1
|
Luo YL, Li YF, Zhu YP, Liang JQ, Chen DF, Chen HJ, Huang CQ, Li J, Li SY. Effects of human umbilical cord blood mononuclear cells on ovalbumin-induced asthma in mice. J Thorac Dis 2023; 15:5454-5465. [PMID: 37969283 PMCID: PMC10636480 DOI: 10.21037/jtd-22-1669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 09/01/2023] [Indexed: 11/17/2023]
Abstract
Background Umbilical cord blood mononuclear cells (UCMNCs) show broad immune-modulation effects, which may be helpful for treating asthma. Effects of UCMNCs on asthma were investigated with mouse model in present study. Methods Asthma was induced in BALB/c mice by ovalbumin (OVA) immunization and challenge. Asthmatic mice were then treated on days 7 and 20 with intravenous injections of UCMNCs in doses of 4×105, 2×106, and 107 cells per mouse for the low-dose UCMNC (UCMNCL), medium-dose UCMNC (UCMNCM), and high-dose UCMNC (UCMNCH) groups, respectively. Fetal mouse blood mononuclear cells (FMMNCs) were administered to FMMNC group at a dose of 2×106 cells per mouse as approximate allograft control. Airway hyperresponsiveness (AHR), airway inflammation indexes, and CD4/CD8 T cell subsets were measured at day 25. Results Compared with the model group, AHR in the UCMNCL group, inflammation score of lung tissue in the UCMNCM group, interleukin (IL)-5 in bronchoalveolar lavage fluid (BALF) in UCMNCL group, IL-5 and IL-13 in BALF in UCMNCM group, and IL-17 in serum in UCMNCH group were significantly inhibited. Compared with the model group, CD4+CD8+ T cells were reduced in the UCMNCL group, while decrease of CD4-CD8- T cells and increase of CD4+CD8- T cells were further strengthened in UCMNCM group. FMMNC treatment significantly reduced the IL-13 and IL-17 in serum, decreased CD4-CD8- and CD4+CD8- T cells, and increased the CD4+CD8+ and CD4-CD8+ T cells in BALF. Conclusions UCMNCs can modulate AHR, T-helper (Th)2 inflammation, and airway injury in experimental asthma at appropriate dose.
Collapse
Affiliation(s)
- Yu-Long Luo
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yun-Feng Li
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Yi-Ping Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jin-Qiang Liang
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Di-Fei Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huan-Jie Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chu-Qing Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shi-Yue Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Salafutdinov II, Gatina DZ, Markelova MI, Garanina EE, Malanin SY, Gazizov IM, Izmailov AA, Rizvanov AA, Islamov RR, Palotás A, Safiullov ZZ. A Biosafety Study of Human Umbilical Cord Blood Mononuclear Cells Transduced with Adenoviral Vector Carrying Human Vascular Endothelial Growth Factor cDNA In Vitro. Biomedicines 2023; 11:2020. [PMID: 37509661 PMCID: PMC10377014 DOI: 10.3390/biomedicines11072020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The biosafety of gene therapy remains a crucial issue for both the direct and cell-mediated delivery of recombinant cDNA encoding biologically active molecules for the pathogenetic correction of congenital or acquired disorders. The diversity of vector systems and cell carriers for the delivery of therapeutic genes revealed the difficulty of developing and implementing a safe and effective drug containing artificial genetic material for the treatment of human diseases in practical medicine. Therefore, in this study we assessed changes in the transcriptome and secretome of umbilical cord blood mononuclear cells (UCB-MCs) genetically modified using adenoviral vector (Ad5) carrying cDNA encoding human vascular endothelial growth factor (VEGF165) or reporter green fluorescent protein (GFP). A preliminary analysis of UCB-MCs transduced with Ad5-VEGF165 and Ad5-GFP with MOI of 10 showed efficient transgene expression in gene-modified UCB-MCs at mRNA and protein levels. The whole transcriptome sequencing of native UCB-MCs, UCB-MC+Ad5-VEGF165, and UCB-MC+Ad5-GFP demonstrated individual sample variability rather than the effect of Ad5 or the expression of recombinant vegf165 on UCB-MC transcriptomes. A multiplex secretome analysis indicated that neither the transduction of UCB-MCs with Ad5-GFP nor with Ad5-VEGF165 affects the secretion of the studied cytokines, chemokines, and growth factors by gene-modified cells. Here, we show that UCB-MCs transduced with Ad5 carrying cDNA encoding human VEGF165 efficiently express transgenes and preserve transcriptome and secretome patterns. This data demonstrates the biosafety of using UCB-MCs as cell carriers of therapeutic genes.
Collapse
Affiliation(s)
- Ilnur I Salafutdinov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan 420012, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Dilara Z Gatina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Maria I Markelova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Ekaterina E Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Sergey Yu Malanin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Ilnaz M Gazizov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan 420012, Russia
| | - Andrei A Izmailov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan 420012, Russia
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Rustem R Islamov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan 420012, Russia
| | - András Palotás
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Asklepios-Med (Private Medical Practice and Research Center), H-6722 Szeged, Hungary
- Tokaj-Hegyalja University, H-3910 Tokaj, Hungary
| | - Zufar Z Safiullov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan 420012, Russia
| |
Collapse
|
3
|
Sironi F, De Marchi F, Mazzini L, Bendotti C. Cell therapy in ALS: An update on preclinical and clinical studies. Brain Res Bull 2023; 194:64-81. [PMID: 36690163 DOI: 10.1016/j.brainresbull.2023.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/08/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the loss of motor neurons and neuromuscular impairment leading to complete paralysis, respiratory failure and premature death. The pathogenesis of the disease is multifactorial and noncell-autonomous involving the central and peripheral compartments of the neuromuscular axis and the skeletal muscle. Advanced clinical trials on specific ALS-related pathways have failed to significantly slow the disease. Therapy with stem cells from different sources has provided a promising strategy to protect the motor units exerting their effect through multiple mechanisms including neurotrophic support and excitotoxicity and neuroinflammation modulation, as evidenced from preclinical studies. Several phase I and II clinical trial of ALS patients have been developed showing positive effects in terms of safety and tolerability. However, the modest results on functional improvement in ALS patients suggest that only a coordinated effort between basic and clinical researchers could solve many problems, such as selecting the ideal stem cell source, identifying their mechanism of action and expected clinical outcomes. A promising approach may be stem cells selected or engineered to deliver optimal growth factor support at multiple sites along the neuromuscular pathway. This review covers recent advances in stem cell therapies in animal models of ALS, as well as detailing the human clinical trials that have been done and are currently undergoing development.
Collapse
Affiliation(s)
- Francesca Sironi
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Fabiola De Marchi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, Novara 28100, Italy
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, Novara 28100, Italy.
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy.
| |
Collapse
|
4
|
Zayed MA, Sultan S, Alsaab HO, Yousof SM, Alrefaei GI, Alsubhi NH, Alkarim S, Al Ghamdi KS, Bagabir SA, Jana A, Alghamdi BS, Atta HM, Ashraf GM. Stem-Cell-Based Therapy: The Celestial Weapon against Neurological Disorders. Cells 2022; 11:3476. [PMID: 36359871 PMCID: PMC9655836 DOI: 10.3390/cells11213476] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Stem cells are a versatile source for cell therapy. Their use is particularly significant for the treatment of neurological disorders for which no definitive conventional medical treatment is available. Neurological disorders are of diverse etiology and pathogenesis. Alzheimer's disease (AD) is caused by abnormal protein deposits, leading to progressive dementia. Parkinson's disease (PD) is due to the specific degeneration of the dopaminergic neurons causing motor and sensory impairment. Huntington's disease (HD) includes a transmittable gene mutation, and any treatment should involve gene modulation of the transplanted cells. Multiple sclerosis (MS) is an autoimmune disorder affecting multiple neurons sporadically but induces progressive neuronal dysfunction. Amyotrophic lateral sclerosis (ALS) impacts upper and lower motor neurons, leading to progressive muscle degeneration. This shows the need to try to tailor different types of cells to repair the specific defect characteristic of each disease. In recent years, several types of stem cells were used in different animal models, including transgenic animals of various neurologic disorders. Based on some of the successful animal studies, some clinical trials were designed and approved. Some studies were successful, others were terminated and, still, a few are ongoing. In this manuscript, we aim to review the current information on both the experimental and clinical trials of stem cell therapy in neurological disorders of various disease mechanisms. The different types of cells used, their mode of transplantation and the molecular and physiologic effects are discussed. Recommendations for future use and hopes are highlighted.
Collapse
Affiliation(s)
- Mohamed A. Zayed
- Physiology Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Physiology Department, Faculty of Medicine, Menoufia University, Menoufia 32511, Egypt
| | - Samar Sultan
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Shimaa Mohammad Yousof
- Physiology Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Medical Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghadeer I. Alrefaei
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Nouf H. Alsubhi
- Department of Biological Sciences, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Saleh Alkarim
- Embryonic and Cancer Stem Cell Research Group, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Embryonic Stem Cells Research Unit, Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kholoud S. Al Ghamdi
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sali Abubaker Bagabir
- Genetic Unit, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Ankit Jana
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Campus-11, Patia, Bhubaneswar 751024, Odisha, India
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hazem M. Atta
- Clinical Biochemistry Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| |
Collapse
|
5
|
Lin TJ, Cheng KC, Wu LY, Lai WY, Ling TY, Kuo YC, Huang YH. Potential of Cellular Therapy for ALS: Current Strategies and Future Prospects. Front Cell Dev Biol 2022; 10:851613. [PMID: 35372346 PMCID: PMC8966507 DOI: 10.3389/fcell.2022.851613] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive upper and lower motor neuron (MN) degeneration with unclear pathology. The worldwide prevalence of ALS is approximately 4.42 per 100,000 populations, and death occurs within 3-5 years after diagnosis. However, no effective therapeutic modality for ALS is currently available. In recent years, cellular therapy has shown considerable therapeutic potential because it exerts immunomodulatory effects and protects the MN circuit. However, the safety and efficacy of cellular therapy in ALS are still under debate. In this review, we summarize the current progress in cellular therapy for ALS. The underlying mechanism, current clinical trials, and the pros and cons of cellular therapy using different types of cell are discussed. In addition, clinical studies of mesenchymal stem cells (MSCs) in ALS are highlighted. The summarized findings of this review can facilitate the future clinical application of precision medicine using cellular therapy in ALS.
