1
|
Eskandari E, Negri GL, Tan S, MacAldaz ME, Ding S, Long J, Nielsen K, Spencer SE, Morin GB, Eaves CJ. Dependence of human cell survival and proliferation on the CASP3 prodomain. Cell Death Discov 2024; 10:63. [PMID: 38321033 PMCID: PMC10847432 DOI: 10.1038/s41420-024-01826-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024] Open
Abstract
Mechanisms that regulate cell survival and proliferation are important for both the development and homeostasis of normal tissue, and as well as for the emergence and expansion of malignant cell populations. Caspase-3 (CASP3) has long been recognized for its proteolytic role in orchestrating cell death-initiated pathways and related processes; however, whether CASP3 has other functions in mammalian cells that do not depend on its known catalytic activity have remained unknown. To investigate this possibility, we examined the biological and molecular consequences of reducing CASP3 levels in normal and transformed human cells using lentiviral-mediated short hairpin-based knockdown experiments in combination with approaches designed to test the potential rescue capability of different components of the CASP3 protein. The results showed that a ≥50% reduction in CASP3 levels rapidly and consistently arrested cell cycle progression and survival in all cell types tested. Mass spectrometry-based proteomic analyses and more specific flow cytometric measurements strongly implicated CASP3 as playing an essential role in regulating intracellular protein aggregate clearance. Intriguingly, the rescue experiments utilizing different forms of the CASP3 protein showed its prosurvival function and effective removal of protein aggregates did not require its well-known catalytic capability, and pinpointed the N-terminal prodomain of CASP3 as the exclusive component needed in a diversity of human cell types. These findings identify a new mechanism that regulates human cell survival and proliferation and thus expands the complexity of how these processes can be controlled. The graphical abstract illustrates the critical role of CASP3 for sustained proliferation and survival of human cells through the clearance of protein aggregates.
Collapse
Affiliation(s)
- Ebrahim Eskandari
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Gian Luca Negri
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Susanna Tan
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Margarita E MacAldaz
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Shengsen Ding
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Justin Long
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Karina Nielsen
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Sandra E Spencer
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Gregg B Morin
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Baena-Lopez LA, Wang L, Wendler F. Cellular stress management by caspases. Curr Opin Cell Biol 2024; 86:102314. [PMID: 38215516 DOI: 10.1016/j.ceb.2023.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
Cellular stress plays a pivotal role in the onset of numerous human diseases. Consequently, the removal of dysfunctional cells, which undergo excessive stress-induced damage via various cell death pathways, including apoptosis, is essential for maintaining organ integrity and function. The evolutionarily conserved family of cysteine-aspartic-proteases, known as caspases, has been a key player in orchestrating apoptosis. However, recent research has unveiled the capability of these enzymes to govern fundamental cellular processes without triggering cell death. Remarkably, some of these non-lethal functions of caspases may contribute to restoring cellular equilibrium in stressed cells. This manuscript discusses how caspases can function as cellular stress managers and their potential impact on human health and disease. Additionally, it sheds light on the limitations of caspase-based therapies, given our still incomplete understanding of the biology of these enzymes, particularly in non-apoptotic contexts.
Collapse
Affiliation(s)
| | - Li Wang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX13RE, UK
| | - Franz Wendler
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX13RE, UK. https://twitter.com/wendlerfranz
| |
Collapse
|
3
|
Dalzoto LDAM, Trujilho MNR, Santos TDR, Costa JPMS, Duarte ACM, Judice WADS, Marcondes MF, Machado MFM. Metacaspase of Saccharomyces cerevisiae (ScMCA-Ia) presents different catalytic cysteine in a processed and non-processed form. Biochem Biophys Res Commun 2023; 687:149185. [PMID: 37951047 DOI: 10.1016/j.bbrc.2023.149185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 11/13/2023]
Abstract
Metacaspases are cysteine proteases belonging to the CD clan of the C14 family. They possess important characteristics, such as specificity for cleavage after basic residues (Arg/Lys) and dependence on calcium ions to exert their catalytic activity. They are defined by the presence of a large subunit (p20) and a small subunit (p10) and are classified into types I, II, and III. Type I metacaspases have a characteristic pro-domain at the N-terminal of the enzyme, preceding a region rich in glutamine and asparagine. In the yeast Saccharomyces cerevisiae, a type I metacaspase is found. This organism encodes a single metacaspase that participates in the process of programmed cell death by apoptosis. The study focuses on cloning, expressing, and mutating Saccharomyces cerevisiae metacaspase (ScMCA-Ia). Mutations in Cys155 and Cys276 were introduced to investigate autoprocessing mechanisms. Results revealed that Cys155 plays a crucial role in autoprocessing, initiating a conformational change that activates ScMCA-Ia. Comparative analysis with TbMCA-IIa highlighted the significance of the N-terminal region in substrate access to the active site. The study proposes a two-step processing mechanism for type I metacaspases, where an initial processing step generates the active form, followed by a distinct intermolecular processing step. This provides new insights into ScMCA-Ia's activation and function. The findings hold potential implications for understanding cellular processes regulated by metacaspases. Overall, this research significantly advances knowledge in metacaspase biology.
Collapse
Affiliation(s)
- Laura de Azevedo Maffeis Dalzoto
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - Mariana Nascimento Romero Trujilho
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - Taiz Dos Reis Santos
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - João Pedro Martins Silva Costa
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - Ane Caroline Moreira Duarte
- Technological Research Center, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - Wagner Alves de Souza Judice
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - Marcelo Ferreira Marcondes
- Department of Biophysics, São Paulo Federal University, Rua Pedro de Toledo, 669, 7° floor, 04039-032, São Paulo, Brazil
| | - Maurício Ferreira Marcondes Machado
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil; Technological Research Center, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil.
| |
Collapse
|
4
|
Eisele-Bürger AM, Eisele F, Malmgren Hill S, Hao X, Schneider KL, Imamoglu R, Balchin D, Liu B, Hartl FU, Bozhkov PV, Nyström T. Calmodulin regulates protease versus co-chaperone activity of a metacaspase. Cell Rep 2023; 42:113372. [PMID: 37938971 DOI: 10.1016/j.celrep.2023.113372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/11/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
Metacaspases are ancestral homologs of caspases that can either promote cell death or confer cytoprotection. Furthermore, yeast (Saccharomyces cerevisiae) metacaspase Mca1 possesses dual biochemical activity: proteolytic activity causing cell death and cytoprotective, co-chaperone-like activity retarding replicative aging. The molecular mechanism favoring one activity of Mca1 over another remains elusive. Here, we show that this mechanism involves calmodulin binding to the N-terminal pro-domain of Mca1, which prevents its proteolytic activation and promotes co-chaperone-like activity, thus switching from pro-cell death to anti-aging function. The longevity-promoting effect of Mca1 requires the Hsp40 co-chaperone Sis1, which is necessary for Mca1 recruitment to protein aggregates and their clearance. In contrast, proteolytically active Mca1 cleaves Sis1 both in vitro and in vivo, further clarifying molecular mechanism behind a dual role of Mca1 as a cell-death protease versus gerontogene.
