted a study with wild-derived house mice (Mus musculus musculus) to test whether male courtship vocalizations (i.e., vocalizations emitted in a sexual context) are influenced by a prior direct interaction with a female, and if so, determine how long the effect lasts. We allowed sexually naïve males to directly interact with a female for five minutes (sexual priming), and then we recorded males'vocalizations either 1, 10, 20, or 30 days later when presented with an unfamiliar female (separated by a perforated partition) and female scent. We automatically detected USVs and processed recordings using the Automatic Mouse Ultrasound Detector (A-MUD version 3.2), and we describe our improved version of this tool and tests of its performance. We measured vocalization rate and spectro-temporal features and we manually classified USVs into 15 types to investigate priming effects on vocal repertoire diversity and composition. After sexual priming, males emitted nearly three times as many USVs, they had a larger repertoire diversity, and their vocalizations had different spectro-temporal features (USV length, slope and variability in USV frequency) compared to unprimed controls. Unprimed control males had the most distinctive repertoire composition compared to the primed groups. Most of the effects were found when comparing unprimed to all primed males (treatment models), irrespective of the time since priming. Timepoint models showed that USV length increased 1 day after priming, that repertoire diversity increased 1 and 20 days after priming, and that the variability of USV frequencies was lower 20 and 30 days after priming. Our results show that wild-derived male mice increased the number and diversity of courtship vocalizations if they previously interacted with a female. Thus, the USVs of house mice are not only context-dependent, they depend upon previous social experience and perhaps the contexts of these experiences. The effect of sexual priming on male courtship vocalizations is likely mediated by neuro-endocrine-mechanisms, which may function to advertise males' sexual arousal and facilitate social recognition.
Collapse
Affiliation(s)
- Sarah M. Zala
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Doris Nicolakis
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | | | - Anton Noll
- Acoustic Research Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Ruf
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Peter Balazs
- Acoustic Research Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Dustin J. Penn
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
28
|
Dutta R, Crawley JN. Behavioral Evaluation of Angelman Syndrome Mice at Older Ages. Neuroscience 2020; 445:163-171. [PMID: 31730795 PMCID: PMC7214203 DOI: 10.1016/j.neuroscience.2019.10.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022]
Abstract
Angelman syndrome is a neurodevelopmental disorder presenting with severe deficits in motor, speech, and cognitive abilities. The primary genetic cause of Angelman syndrome is a maternally transmitted mutation in the Ube3a gene, which has been successfully modeled in Ube3a mutant mice. Phenotypes have been extensively reported in young adult Ube3a mice. Because symptoms continue throughout life in Angelman syndrome, we tested multiple behavioral phenotypes of male Ube3a mice and WT littermate controls at older adult ages. Social behaviors on both the 3-chambered social approach and male-female social interaction tests showed impairments in Ube3a at 12 months of age. Anxiety-related scores on both the elevated plus-maze and the light ↔ dark transitions assays indicated anxiety-like phenotypes in 12 month old Ube3a mice. Open field locomotion parameters were consistently lower at 12 months. Reduced general exploratory locomotion at this age prevented the interpretation of an anxiety-like phenotype, and likely impacted social tasks. Robust phenotypes in middle-aged Ube3a mice appear to result from continued motor decline. Motor deficits may provide the best outcome measures for preclinical testing of pharmacological targets, towards reductions of symptoms in adults with Angelman syndrome.
Collapse
Affiliation(s)
- Rebecca Dutta
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Jacqueline N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
29
|
Effects of different social experiences on emotional state in mice. Sci Rep 2020; 10:15255. [PMID: 32943726 PMCID: PMC7498458 DOI: 10.1038/s41598-020-71994-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/25/2020] [Indexed: 11/08/2022] Open
Abstract
A comprehensive understanding of animals' emotions can be achieved by combining cognitive, behavioural, and physiological measures. Applying such a multi-method approach, we here examined the emotional state of mice after they had made one of three different social experiences: either a mildly "adverse", a "beneficial", or a "neutral" experience. Using a recently established touchscreen paradigm, cognitive judgement bias was assessed twice, once before and once after the respective experience. Anxiety-like behaviour was examined using a standardised battery of behavioural tests and faecal corticosterone metabolite concentrations were measured. Surprisingly, only minor effects of the social experiences on the animals' cognitive judgement bias and no effects on anxiety-like behaviour and corticosterone metabolite levels were found. It might be speculated that the experiences provided were not strong enough to exert the expected impact on the animals' emotional state. Alternatively, the intensive training procedure necessary for cognitive judgement bias testing might have had a cognitive enrichment effect, potentially countering external influences. While further investigations are required to ascertain the specific causes underlying our findings, the present study adds essential empirical data to the so far scarce amount of studies combining cognitive, behavioural, and physiological measures of emotional state in mice.
Collapse
|
30
|
Niemczura AC, Grimsley JM, Kim C, Alkhawaga A, Poth A, Carvalho A, Wenstrup JJ. Physiological and Behavioral Responses to Vocalization Playback in Mice. Front Behav Neurosci 2020; 14:155. [PMID: 33033474 PMCID: PMC7490332 DOI: 10.3389/fnbeh.2020.00155] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/04/2020] [Indexed: 01/06/2023] Open
Abstract
In mice, the caller’s production of social vocalizations has been extensively studied but the effect of these vocalizations on the listener is less understood, with playback studies to date utilizing one vocalization category or listeners of one sex. This study examines how several categories of mouse vocalizations affect listeners of both sexes to better understand the communicative functions of these vocal categories. We examined physiological and behavioral responses of male and female CBA/CaJ mice to playback of four social vocalization categories: ultrasonic vocalizations (USVs), low-frequency harmonic calls, mid-frequency vocalizations, and noisy calls. Based on the conditions under which these calls are emitted, we hypothesized that playback of these vocal categories would have differential effects on the listeners. In females, playback of all four vocalization categories increased stress hormone levels (corticosterone), but only the non-USV categories increased corticosterone in males. The magnitude of corticosterone increase in non-USV trials was greater in females than in males. In open field tests, all four vocal categories decreased central ambulation in males and females, indicating an increase in anxiety-related behavior. Further, we found that the proportions of USVs emitted by subjects, but not their overall calling rates, were affected by playback of some vocal categories, suggesting that vocalization categories have different communication content. These results show that, even in the absence of behavioral and acoustic contextual features, each vocal category evokes physiological and behavioral responses in mice, with some differences in responses as a function of the listener’s sex and playback signal. These findings suggest that at least some of the vocal categories have distinct communicative functions.