Collapse
Affiliation(s)
- Ting-Jung Lin
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuang-Chao Cheng
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Luo-Yun Wu
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Yu Lai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Che Kuo
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Comprehensive Cancer Center of Taipei Medical University, Taipei, Taiwan
- PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
6
|
Stem Cells: Innovative Therapeutic Options for Neurodegenerative Diseases? Cells 2021; 10:cells10081992. [PMID: 34440761 PMCID: PMC8391848 DOI: 10.3390/cells10081992] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are characterized by the progressive loss of structure and/or function of both neurons and glial cells, leading to different degrees of pathology and loss of cognition. The hypothesis of circuit reconstruction in the damaged brain via direct cell replacement has been pursued extensively so far. In this context, stem cells represent a useful option since they provide tissue restoration through the substitution of damaged neuronal cells with exogenous stem cells and create a neuro-protective environment through the release of bioactive molecules for healthy neurons, as well. These peculiar properties of stem cells are opening to potential therapeutic strategies for the treatment of severe neurodegenerative disorders, for which the absence of effective treatment options leads to an increasingly socio-economic burden. Currently, the introduction of new technologies in the field of stem cells and the implementation of alternative cell tissues sources are pointing to exciting frontiers in this area of research. Here, we provide an update of the current knowledge about source and administration routes of stem cells, and review light and shadows of cells replacement therapy for the treatment of the three main neurodegenerative disorders (Amyotrophic lateral sclerosis, Parkinson’s, and Alzheimer’s disease).
Collapse
|
7
|
Sykova E, Cizkova D, Kubinova S. Mesenchymal Stem Cells in Treatment of Spinal Cord Injury and Amyotrophic Lateral Sclerosis. Front Cell Dev Biol 2021; 9:695900. [PMID: 34295897 PMCID: PMC8290345 DOI: 10.3389/fcell.2021.695900] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/31/2021] [Indexed: 01/01/2023] Open
Abstract
Preclinical and clinical studies with various stem cells, their secretomes, and extracellular vesicles (EVs) indicate their use as a promising strategy for the treatment of various diseases and tissue defects, including neurodegenerative diseases such as spinal cord injury (SCI) and amyotrophic lateral sclerosis (ALS). Autologous and allogenic mesenchymal stem cells (MSCs) are so far the best candidates for use in regenerative medicine. Here we review the effects of the implantation of MSCs (progenitors of mesodermal origin) in animal models of SCI and ALS and in clinical studies. MSCs possess multilineage differentiation potential and are easily expandable in vitro. These cells, obtained from bone marrow (BM), adipose tissue, Wharton jelly, or even other tissues, have immunomodulatory and paracrine potential, releasing a number of cytokines and factors which inhibit the proliferation of T cells, B cells, and natural killer cells and modify dendritic cell activity. They are hypoimmunogenic, migrate toward lesion sites, induce better regeneration, preserve perineuronal nets, and stimulate neural plasticity. There is a wide use of MSC systemic application or MSCs seeded on scaffolds and tissue bridges made from various synthetic and natural biomaterials, including human decellularized extracellular matrix (ECM) or nanofibers. The positive effects of MSC implantation have been recorded in animals with SCI lesions and ALS. Moreover, promising effects of autologous as well as allogenic MSCs for the treatment of SCI and ALS were demonstrated in recent clinical studies.
Collapse
Affiliation(s)
- Eva Sykova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dasa Cizkova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.,Centre for Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Sarka Kubinova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
8
|
Goutman SA, Savelieff MG, Sakowski SA, Feldman EL. Stem cell treatments for amyotrophic lateral sclerosis: a critical overview of early phase trials. Expert Opin Investig Drugs 2019; 28:525-543. [PMID: 31189354 DOI: 10.1080/13543784.2019.1627324] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of cortical, brainstem, and spinal motor neurons; it causes progressive muscle weakness and atrophy, respiratory failure, and death. No currently available treatment either stops or reverses this disease. Therapeutics to slow, stop, and reverse ALS are needed. Stem cells may be a viable solution to sustain and nurture diseased motor neurons. Several early-stage clinical trials have been launched to assess the potential of stem cells for ALS treatment. Areas covered: Expert opinion: AREAS COVERED This review covers the key advances from early phase clinical trials of stem cell therapy for ALS and identifies promising avenues and key challenges. EXPERT OPINION Clinical trials in humans are still in the nascent stages of development. It will be critical to ensure that powered, well-controlled trials are conducted, that optimal treatment windows are identified, and that the ideal cell type, cell dose, and delivery site and method are determined. Several trials have used more invasive procedures, and ethical concerns of sham procedures on patients in the control arm and on their safety should be considered.
Collapse
Affiliation(s)
- Stephen A Goutman
- a Department of Neurology , University of Michigan , Ann Arbor , MI , USA.,b Program for Neurology Research & Discovery , University of Michigan , Ann Arbor , MI , USA
| | - Masha G Savelieff
- a Department of Neurology , University of Michigan , Ann Arbor , MI , USA.,b Program for Neurology Research & Discovery , University of Michigan , Ann Arbor , MI , USA
| | - Stacey A Sakowski
- a Department of Neurology , University of Michigan , Ann Arbor , MI , USA.,b Program for Neurology Research & Discovery , University of Michigan , Ann Arbor , MI , USA
| | - Eva L Feldman
- a Department of Neurology , University of Michigan , Ann Arbor , MI , USA.,b Program for Neurology Research & Discovery , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
9
|
Sanberg PR, Ehrhart J. A Hallmark Clinical Study of Cord Blood Therapy in Adults with Ischemic Stroke. Cell Transplant 2019; 28:1329-1332. [PMID: 31184206 PMCID: PMC6767876 DOI: 10.1177/0963689719854354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The therapeutic application of human umbilical cord blood cells has been an area of great
interest for at least the last 25 years. Currently, cord blood cells are approved for
reconstitution of the bone marrow following myeloablation in both young and old patients
with myeloid malignancies and other blood cancers. Translational studies investigating
alternative uses of cord blood have also shown that these cells not only stimulate
neurogenesis in the aged brain but are also potentially therapeutic in the treatment of
adult neurodegenerative disorders including amyotrophic lateral sclerosis, Alzheimer’s
disease, ischemic stroke, traumatic brain injury, and Parkinson’s disease. Recent advances
in the clinical application of cord blood cells by Dr. Joanne Kurtzberg and colleagues
have found that non-HLA matched allogeneic banked cord blood units in immunocompetent
patients with ischemic stroke are safe and well tolerated. Although the exact mechanism(s)
of action that provide the beneficial effects observed from a cord blood cell-based
therapy are currently unknown, several studies using models of neurodegenerative disease
have shown these cells are immune-modulatory and anti-inflammatory. Thus, any future
clinical studies investigating the efficacy of this cord blood cell therapeutic would
strongly benefit from the inclusion of methodologies to determine changes in both markers
of inflammation and the response of immune tissues, such as the spleen, in subjects
receiving cell infusion.
Collapse
Affiliation(s)
- Paul R Sanberg
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | |
Collapse
|
10
|
Human Bone Marrow Endothelial Progenitor Cell Transplantation into Symptomatic ALS Mice Delays Disease Progression and Increases Motor Neuron Survival by Repairing Blood-Spinal Cord Barrier. Sci Rep 2019; 9:5280. [PMID: 30918315 PMCID: PMC6437219 DOI: 10.1038/s41598-019-41747-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/14/2019] [Indexed: 12/11/2022] Open
Abstract
Convincing evidence demonstrated impairment of the blood-spinal cord barrier (BSCB) in Amyotrophic Lateral Sclerosis (ALS), mainly by endothelial cell (EC) alterations. Replacing damaged ECs by cell transplantation is a potential barrier repair strategy. Recently, we showed that intravenous (iv) administration of human bone marrow CD34+ (hBM34+) cells into symptomatic ALS mice benefits BSCB restoration and postpones disease progression. However, delayed effect on motor function and some severely damaged capillaries were noted. We hypothesized that hematopoietic cells from a restricted lineage would be more effective. This study aimed to establish the effects of human bone marrow-derived endothelial progenitor cells (hBMEPCs) systemically transplanted into G93A mice at symptomatic disease stage. Results showed that transplanted hBMEPCs significantly improved behavioral disease outcomes, engrafted widely into capillaries of the gray/white matter spinal cord and brain motor cortex/brainstem, substantially restored capillary ultrastructure, significantly decreased EB extravasation into spinal cord parenchyma, meaningfully re-established perivascular astrocyte end-feet, and enhanced spinal cord motor neuron survival. These results provide novel evidence that transplantation of hBMEPCs effectively repairs the BSCB, potentially preventing entry of detrimental peripheral factors, including immune/inflammatory cells, which contribute to motor neuron dysfunction. Transplanting EC progenitor cells may be a promising strategy for barrier repair therapy in this disease.
Collapse
|
11
|
Gubert F, Bonacossa-Pereira I, Decotelli AB, Furtado M, Vasconcelos-Dos-Santos A, Mendez-Otero R, Santiago MF. Bone-marrow mononuclear cell therapy in a mouse model of amyotrophic lateral sclerosis: Functional outcomes from different administration routes. Brain Res 2019; 1712:73-81. [PMID: 30735638 DOI: 10.1016/j.brainres.2019.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a chronic degenerative disease that mainly affects motor neurons, leading to progressive paralysis and death. Recently, cell therapy has emerged as a therapeutic alternative for several neurological diseases, including ALS, and bone-marrow cells are one of the major cell sources. Considering the importance of pre-clinical trials to determine the best therapeutic protocol and the hope of translating this protocol to the clinical setting, we tested bone-marrow mononuclear cell (BMMC) therapy administered by different routes in the SOD1G93A model of ALS. BMMCs were isolated from non-transgenic, age matched animals and administered intravenously (IV), intramuscularly (IM), and intravenously and intramuscular concomitantly (IV + IM). BMMC therapy had no significant beneficial effects when injected IV or IM, but delayed disease progression when these two routes were used concomitantly. BMMC IV + IM treatment reduced the number of microglia cells in the spinal cord and partially protected of neuromuscular-junction innervation, but had no effect in preventing motor-neuron loss. This study showed that injection of BMMC IV + IM had better results when compared to each route in isolation, highlighting the importance of targeting multiple anatomical regions in the treatment of ALS.