Collapse
Affiliation(s)
- Anna Maria Eisele-Bürger
- Department of Microbiology and Immunology, University of Gothenburg, 40530 Gothenburg, Sweden; Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, 75007 Uppsala, Sweden
| | - Frederik Eisele
- Department of Microbiology and Immunology, University of Gothenburg, 40530 Gothenburg, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 413 90 Göteborg, Sweden
| | - Sandra Malmgren Hill
- Department of Microbiology and Immunology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Xinxin Hao
- Department of Microbiology and Immunology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Kara L Schneider
- Department of Microbiology and Immunology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Rahmi Imamoglu
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - David Balchin
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 413 90 Göteborg, Sweden
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, 75007 Uppsala, Sweden.
| | - Thomas Nyström
- Department of Microbiology and Immunology, University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
5
|
Brunette S, Sharma A, Bell R, Puente L, Megeney LA. Caspase 3 exhibits a yeast metacaspase proteostasis function that protects mitochondria from toxic TDP43 aggregates. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:157-169. [PMID: 37545643 PMCID: PMC10399456 DOI: 10.15698/mic2023.08.801] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023]
Abstract
Caspase 3 activation is a hallmark of cell death and there is a strong correlation between elevated protease activity and evolving pathology in neurodegenerative disease, such as amyotrophic lateral sclerosis (ALS). At the cellular level, ALS is characterized by protein aggregates and inclusions, comprising the RNA binding protein TDP-43, which are hypothesized to trigger pathogenic activation of caspase 3. However, a growing body of evidence indicates this protease is essential for ensuring cell viability during growth, differentiation and adaptation to stress. Here, we explored whether caspase 3 acts to disperse toxic protein aggregates, a proteostasis activity first ascribed to the distantly related yeast metacaspase ScMCA1. We demonstrate that human caspase 3 can functionally substitute for the ScMCA1 and limit protein aggregation in yeast, including TDP-43 inclusions. Proteomic analysis revealed that disrupting caspase 3 in the same yeast substitution model resulted in detrimental TDP-43/mitochondrial protein associations. Similarly, suppression of caspase 3, in either murine or human skeletal muscle cells, led to accumulation of TDP-43 aggregates and impaired mitochondrial function. These results suggest that caspase 3 is not inherently pathogenic, but may act as a compensatory proteostasis factor, to limit TDP-43 protein inclusions and protect organelle function in aggregation related degenerative disease.
Collapse
Affiliation(s)
- Steve Brunette
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| | - Anupam Sharma
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ryan Bell
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| | - Lawrence Puente
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| | - Lynn A Megeney
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
6
|
Durand PM, Ramsey G. The concepts and origins of cell mortality. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2023; 45:23. [PMID: 37289372 DOI: 10.1007/s40656-023-00581-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 05/16/2023] [Indexed: 06/09/2023]
Abstract
Organismal death is foundational to the evolution of life, and many biological concepts such as natural selection and life history strategy are so fashioned only because individuals are mortal. Organisms, irrespective of their organization, are composed of basic functional units-cells-and it is our understanding of cell death that lies at the heart of most general explanatory frameworks for organismal mortality. Cell death can be exogenous, arising from transmissible diseases, predation, or other misfortunes, but there are also endogenous forms of death that are sometimes the result of adaptive evolution. These endogenous forms of death-often labeled programmed cell death, PCD-originated in the earliest cells and are maintained across the tree of life. Here, we consider two problematic issues related to PCD (and cell mortality generally). First, we trace the original discoveries of cell death from the nineteenth century and place current conceptions of PCD in their historical context. Revisions of our understanding of PCD demand a reassessment of its origin. Our second aim is thus to structure the proposed origin explanations of PCD into coherent arguments. In our analysis we argue for the evolutionary concept of PCD and the viral defense-immunity hypothesis for the origin of PCD. We suggest that this framework offers a plausible account of PCD early in the history of life, and also provides an epistemic basis for the future development of a general evolutionary account of mortality.
Collapse
Affiliation(s)
- Pierre M Durand
- Department of Philosophy, Stellenbosch University, Stellenbosch, South Africa.
| | - Grant Ramsey
- Institute of Philosophy, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Conchou L, Doumèche B, Galisson F, Violot S, Dugelay C, Diesis E, Page A, Bienvenu AL, Picot S, Aghajari N, Ballut L. Structural and molecular determinants of Candida glabrata metacaspase maturation and activation by calcium. Commun Biol 2022; 5:1158. [PMID: 36316540 PMCID: PMC9622860 DOI: 10.1038/s42003-022-04091-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Metacaspases are caspase-like homologs which undergo a complex maturation process involving multiple intra-chain cleavages resulting in a composite enzyme made of a p10 and a p20 domain. Their proteolytic activity involving a cysteine-histidine catalytic dyad, show peptide bond cleavage specificity in the C-terminal to lysine and arginine, with both maturation- and catalytic processes being calcium-dependent. Here, we present the structure of a metacaspase from the yeast Candida glabrata, CgMCA-I, in complex with a unique calcium along with a structure in which three magnesium ions are bound. We show that the Ca2+ ion interacts with a loop in the vicinity of the catalytic site. The reorganization of this cation binding loop, by bringing together the two catalytic residues, could be one of the main structural determinants triggering metacaspase activation. Enzymatic exploration of CgMCA-I confirmed that the maturation process implies a trans mechanism with sequential cleavages. Structural and functional analyses of yeast metacaspase reveal unique Ca2+ and Mg2+ binding sites and provide insights into Ca2+-dependent maturation of metacaspases along with the inhibitory effects of Mg2+ and Zn2+.