Collapse
Affiliation(s)
- Alexandra C Niemczura
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States.,School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Jasmine M Grimsley
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States.,School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Chae Kim
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Ahmad Alkhawaga
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Austin Poth
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Alyssa Carvalho
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jeffrey J Wenstrup
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States.,School of Biomedical Sciences, Kent State University, Kent, OH, United States.,Brain Health Research Institute, Kent State University, Kent, OH, United States
| |
Collapse
|
31
|
Nicolakis D, Marconi MA, Zala SM, Penn DJ. Ultrasonic vocalizations in house mice depend upon genetic relatedness of mating partners and correlate with subsequent reproductive success. Front Zool 2020; 17:10. [PMID: 32265997 PMCID: PMC7118824 DOI: 10.1186/s12983-020-00353-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/04/2020] [Indexed: 01/27/2023] Open
Abstract
Background Courtship vocalizations are used by males of many species to attract and influence the behavior of potential mating partners. Our aim here was to investigate the modulation and reproductive consequences of courtship ultrasonic vocalizations (USVs) in wild-derived house mice (Mus musculus musculus). The courtship USVs of male mice are surprisingly complex and are composed of a variety of different syllable types. Our specific aims were to test whether (1) the emission of courtship USVs depends upon the kinship of a potential mating partner, and (2) whether USV emission during courtship affects the pairs’ subsequent reproductive success. Results We experimentally presented males with an unfamiliar female that was either genetically related or unrelated, and we recorded USV emission, first while the sexes were separated by a perforated partition and then during direct interactions, after removing the partition. USVs were detected by the Automatic Mouse Ultrasound Detector (A-MUD) and manually classified into 15 syllable types. The mice were kept together to test whether and how courtship vocalizations predict their subsequent reproductive success. We found that the mice significantly increased their amount of vocalizations (vocal performance) and number of syllable types (vocal repertoire) after the partition was removed and they began interacting directly. We show that unrelated pairs emitted longer and more complex USVs compared to related pairs during direct interactions. Unrelated pairs also had a greater reproductive success compared to related pairs, and in addition we found a negative correlation between the mean length and amount of vocalizations with the latency to their first litter. Conclusion Our study provides evidence that house mice modulate the emission of courtship USVs depending upon the kinship of potential mating partners, and that courtship USVs correlate with reproductive success.
Collapse
Affiliation(s)
- Doris Nicolakis
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Savoyenstraße 1a, 1160 Vienna, Austria
| | - Maria Adelaide Marconi
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Savoyenstraße 1a, 1160 Vienna, Austria
| | - Sarah M Zala
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Savoyenstraße 1a, 1160 Vienna, Austria
| | - Dustin J Penn
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Savoyenstraße 1a, 1160 Vienna, Austria
| |
Collapse
|
32
|
Smith BJ, Bruner KEP, Hess AM, Kendall LV. Female Urine-induced Ultrasonic Vocalizations in Male C57BL/6J Mice as a Proxy Indicator for Postoperative Pain. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2020; 59:204-211. [PMID: 31918790 DOI: 10.30802/aalas-jaalas-19-000059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Objectively recognizing postoperative pain in mice is challenging, making it difficult to determine an appropriate postoperative analgesic regimen. Adult male mice produce ultrasonic vocalizations after exposure to adult female urine (FiUSV). To determine if FiUSV can be used as a indicator of postoperative pain, FiUSV produced by male C57BL/6J mice were assessed for 5 d before and after vasectomy or sham surgery with or without sustained-release buprenorphine. Postoperative pain was assessed by monitoring vocalization using an ultrasonic microphone and by evaluating orbital tightness, posture, and piloerection at postoperative time points. Before vasectomy or sham surgery, 25 of 38 male mice produced FiUSV on 4 of 5 d (143 ± 93 FiUSV). Vasectomized mice without postoperative analgesia produced significantly fewer FiUSV (59 ± 26 FiUSV) compared with baseline (212 ± 102 FiUSV) at 4 h postoperatively, but returned to baseline by 28 h. Vasectomized mice treated with buprenorphine and sham-surgery mice had no change in FiUSV from baseline at any time point after surgery. Activity was decreased compared with baseline in vasectomized mice, regardless of receiving postoperative analgesia or not, but only at the 4-h time point. There were no differences in behavior scores between vasectomized mice and sham-surgery mice at any time point. These results show that FiUSV can be used to detect postoperative pain in male C57BL/6J mice after vasectomy.