Collapse
Affiliation(s)
- Fernanda Gubert
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Igor Bonacossa-Pereira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Ana B Decotelli
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Michelle Furtado
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Marcelo F Santiago
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Ehrhart J, Sanberg PR, Garbuzova-Davis S. Plasma derived from human umbilical cord blood: Potential cell-additive or cell-substitute therapeutic for neurodegenerative diseases. J Cell Mol Med 2018; 22:6157-6166. [PMID: 30334335 PMCID: PMC6237605 DOI: 10.1111/jcmm.13898] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
Limited efficacy of current therapeutic approaches for neurodegenerative disease has led to increased interest in alternative therapies. Cord blood plasma (CBP) derived from human umbilical cord blood (hUCB) may be a potential therapeutic. Benefits of CBP injection into rodent models of aging or ischaemic stroke have been demonstrated, though how benefits are elicited is still unclear. The present study evaluated various factors within the same samples of CBP and human adult blood plasma/sera (ABP/S). Also, autologous CBP effects vs. ABP/S or foetal bovine serum supplements on mononuclear cells from hUCB (MNC hUCB) in vitro were determined. Results showed significantly low concentrations of pro-inflammatory cytokines (IL-2, IL-6, IFN-γ, and TNF-α) and elevated chemokine IL-8 in CBP. Significantly higher levels of VEGF, G-CSF, EGF and FGF-basic growth factors were determined in CBP vs. ABP/S. Autologous CBP media supplements significantly increased MNC hUCB viability and decreased apoptotic cell activity. We are first to demonstrate the unique CBP composition of cytokines and growth factors within the same CBP samples derived from hUCB. Also, our novel finding that autologous CBP promoted MNC hUCB viability and reduced apoptotic cell death in vitro supports CBP's potential as a sole therapeutic or cell-additive agent in developing therapies for various neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Paul R Sanberg
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida.,Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida.,Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida.,Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Svitlana Garbuzova-Davis
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida.,Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida.,Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida.,Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
13
|
Transplantation of human bone marrow stem cells into symptomatic ALS mice enhances structural and functional blood-spinal cord barrier repair. Exp Neurol 2018; 310:33-47. [PMID: 30172620 DOI: 10.1016/j.expneurol.2018.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
Accumulating evidence shows alterations in the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) in ALS patients and in animal models of disease, mainly by endothelial cell (EC) damage. Repair of the altered barrier in the CNS by replacement of ECs via cell transplantation may be a new therapeutic approach for ALS. Recently, we demonstrated positive effects towards BSCB repair by intravenous administration of unmodified human bone marrow CD34+ (hBM34+) cells at different doses into symptomatic ALS mice. However, particular benefits of these transplanted cells on microvascular integrity in symptomatic ALS mice are still unclear. The aim of the present study was to determine the structural and functional spinal cord capillary integrity in symptomatic ALS mice after intravenous administration of hBM34+ cells. The G93A mice at 13 weeks of age intravenously received one of three different cell doses (5 × 104, 5 × 105, or 1 × 106) and were euthanized at 17 weeks of age (4 weeks post-transplant). Control groups were media-treated and non-carrier mutant SOD1 gene mice. Capillary ultrastructural (electron microscopy), immunohistochemical (laminin and HuNu), and histological (myelin and capillary density) analyses were performed in the cervical and lumbar spinal cords. Capillary permeability in the spinal cords was determined by Evans Blue (EB) injection. Results showed significant restoration of ultrastructural capillary morphology, improvement of basement membrane integrity, enhancement of axonal myelin coherence, and stabilization of capillary density in the spinal cords primarily of ALS mice receiving the high dose of 1 × 106 cells. Moreover, substantial reduction of parenchymal EB levels was determined in these mice, confirming our previous results on capillary permeability. Additionally, transplanted cells were detected in blood smears of sacrificed late symptomatic mice by HuNu marker. Altogether, these results provide novel evidence that unmodified bone marrow hematopoietic stem cell treatment at optimal dose might be beneficial for structural and functional repair of the damaged BSCB in advanced stage of ALS, potentially resulting in delayed disease progression by increased motor neuron survival.
Collapse
|
14
|
Sugano M, Yoshida H, Kurobe H, Arase H, Kinoshita H, Kitaichi T, Sugasawa N, Nakayama S, Maeda K, Irahara M, Kitagawa T. Effects of Transplanted Human Cord Blood-Mononuclear Cells on Pulmonary Hypertension in Immunodeficient Mice and Their Distribution. THE JOURNAL OF MEDICAL INVESTIGATION 2017; 64:43-49. [PMID: 28373627 DOI: 10.2152/jmi.64.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVES To investigate the effects of human umbilical cord blood-derived mononuclear cell (hUCB-MNC) transplantation on pulmonary hypertension (PH) induced by monocrotaline (MCT) in immunodeficient mice and their distribution. METHODS MCT was administered to BALB/c Slc-nu/nu mice, and PH was induced in mice 4 weeks later. Fresh hUCB-MNCs harvested from a human donor after her delivery were injected intravenously into those PH mice. The medial thickness of pulmonary arterioles, ratio of right ventricular to septum plus left ventricular weight (RV/S+LV), and ratio of acceleration time to ejection time of pulmonary blood flow waveform (AT/ET) were determined 4 weeks after hUCB-MNC transplantation. To reveal the incorporation into the lung, CMTMR-labeled hUCB-MNCs were observed in the lung by fluorescent microscopy. DiR-labeled hUCB-MNCs were detected in the lung and other organs by bioluminescence images. RESULTS Medial thickness, RV/S+LV and AT/ET were significantly improved 4 weeks after hUCB-MNC transplantation compared with those in mice without hUCB-MNC transplantation. CMTMR-positive hUCB-MNCs were observed in the lung 3 hours after transplantation. Bioluminescence signals were detected more strongly in the lung than in other organs for 24 hours after transplantation. CONCLUSIONS The results indicate that hUCB-MNCs are incorporated into the lung early after hUCB-MNC transplantation and improve MCT-induced PH. J. Med. Invest. 64: 43-49, February, 2017.
Collapse
Affiliation(s)
- Mikio Sugano
- Department of Cardiovascular Surgery, Graduate School of Biomedical Sciences, Tokushima University
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Forostyak S, Sykova E. Neuroprotective Potential of Cell-Based Therapies in ALS: From Bench to Bedside. Front Neurosci 2017; 11:591. [PMID: 29114200 PMCID: PMC5660803 DOI: 10.3389/fnins.2017.00591] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022] Open
Abstract
Motor neurons (MN) degeneration is a main feature of amyotrophic lateral sclerosis (ALS), a neurological disorder with a progressive course. The diagnosis of ALS is essentially a clinical one. Most common symptoms include a gradual neurological deterioration that reflect the impairment and subsequent loss of muscle functions. Up-to-date ALS has no therapy that would prevent or cure a disease. Modern therapeutic strategies comprise of neuroprotective treatment focused on antiglutamatergic, antioxidant, antiapoptotic, and anti-inflammatory molecules. Stem cells application and gene therapy has provided researchers with a powerful tool for discovery of new mechanisms and therapeutic agents, as well as opened new perspectives for patients and family members. Here, we review latest progress made in basic, translational and clinical stem cell research related to the ALS. We overviewed results of preclinical and clinical studies employing cell-based therapy to treat neurodegenerative disorders. A special focus has been made on the neuroprotective properties of adult mesenchymal stromal cells (MSC) application into ALS patients. Finally, we overviewed latest progress in the field of embryonic and induced pluripotent stem cells used for the modeling and application during neurodegeneration in general and in ALS in particular.
Collapse
Affiliation(s)
- Serhiy Forostyak
- Centre of Reconstructive Neuroscience, Institute of Experimental Medicine (ASCR), Czech Academy of Sciences, Prague, Czechia.,Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague, Czechia
| | - Eva Sykova
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague, Czechia.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
16
|
Galieva LR, Mukhamedshina YO, Arkhipova SS, Rizvanov AA. Human Umbilical Cord Blood Cell Transplantation in Neuroregenerative Strategies. Front Pharmacol 2017; 8:628. [PMID: 28951720 PMCID: PMC5599779 DOI: 10.3389/fphar.2017.00628] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/28/2017] [Indexed: 12/16/2022] Open
Abstract
At present there is no effective treatment of pathologies associated with the death of neurons and glial cells which take place as a result of physical trauma or ischemic lesions of the nervous system. Thus, researchers have high hopes for a treatment based on the use of stem cells (SC), which are potentially able to replace dead cells and synthesize neurotrophic factors and other molecules that stimulate neuroregeneration. We are often faced with ethical issues when selecting a source of SC. In addition to precluding these, human umbilical cord blood (hUCB) presents a number of advantages when compared with other sources of SC. In this review, we consider the key characteristics of hUCB, the results of various studies focused on the treatment of neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis), ischemic (stroke) and traumatic injuries of the nervous system and the molecular mechanisms of hUCB-derived mononuclear and stem cells.
Collapse
Affiliation(s)
- Luisa R Galieva
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Yana O Mukhamedshina
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia.,Department of Histology, Cytology and Embryology, Kazan State Medical UniversityKazan, Russia
| | - Svetlana S Arkhipova
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Albert A Rizvanov
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| |
Collapse
|
17
|
Garbuzova-Davis S, Ehrhart J, Sanberg PR. Cord blood as a potential therapeutic for amyotrophic lateral sclerosis. Expert Opin Biol Ther 2017; 17:837-851. [DOI: 10.1080/14712598.2017.1323862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Jared Ehrhart
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Paul R. Sanberg
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Psychiatry, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
18
|
Garbuzova-Davis S, Kurien C, Thomson A, Falco D, Ahmad S, Staffetti J, Steiner G, Abraham S, James G, Mahendrasah A, Sanberg PR, Borlongan CV. Endothelial and Astrocytic Support by Human Bone Marrow Stem Cell Grafts into Symptomatic ALS Mice towards Blood-Spinal Cord Barrier Repair. Sci Rep 2017; 7:884. [PMID: 28408761 PMCID: PMC5429840 DOI: 10.1038/s41598-017-00993-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/17/2017] [Indexed: 12/11/2022] Open
Abstract
Vascular pathology, including blood-CNS barrier (B-CNS-B) damage via endothelial cell (EC) degeneration, is a recently recognized hallmark of Amyotrophic Lateral Sclerosis (ALS) pathogenesis. B-CNS-B repair may be a new therapeutic approach for ALS. This study aimed to determine effects of transplanted unmodified human bone marrow CD34+ (hBM34+) cells into symptomatic G93A mice towards blood-spinal cord barrier (BSCB) repair. Thirteen weeks old G93A mice intravenously received one of three different doses of hBM34+ cells. Cell-treated, media-treated, and control mice were euthanized at 17 weeks of age. Immunohistochemical (anti-human vWF, CD45, GFAP, and Iba-1) and motor neuron histological analyses were performed in cervical and lumbar spinal cords. EB levels in spinal cord parenchyma determined capillary permeability. Transplanted hBM34+ cells improved behavioral disease outcomes and enhanced motor neuron survival, mainly in high-cell-dose mice. Transplanted cells differentiated into ECs and engrafted within numerous capillaries. Reduced astrogliosis, microgliosis, and enhanced perivascular end-feet astrocytes were also determined in spinal cords, mostly in high-cell-dose mice. These mice also showed significantly decreased parenchymal EB levels. EC differentiation, capillary engraftment, reduced capillary permeability, and re-established perivascular end-feet astrocytes in symptomatic ALS mice may represent BSCB repair processes, supporting hBM34+ cell transplantation as a future therapeutic strategy for ALS patients.