Collapse
Affiliation(s)
- Léa Conchou
- grid.25697.3f0000 0001 2172 4233Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-Université de Lyon, F-69367 Lyon, France
| | - Bastien Doumèche
- grid.25697.3f0000 0001 2172 4233Université de Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaire, ICBMS UMR 5246, CNRS, F-69622 Lyon, France
| | - Frédéric Galisson
- grid.25697.3f0000 0001 2172 4233Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-Université de Lyon, F-69367 Lyon, France
| | - Sébastien Violot
- grid.25697.3f0000 0001 2172 4233Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-Université de Lyon, F-69367 Lyon, France
| | - Chloé Dugelay
- grid.25697.3f0000 0001 2172 4233Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-Université de Lyon, F-69367 Lyon, France
| | - Eric Diesis
- grid.15140.310000 0001 2175 9188University of Lyon, INSERM, ENS Lyon, CNRS, Protein Science Facility, SFR BioSciences, UAR3444/US8, F-69366 Lyon, France
| | - Adeline Page
- grid.15140.310000 0001 2175 9188University of Lyon, INSERM, ENS Lyon, CNRS, Protein Science Facility, SFR BioSciences, UAR3444/US8, F-69366 Lyon, France
| | - Anne-Lise Bienvenu
- grid.25697.3f0000 0001 2172 4233Université de Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaire, ICBMS UMR 5246, CNRS, F-69622 Lyon, France ,grid.413852.90000 0001 2163 3825Service Pharmacie, Groupement Hospitalier Nord, Hospices Civils de Lyon, F-69004 Lyon, France
| | - Stéphane Picot
- grid.25697.3f0000 0001 2172 4233Université de Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaire, ICBMS UMR 5246, CNRS, F-69622 Lyon, France ,grid.413306.30000 0004 4685 6736Institute of Parasitology and Medical Mycology, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, F-69004 Lyon, France
| | - Nushin Aghajari
- grid.25697.3f0000 0001 2172 4233Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-Université de Lyon, F-69367 Lyon, France
| | - Lionel Ballut
- grid.25697.3f0000 0001 2172 4233Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-Université de Lyon, F-69367 Lyon, France
| |
Collapse
|
8
|
Eskandari E, Eaves CJ. Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. J Cell Biol 2022; 221:213213. [PMID: 35551578 PMCID: PMC9106709 DOI: 10.1083/jcb.202201159] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 11/22/2022] Open
Abstract
Caspase-3 is a widely expressed member of a conserved family of proteins, generally recognized for their activated proteolytic roles in the execution of apoptosis in cells responding to specific extrinsic or intrinsic inducers of this mode of cell death. However, accumulating evidence indicates that caspase-3 also plays key roles in regulating the growth and homeostatic maintenance of both normal and malignant cells and tissues in multicellular organisms. Given that yeast possess an ancestral caspase-like gene suggests that the caspase-3 protein may have acquired different functions later during evolution to better meet the needs of more complex multicellular organisms, but without necessarily losing all of the functions of its ancestral yeast precursor. This review provides an update on what has been learned about these interesting dichotomous roles of caspase-3, their evolution, and their potential relevance to malignant as well as normal cell biology.
Collapse
Affiliation(s)
- Ebrahim Eskandari
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Connie J. Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada,School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada,Correspondence to Connie J. Eaves:
| |
Collapse
|
9
|
La SR, Ndhlovu A, Durand PM. The Ancient Origins of Death Domains Support the 'Original Sin' Hypothesis for the Evolution of Programmed Cell Death. J Mol Evol 2022; 90:95-113. [PMID: 35084524 DOI: 10.1007/s00239-021-10044-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
The discovery of caspase homologs in bacteria highlighted the relationship between programmed cell death (PCD) evolution and eukaryogenesis. However, the origin of PCD genes in prokaryotes themselves (bacteria and archaea) is poorly understood and a source of controversy. Whether archaea also contain C14 peptidase enzymes and other death domains is largely unknown because of a historical dearth of genomic data. Archaeal genomic databases have grown significantly in the last decade, which allowed us to perform a detailed comparative study of the evolutionary histories of PCD-related death domains in major archaeal phyla, including the deepest branching phyla of Candidatus Aenigmarchaeota, Candidatus Woesearchaeota, and Euryarchaeota. We identified death domains associated with executioners of PCD, like the caspase homologs of the C14 peptidase family, in 321 archaea sequences. Of these, 15.58% were metacaspase type I orthologues and 84.42% were orthocaspases. Maximum likelihood phylogenetic analyses revealed a scattered distribution of orthocaspases and metacaspases in deep-branching bacteria and archaea. The tree topology was incongruent with the prokaryote 16S phylogeny suggesting a common ancestry of PCD genes in prokaryotes and subsequent massive horizontal gene transfer coinciding with the divergence of archaea and bacteria. Previous arguments for the origin of PCD were philosophical in nature with two popular propositions being the "addiction" and 'original sin' hypotheses. Our data support the 'original sin' hypothesis, which argues for a pleiotropic origin of the PCD toolkit with pro-life and pro-death functions tracing back to the emergence of cellular life-the Last Universal Common Ancestor State.
Collapse
Affiliation(s)
- So Ri La
- Evolutionary Studies Institute, University of Witwatersrand, Braamfontein, Johannesburg, South Africa.
| | - Andrew Ndhlovu
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa
| | - Pierre M Durand
- Evolutionary Studies Institute, University of Witwatersrand, Braamfontein, Johannesburg, South Africa
| |
Collapse
|
10
|
Grosfeld EV, Bidiuk VA, Mitkevich OV, Ghazy ESMO, Kushnirov VV, Alexandrov AI. A Systematic Survey of Characteristic Features of Yeast Cell Death Triggered by External Factors. J Fungi (Basel) 2021; 7:886. [PMID: 34829175 PMCID: PMC8626022 DOI: 10.3390/jof7110886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/20/2022] Open
Abstract
Cell death in response to distinct stimuli can manifest different morphological traits. It also depends on various cell death signaling pathways, extensively characterized in higher eukaryotes but less so in microorganisms. The study of cell death in yeast, and specifically Saccharomyces cerevisiae, can potentially be productive for understanding cell death, since numerous killing stimuli have been characterized for this organism. Here, we systematized the literature on external treatments that kill yeast, and which contains at least minimal data on cell death mechanisms. Data from 707 papers from the 7000 obtained using keyword searches were used to create a reference table for filtering types of cell death according to commonly assayed parameters. This table provides a resource for orientation within the literature; however, it also highlights that the common view of similarity between non-necrotic death in yeast and apoptosis in mammals has not provided sufficient progress to create a clear classification of cell death types. Differences in experimental setups also prevent direct comparison between different stimuli. Thus, side-by-side comparisons of various cell death-inducing stimuli under comparable conditions using existing and novel markers that can differentiate between types of cell death seem like a promising direction for future studies.