Collapse
Affiliation(s)
- Brian J Smith
- Department of Microbiology, Immunology, and Pathology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado;,
| | - Kate E P Bruner
- Department of Microbiology, Immunology, and Pathology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado
| | - Ann M Hess
- Department of Statistics, College of Natural Sciences, Colorado State University, Fort Collins, Colorado
| | - Lon V Kendall
- Department of Microbiology, Immunology, and Pathology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
33
|
Smith BJ, Bruner KEP, Kendall LV. Female- and Intruder-induced Ultrasonic Vocalizations in C57BL/6J Mice as Proxy Indicators for Animal Wellbeing. Comp Med 2019; 69:374-383. [PMID: 31578163 DOI: 10.30802/aalas-cm-18-000147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Female urine-induced male mice ultrasonic vocalizations (FiUSV) are ultrasonic vocalizations produced by adult male mice after presentation of adult female urine, whereas intruder-induced ultrasonic vocalizations (IiUSV) are produced by resident adult female mice when interacting with an intruder female mouse. These affiliative behaviors may be reduced when mice have decreased wellbeing or are in pain and distress. To determine whether FiUSV and IiUSV can be used as proxy indicators of animal wellbeing, we assessed FiUSV produced by male C57BL/6J mice in response to female urine and IiUSV produced by female C57BL/6J mice in response to a female intruder at baseline and 1 and 3 h after administration of a sublethal dose of LPS (6 or 12.5 mg/kg IP) or an equal volume of saline. Behavior was assessed by evaluating orbital tightness, posture, and piloerection immediately after USV collection. We hypothesized that LPS-injected mice would have a decreased inclination to mate or to interact with same-sex conspecifics and therefore would produce fewer USV. At baseline, 32 of 33 male mice produced FiUSV (149 ± 127 USV in 2 min), whereas all 36 female mice produced IiUSV (370 ± 156 USV in 2 min). Saline-injected mice showed no change from baseline at the 1- and 3-h time points, whereas LPS-injected mice demonstrated significantly fewer USV than baseline, producing no USV at both 1 and 3 h. According to orbital tightness, posture, and piloerection, LPS-injected mice showed signs of poor wellbeing at 3 h but not 1 h. These findings indicate that FiUSV and IiUSV can be used as proxy indicators of animal wellbeing associated with acute inflammation in mice and can be detected before the onset of clinical signs.
Collapse
Affiliation(s)
- Brian J Smith
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado;,
| | - Kate E P Bruner
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Lon V Kendall
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
34
|
Peleh T, Eltokhi A, Pitzer C. Longitudinal analysis of ultrasonic vocalizations in mice from infancy to adolescence: Insights into the vocal repertoire of three wild-type strains in two different social contexts. PLoS One 2019; 14:e0220238. [PMID: 31365551 PMCID: PMC6668806 DOI: 10.1371/journal.pone.0220238] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/11/2019] [Indexed: 11/19/2022] Open
Abstract
Ultrasonic vocalizations (USV) are emitted by mice under certain developmental, social and behavioral conditions. The analysis of USV can be used as a reliable measure of the general affective state, for testing the efficacy of pharmacological compounds and for investigating communication in mutant mice with predicted social or communication deficits. Social and communication studies in mice have focused mainly on the investigation of USV emitted by neonatal pups after separation from the dam and during social interaction between adult males and females. Longitudinal USV analysis among the different developmental states remained uninvestigated. In our study, we first recorded USV from three inbred mouse strains C57BL/6N, DBA/2 and FVB/N during the neonatal stages after separation from the littermates and then during a reunion with one littermate. Our results revealed significant strain-specific differences in the numbers and categories of USV calls. In addition, the USV profiles seemed to be sensitive to small developmental progress during infancy. By following these mice to the adolescent stage and measuring USV in the three-chamber social test, we found that USV profiles still showed significant differences between these strains in the different trials of the test. To study the effects of social context on USV characteristics, we measured USV emitted by another cohort of adolescent mice during the direct social interaction test. To this end, this study provides a strategy for evaluating novel mouse mutants in behavioral questions relevant to disorders with deficits in communication and sociability and emphasizes the important contribution of genetics and experimental contexts on the behavioral outcome.
Collapse
Affiliation(s)
- Tatiana Peleh
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
| | - Ahmed Eltokhi
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
- Research Group of the Max Planck Institute for Medical Research at the Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
- * E-mail:
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
35
|
Rodent ultrasonic vocalizations as biomarkers of future alcohol use: A predictive analytic approach. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 18:88-98. [PMID: 29209998 DOI: 10.3758/s13415-017-0554-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Excessive alcohol consumption has a vast, negative impact on society. Rodent models have been successful in furthering our understanding of the biological underpinnings that drive alcohol consumption. Rodents emit ultrasonic vocalizations (USVs) that are each composed of several acoustic characteristics (e.g., frequency, duration, bandwidth, power). USVs reflect neurotransmitter activity in the ascending limb of the mesolimbic dopaminergic and cholinergic neurotransmitter systems and serve as noninvasive, real-time biomarkers of dopaminergic and cholinergic neurotransmission in the limbic system. In the present study, we recorded spontaneously emitted USVs from alcohol-naïve Long-Evans (LE) rats and then measured their alcohol intake. We compared the USV acoustic characteristics and alcohol consumption data from these LE rats with previously published data from selectively bred high-alcohol (P and HAD-1) and low-alcohol (NP and LAD-1) drinking lines from studies with the same experimental method. Predictive analytic techniques were applied simultaneously to this combined data set and revealed that (a) USVs emitted by alcohol-naïve rats accurately discriminated among high-alcohol consuming, LE, and low-alcohol consuming rat lines, and (b) future alcohol consumption in these same rat lines was reliably predicted from the USV data collected in an alcohol-naïve state. To our knowledge, this is the first study to show that alcohol consumption is predicted directly from USV profiles of alcohol-naïve rats. Because USV acoustic characteristics are sensitive to underlying neural activity, these findings suggest that baseline differences in mesolimbic cholinergic and dopaminergic tone could determine the propensity for future alcohol consumption in rodents.