Collapse
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America. .,Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America. .,Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America. .,Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America.
| | - Crupa Kurien
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - Avery Thomson
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - Dimitri Falco
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - Sohaib Ahmad
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - Joseph Staffetti
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - George Steiner
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - Sophia Abraham
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - Greeshma James
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - Ajay Mahendrasah
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - Paul R Sanberg
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America.,Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America.,Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America.,Department of Psychiatry, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - Cesario V Borlongan
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America.,Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| |
Collapse
|
19
|
Bontempi P, Busato A, Bonafede R, Schiaffino L, Scambi I, Sbarbati A, Mariotti R, Marzola P. MRI reveals therapeutical efficacy of stem cells: An experimental study on the SOD1(G93A) animal model. Magn Reson Med 2017; 79:459-469. [PMID: 28370153 DOI: 10.1002/mrm.26685] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/25/2017] [Accepted: 03/03/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE The first part of the experiment identifies and validates MRI biomarkers distinctive of the disease progression in the transgenic superoxide dismutase gene (SOD1(G93A)) animal model. The second part assesses the efficacy of a mesenchymal stem cell-based therapy through the MRI biomarkers previously defined. METHODS The first part identifies MRI differences between SOD1(G93A) and healthy mice. The second part of the experiment follows the disease evolution of stem cell-treated and non-stem-cell treated SOD1(G93A) mice. The analysis focused on voxel-based morphometry and T2 mapping on the brain tissues, and T2-weighted imaging and diffusion tensor imaging (DTI) on the hind limbs. RESULTS Comparing diseased mice to healthy control revealed gray matter alterations in the brainstem area, accompanied by increased T2 relaxation time. Differences in muscle volume, muscle signal intensity, fractional anisotropy, axial diffusivity, and radial diffusivity were measured in the hind limbs. In the comparison between stem cell-treated mice and nontreated ones, differences in muscle volume, muscle signal intensity, and DTI-derived maps were found. CONCLUSION MRI-derived biomarkers can be used to identify differences between stem cell-treated and nontreated SOD1(G93A) mice. Magn Reson Med 79:459-469, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Pietro Bontempi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Alice Busato
- Department of Computer Science, University of Verona, Verona, Italy
| | - Roberta Bonafede
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Lorenzo Schiaffino
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Ilaria Scambi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Andrea Sbarbati
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Raffaella Mariotti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Pasquina Marzola
- Department of Computer Science, University of Verona, Verona, Italy
| |
Collapse
|
20
|
Transplantation of bone marrow mononuclear cells prolongs survival, delays disease onset and progression and mitigates neuronal loss in pre-symptomatic, but not symptomatic ALS mice. Neurosci Lett 2016; 633:182-188. [DOI: 10.1016/j.neulet.2016.09.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 12/16/2022]
|
21
|
Eve DJ, Ehrhart J, Zesiewicz T, Jahan I, Kuzmin-Nichols N, Sanberg CD, Gooch C, Sanberg PR, Garbuzova-Davis S. Plasma Derived From Human Umbilical Cord Blood Modulates Mitogen-Induced Proliferation of Mononuclear Cells Isolated From the Peripheral Blood of ALS Patients. Cell Transplant 2015; 25:963-71. [PMID: 26159164 DOI: 10.3727/096368915x688579] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by degeneration of motor neurons in the spinal cord and brain. This disease clinically manifests as gradual muscular weakness and atrophy leading to paralysis and death by respiratory failure. While multiple interdependent factors may contribute to the pathogenesis of ALS, increasing evidence shows the possible presence of autoimmune mechanisms that promote disease progression. The potential use of plasma derived from human umbilical cord blood (hUCB) as a therapeutic tool is currently in its infancy. The hUCB plasma is rich in cytokines and growth factors that are required for growth and survival of cells during hematopoiesis. In this study, we investigated the effects of hUCB plasma on the mitogen-induced proliferation of mononuclear cells (MNCs) isolated from the peripheral blood of ALS patients and apoptotic activity by detection of caspase 3/7 expression of the isolated MNCs in vitro. Three distinct responses to phytohemagglutinin (PHA)-induced proliferation of MNCs were observed, which were independent of age, disease duration, and the ALS rating scale: Group I responded normally to PHA, Group II showed no response to PHA, while Group III showed a hyperactive response to PHA. hUCB plasma attenuated the hyperactive response (Group III) and potentiated the normal response in Group I ALS patients, but did not alter that of the nonresponders to PHA (Group II). The elevated activity of caspase 3/7 observed in the MNCs from ALS patients was significantly reduced by hUCB plasma treatment. Thus, study results showing different cell responses to mitogen suggest alteration in lymphocyte functionality in ALS patients that may be a sign of immune deficiency in the nonresponders and autoimmunity alterations in the hyperactive responders. The ability of hUCB plasma to modulate the mitogen cell response and reduce caspase activity suggests that the use of hUCB plasma alone, or with stem cells, may prove useful as a therapeutic in ALS patients.
Collapse
Affiliation(s)
- David J Eve
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Violatto MB, Santangelo C, Capelli C, Frapolli R, Ferrari R, Sitia L, Tortarolo M, Talamini L, Previdi S, Moscatelli D, Salmona M, Introna M, Bendotti C, Bigini P. Longitudinal tracking of triple labeled umbilical cord derived mesenchymal stromal cells in a mouse model of Amyotrophic Lateral Sclerosis. Stem Cell Res 2015; 15:243-53. [PMID: 26177481 DOI: 10.1016/j.scr.2015.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/25/2015] [Accepted: 06/26/2015] [Indexed: 12/13/2022] Open
Abstract
The translational potential of cell therapy to humans requires a deep knowledge of the interaction between transplanted cells and host tissues. In this study, we evaluate the behavior of umbilical cord mesenchymal stromal cells (UC-MSCs), labeled with fluorescent nanoparticles, transplanted in healthy or early symptomatic transgenic SOD1G93A mice (a murine model of Amyotrophic Lateral Sclerosis). The double labeling of cells with nanoparticles and Hoechst-33258 enabled their tracking for a long time in both cells and tissues. Whole-body distribution of UC-MSCs was performed by in-vivo and ex-vivo analyses 1, 7, 21 days after single intravenous or intracerebroventricular administration. By intravenous administration cells were sequestered by the lungs and rapidly cleared by the liver. No difference in biodistribution was found among the two groups. On the other hand, UC-MSCs transplanted in lateral ventricles remained on the choroid plexus for the whole duration of the study even if decreasing in number. Few cells were found in the spinal cord of SOD1G93A mice exclusively. No migration in brain parenchyma was observed. These results suggest that the direct implantation in brain ventricles allows a prolonged permanence of cells close to the damaged areas and makes this method of tracking reliable for future studies of efficacy.
Collapse
Affiliation(s)
| | - Chiara Santangelo
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Chiara Capelli
- USS Centro di Terapia Cellulare "G. Lanzani", A. O. Papa Giovanni XXIII, Bergamo, Italy
| | - Roberta Frapolli
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Raffaele Ferrari
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Leopoldo Sitia
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Massimo Tortarolo
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Laura Talamini
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Sara Previdi
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Davide Moscatelli
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Milano, Italy
| | - Mario Salmona
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Martino Introna
- USS Centro di Terapia Cellulare "G. Lanzani", A. O. Papa Giovanni XXIII, Bergamo, Italy
| | - Caterina Bendotti
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Paolo Bigini
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| |
Collapse
|
23
|
Pfohl SR, Halicek MT, Mitchell CS. Characterization of the Contribution of Genetic Background and Gender to Disease Progression in the SOD1 G93A Mouse Model of Amyotrophic Lateral Sclerosis: A Meta-Analysis. J Neuromuscul Dis 2015; 2:137-150. [PMID: 26594635 PMCID: PMC4652798 DOI: 10.3233/jnd-140068] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: The SOD1 G93A mouse model of amyotrophic lateral sclerosis (ALS) is the most frequently used model to examine ALS pathophysiology. There is a lack of homogeneity in usage of the SOD1 G93A mouse, including differences in genetic background and gender, which could confound the field’s results. Objective: In an analysis of 97 studies, we characterized the ALS progression for the high transgene copy control SOD1 G93A mouse on the basis of disease onset, overall lifespan, and disease duration for male and female mice on the B6SJL and C57BL/6J genetic backgrounds and quantified magnitudes of differences between groups. Methods: Mean age at onset, onset assessment measure, disease duration, and overall lifespan data from each study were extracted and statistically modeled as the response of linear regression with the sex and genetic background factored as predictors. Additional examination was performed on differing experimental onset and endpoint assessment measures. Results: C57BL/6 background mice show delayed onset of symptoms, increased lifespan, and an extended disease duration compared to their sex-matched B6SJL counterparts. Female B6SJL generally experience extended lifespan and delayed onset compared to their male counterparts, while female mice on the C57BL/6 background show delayed onset but no difference in survival compared to their male counterparts. Finally, different experimental protocols (tremor, rotarod, etc.) for onset determination result in notably different onset means. Conclusions: Overall, the observed effect of sex on disease endpoints was smaller than that which can be attributed to the genetic background. The often-reported increase in lifespan for female mice was observed only for mice on the B6SJL background, implicating a strain-dependent effect of sex on disease progression that manifests despite identical mutant SOD1 expression.