Collapse
Affiliation(s)
- Erika V. Grosfeld
- Moscow Institute of Physics and Technology, 9 Institutskiy per, Dolgoprudny, 141700 Moscow, Russia;
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Victoria A. Bidiuk
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Olga V. Mitkevich
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Eslam S. M. O. Ghazy
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Department of Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Vitaliy V. Kushnirov
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Alexander I. Alexandrov
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| |
Collapse
|
11
|
Role of Two Metacaspases in Development and Pathogenicity of the Rice Blast Fungus Magnaporthe oryzae. mBio 2021; 12:mBio.03471-20. [PMID: 33563831 PMCID: PMC7885106 DOI: 10.1128/mbio.03471-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Magnaporthe oryzae causes rice blast disease that threatens global food security by resulting in the severe loss of rice production every year. A tightly regulated life cycle allows M. oryzae to disarm the host plant immune system during its biotrophic stage before triggering plant cell death in its necrotrophic stage. Rice blast disease caused by Magnaporthe oryzae is a devastating disease of cultivated rice worldwide. Infections by this fungus lead to a significant reduction in rice yields and threats to food security. To gain better insight into growth and cell death in M. oryzae during infection, we characterized two predicted M. oryzae metacaspase proteins, MoMca1 and MoMca2. These proteins appear to be functionally redundant and can complement the yeast Yca1 homologue. Biochemical analysis revealed that M. oryzae metacaspases exhibited Ca2+-dependent caspase activity in vitro. Deletion of both MoMca1 and MoMca2 in M. oryzae resulted in reduced sporulation, delay in conidial germination, and attenuation of disease severity. In addition, the double ΔMomca1mca2 mutant strain showed increased radial growth in the presence of oxidative stress. Interestingly, the ΔMomca1mca2 strain showed an increased accumulation of insoluble aggregates compared to the wild-type strain during vegetative growth. Our findings suggest that MoMca1 and MoMca2 promote the clearance of insoluble aggregates in M. oryzae, demonstrating the important role these metacaspases have in fungal protein homeostasis. Furthermore, these metacaspase proteins may play additional roles, like in regulating stress responses, that would help maintain the fitness of fungal cells required for host infection.
Collapse
|
12
|
Eyssen LEA, Coetzer TH. Validation of ligands targeting metacaspase-2 (MCA2) from Trypanosoma brucei brucei and their application to MCA5 from T. congolense as possible trypanocides. J Mol Graph Model 2020; 97:107579. [PMID: 32197135 DOI: 10.1016/j.jmgm.2020.107579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 11/29/2022]
Abstract
Metacaspases (MCAs) are ideal drug and diagnostic targets for animal and human African trypanosomiasis, as these cysteine peptidases are absent from the metazoan kingdom and have been implicated in the parasite cell cycle and cell death. Tsetse fly-transmitted trypanosomes that live free in the bloodstream and/or cerebrospinal fluid of the mammalian host cause animal and human African trypanosomiasis (nagana or sleeping sickness respectively). Chemotherapy and chemoprophylaxis are the main forms of control, but in contrast to human trypanocides, the veterinary drugs are old and drug resistance is on the increase. A peptidomimetic library targeting the MCA2 from Trypanosoma brucei brucei has ligands with low IC50 values, some of which were antiparasitic. This study validates the inhibitory activity of these ligands using the protein structure solved by X-ray diffraction after the ligand library was published. Water molecules were shown to be important in substrate binding and strategies to improve the efficacy of these ligands are highlighted. These ligands appear to be pan-specific as they were docked into the active site of the homology modelled MCA5 of animal infective Trypanosoma congolense with similar binding energies and conformations.
Collapse
Affiliation(s)
- L E-A Eyssen
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville, 3209, South Africa
| | - Theresa Ht Coetzer
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
13
|
Valiakhmetov AY, Kuchin AV, Suzina NE, Zvonarev AN, Shepelyakovskaya AO. Glucose causes primary necrosis in exponentially grown yeast Saccharomyces cerevisiae. FEMS Yeast Res 2019; 19:5347945. [PMID: 30785621 DOI: 10.1093/femsyr/foz019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/19/2019] [Indexed: 02/07/2023] Open
Abstract
In this paper, we present data on sugar-induced cell death (SICD) in the yeast Saccharomyces cerevisiae in the exponential phase of growth. We suggest that the nature of SICD in exponentially grown yeast is primary necrosis, in contrast to cells in the stationary growth phase, which exhibit apoptotic SICD. The following findings confirm this conclusion: (i) the process rate; (ii) the impairments of plasma membrane integrity; (iii) the drastic morphological changes in the intracellular content; (iv) the absence of chromatin condensation; (v) the absence of externalization of phosphotidylserine (PS) on the outer leaflet of plasma membrane and (vi) the insensitivity of the SICD process to cycloheximide (CHX). Research shows that SICD occurs in a subpopulation of cells in the S-phase.