Collapse
|
36
|
Jones KA, Sumiya M, Woolfrey KM, Srivastava DP, Penzes P. Loss of EPAC2 alters dendritic spine morphology and inhibitory synapse density. Mol Cell Neurosci 2019; 98:19-31. [PMID: 31059774 PMCID: PMC6639166 DOI: 10.1016/j.mcn.2019.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/04/2019] [Accepted: 05/01/2019] [Indexed: 12/31/2022] Open
Abstract
EPAC2 is a guanine nucleotide exchange factor that regulates GTPase activity of the small GTPase Rap and Ras and is highly enriched at synapses. Activation of EPAC2 has been shown to induce dendritic spine shrinkage and increase spine motility, effects that are necessary for synaptic plasticity. These morphological effects are dysregulated by rare mutations of Epac2 associated with autism spectrum disorders. In addition, EPAC2 destabilizes synapses through the removal of synaptic GluA2/3-containing AMPA receptors. Previous work has shown that Epac2 knockout mice (Epac2−/−) display abnormal social interactions, as well as gross disorganization of the frontal cortex and abnormal spine motility in vivo. In this study we sought to further understand the cellular consequences of knocking out Epac2 on the development of neuronal and synaptic structure and organization of cortical neurons. Using primary cortical neurons generated from Epac2+/+ or Epac2−/− mice, we confirm that EPAC2 is required for cAMP-dependent spine shrinkage. Neurons from Epac2−/− mice also displayed increased synaptic expression of GluA2/3-containing AMPA receptors, as well as of the adhesion protein N-cadherin. Intriguingly, analysis of excitatory and inhibitory synaptic proteins revealed that loss of EPAC2 resulted in altered expression of vesicular GABA transporter (VGAT) but not vesicular glutamate transporter 1 (VGluT1), indicating an altered ratio of excitatory and inhibitory synapses onto neurons. Finally, examination of cortical neurons located within the anterior cingulate cortex further revealed subtle deficits in the establishment of dendritic arborization in vivo. These data provide evidence that loss of EPAC2 enhances the stability of excitatory synapses and increases the number of inhibitory inputs. EPAC2 is required for cAMP-dependent spine remodeling. Loss of EPAC2 results in over-stabilized excitatory synapses. Loss of EPAC2 results in an increase in inhibitory input onto neurons. EPAC2 is required for correct dendritic arborization and spine formation in vivo.
Collapse
Affiliation(s)
- Kelly A Jones
- Department of Physiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 8NU, UK
| | - Michiko Sumiya
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 8NU, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Kevin M Woolfrey
- Department of Physiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 8NU, UK
| | - Deepak P Srivastava
- Department of Physiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 8NU, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 8NU, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| | - Peter Penzes
- Department of Physiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 8NU, UK; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
37
|
Medial Preoptic Area Modulates Courtship Ultrasonic Vocalization in Adult Male Mice. Neurosci Bull 2019; 35:697-708. [PMID: 30900143 DOI: 10.1007/s12264-019-00365-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/11/2018] [Indexed: 01/02/2023] Open
Abstract
Adult male mice emit highly complex ultrasonic vocalizations (USVs) in response to female conspecifics. Such USVs, thought to facilitate courtship behaviors, are routinely measured as a behavioral index in mouse models of neurodevelopmental and psychiatric disorders such as autism. While the regulation of USVs by genetic factors has been extensively characterized, the neural mechanisms that control USV production remain largely unknown. Here, we report that optogenetic activation of the medial preoptic area (mPOA) elicited the production of USVs that were acoustically similar to courtship USVs in adult mice. Moreover, mPOA vesicular GABA transporter-positive (Vgat +) neurons were more effective at driving USV production than vesicular glutamate transporter 2-positive neurons. Furthermore, ablation of mPOA Vgat+ neurons resulted in altered spectral features and syllable usage of USVs in targeted males. Together, these results demonstrate that the mPOA plays a crucial role in modulating courtship USVs and this may serve as an entry point for future dissection of the neural circuitry underlying USV production.
Collapse
|
38
|
Screven LA, Dent ML. Social isolation produces no effect on ultrasonic vocalization production in adult female CBA/CaJ mice. PLoS One 2019; 14:e0213068. [PMID: 30835741 PMCID: PMC6400338 DOI: 10.1371/journal.pone.0213068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 02/14/2019] [Indexed: 12/24/2022] Open
Abstract
Mice produce ultrasonic vocalizations (USVs) in a wide variety of social contexts, including courtship, investigation, and territorial defense. Despite the belief that mouse USVs are innate, social experience may be necessary for mice to learn the appropriate situation to emit USVs. Mouse USVs have been divided into categories based on their spectrotemporal parameters, but it is currently unclear if social experience changes these parameters (e.g., frequency and duration) or the proportion of calls from each category produced. Social isolation has been found to influence USV production in male mice. To investigate the influence of social isolation on vocal behavior in female mice, recordings were made of USVs emitted to unfamiliar male and female mice by subjects with one of three types of social experience. Twenty-four adult female CBA/CaJ mice either lived alone, lived with other females only, or lived with other females and had limited access to a male. Mice were recorded while in isolation, ensuring all recorded USVs were from the female of interest. Vocalizations were separated into nine categories and peak frequency, duration, and bandwidth were measured for every call. Socially isolated mice did not produce significantly more USVs or USV types than socially experienced mice. Social isolation did not have a significant effect on the features of USVs, suggesting production of USVs may not be learned in female mice.