Collapse
Affiliation(s)
- Stephen R Pfohl
- Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Martin T Halicek
- Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Cassie S Mitchell
- Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
24
|
Goutman SA, Chen KS, Feldman EL. Recent Advances and the Future of Stem Cell Therapies in Amyotrophic Lateral Sclerosis. Neurotherapeutics 2015; 12:428-48. [PMID: 25776222 PMCID: PMC4404436 DOI: 10.1007/s13311-015-0339-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis is a progressive neurodegenerative disease of the motor neurons without a known cure. Based on the possibility of cellular neuroprotection and early preclinical results, stem cells have gained widespread enthusiasm as a potential treatment strategy. Preclinical models demonstrate a protective role of engrafted stem cells and provided the basis for human trials carried out using various types of stem cells, as well as a range of cell delivery methods. To date, no trial has demonstrated a clear therapeutic benefit; however, results remain encouraging and are the basis for ongoing studies. In addition, stem cell technology continues to improve, and induced pluripotent stem cells may offer additional therapeutic options in the future. Improved disease models and clinical trials will be essential in order to validate stem cells as a beneficial therapy.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, F2647 UH South, SPC 5223, 1500 East Medical Center Drive, Ann Arbor, MI, 48109-5036, USA,
| | | | | |
Collapse
|
25
|
Sun JM, Kurtzberg J. Cord blood for brain injury. Cytotherapy 2015; 17:775-785. [PMID: 25800775 DOI: 10.1016/j.jcyt.2015.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/24/2015] [Indexed: 12/13/2022]
Abstract
Recovery from neurological injuries is typically incomplete and often results in significant and permanent disabilities. Currently, most available therapies are limited to supportive or palliative measures, aimed at managing the symptoms of the condition. Because restorative therapies targeting the underlying cause of most neurological diseases do not exist, cell therapies targeting anti-inflammatory, neuroprotective and regenerative potential hold great promise. Cord blood (CB) cells can induce repair through mechanisms that involve trophic or cell-based paracrine effects or cellular integration and differentiation. Both may be operative in emerging CB therapies for neurologic conditions, and there are numerous potential applications of CB-based regenerative therapies in neurological diseases, including genetic diseases of childhood, ischemic events such as stroke and neurodegenerative diseases of adulthood. CB appears to hold promise as an effective therapy for patients with brain injuries. In this Review, we describe the state of science and clinical applications of CB therapy for brain injury.
Collapse
Affiliation(s)
- Jessica M Sun
- Pediatric Blood and Marrow Transplant Program, Duke University, Durham, North Carolina, USA; The Robertston Clinical and Translational Cell Therapy Program, Duke University, Durham, North Carolina, USA.
| | - Joanne Kurtzberg
- Pediatric Blood and Marrow Transplant Program, Duke University, Durham, North Carolina, USA; The Robertston Clinical and Translational Cell Therapy Program, Duke University, Durham, North Carolina, USA; The Carolinas Cord Blood Bank, Durham, North Carolina, USA
| |
Collapse
|
26
|
Coatti GC, Beccari MS, Olávio TR, Mitne-Neto M, Okamoto OK, Zatz M. Stem cells for amyotrophic lateral sclerosis modeling and therapy: Myth or fact? Cytometry A 2015; 87:197-211. [DOI: 10.1002/cyto.a.22630] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 12/28/2014] [Indexed: 02/06/2023]
Affiliation(s)
- G. C. Coatti
- Human Genome and Stem Cell Research Center; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP); São Paulo Brazil
| | - M. S. Beccari
- Human Genome and Stem Cell Research Center; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP); São Paulo Brazil
| | - T. R. Olávio
- Human Genome and Stem Cell Research Center; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP); São Paulo Brazil
| | - M. Mitne-Neto
- Human Genome and Stem Cell Research Center; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP); São Paulo Brazil
- Fleury Group (Research and Development Department); São Paulo Brazil
| | - O. K. Okamoto
- Human Genome and Stem Cell Research Center; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP); São Paulo Brazil
| | - M. Zatz
- Human Genome and Stem Cell Research Center; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP); São Paulo Brazil
| |
Collapse
|
27
|
Knippenberg S, Rath KJ, Böselt S, Thau-Habermann N, Schwarz SC, Dengler R, Wegner F, Petri S. Intraspinal administration of human spinal cord-derived neural progenitor cells in the G93A-SOD1 mouse model of ALS delays symptom progression, prolongs survival and increases expression of endogenous neurotrophic factors. J Tissue Eng Regen Med 2015; 11:751-764. [PMID: 25641599 DOI: 10.1002/term.1972] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 08/15/2014] [Accepted: 10/28/2014] [Indexed: 12/14/2022]
Abstract
Neural stem or progenitor cells are considered to be a novel therapeutic strategy for amyotrophic lateral sclerosis (ALS), based on their potential to generate a protective environment rather than to replace degenerating motor neurons. Following local injection to the spinal cord, neural progenitor cells may generate glial cells and release neurotrophic factors. In the present study, human spinal cord-derived neural progenitor cells (hscNPCs) were injected into the lumbar spinal cord of G93A-SOD1 ALS transgenic mice. We evaluated the potential effect of hscNPC treatment by survival analysis and behavioural/phenotypic assessments. Immunohistological and real-time PCR experiments were performed at a defined time point to study the underlying mechanisms. Symptom progression in hscNPC-injected mice was significantly delayed at the late stage of disease. On average, survival was only prolonged for 5 days. Animals treated with hscNPCs performed significantly better in motor function tests between weeks 18 and 19. Increased production of GDNF and IGF-1 mRNA was detectable in spinal cord tissue of hscNPC-treated mice. In summary, treatment with hscNPCs led to increased endogenous production of several growth factors and increased the preservation of innervated motor neurons but had only a small effect on overall survival. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Klaus Jan Rath
- Department of Neurology, Hannover Medical School, Germany.,Integriertes Forschungs- und Behandlungszentrum Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Sebastian Böselt
- Department of Neurology, Hannover Medical School, Germany.,Integriertes Forschungs- und Behandlungszentrum Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Nadine Thau-Habermann
- Department of Neurology, Hannover Medical School, Germany.,Centre for Systems Neuroscience, Hannover, Germany
| | - Sigrid C Schwarz
- German Centre for Neurodegenerative Diseases (DZNE), Technical University of Munich, Germany
| | - Reinhard Dengler
- Department of Neurology, Hannover Medical School, Germany.,Centre for Systems Neuroscience, Hannover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Germany.,Centre for Systems Neuroscience, Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Germany.,Centre for Systems Neuroscience, Hannover, Germany.,Integriertes Forschungs- und Behandlungszentrum Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| |
Collapse
|
28
|
Lunn JS, Sakowski SA, Feldman EL. Concise review: Stem cell therapies for amyotrophic lateral sclerosis: recent advances and prospects for the future. Stem Cells 2014; 32:1099-109. [PMID: 24448926 DOI: 10.1002/stem.1628] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/12/2013] [Accepted: 12/14/2013] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal disease involving the loss of motor neurons. Although the mechanisms responsible for motor neuron degeneration in ALS remain elusive, the development of stem cell-based therapies for the treatment of ALS has gained widespread support. Here, we review the types of stem cells being considered for therapeutic applications in ALS, and emphasize recent preclinical advances that provide supportive rationale for clinical translation. We also discuss early trials from around the world translating cellular therapies to ALS patients, and offer important considerations for future clinical trial design. Although clinical translation is still in its infancy, and additional insight into the mechanisms underlying therapeutic efficacy and the establishment of long-term safety are required, these studies represent an important first step toward the development of effective cellular therapies for the treatment of ALS.
Collapse
Affiliation(s)
- J Simon Lunn
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
29
|
Schäfer S, Berger JV, Deumens R, Goursaud S, Hanisch UK, Hermans E. Influence of intrathecal delivery of bone marrow-derived mesenchymal stem cells on spinal inflammation and pain hypersensitivity in a rat model of peripheral nerve injury. J Neuroinflammation 2014; 11:157. [PMID: 25212534 PMCID: PMC4172959 DOI: 10.1186/s12974-014-0157-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 08/21/2014] [Indexed: 12/22/2022] Open
Abstract
Background Multipotent mesenchymal stem (stromal) cells (MSCs) have been credited with immunomodulative properties, supporting beneficial outcomes when transplanted into a variety of disease models involving inflammation. Potential mechanisms include the secretion of paracrine factors and the establishment of a neurotrophic microenvironment. To test the hypothesis that MSCs release soluble mediators that can attenuate local inflammation, we here analysed the influence of MSCs on the activation of microglia cells, as well as on inflammatory parameters and pain behaviour in a surgical rat model of neuropathic pain. Methods We focussed on an experimental model of partial sciatic nerve ligation (PSNL), characterised by a rapid and persistent inflammation in the dorsal lumbar spinal cord where sensory inputs from the sciatic nerve are processed. Via indwelling intrathecal catheters, MSCs were repetitively grafted into the intrathecal lumbar space. Animals were evaluated for mechanical and thermal hypersensitivity over a period of 21 days after PSNL. Afterwards, spinal cords were processed for immunohistochemical analysis of the microglial marker ionized calcium-binding adapter molecule 1 (Iba1) and quantification of inflammatory markers in ipsilateral dorsal horns. We hypothesised that injections on postsurgical days 2 to 4 would interfere with microglial activation, leading to a reduced production of pro-inflammatory cytokines and amelioration of pain behaviour. Results PSNL-induced mechanical allodynia or heat hyperalgesia were not influenced by MSC transplantation, and spinal cord inflammatory processes remained largely unaffected. Indeed, the early microglial response to PSNL characterised by increased Iba1 expression in the lumbar dorsal horn was not significantly altered and cytokine levels in the spinal cord at 21 days after surgery were similar to those found in vehicle-injected animals. Grafted MSCs were detected close to the pia mater, but were absent within the spinal cord parenchyma. Conclusions We conclude that intrathecal administration is not an appropriate route to deliver cells for treatment of acute spinal cord inflammation as it leads to entrapment of grafted cells within the pia mater. We propose that the early inflammatory response triggered by PSNL in the lumbar spinal cord failed to effectively recruit MSCs or was insufficient to disturb the tissue integrity so as to allow MSCs to penetrate the spinal cord parenchyma.