Collapse
Affiliation(s)
- A Ya Valiakhmetov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC PCBR RAS.,Moscow Region State University
| | - A V Kuchin
- Institute of Cell Biophysics, FRC PCBR RAS
| | - N E Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC PCBR RAS
| | - A N Zvonarev
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC PCBR RAS
| | | |
Collapse
|
14
|
Programmed Cell Death-Like and Accompanying Release of Microcystin in Freshwater Bloom-Forming Cyanobacterium Microcystis: From Identification to Ecological Relevance. Toxins (Basel) 2019; 11:toxins11120706. [PMID: 31817272 PMCID: PMC6950475 DOI: 10.3390/toxins11120706] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 11/16/2022] Open
Abstract
Microcystis is the most common freshwater bloom-forming cyanobacteria. Its massive blooms not only adversely affect the functionality of aquatic ecosystems, but are also associated with the production of microcystins (MCs), a group of potent toxins that become a threat to public health when cell-bound MCs are significantly released from the dying Microcystis into the water column. Managing Microcystis blooms thus requires sufficient knowledge regarding both the cell death modes and the release of toxins. Recently, more and more studies have demonstrated the occurrence of programmed cell death-like (or apoptosis-like) events in laboratory and field samples of Microcystis. Apoptosis is a genetically controlled process that is essential for the development and survival of metazoa; however, it has been gradually realized to be an existing phenomenon playing important ecological roles in unicellular microorganisms. Here, we review the current progress and the existing knowledge gap regarding apoptosis-like death in Microcystis. Specifically, we focus first on the tools utilized to characterize the apoptosis-related biochemical and morphological features in Microcystis. We further outline various stressful stimuli that trigger the occurrence of apoptosis and discuss the potential mechanisms of apoptosis in Microcystis. We then propose a conceptual model to describe the functional coupling of apoptosis and MC in Microcystis. This model could be useful for understanding both roles of MC and apoptosis in this species. Lastly, we conclude the review by highlighting the current knowledge gap and considering the direction of future research. Overall, this review provides a recent update with respect to the knowledge of apoptosis in Microcystis and also offers a guide for future investigations of its ecology and survival strategies.
Collapse
|
15
|
Eyssen LEA, Coetzer THT. Expression, purification and characterisation of Trypanosoma congolense metacaspase 5 (TcoMCA5) - a potential drug target for animal African trypanosomiasis. Protein Expr Purif 2019; 164:105465. [PMID: 31377239 DOI: 10.1016/j.pep.2019.105465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 01/25/2023]
Abstract
The metacaspases (MCAs) are attractive drug targets for the treatment of African trypanosomiasis as they are not found in the metazoan kingdom and their action has been implicated in cell cycle and cell death pathways in kinetoplastid parasites. Here we report the biochemical characterisation of MCA5 from T. congolense. Upon recombinant expression in E. coli, autoprocessing is evident, and MCA5 further autoprocesses when purified using nickel affinity chromatography, which we term nickel-induced over autoprocessing. When both the catalytic His and Cys residues were mutated (TcoMCA5H147A/C202G), no nickel-induced over autoprocessing was observed and was enzymatically active, suggesting the existence of a secondary catalytic Cys residue, Cys81. Immunoaffinity purification of native TcoMCA5 from the total parasite proteins was achieved using chicken anti-TcoMCA5 IgY antibodies. The full length native TcoMCA5 and the autoprocessed products of recombinant TcoMCA5H147A/C202G were shown to possess gelatinolytic activity, the first report for that of a MCA. Both the native and recombinant enzyme were calcium independent, had a preference for Arg over Lys at the P1 site and were active over a pH range between 6.5 and 9. Partial inhibition (23%) of enzymatic activity was only achieved with leupeptin and antipain. These findings are the first step in the biochemical characterisation of the single copy MCAs from animal infective trypanosomes towards the design of novel trypanocides.
Collapse
Affiliation(s)
- Lauren E-A Eyssen
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville, 3209, South Africa
| | - Theresa H T Coetzer
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
16
|
Klemenčič M, Asplund-Samuelsson J, Dolinar M, Funk C. Phylogenetic Distribution and Diversity of Bacterial Pseudo-Orthocaspases Underline Their Putative Role in Photosynthesis. FRONTIERS IN PLANT SCIENCE 2019; 10:293. [PMID: 30923531 PMCID: PMC6426788 DOI: 10.3389/fpls.2019.00293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Orthocaspases are prokaryotic caspase homologs - proteases, which cleave their substrates after positively charged residues using a conserved histidine - cysteine (HC) dyad situated in a catalytic p20 domain. However, in orthocaspases pseudo-variants have been identified, which instead of the catalytic HC residues contain tyrosine and serine, respectively. The presence and distribution of these presumably proteolytically inactive p20-containing enzymes has until now escaped attention. We have performed a detailed analysis of orthocaspases in all available prokaryotic genomes, focusing on pseudo-orthocaspases. Surprisingly we identified type I metacaspase homologs in filamentous cyanobacteria. While genes encoding pseudo-orthocaspases seem to be absent in Archaea, our results show conservation of these genes in organisms performing either anoxygenic photosynthesis (orders Rhizobiales, Rhodobacterales, and Rhodospirillales in Alphaproteobacteria) or oxygenic photosynthesis (all sequenced cyanobacteria, except Gloeobacter, Prochlorococcus, and Cyanobium). Contrary to earlier reports, we were able to detect pseudo-orthocaspases in all sequenced strains of the unicellular cyanobacteria Synechococcus and Synechocystis. In silico comparisons of the primary as well as tertiary structures of pseudo-p20 domains with their presumably proteolytically active homologs suggest that differences in their amino acid sequences have no influence on the overall structures. Mutations therefore affect most likely only the proteolytic activity. Our data provide an insight into diversification of pseudo-orthocaspases in Prokaryotes, their taxa-specific distribution, and allow suggestions on their taxa-specific function.
Collapse
Affiliation(s)
- Marina Klemenčič
- Department of Chemistry, Umeå University, Umeå, Sweden
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Johannes Asplund-Samuelsson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Marko Dolinar
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
17
|
The metacaspase Yca1 maintains proteostasis through multiple interactions with the ubiquitin system. Cell Discov 2019; 5:6. [PMID: 30675380 PMCID: PMC6341073 DOI: 10.1038/s41421-018-0071-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 01/07/2023] Open
Abstract
Metacaspase enzymes are critical regulatory factors that paradoxically engage apoptosis and also maintain cell viability. For example, the Saccharomyces cerevisiae metacaspase Yca1 has been shown to be important for maintaining cellular proteostasis during stress, and the loss of this enzyme results in increased retention of aggregated material within the insoluble proteome. However, the molecular mechanism(s) by which Yca1 maintains cellular proteostasis remains unknown. Here, using proteomic analysis coupled with protein interaction studies we identified a direct interplay between Yca1 and the ubiquitin-proteasome system. We noted multiple ubiquitination sites on Yca1 and established Rsp5 as the candidate E3 ligase involved in this process. Further characterization of the ubiquitination sites identified the K355 residue on Yca1 as a critical modification for proteostasis function, managing both insoluble protein content and vacuolar response. We also identified a Yca1 phosphorylation site at S346, which promoted interaction with Rsp5 and the aggregate dispersal function of the metacaspase. Interestingly, proteomic analysis also revealed that Yca1 interacts with the ubiquitin precursor protein Rps31, cleaving the protein to release free ubiquitin. In turn, loss of Yca1 or its catalytic activity reduced the levels of monomeric ubiquitin in vivo, concurrent to increased protein aggregation. The K355 and S346 residues were also observed to influence the abundance of low-molecular weight ubiquitin. Together, these observations suggest that Yca1 maintains proteostasis and limits protein aggregation by ensuring a free flow of monoubiquitin, an essential precursor for ligase-enhanced Yca1 enzymatic activity and general proteasome-mediated protein degradation.