Collapse
Affiliation(s)
- Laurel A. Screven
- Department of Psychology, University at Buffalo, SUNY, Buffalo, NY, United States of America
| | - Micheal L. Dent
- Department of Psychology, University at Buffalo, SUNY, Buffalo, NY, United States of America
| |
Collapse
|
39
|
Rhine MA, Parrott JM, Schultz MN, Kazdoba TM, Crawley JN. Hypothesis-driven investigations of diverse pharmacological targets in two mouse models of autism. Autism Res 2019; 12:401-421. [PMID: 30653853 PMCID: PMC6402976 DOI: 10.1002/aur.2066] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/13/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder is a neurodevelopmental syndrome diagnosed primarily by persistent deficits in social interactions and communication, unusual sensory reactivity, motor stereotypies, repetitive behaviors, and restricted interests. No FDA‐approved medical treatments exist for the diagnostic symptoms of autism. Here we interrogate multiple pharmacological targets in two distinct mouse models that incorporate well‐replicated autism‐relevant behavioral phenotypes. Compounds that modify inhibitory or excitatory neurotransmission were selected to address hypotheses based on previously published biological abnormalities in each model. Shank3B is a genetic model of a mutation found in autism and Phelan‐McDermid syndrome, in which deficits in excitatory neurotransmission and synaptic plasticity have been reported. BTBR is an inbred strain model of forms of idiopathic autism in which reduced inhibitory neurotransmission and excessive mTOR signaling have been reported. The GABA‐A receptor agonist gaboxadol significantly reduced repetitive self‐grooming in three independent cohorts of BTBR. The TrkB receptor agonist 7,8‐DHF improved spatial learning in Shank3B mice, and reversed aspects of social deficits in BTBR. CX546, a positive allosteric modulator of the glutamatergic AMPA receptor, and d‐cycloserine, a partial agonist of the glycine site on the glutamatergic NMDA receptor, did not rescue aberrant behaviors in Shank3B mice. The mTOR inhibitor rapamycin did not ameliorate social deficits or repetitive behavior in BTBR mice. Comparison of positive and negative pharmacological outcomes, on multiple phenotypes, evaluated for replicability across independent cohorts, enhances the translational value of mouse models of autism for therapeutic discovery. GABA agonists present opportunities for personalized interventions to treat components of autism spectrum disorder. Autism Res 2019, 12: 401–421 © 2019 The Authors. Autism Research published by International Society for Autism Research published by Wiley Periodicals, Inc. Lay Summary Many of the risk genes for autism impair synapses, the connections between nerve cells in the brain. A drug that reverses the synaptic effects of a mutation could offer a precision therapy. Combining pharmacological and behavioral therapies could reduce symptoms and improve the quality of life for people with autism. Here we report reductions in repetitive behavior by a GABA‐A receptor agonist, gaboxadol, and improvements in social and cognitive behaviors by a TrkB receptor agonist, in mouse models of autism.
Collapse
Affiliation(s)
- Maya A Rhine
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, 95817
| | - Jennifer M Parrott
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, 95817
| | - Maria N Schultz
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, 95817
| | - Tatiana M Kazdoba
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, 95817
| | - Jacqueline N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, 95817
| |
Collapse
|
40
|
Ashbrook DG, Roy S, Clifford BG, Riede T, Scattoni ML, Heck DH, Lu L, Williams RW. Born to Cry: A Genetic Dissection of Infant Vocalization. Front Behav Neurosci 2018; 12:250. [PMID: 30420800 PMCID: PMC6216097 DOI: 10.3389/fnbeh.2018.00250] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/05/2018] [Indexed: 12/15/2022] Open
Abstract
Infant vocalizations are one of the most fundamental and innate forms of behavior throughout avian and mammalian orders. They have a critical role in motivating parental care and contribute significantly to fitness and reproductive success. Dysregulation of these vocalizations has been reported to predict risk of central nervous system pathologies such as hypoxia, meningitis, or autism spectrum disorder. Here, we have used the expanded BXD family of mice, and a diallel cross between DBA/2J and C57BL/6J parental strains, to begin the process of genetically dissecting the numerous facets of infant vocalizations. We calculate heritability, estimate the role of parent-of-origin effects, and identify novel quantitative trait loci (QTLs) that control ultrasonic vocalizations (USVs) on postnatal days 7, 8, and 9; a stage that closely matches human infants at birth. Heritability estimates for the number and frequency of calls are low, suggesting that these traits are under high selective pressure. In contrast, duration and amplitude of calls have higher heritabilities, indicating lower selection, or their importance for kin recognition. We find suggestive evidence that amplitude of infant calls is dependent on the maternal genotype, independent of shared genetic variants. Finally, we identify two loci on Chrs 2 and 14 influencing call frequency, and a third locus on Chr 8 influencing the amplitude of vocalizations. All three loci contain strong candidate genes that merit further analysis. Understanding the genetic control of infant vocalizations is not just important for understanding the evolution of parent–offspring interactions, but also in understanding the earliest innate behaviors, the development of parent–offspring relations, and the early identification of behavioral abnormalities.