Collapse
|
30
|
Kondo T, Funayama M, Tsukita K, Hotta A, Yasuda A, Nori S, Kaneko S, Nakamura M, Takahashi R, Okano H, Yamanaka S, Inoue H. Focal transplantation of human iPSC-derived glial-rich neural progenitors improves lifespan of ALS mice. Stem Cell Reports 2014; 3:242-9. [PMID: 25254338 PMCID: PMC4175543 DOI: 10.1016/j.stemcr.2014.05.017] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 12/12/2022] Open
Abstract
Transplantation of glial-rich neural progenitors has been demonstrated to attenuate motor neuron degeneration and disease progression in rodent models of mutant superoxide dismutase 1 (SOD1)-mediated amyotrophic lateral sclerosis (ALS). However, translation of these results into a clinical setting requires a renewable human cell source. Here, we derived glial-rich neural progenitors from human iPSCs and transplanted them into the lumbar spinal cord of ALS mouse models. The transplanted cells differentiated into astrocytes, and the treated mouse group showed prolonged lifespan. Our data suggest a potential therapeutic mechanism via activation of AKT signal. The results demonstrated the efficacy of cell therapy for ALS by the use of human iPSCs as cell source.
Collapse
Affiliation(s)
- Takayuki Kondo
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; CREST, JST, Saitama 332-0012, Japan
| | - Misato Funayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; CREST, JST, Saitama 332-0012, Japan
| | - Kayoko Tsukita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; CREST, JST, Saitama 332-0012, Japan
| | - Akitsu Hotta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; CREST, JST, Saitama 332-0012, Japan; PRESTO, JST, Saitama 332-0012, Japan; iCeMS, Kyoto University, Kyoto 606-8507, Japan
| | - Akimasa Yasuda
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Satoshi Nori
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Shinjiro Kaneko
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan; Department of Orthopaedic Surgery, National Hospital Organization, Murayama Medical Center, Tokyo 208-0011, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; CREST, JST, Saitama 332-0012, Japan.
| |
Collapse
|
31
|
Biazar E. Use of umbilical cord and cord blood-derived stem cells for tissue repair and regeneration. Expert Opin Biol Ther 2014; 14:301-10. [PMID: 24456082 DOI: 10.1517/14712598.2014.867943] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Potential use of umbilical cord (UC) is one of the most exciting frontiers in medicine for repairing damaged tissues. UC and cord blood-derived stem cells are the world's largest potential sources of stem cells. UC contains a mixture of stem and progenitor cells at different lineage commitment stages and UC has been verified as a candidate for cell-based therapies and tissue engineering applications due to the capability of these cells for extensive self-renewal and multi-lineage character in differentiation potential. AREAS COVERED UC-based repair or regeneration of organs (i.e., heart, nerve, skin, etc.) is a high-priority research worldwide. EXPERT OPINION The aim of this review is to summarize the knowledge about UC with main focus on its applications for tissue repair and regeneration.
Collapse
Affiliation(s)
- Esmaeil Biazar
- Islamic Azad University, Department of Biomedical Engineering, Tonekabon Branch , Tonekabon , Iran +00981924271105 ;
| |
Collapse
|
32
|
Chan-Il C, Young-Don L, Heejaung K, Kim SH, Suh-Kim H, Kim SS. Neural induction with neurogenin 1 enhances the therapeutic potential of mesenchymal stem cells in an amyotrophic lateral sclerosis mouse model. Cell Transplant 2013; 22:855-70. [PMID: 22472631 DOI: 10.3727/096368912x637019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by progressive dysfunction and degeneration of motor neurons in the central nervous system (CNS). In the absence of effective drug treatments for ALS, stem cell treatment has emerged as a candidate therapy for this disease. To date, however, there is no consensus protocol that stipulates stem cell types, transplantation timing, or frequency. Using an ALS mouse model carrying a high copy number of a mutant human superoxide dismutase-1 (SOD1)(G93A) transgene, we investigated the effect of neural induction on the innate therapeutic potential of mesenchymal stem cells (MSCs) in relation to preclinical transplantation parameters. In our study, the expression of monocyte chemoattractant protein-1 (MCP-1) was elevated in the ALS mouse spinal cord. Neural induction of MSCs with neurogenin 1 (Ngn1) upregulated the expression level of the MCP-1 receptor, CCR2, and enhanced the migration activity toward MCP-1 in vitro. Ngn1-expressing MSCs (MSCs-Ngn1) showed a corresponding increase in tropism to the CNS after systemic transplantation in ALS mice. Notably, MSCs-Ngn1 delayed disease onset if transplanted during preonset ages,whereas unprocessed MSCs failed to do so. If transplanted near the onset ages, a single treatment with MSCs-Ngn1 was sufficient to enhance motor functions during the symptomatic period (15–17 weeks), whereas unprocessed MSCs required repeated transplantation to achieve similar levels of motor function improvement. Our data indicate that systemically transplanted MSCs-Ngn1 can migrate to the CNS and exert beneficial effects on host neural cells for an extended period of time through paracrine functions, suggesting a potential benefit of neural induction of transplanted MSCs in long-term treatment of ALS.
Collapse
Affiliation(s)
- Choi Chan-Il
- Department of Anatomy, Ajou University School of Medicine, Suwon, South Korea
| | | | | | | | | | | |
Collapse
|
33
|
Indumathi S, Harikrishnan R, Rajkumar JS, Dhanasekaran M. Immunophenotypic comparison of heterogenous non-sorted versus sorted mononuclear cells from human umbilical cord blood: a novel cell enrichment approach. Cytotechnology 2013; 67:107-14. [PMID: 24357150 DOI: 10.1007/s10616-013-9663-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/21/2013] [Indexed: 12/11/2022] Open
Abstract
Human umbilical cord blood (hUCB) has been the preferred source of stem cells for the treatment of haematological malignancies and genetic disorders. This is primarily due to its non-invasiveness, high accessibility with relative ease of isolation. Still failures do prevail due to its heterogeneity and lesser frequency of MSC identified in UCB. This study, thus, employs a cell enrichment technology to improve its therapeutic efficacy. This was achieved by immunophenotypic comparison of stem cells isolated from the heterogenous non-sorted mononuclear cells (MNCs), linage depleted (Lin+ and Lin-) fractions obtained from magnetic activated cell sorter (MACS) and sorted MNCs obtained by fluorescent activated cell sorter (FACS). The markers under consideration were CD29, CD44, CD34, CD45, CD133, CD90 and CD117. FACS sorted MNCs were rich in naive stem cell population, whereas non-sorted MNCs and lineage depleted fractions were found to be rich in progenitors. Thus, we suggest that a combination therapy of both sorted population might serve as an alternative valuable tool in treating haematologic/genetic disorders. However, further research on cell enrichment technology might give a clue for improved cell based therapy in regenerative medicine.
Collapse
Affiliation(s)
- S Indumathi
- Department of Stem Cells, Lifeline RIGID Hospital, Chennai, 600 096, India
| | | | | | | |
Collapse
|
34
|
Yoo J, Kim HS, Hwang DY. Stem cells as promising therapeutic options for neurological disorders. J Cell Biochem 2013; 114:743-53. [PMID: 23097262 DOI: 10.1002/jcb.24427] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/12/2012] [Indexed: 12/13/2022]
Abstract
Due to the limitations of pharmacological and other current therapeutic strategies, stem cell therapies have emerged as promising options for treating many incurable neurologic diseases. A variety of stem cells including pluripotent stem cells (i.e., embryonic stem cells and induced pluripotent stem cells) and multipotent adult stem cells (i.e., fetal brain tissue, neural stem cells, and mesenchymal stem cells from various sources) have been explored as therapeutic options for treating many neurologic diseases, and it is becoming obvious that each type of stem cell has pros and cons as a source for cell therapy. Wise selection of stem cells with regard to the nature and status of neurologic dysfunctions is required to achieve optimal therapeutic efficacy. To this aim, the stem cell-mediated therapeutic efforts on four major neurological diseases, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and stroke, will be introduced, and current problems and future directions will be discussed.
Collapse
Affiliation(s)
- Jongman Yoo
- Department of Biological Science, CHA University, Kyeonggido, Korea
| | | | | |
Collapse
|
35
|
Systemic treatment with adipose-derived mesenchymal stem cells ameliorates clinical and pathological features in the amyotrophic lateral sclerosis murine model. Neuroscience 2013; 248:333-43. [DOI: 10.1016/j.neuroscience.2013.05.034] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/22/2013] [Accepted: 05/19/2013] [Indexed: 02/08/2023]
|
36
|
Moser JM, Bigini P, Schmitt-John T. The wobbler mouse, an ALS animal model. Mol Genet Genomics 2013; 288:207-29. [PMID: 23539154 PMCID: PMC3664746 DOI: 10.1007/s00438-013-0741-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/12/2013] [Indexed: 12/11/2022]
Abstract
This review article is focused on the research progress made utilizing the wobbler mouse as animal model for human motor neuron diseases, especially the amyotrophic lateral sclerosis (ALS). The wobbler mouse develops progressive degeneration of upper and lower motor neurons and shows striking similarities to ALS. The cellular effects of the wobbler mutation, cellular transport defects, neurofilament aggregation, neuronal hyperexcitability and neuroinflammation closely resemble human ALS. Now, 57 years after the first report on the wobbler mouse we summarize the progress made in understanding the disease mechanism and testing various therapeutic approaches and discuss the relevance of these advances for human ALS. The identification of the causative mutation linking the wobbler mutation to a vesicle transport factor and the research focussed on the cellular basis and the therapeutic treatment of the wobbler motor neuron degeneration has shed new light on the molecular pathology of the disease and might contribute to the understanding the complexity of ALS.