Collapse
|
18
|
Saha A, Johnston TG, Shafranek RT, Goodman CJ, Zalatan JG, Storti DW, Ganter MA, Nelson A. Additive Manufacturing of Catalytically Active Living Materials. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13373-13380. [PMID: 29608267 DOI: 10.1021/acsami.8b02719] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Living materials, which are composites of living cells residing in a polymeric matrix, are designed to utilize the innate functionalities of the cells to address a broad range of applications such as fermentation and biosensing. Herein, we demonstrate the additive manufacturing of catalytically active living materials (AMCALM) for continuous fermentation. A multi-stimuli-responsive yeast-laden hydrogel ink, based on F127-dimethacrylate, was developed and printed using a direct-write 3D printer. The reversible stimuli-responsive behaviors of the polymer hydrogel inks to temperature and pressure are critical, as they enabled the facile incorporation of yeast cells and subsequent fabrication of 3D lattice constructs. Subsequent photo-cross-linking of the printed polymer hydrogel afforded a robust elastic material. These yeast-laden living materials were metabolically active in the fermentation of glucose into ethanol for 2 weeks in a continuous batch process without significant reduction in efficiency (∼90% yield of ethanol). This cell immobilization platform may potentially be applicable toward other genetically modified yeast strains to produce other high-value chemicals in a continuous biofermentation process.
Collapse
Affiliation(s)
- Abhijit Saha
- Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States
| | - Trevor G Johnston
- Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States
| | - Ryan T Shafranek
- Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States
| | - Cassandra J Goodman
- Department of Mechanical Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Jesse G Zalatan
- Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States
| | - Duane W Storti
- Department of Mechanical Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Mark A Ganter
- Department of Mechanical Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Alshakim Nelson
- Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States
| |
Collapse
|
19
|
CpMCA , a novel metacaspase gene from the harmful dinoflagellate Cochlodinium polykrikoides and its expression during cell death. Gene 2018; 651:70-78. [DOI: 10.1016/j.gene.2018.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/26/2018] [Accepted: 02/01/2018] [Indexed: 11/23/2022]
|
20
|
Bollhöner B, Jokipii-Lukkari S, Bygdell J, Stael S, Adriasola M, Muñiz L, Van Breusegem F, Ezcurra I, Wingsle G, Tuominen H. The function of two type II metacaspases in woody tissues of Populus trees. THE NEW PHYTOLOGIST 2018; 217:1551-1565. [PMID: 29243818 DOI: 10.1111/nph.14945] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 11/07/2017] [Indexed: 05/03/2023]
Abstract
Metacaspases (MCs) are cysteine proteases that are implicated in programmed cell death of plants. AtMC9 (Arabidopsis thaliana Metacaspase9) is a member of the Arabidopsis MC family that controls the rapid autolysis of the xylem vessel elements, but its downstream targets in xylem remain uncharacterized. PttMC13 and PttMC14 were identified as AtMC9 homologs in hybrid aspen (Populus tremula × tremuloides). A proteomic analysis was conducted in xylem tissues of transgenic hybrid aspen trees which carried either an overexpression or an RNA interference construct for PttMC13 and PttMC14. The proteomic analysis revealed modulation of levels of both previously known targets of metacaspases, such as Tudor staphylococcal nuclease, heat shock proteins and 14-3-3 proteins, as well as novel proteins, such as homologs of the PUTATIVE ASPARTIC PROTEASE3 (PASPA3) and the cysteine protease RD21 by PttMC13 and PttMC14. We identified here the pathways and processes that are modulated by PttMC13 and PttMC14 in xylem tissues. In particular, the results indicate involvement of PttMC13 and/or PttMC14 in downstream proteolytic processes and cell death of xylem elements. This work provides a valuable reference dataset on xylem-specific metacaspase functions for future functional and biochemical analyses.