Collapse
Affiliation(s)
- David George Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Snigdha Roy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Brittany G Clifford
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Tobias Riede
- Department of Physiology, College of Veterinary Medicine, Midwestern University, Glendale, AZ, United States
| | - Maria Luisa Scattoni
- Research Coordination and Support Service, Istituto Superiore di Sanità, Rome, Italy
| | - Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
41
|
Hamed A, Kursa MB. Inter-individual differences in serotonin and glutamate co-transmission reflect differentiation in context-induced conditioned 50-kHz USVs response after morphine withdrawal. Brain Struct Funct 2018; 223:3149-3167. [PMID: 29774428 PMCID: PMC6132671 DOI: 10.1007/s00429-018-1683-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Abstract
A growing body of research provides compelling evidence that in rats 50-kHz USVs are a form of expression of positive emotions. Context-induced 50-kHz USVs emission is variable among rats, indicating individual differences in contextual response bound up with pharmacological reward. The aims of this study were to: extract the most important neurotransmitters related to context-induced conditioned 50-kHz USVs response; find biological basis of existing inter-individual differences in context-induced conditioned 50-kHz USVs response; create a model of all-to-all neurotransmitters correlations. The data collected here confirms that re-exposure to the context of morphine administration after the withdrawal period increases the level of 50-kHz USVs and this contextual response is associated with elevated serotonin concentrations in amygdala, hippocampus and mPFC and with increased Glu/Gln ratio in nucleus accumbens. The concentration of serotonin increases simultaneously in amygdala, nucleus accumbens and hippocampus. Moreover, 5-HT concentration in amygdala is bound up with glutamate level in this structure as well as in hippocampus. Furthermore, Glu/Gln ratio in nucleus accumbens has strong associations with Glu/Gln ratio simultaneously in VTA, amygdala, striatum and hippocampus. All-to-all-analysis indicate that concentration of glutamate in hippocampus is proportional to glutamate in VTA and GABA concentration in the hippocampus. We have also demonstrated that Glu/GABA ratio in VTA and amygdala was elevated after post withdrawal re-exposure to the pharmacological reward paired context. Presented analysis indicates a strong correlation between serotonergic and glutamatergic systems in context-induced conditioned response. The strength of this co-transmission correlates with the number of 50-kHz USVs emitted in response to morphine-paired context.
Collapse
Affiliation(s)
- Adam Hamed
- Laboratory of Spatial Memory, Department of Cellular and Molecular Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Miron Bartosz Kursa
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawinskiego 5A, 02-106, Warsaw, Poland
| |
Collapse
|
42
|
Roccaro-Waldmeyer DM, Girard F, Milani D, Vannoni E, Prétôt L, Wolfer DP, Celio MR. Eliminating the VGlut2-Dependent Glutamatergic Transmission of Parvalbumin-Expressing Neurons Leads to Deficits in Locomotion and Vocalization, Decreased Pain Sensitivity, and Increased Dominance. Front Behav Neurosci 2018; 12:146. [PMID: 30072881 PMCID: PMC6058961 DOI: 10.3389/fnbeh.2018.00146] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/26/2018] [Indexed: 11/13/2022] Open
Abstract
The calcium-binding protein parvalbumin (PV) is a recognized marker of short-axon GABA-ergic neurons in the cortex and the hippocampus. However in addition, PV is expressed by excitatory, glutamatergic neurons in various areas of the brain and spinal cord. Depending on the location of these neurons, loading of their synaptic vesicles with glutamate is mediated by either of three vesicular glutamate transporters (VGlut): VGlut1, VGlut2, or VGlut3. Driven by our interest in one of these glutamatergic/PV-expressing cell clusters-the lateral hypothalamic parvafox nucleus-we investigated the functions of this population of neurons by the selective deletion of VGlut2 expression in PV-expressing cells according to the Cre/Lox-approach. PV-Cre;VGlut2-Lox mutant mice are phenotypically characterized by deficits in locomotion and vocalization, by a decreased thermal nociception, and by an increased social dominance. We conducted a search of the Allen Brain Atlas for regions that might co-express the genes encoding PV and VGlut2, and that might thus contribute to the manifestation of the observed phenotypes. Our survey revealed several structures that could contribute to the deficits in locomotion and vocalization, such as the red, the subthalamic and the deep cerebellar nuclei. It also disclosed that a shift in the balance of afferental glutamatergic neurotransmission to the periaqueductal gray matter might be accountable for the decrease in sensitivity to pain and for the increase in social dominance. As a whole, this study broadens the state of knowledge about PV-expressing excitatory neurons.
Collapse
Affiliation(s)
- Diana M Roccaro-Waldmeyer
- Anatomy and Programme in Neuroscience, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Franck Girard
- Anatomy and Programme in Neuroscience, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Daniele Milani
- Anatomy and Programme in Neuroscience, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Elisabetta Vannoni
- Division of Functional Neuroanatomy, Institute of Anatomy, Department of Medicine, University of Zurich, Zurich, Switzerland
| | - Laurent Prétôt
- Anatomy and Programme in Neuroscience, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - David P Wolfer
- Division of Functional Neuroanatomy, Institute of Anatomy, Department of Medicine, University of Zurich, Zurich, Switzerland.,Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Marco R Celio
- Anatomy and Programme in Neuroscience, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
43
|
Burke K, Screven LA, Dent ML. CBA/CaJ mouse ultrasonic vocalizations depend on prior social experience. PLoS One 2018; 13:e0197774. [PMID: 29874248 PMCID: PMC5991354 DOI: 10.1371/journal.pone.0197774] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/08/2018] [Indexed: 01/31/2023] Open
Abstract
Mouse ultrasonic vocalizations (USVs) have variable spectrotemporal features, which researchers use to parse them into different categories. USVs may be important for communication, but it is unclear whether the categories that researchers have developed are relevant to the mice. Instead, other properties such as the number, rate, peak frequency, or bandwidth of the vocalizations may be important cues that the mice are using to interpret the nature of the social interaction. To investigate this, a comprehensive catalog of the USVs that mice are producing across different social contexts must be created. Forty male and female adult CBA/CaJ mice were recorded in isolation for five minutes following either a one-hour period of isolation or an exposure to a same- or opposite-sex mouse. Vocalizations were separated into nine categories based on the frequency composition of each USV. Additionally, USVs were quantified based on the bandwidth, duration, peak frequency, total number, and proportion of vocalizations produced. Results indicate that mice differentially produce their vocalizations across social encounters. There were significant differences in the number of USVs that mice produce across exposure conditions, the proportional probability of producing the different categories of USVs across sex and conditions, and the features of the USVs across conditions. In sum, there are sex-specific differences in production of USVs by laboratory mice, and prior social experiences matter for vocalization production. Furthermore, this study provides critical evidence that female mice probably produce vocalizations in opposite-sex interactions, which is important because this is an often overlooked variable in mouse communication research.