Collapse
Affiliation(s)
- Jakob Maximilian Moser
- Molecular Biology and Genetics Department, Aarhus University, C. F. Møllers Alle 3, 8000 Aarhus C, Denmark
| | | | | |
Collapse
|
37
|
Chen L, Chen D, Xi H, Wang Q, Liu Y, Zhang F, Wang H, Ren Y, Xiao J, Wang Y, Huang H. Olfactory ensheathing cell neurorestorotherapy for amyotrophic lateral sclerosis patients: benefits from multiple transplantations. Cell Transplant 2012; 21 Suppl 1:S65-77. [PMID: 22507682 DOI: 10.3727/096368912x633789] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Our previous series of studies have proven that olfactory ensheathing cell (OEC) transplantation appears to be able to slow the rate of clinical progression after OEC transplantation in the first 4 months and cell intracranial (key points for neural network restoration, KPNNR) and/or intraspinal (impaired segments) implants provide benefit for patients (including both the bulbar onset and limb onset subtypes) with amyotrophic lateral sclerosis (ALS). Here we report the results of cell therapy in patients with ALS on the basis of long-term observation following multiple transplants. From March of 2003 to January of 2010, 507 ALS patients received our cellular treatment. Among them, 42 patients underwent further OEC therapy by the route of KPNNR for two or more times (two times in 35 patients, three times in 5 patients, four times in 1 patient, and five times in 1 patient). The time intervals are 13.1 (6-60) months between the first therapy and the second one, 15.2 (8-24) months between the second therapy and the third one, 16 (6-26) months between the third therapy and the fourth one, and 9 months between the fourth therapy and the fifth time. All of the patients exhibited partial neurological functional recovery after each cell-based administration. Firstly, the scores of the ALS Functional Rating Scale (ALS-FRS) and ALS Norris Scale increased by 2.6 + 2.4 (0-8) and 4.9 + 5.2 (0-20) after the first treatment, 1.1 + 1.3 (0-5) and 2.3 + 2.9 (0-13) after the second treatment, 1.1 + 1.5 (0-4), and 3.4 + 6.9 (0-19) after the third treatment, 0.0 + 0.0 (0-0), and 2.5 + 3.5 (0-5) after the fourth treatment, and 1 point after the fifth cellular therapy, which were evaluated by independent neurologists. Secondly, the majority of patients have achieved improvement in electromyogram (EMG) assessments after the first, second, third, and fourth cell transplantation. After the first treatment, among the 42 patients, 36 (85.7%) patients' EMG test results improved, the remaining 6 (14.3%) patients' EMG results showed no remarkable change. After the second treatment, of the 42 patients, 30 (71.4%) patients' EMG results improved, 11 (26.2%) patients showed no remarkable change, and 1 (2.4%) patient became worse. After the third treatment, out of the 7 patients, 4 (57.1%) patients improved, while the remaining 3 (42.9%) patients showed no change. Thirdly, the patients have partially recovered their breathing ability as demonstrated by pulmonary functional tests. After the first treatment, 20 (47.6%) patients' pulmonary function ameliorated. After the second treatment, 18 (42.9%) patients' pulmonary function improved. After the third treatment, 2 (28.6%) patients recovered some pulmonary function. After the fourth and fifth treatment, patients' pulmonary function did not reveal significant change. The results show that multiple doses of cellular therapy definitely serve as a positive role in the treatment of ALS. This repeated and periodic cell-based therapy is strongly recommended for the patients, for better controlling this progressive deterioration disorder.
Collapse
Affiliation(s)
- Lin Chen
- Center for Neurorestoratology, Beijing Rehabilitation Center, Beijing, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Knippenberg S, Thau N, Dengler R, Brinker T, Petri S. Intracerebroventricular injection of encapsulated human mesenchymal cells producing glucagon-like peptide 1 prolongs survival in a mouse model of ALS. PLoS One 2012; 7:e36857. [PMID: 22745655 PMCID: PMC3380029 DOI: 10.1371/journal.pone.0036857] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/15/2012] [Indexed: 12/11/2022] Open
Abstract
Background As pharmacological therapies have largely failed so far, stem cell therapy has recently come into the focus of ALS research. Neuroprotective potential was shown for several types of stem and progenitor cells, mainly due to release of trophic factors. In the present study, we assessed the effects of intracerebroventricular injection of glucagon-like peptide 1 (GLP-1) releasing mesenchymal stromal cells (MSC) in mutant SOD1 (G93A) transgenic mice. Methodology/Principal Findings To improve the neuroprotective effects of native MSC, they had been transfected with a plasmid vector encoding a GLP-1 fusion gene prior to the injection, as GLP-1 was shown to exhibit neuroprotective properties before. Cells were encapsulated and therefore protected against rejection. After intracerebroventricular injection of these GLP-1 MSC capsules in presymptomatic SOD1 (G93A) mice, we assessed possible protective effects by survival analysis, measurement of body weight, daily monitoring and evaluation of motor performance by rotarod and footprint analyses. Motor neuron numbers in the spinal cord as well as the amount of astrocytosis, microglial activation, heat shock response and neuronal nitric oxide synthase (nNOS) expression were analyzed by immunohistological methods. Treatment with GLP-1 producing MSC capsules significantly prolonged survival by 13 days, delayed symptom onset by 15 days and weight loss by 14 days and led to significant improvements in motor performance tests compared to vehicle treated controls. Histological data are mainly in favour of anti-inflammatory effects of GLP-1 producing MSC capsules with reduced detection of inflammatory markers and a significant heat shock protein increase. Conclusion/Significance Intracerebroventricular injection of GLP-1 MSC capsules shows neuroprotective potential in the SOD1 (G93A) mouse model.
Collapse
Affiliation(s)
- Sarah Knippenberg
- Department of Neurology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | |
Collapse
|
39
|
Defective neuromuscular transmission in the SOD1 G93A transgenic mouse improves after administration of human umbilical cord blood cells. Stem Cell Rev Rep 2012; 8:224-8. [PMID: 21678037 DOI: 10.1007/s12015-011-9281-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To assess the effect of human umbilical cord blood (hUCB) transplantation on neuromuscular transmission in SOD1(G93A) transgenic mice, we studied the probability of neuromuscular transmission (PNMT), a relevant physiological indicator of motor nerve function, in 3 SOD1(G93A) mice transplanted with hUCB and compared to PNMT in 4 SOD1(G93A) mice without cell transplantation and 3 non-mutant SOD1 transgenic mice. For preparations isolated from non-mutant SOD1 transgenic mice, PNMT was 0.93 and 0.84 during the first 5 s of 70 and 90 Hz trains, respectively. PNMT gradually declined to 0.77 and 0.42 at the end of the trains. In striking contrast, PNMT for preparations from non-treated mutant SOD1(G93A) mice was 0.52 and 0.36 in the first 5 s of 70 and 90 Hz trains, respectively (p<0.05). Treatment with hUCB significantly (p<0.05) improved PNMT in SOD1(G93A) preparations. That is, the initial 5 s PNMT was 0.88 and 0.68 for the 70 and 90 Hz stimuli, respectively. We concluded that hUCB transplantation significantly improved PNMT for muscles removed from SOD1(G93A) mice. Testing PNMT in the SOD1(G93A) mouse model could be used as a simple in vitro protocol to detect a positive cellular response to therapeutic interventions in ALS.
Collapse
|
40
|
Dietary supplementations as neuroprotective therapies: focus on NT-020 diet benefits in a rat model of stroke. Int J Mol Sci 2012; 13:7424-7444. [PMID: 22837703 PMCID: PMC3397535 DOI: 10.3390/ijms13067424] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 11/16/2022] Open
Abstract
Stroke remains the number one cause of disability in the adult population. Despite scientific progress in our understanding of stroke pathology, only one treatment (tissue plasminogen activator or tPA) is able to afford benefits but to less than 3% of ischemic stroke patients. The development of experimental dietary supplement therapeutics designed to stimulate endogenous mechanisms that confer neuroprotection is likely to open new avenues for exploring stroke therapies. The present review article evaluates the recent literature supporting the benefits of dietary supplementation for the therapy of ischemic stroke. This article focuses on discussing the medical benefits of NT-020 as an adjunct agent for stroke therapy. Based on our preliminary data, a pre-stroke treatment with dietary supplementation promotes neuroprotection by decreasing inflammation and enhancing neurogenesis. However, we recognize that a pre-stroke treatment holds weak clinical relevance. Thus, the main goal of this article is to provide information about recent data that support the assumption of natural compounds as neuroprotective and to evaluate the therapeutic effects of a dietary supplement called NT-020 as in a stroke model. We focus on a systematic assessment of practical treatment parameters so that NT-020 and other dietary supplementations can be developed as an adjunct agent for the prevention or treatment of chronic diseases. We offer rationale for determining the optimal dosage, therapeutic window, and mechanism of action of NT-020 as a dietary supplement to produce neuroprotection when administered immediately after stroke onset. We highlight our long-standing principle in championing both translational and basic science approaches in an effort to fully reveal the therapeutic potential of NT-020 as dietary supplementation in the treatment of stroke. We envision dietary supplementation as an adjunct therapy for stroke at acute, subacute, and even chronic periods.
Collapse
|
41
|
Hsueh KW, Hsieh AC, Harn HJ, Lin SZ. Stem cell therapy in amyotrophic lateral sclerosis. Biomedicine (Taipei) 2012. [DOI: 10.1016/j.biomed.2012.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
42
|
Canzi L, Castellaneta V, Navone S, Nava S, Dossena M, Zucca I, Mennini T, Bigini P, Parati EA. Human skeletal muscle stem cell antiinflammatory activity ameliorates clinical outcome in amyotrophic lateral sclerosis models. Mol Med 2012; 18:401-11. [PMID: 22076467 DOI: 10.2119/molmed.2011.00123] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 11/03/2011] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cell (MSC) therapy is considered one of the most promising approaches for treating different neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). We previously characterized a subpopulation of human skeletal muscle-derived stem cells (SkmSCs) with MSC-like characteristics that differentiate into the neurogenic lineage in vitro. In the present study, we evaluated the SkmSC therapeutic effects in the most characterized model of spontaneous motor neuron degeneration, the Wobbler (Wr) mouse. Before evaluating the therapeutic efficacy in the Wr mouse, we followed the route of Skm-SCs at different times after intracerebroventricular injection. Two exogenous tracers, superparamagnetic iron oxide (SPIO) nanoparticles and Hoechst 33258, were used for the in vivo and ex vivo tracking of SkmSCs. We found that the loading of both Hoechst and SPIO was not toxic and efficiently labeled SkmSCs. The magnetic resonance imaging (MRI) system 7 Tesla allowed us to localize transplanted SkmSCs along the whole ventricular system up to 18 wks after injection. The ex vivo Hoechst 33258 visualization confirmed the in vivo results obtained by MRI analyses. Behavioral observations revealed a fast and sustained improvement of motor efficacy in SkmSC-treated Wr mice associated with a relevant protection of functional neuromuscular junctions. Moreover, we found that in SkmSC-treated Wr mice, a significant increase of important human antiinflammatory cytokines occurred. This evidence is in accordance with previous findings showing the bystander effect of stem cell transplantation in neurodegenerative disorders and further strengthens the hypothesis of the possible link between inflammation, cytotoxicity and ALS.