Collapse
Affiliation(s)
- Benjamin Bollhöner
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187, Umeå, Sweden
| | - Soile Jokipii-Lukkari
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187, Umeå, Sweden
| | - Joakim Bygdell
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - Simon Stael
- VIB-Ugent Center for Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Gent, Belgium
| | - Mathilda Adriasola
- School of Biotechnology, Royal Institute of Technology (KTH), 10691, Stockholm, Sweden
| | - Luis Muñiz
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187, Umeå, Sweden
| | - Frank Van Breusegem
- VIB-Ugent Center for Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Gent, Belgium
| | - Inés Ezcurra
- School of Biotechnology, Royal Institute of Technology (KTH), 10691, Stockholm, Sweden
| | - Gunnar Wingsle
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Hannele Tuominen
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187, Umeå, Sweden
| |
Collapse
|
21
|
Bouvier LA, Niemirowicz GT, Salas‐Sarduy E, Cazzulo JJ, Alvarez VE. DNA
‐damage inducible protein 1 is a conserved metacaspase substrate that is cleaved and further destabilized in yeast under specific metabolic conditions. FEBS J 2018; 285:1097-1110. [DOI: 10.1111/febs.14390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/29/2017] [Accepted: 01/17/2018] [Indexed: 02/02/2023]
Affiliation(s)
- León A. Bouvier
- Instituto de Investigaciones Biotecnológicas ‐ Instituto Tecnológico de Chascomús (IIB‐INTECH) Universidad Nacional de San Martín (UNSAM) ‐ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| | - Gabriela T. Niemirowicz
- Instituto de Investigaciones Biotecnológicas ‐ Instituto Tecnológico de Chascomús (IIB‐INTECH) Universidad Nacional de San Martín (UNSAM) ‐ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| | - Emir Salas‐Sarduy
- Instituto de Investigaciones Biotecnológicas ‐ Instituto Tecnológico de Chascomús (IIB‐INTECH) Universidad Nacional de San Martín (UNSAM) ‐ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| | - Juan José Cazzulo
- Instituto de Investigaciones Biotecnológicas ‐ Instituto Tecnológico de Chascomús (IIB‐INTECH) Universidad Nacional de San Martín (UNSAM) ‐ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| | - Vanina E. Alvarez
- Instituto de Investigaciones Biotecnológicas ‐ Instituto Tecnológico de Chascomús (IIB‐INTECH) Universidad Nacional de San Martín (UNSAM) ‐ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| |
Collapse
|
22
|
Carmona-Gutierrez D, Bauer MA, Zimmermann A, Aguilera A, Austriaco N, Ayscough K, Balzan R, Bar-Nun S, Barrientos A, Belenky P, Blondel M, Braun RJ, Breitenbach M, Burhans WC, Büttner S, Cavalieri D, Chang M, Cooper KF, Côrte-Real M, Costa V, Cullin C, Dawes I, Dengjel J, Dickman MB, Eisenberg T, Fahrenkrog B, Fasel N, Fröhlich KU, Gargouri A, Giannattasio S, Goffrini P, Gourlay CW, Grant CM, Greenwood MT, Guaragnella N, Heger T, Heinisch J, Herker E, Herrmann JM, Hofer S, Jiménez-Ruiz A, Jungwirth H, Kainz K, Kontoyiannis DP, Ludovico P, Manon S, Martegani E, Mazzoni C, Megeney LA, Meisinger C, Nielsen J, Nyström T, Osiewacz HD, Outeiro TF, Park HO, Pendl T, Petranovic D, Picot S, Polčic P, Powers T, Ramsdale M, Rinnerthaler M, Rockenfeller P, Ruckenstuhl C, Schaffrath R, Segovia M, Severin FF, Sharon A, Sigrist SJ, Sommer-Ruck C, Sousa MJ, Thevelein JM, Thevissen K, Titorenko V, Toledano MB, Tuite M, Vögtle FN, Westermann B, Winderickx J, Wissing S, Wölfl S, Zhang ZJ, Zhao RY, Zhou B, Galluzzi L, Kroemer G, Madeo F. Guidelines and recommendations on yeast cell death nomenclature. MICROBIAL CELL (GRAZ, AUSTRIA) 2018; 5:4-31. [PMID: 29354647 PMCID: PMC5772036 DOI: 10.15698/mic2018.01.607] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/29/2017] [Indexed: 12/18/2022]
Abstract
Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cel-lular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the defi-nition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differ-ential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death rou-tines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the au-thors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the pro-gress of this vibrant field of research.
Collapse
Affiliation(s)
| | - Maria Anna Bauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Andrés Aguilera
- Centro Andaluz de Biología, Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Sevilla, Spain
| | | | - Kathryn Ayscough
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Rena Balzan
- Department of Physiology and Biochemistry, University of Malta, Msida, Malta
| | - Shoshana Bar-Nun
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Antonio Barrientos
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, USA
- Department of Neurology, University of Miami Miller School of Medi-cine, Miami, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, USA
| | - Marc Blondel
- Institut National de la Santé et de la Recherche Médicale UMR1078, Université de Bretagne Occidentale, Etablissement Français du Sang Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Ralf J. Braun
- Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany
| | | | - William C. Burhans
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Sabrina Büttner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Katrina F. Cooper
- Dept. Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, USA
| | - Manuela Côrte-Real
- Center of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - Vítor Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | | | - Ian Dawes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Martin B. Dickman
- Institute for Plant Genomics and Biotechnology, Texas A&M University, Texas, USA
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Birthe Fahrenkrog
- Laboratory Biology of the Nucleus, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | - Kai-Uwe Fröhlich
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Ali Gargouri
- Laboratoire de Biotechnologie Moléculaire des Eucaryotes, Center de Biotechnologie de Sfax, Sfax, Tunisia
| | - Sergio Giannattasio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Paola Goffrini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Campbell W. Gourlay
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Chris M. Grant
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Michael T. Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, Canada
| | - Nicoletta Guaragnella
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | | | - Jürgen Heinisch
- Department of Biology and Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Eva Herker
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - Sebastian Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | | | - Helmut Jungwirth
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Dimitrios P. Kontoyiannis
- Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Minho, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Stéphen Manon
- Institut de Biochimie et de Génétique Cellulaires, UMR5095, CNRS & Université de Bordeaux, Bordeaux, France
| | - Enzo Martegani
- Department of Biotechnolgy and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Cristina Mazzoni
- Instituto Pasteur-Fondazione Cenci Bolognetti - Department of Biology and Biotechnology "C. Darwin", La Sapienza University of Rome, Rome, Italy
| | - Lynn A. Megeney
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Department of Medicine, Division of Cardiology, University of Ottawa, Ottawa, Canada
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, Denmark
| | - Thomas Nyström
- Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Heinz D. Osiewacz
- Institute for Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, United Kingdom
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Tobias Pendl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Dina Petranovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Stephane Picot
- Malaria Research Unit, SMITh, ICBMS, UMR 5246 CNRS-INSA-CPE-University Lyon, Lyon, France
- Institut of Parasitology and Medical Mycology, Hospices Civils de Lyon, Lyon, France
| | - Peter Polčic
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Ted Powers
- Department of Molecular and Cellular Biology, College of Biological Sciences, UC Davis, Davis, California, USA
| | - Mark Ramsdale
- Biosciences, University of Exeter, Exeter, United Kingdom
| | - Mark Rinnerthaler