Collapse
Affiliation(s)
- Kali Burke
- Department of Psychology, University at Buffalo, SUNY, Buffalo, New York, United States of America
| | - Laurel A. Screven
- Department of Psychology, University at Buffalo, SUNY, Buffalo, New York, United States of America
| | - Micheal L. Dent
- Department of Psychology, University at Buffalo, SUNY, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
44
|
Matsumoto YK, Okanoya K. Mice modulate ultrasonic calling bouts according to sociosexual context. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180378. [PMID: 30110406 PMCID: PMC6030292 DOI: 10.1098/rsos.180378] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Mice produce various sounds within the ultrasonic range in social contexts. Although these sounds are often used as an index of sociability in biomedical research, their biological significance remains poorly understood. We previously showed that mice repeatedly produced calls in a sequence (i.e. calling bout), which can vary in their structure, such as Simple, Complex or Harmonics. In this study, we investigated the use of the three types of calling bouts in different sociosexual interactions, including both same- and opposite-sex contexts. In same-sex contexts, males typically produced a Simple calling bout, whereas females mostly produced a Complex one. By contrast, in the opposite-sex context, they produced all the three types of calling bouts, but the use of each calling type varied according to the progress and mode of sociosexual interaction (e.g. Harmonic calling bout was specifically produced during reproductive behaviour). These results indicate that mice change the structure of calling bout according to sociosexual contexts, suggesting the presence of multiple functional signals in their ultrasonic communication.
Collapse
Affiliation(s)
- Yui K. Matsumoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Functional Brain Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Kazuo Okanoya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
45
|
Um SM, Ha S, Lee H, Kim J, Kim K, Shin W, Cho YS, Roh JD, Kang J, Yoo T, Noh YW, Choi Y, Bae YC, Kim E. NGL-2 Deletion Leads to Autistic-like Behaviors Responsive to NMDAR Modulation. Cell Rep 2018; 23:3839-3851. [DOI: 10.1016/j.celrep.2018.05.087] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/13/2018] [Accepted: 05/25/2018] [Indexed: 01/01/2023] Open
|
46
|
Harris EP, Allardice HA, Schenk AK, Rissman EF. Effects of maternal or paternal bisphenol A exposure on offspring behavior. Horm Behav 2018; 101:68-76. [PMID: 28964733 PMCID: PMC5882611 DOI: 10.1016/j.yhbeh.2017.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/14/2017] [Accepted: 09/25/2017] [Indexed: 12/15/2022]
Abstract
Bisphenol A (BPA) is an endocrine disrupting chemical used in the production of polycarbonate plastics and resins. Exposure to BPA during gestation has been proposed as a risk factor for the development of neurobehavioral disorders, such as autism spectrum disorder. To address the behavioral impact of developmental exposure to BPA, we tested offspring of mice exposed to a daily low dose of BPA during pregnancy. We also asked if preconception exposure of the sire affected behaviors in offspring. Sires that consumed BPA for 50days prior to mating weighed less than controls, but no effects on any reproductive measures were noted. Juvenile offspring exposed to BPA maternally, but not paternally, spent less time in the open arms of the elevated plus maze than controls, indicating increased anxiety-like behavior. However, neither parental exposure group differed significantly from controls in the social recognition task. We also assessed the behaviors of maternally exposed offspring in two novel tasks: ultrasonic vocalizations (USVs) in pups and operant reversal learning in adults. Maternal BPA exposure increased the duration and median frequency of USVs emitted by pups during maternal separation. In the reversal learning task, females responded more accurately and earned more rewards than males. Additionally, control females received more rewards than BPA females during the acquisition phase of the task. These are among the first studies conducted to ask if BPA exposure via the sire affects offspring behavior and the first study to report effects of gestational BPA exposure on pup USVs and adult operant responding.
Collapse
Affiliation(s)
- Erin P Harris
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| | - Heather A Allardice
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| | - A Katrin Schenk
- Department of Physics, Randolph College, Lynchburg, VA 24503, USA
| | - Emilie F Rissman
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
47
|
Green DB, Shackleton TM, Grimsley JMS, Zobay O, Palmer AR, Wallace MN. Communication calls produced by electrical stimulation of four structures in the guinea pig brain. PLoS One 2018; 13:e0194091. [PMID: 29584746 PMCID: PMC5870961 DOI: 10.1371/journal.pone.0194091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/25/2018] [Indexed: 02/03/2023] Open
Abstract
One of the main central processes affecting the cortical representation of conspecific vocalizations is the collateral output from the extended motor system for call generation. Before starting to study this interaction we sought to compare the characteristics of calls produced by stimulating four different parts of the brain in guinea pigs (Cavia porcellus). By using anaesthetised animals we were able to reposition electrodes without distressing the animals. Trains of 100 electrical pulses were used to stimulate the midbrain periaqueductal grey (PAG), hypothalamus, amygdala, and anterior cingulate cortex (ACC). Each structure produced a similar range of calls, but in significantly different proportions. Two of the spontaneous calls (chirrup and purr) were never produced by electrical stimulation and although we identified versions of chutter, durr and tooth chatter, they differed significantly from our natural call templates. However, we were routinely able to elicit seven other identifiable calls. All seven calls were produced both during the 1.6 s period of stimulation and subsequently in a period which could last for more than a minute. A single stimulation site could produce four or five different calls, but the amygdala was much less likely to produce a scream, whistle or rising whistle than any of the other structures. These three high-frequency calls were more likely to be produced by females than males. There were also differences in the timing of the call production with the amygdala primarily producing calls during the electrical stimulation and the hypothalamus mainly producing calls after the electrical stimulation. For all four structures a significantly higher stimulation current was required in males than females. We conclude that all four structures can be stimulated to produce fictive vocalizations that should be useful in studying the relationship between the vocal motor system and cortical sensory representation.