Collapse
Affiliation(s)
- Laura Canzi
- Department of Cerebrovascular Disease, IRCCS Foundation, Neurological Institute "C. Besta," Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rodrigues MCO, Voltarelli JC, Sanberg PR, Borlongan CV, Garbuzova-Davis S. Immunological Aspects in Amyotrophic Lateral Sclerosis. Transl Stroke Res 2012; 3:331-40. [DOI: 10.1007/s12975-012-0177-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/07/2012] [Accepted: 04/11/2012] [Indexed: 12/11/2022]
|
44
|
de Paula S, Greggio S, Marinowic DR, Machado DC, DaCosta JC. The dose-response effect of acute intravenous transplantation of human umbilical cord blood cells on brain damage and spatial memory deficits in neonatal hypoxia-ischemia. Neuroscience 2012; 210:431-41. [PMID: 22441035 DOI: 10.1016/j.neuroscience.2012.03.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/28/2012] [Accepted: 03/02/2012] [Indexed: 01/14/2023]
Abstract
Despite the beneficial effects of cell-based therapies on brain repair shown in most studies, there has not been a consensus regarding the optimal dose of human umbilical cord blood cells (HUCBC) for neonatal hypoxia-ischemia (HI). In this study, we compared the long-term effects of intravenous administration of HUCBC at three different doses on spatial memory and brain morphological changes after HI in newborn Wistar rats. In addition, we tested whether the transplanted HUCBC migrate to the injured brain after transplantation. Seven-day-old animals underwent right carotid artery occlusion and were exposed to 8% O(2) inhalation for 2 h. After 24 h, randomly selected animals were assigned to four different experimental groups: HI rats administered with vehicle (HI+vehicle), HI rats treated with 1×10(6) (HI+low-dose), 1×10(7) (HI+medium-dose), and 1×10(8) (HI+high-dose) HUCBC into the jugular vein. A control group (sham-operated) was also included in this study. After 8 weeks of transplantation, spatial memory performance was assessed using the Morris water maze (MWM), and subsequently, the animals were euthanized for brain morphological analysis using stereological methods. In addition, we performed immunofluorescence and polymerase chain reaction (PCR) analyses to identify HUCBC in the rat brain 7 days after transplantation. The MWM test showed a significant spatial memory recovery at the highest HUCBC dose compared with HI+vehicle rats (P<0.05). Furthermore, the brain atrophy was also significantly lower in the HI+medium- and high-dose groups compared with the HI+vehicle animals (P<0.01; 0.001, respectively). In addition, HUCBC were demonstrated to be localized in host brains by immunohistochemistry and PCR analyses 7 days after intravenous administration. These results revealed that HUCBC transplantation has the dose-dependent potential to promote robust tissue repair and stable cognitive improvement after HI brain injury.
Collapse
Affiliation(s)
- S de Paula
- Laboratório de Neurociências e de Sinalização Celular, Instituto do Cérebro, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
45
|
Longitudinal tracking of human fetal cells labeled with super paramagnetic iron oxide nanoparticles in the brain of mice with motor neuron disease. PLoS One 2012; 7:e32326. [PMID: 22384217 PMCID: PMC3288077 DOI: 10.1371/journal.pone.0032326] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 01/25/2012] [Indexed: 12/20/2022] Open
Abstract
Stem Cell (SC) therapy is one of the most promising approaches for the treatment of Amyotrophic Lateral Sclerosis (ALS). Here we employed Super Paramagnetic Iron Oxide nanoparticles (SPIOn) and Hoechst 33258 to track human Amniotic Fluid Cells (hAFCs) after transplantation in the lateral ventricles of wobbler (a murine model of ALS) and healthy mice. By in vitro, in vivo and ex vivo approaches we found that: 1) the main physical parameters of SPIOn were maintained over time; 2) hAFCs efficiently internalized SPIOn into the cytoplasm while Hoechst 33258 labeled nuclei; 3) SPIOn internalization did not alter survival, cell cycle, proliferation, metabolism and phenotype of hAFCs; 4) after transplantation hAFCs rapidly spread to the whole ventricular system, but did not migrate into the brain parenchyma; 5) hAFCs survived for a long time in the ventricles of both wobbler and healthy mice; 6) the transplantation of double-labeled hAFCs did not influence mice survival.
Collapse
|
46
|
Garbuzova-Davis S, Rodrigues MCO, Mirtyl S, Turner S, Mitha S, Sodhi J, Suthakaran S, Eve DJ, Sanberg CD, Kuzmin-Nichols N, Sanberg PR. Multiple intravenous administrations of human umbilical cord blood cells benefit in a mouse model of ALS. PLoS One 2012; 7:e31254. [PMID: 22319620 PMCID: PMC3272008 DOI: 10.1371/journal.pone.0031254] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 01/04/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND A promising therapeutic strategy for amyotrophic lateral sclerosis (ALS) is the use of cell-based therapies that can protect motor neurons and thereby retard disease progression. We recently showed that a single large dose (25 × 10⁶ cells) of mononuclear cells from human umbilical cord blood (MNC hUCB) administered intravenously to pre-symptomatic G93A SOD1 mice is optimal in delaying disease progression and increasing lifespan. However, this single high cell dose is impractical for clinical use. The aim of the present pre-clinical translation study was therefore to evaluate the effects of multiple low dose systemic injections of MNC hUCB cell into G93A SOD1 mice at different disease stages. METHODOLOGY/PRINCIPAL FINDINGS Mice received weekly intravenous injections of MNC hUCB or media. Symptomatic mice received 10⁶ or 2.5 × 10⁶ cells from 13 weeks of age. A third, pre-symptomatic, group received 10⁶ cells from 9 weeks of age. Control groups were media-injected G93A and mice carrying the normal hSOD1 gene. Motor function tests and various assays determined cell effects. Administered cell distribution, motor neuron counts, and glial cell densities were analyzed in mouse spinal cords. Results showed that mice receiving 10⁶ cells pre-symptomatically or 2.5 × 10⁶ cells symptomatically significantly delayed functional deterioration, increased lifespan and had higher motor neuron counts than media mice. Astrocytes and microglia were significantly reduced in all cell-treated groups. CONCLUSIONS/SIGNIFICANCE These results demonstrate that multiple injections of MNC hUCB cells, even beginning at the symptomatic disease stage, could benefit disease outcomes by protecting motor neurons from inflammatory effectors. This multiple cell infusion approach may promote future clinical studies.
Collapse
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, Tampa, Florida, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Miyagishi H, Kosuge Y, Ishige K, Ito Y. Expression of microsomal prostaglandin E synthase-1 in the spinal cord in a transgenic mouse model of amyotrophic lateral sclerosis. J Pharmacol Sci 2012; 118:225-36. [PMID: 22302024 DOI: 10.1254/jphs.11221fp] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Prostaglandin E(2) (PGE(2)) is a key molecule involved in the neuroinflammatory processes that characterize amyotrophic lateral sclerosis (ALS). Although PGE(2) synthesis is regulated by PGE(2) synthases (PGESs), the pathological role of PGESs in ALS still remains unknown. Experiments were performed to elucidate the expression of PGESs and the localization of microsomal PGES-1 (mPGES-1) in neurons and glial cells in the spinal cord of ALS model (G93A) mice. Neurological symptom was observed in G93A mice from 14 weeks by the tail suspension test, and rotarod performances were decreased at 16 weeks and older. Western blotting revealed that the level of mPGES-1 was increased in G93A mice at 15 weeks and older. In contrast, the levels of cytosolic PGES and mPGES-2 did not change at any age. Immunohistochemical analysis demonstrated that age-dependent expression of mPGES-1 was found in motor neurons in G93A mice at 11 and 15 weeks. Immunoreactivity of mPGES-1 was also co-localized in Iba1-positive microglia in G93A mice at 15 weeks. These results suggest that mPGES-1 in motor neurons may play a role in the pathogenesis of ALS and that mPGES-1 may work sequentially in motor neurons and activated microglia to produce ALS symptoms in G93A mice.
Collapse
Affiliation(s)
- Hiroko Miyagishi
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, Japan
| | | | | | | |
Collapse
|
48
|
Lee JC, Seong J, Kim SH, Lee SJ, Cho YJ, An J, Nam DH, Joo KM, Cha CI. Replacement of microglial cells using Clodronate liposome and bone marrow transplantation in the central nervous system of SOD1G93A transgenic mice as an in vivo model of amyotrophic lateral sclerosis. Biochem Biophys Res Commun 2012; 418:359-65. [DOI: 10.1016/j.bbrc.2012.01.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 01/06/2012] [Indexed: 02/06/2023]
|
49
|
Chen L, Xi H, Huang H. Cell-Based Neurorestorotherapy in Amyotrophic Lateral Sclerosis - Scientific Truth should Rely on Facts, but Not Conjecture. Front Integr Neurosci 2011; 5:83. [PMID: 22203794 PMCID: PMC3243926 DOI: 10.3389/fnint.2011.00083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 11/29/2011] [Indexed: 12/12/2022] Open
Affiliation(s)
- Lin Chen
- Cell Research Center, Beijing Hongtianji Neuroscience Academy Beijing, China
| | | | | |
Collapse
|
50
|
Knippenberg S, Thau N, Schwabe K, Dengler R, Schambach A, Hass R, Petri S. Intraspinal injection of human umbilical cord blood-derived cells is neuroprotective in a transgenic mouse model of amyotrophic lateral sclerosis. NEURODEGENER DIS 2011; 9:107-120. [PMID: 22122965 DOI: 10.1159/000331327] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 07/27/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is characterized by progressive degeneration of motor neurons in the spinal cord, brain stem and motor cortex and has only marginal therapeutic options. Adult stem cells have recently come into the focus of neurological research. While replacement of motor neurons by stem cells currently appears not feasible, there is evidence that non-neuronal cells can be neuroprotective. OBJECTIVE Therefore, we evaluated the effects of direct intraspinal administration of human umbilical cord blood cells in a G93A transgenic mouse model of ALS before (day 40) and after symptom onset (day 90). METHODS Treatment effects were assessed by survival analysis, behavioral tests, histological and biochemical analyses. RESULTS Treatment at early stages increased survival, led to significant improvements in motor performance and significantly reduced motor neuron loss and astrogliosis in the spinal cord. Interestingly females tended to respond better to treatment than males. CONCLUSION This study confirms the neuroprotective potential of human umbilical cord blood cells and encourages further investigations.
Collapse
Affiliation(s)
- Sarah Knippenberg
- Department of Neurology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|