Collapse
Affiliation(s)
- David B. Green
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Trevor M. Shackleton
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Jasmine M. S. Grimsley
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Oliver Zobay
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Alan R. Palmer
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Mark N. Wallace
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
48
|
Capela D, Dombret C, Poissenot K, Poignant M, Malbert-Colas A, Franceschini I, Keller M, Mhaouty-Kodja S. Adult male mice exposure to nonylphenol alters courtship vocalizations and mating. Sci Rep 2018; 8:2988. [PMID: 29445187 PMCID: PMC5813014 DOI: 10.1038/s41598-018-21245-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 02/01/2018] [Indexed: 02/07/2023] Open
Abstract
The neural circuitry processing male sexual behavior is tightly regulated by testosterone and its neural metabolite estradiol. The present study evaluated the effects of adult exposure to low doses of nonylphenol (NP), a widespread environmental contaminant, on the neuroendocrine regulation of testosterone and expression of sexual behavior. Oral exposure of C57BL/6J males to NP (0.5, 5 or 50 μg/kg/day) for 4 weeks did not affect circulating levels of testosterone or the kisspeptin system, a key regulator of the gonadotropic axis. In contrast, mice exposed to NP at 5 μg/kg/day emitted an increased number and duration of ultrasonic vocalizations, took longer to reach ejaculation and showed increased number of mounts, intromissions and thrusts. This was associated with normal olfactory preference and locomotor activity, and increased anxiety level. Analysis of the neural circuitry that underlies sexual behavior showed changes in the number of cells expressing androgen and estrogen receptors in males exposed to NP at 5 μg/kg/day. The neural circuitry underlying sexual behavior is thus highly sensitive to adult exposure to NP. Furthermore, almost all the observed effects were induced at 5 μg/kg/day of NP, indicating that this endocrine disrupter triggers a non-monotonic response in the adult male mouse brain.
Collapse
Affiliation(s)
- Daphné Capela
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine, Paris, 75005, France
| | - Carlos Dombret
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine, Paris, 75005, France
| | - Kevin Poissenot
- Institut National de la Recherche Agronomique, UMR 85, Nouzilly, 37380, France.,Centre National de la Recherche Scientifique, UMR 7247, Nouzilly, 37380, France.,Université François Rabelais, Tours, 37000, France.,Institut Français du Cheval et de l'Equitation, Nouzilly, 37380, France
| | - Manon Poignant
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine, Paris, 75005, France
| | - Aude Malbert-Colas
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine, Paris, 75005, France
| | - Isabelle Franceschini
- Institut National de la Recherche Agronomique, UMR 85, Nouzilly, 37380, France.,Centre National de la Recherche Scientifique, UMR 7247, Nouzilly, 37380, France.,Université François Rabelais, Tours, 37000, France.,Institut Français du Cheval et de l'Equitation, Nouzilly, 37380, France
| | - Matthieu Keller
- Institut National de la Recherche Agronomique, UMR 85, Nouzilly, 37380, France.,Centre National de la Recherche Scientifique, UMR 7247, Nouzilly, 37380, France.,Université François Rabelais, Tours, 37000, France.,Institut Français du Cheval et de l'Equitation, Nouzilly, 37380, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine, Paris, 75005, France.
| |
Collapse
|
49
|
Sex-dependent modulation of ultrasonic vocalizations in house mice (Mus musculus musculus). PLoS One 2017; 12:e0188647. [PMID: 29236704 PMCID: PMC5728457 DOI: 10.1371/journal.pone.0188647] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/10/2017] [Indexed: 12/04/2022] Open
Abstract
House mice (Mus musculus) emit ultrasonic vocalizations (USVs), which are surprisingly complex and have features of bird song, but their functions are not well understood. Previous studies have reported mixed evidence on whether there are sex differences in USV emission, though vocalization rate or other features may depend upon whether potential receivers are of the same or opposite sex. We recorded the USVs of wild-derived adult house mice (F1 of wild-caught Mus musculus musculus), and we compared the vocalizations of males and females in response to a stimulus mouse of the same- or opposite-sex. To detect and quantify vocalizations, we used an algorithm that automatically detects USVs (Automatic Mouse Ultrasound Detector or A-MUD). We found high individual variation in USV emission rates (4 to 2083 elements/10 min trial) and a skewed distribution, with most mice (60%) emitting few (≤50) elements. We found no differences in the rates of calling between the sexes overall, but mice of both sexes emitted vocalizations at a higher rate and higher frequencies during opposite- compared to same-sex interactions. We also observed a trend toward higher amplitudes by males when presented with a male compared to a female stimulus. Our results suggest that mice modulate the rate and frequency of vocalizations depending upon the sex of potential receivers.
Collapse
|
50
|
Rendall AR, Ford AL, Perrino PA, Holly Fitch R. Auditory processing enhancements in the TS2-neo mouse model of Timothy Syndrome, a rare genetic disorder associated with autism spectrum disorders. ADVANCES IN NEURODEVELOPMENTAL DISORDERS 2017; 1:176-189. [PMID: 29159279 PMCID: PMC5693350 DOI: 10.1007/s41252-017-0029-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Amanda R. Rendall
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269
| | - Aiden L. Ford
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269
| | - Peter A. Perrino
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269
| | - R. Holly Fitch
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269
| |
Collapse
|