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Patrick Rockenfeller
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Raffael Schaffrath
- Institute of Biology, Division of Microbiology, University of Kassel, Kassel, Germany
| | - Maria Segovia
- Department of Ecology, Faculty of Sciences, University of Malaga, Malaga, Spain
| | - Fedor F. Severin
- A.N. Belozersky Institute of physico-chemical biology, Moscow State University, Moscow, Russia
| | - Amir Sharon
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Stephan J. Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Cornelia Sommer-Ruck
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Maria João Sousa
- Center of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - Johan M. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | | | - Michel B. Toledano
- Institute for Integrative Biology of the Cell (I2BC), SBIGEM, CEA-Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Mick Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - F.-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, Leuven-Heverlee, Belgium
| | | | - Stefan Wölfl
- Institute of Pharmacy and Molecu-lar Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Zhaojie J. Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, USA
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, USA
| | - Bing Zhou
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Université Paris Descartes/Paris V, Paris, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Paris, France
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Cell Biology and Metabolomics Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France
- INSERM, U1138, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France
- Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
23
|
Processing of metacaspase 2 from Trypanosoma brucei (TbMCA2) broadens its substrate specificity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:388-394. [DOI: 10.1016/j.bbapap.2017.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 12/28/2016] [Accepted: 01/05/2017] [Indexed: 11/23/2022]
|
24
|
Cell-cycle involvement in autophagy and apoptosis in yeast. Mech Ageing Dev 2016; 161:211-224. [PMID: 27450768 DOI: 10.1016/j.mad.2016.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/16/2016] [Accepted: 07/17/2016] [Indexed: 12/14/2022]
Abstract
Regulation of the cell cycle and apoptosis are two eukaryotic processes required to ensure maintenance of genomic integrity, especially in response to DNA damage. The ease with which yeast, amongst other eukaryotes, can switch from cellular proliferation to cell death may be the result of a common set of biochemical factors which play dual roles depending on the cell's physiological state. A wide variety of homologues are shared between different yeasts and metazoans and this conservation confirms their importance. This review gives an overview of key molecular players involved in yeast cell-cycle regulation, and those involved in mechanisms which are induced by cell-cycle dysregulation. One such mechanism is autophagy which, depending on the severity and type of DNA damage, may either contribute to the cell's survival or death. Cell-cycle dysregulation due to checkpoint deficiency leads to mitotic catastrophe which in turn leads to programmed cell death. Molecular players implicated in the yeast apoptotic pathway were shown to play important roles in the cell cycle. These include the metacaspase Yca1p, the caspase-like protein Esp1p, the cohesin subunit Mcd1p, as well as the inhibitor of apoptosis protein Bir1p. The roles of these molecular players are discussed.
Collapse
|
25
|
Salvesen GS, Hempel A, Coll NS. Protease signaling in animal and plant-regulated cell death. FEBS J 2016; 283:2577-98. [PMID: 26648190 PMCID: PMC5606204 DOI: 10.1111/febs.13616] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/23/2015] [Accepted: 11/30/2015] [Indexed: 12/26/2022]
Abstract
This review aims to highlight the proteases required for regulated cell death mechanisms in animals and plants. The aim is to be incisive, and not inclusive of all the animal proteases that have been implicated in various publications. The review also aims to focus on instances when several publications from disparate groups have demonstrated the involvement of an animal protease, and also when there is substantial biochemical, mechanistic and genetic evidence. In doing so, the literature can be culled to a handful of proteases, covering most of the known regulated cell death mechanisms: apoptosis, regulated necrosis, necroptosis, pyroptosis and NETosis in animals. In plants, the literature is younger and not as extensive as for mammals, although the molecular drivers of vacuolar death, necrosis and the hypersensitive response in plants are becoming clearer. Each of these death mechanisms has at least one proteolytic component that plays a major role in controlling the pathway, and sometimes they combine in networks to regulate cell death/survival decision nodes. Some similarities are found among animal and plant cell death proteases but, overall, the pathways that they govern are kingdom-specific with very little overlap.
Collapse
Affiliation(s)
- Guy S. Salvesen
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Anne Hempel
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nuria Sanchez Coll
- Centre for Research in Agricultural Genomics, Campus UAB, Edifici CRAG, Bellaterra 08193, Barcelona, Spain
| |
Collapse
|
26
|
Kaczanowski S. Apoptosis: its origin, history, maintenance and the medical implications for cancer and aging. Phys Biol 2016; 13:031001. [DOI: 10.1088/1478-3975/13/3/031001] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
27
|
Léger T, Garcia C, Camadro JM. The Metacaspase (Mca1p) Restricts O-glycosylation During Farnesol-induced Apoptosis in Candida albicans. Mol Cell Proteomics 2016; 15:2308-23. [PMID: 27125826 DOI: 10.1074/mcp.m116.059378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Indexed: 11/06/2022] Open
Abstract
Protein glycolysation is an essential posttranslational modification in eukaryotic cells. In pathogenic yeasts, it is involved in a large number of biological processes, such as protein folding quality control, cell viability and host/pathogen relationships. A link between protein glycosylation and apoptosis was established by the analysis of the phenotypes of oligosaccharyltransferase mutants in budding yeast. However, little is known about the contribution of glycosylation modifications to the adaptive response to apoptosis inducers. The cysteine protease metacaspase Mca1p plays a key role in the apoptotic response in Candida albicans triggered by the quorum sensing molecule farnesol. We subjected wild-type and mca1-deletion strains to farnesol stress and then studied the early phase of apoptosis release in quantitative glycoproteomics and glycomics experiments on cell-free extracts essentially devoid of cell walls. We identified and characterized 62 new glycosylated peptides with their glycan composition: 17 N-glycosylated, 45 O-glycosylated, and 81 additional sites of N-glycosylation. They were found to be involved in the control of protein folding, cell wall integrity and cell cycle regulation. We showed a general increase in the O-glycosylation of proteins in the mca1 deletion strain after farnesol challenge. We identified 44 new putative protein substrates of the metacaspase in the glycoprotein fraction enriched on concanavalin A. Most of these substrates are involved in protein folding or protein resolubilization and in mitochondrial functions. We show here that key Mca1p substrates, such as Cdc48p or Ssb1p, involved in degrading misfolded glycoproteins and in the protein quality control system, are themselves differentially glycosylated. We found putative substrates, such as Bgl2p (validated by immunoblot), Srb1p or Ugp1p, that are involved in the biogenesis of glycans. Our findings highlight a new role of the metacaspase in amplifying cell death processes by affecting several critical protein quality control systems through the alteration of the protein glycosylation machinery.Data are available via ProteomeXchange with identifier PXD003677.
Collapse
Affiliation(s)
- Thibaut Léger
- From the ‡Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Camille Garcia
- From the ‡Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Jean-Michel Camadro
- From the ‡Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France; §Mitochondria, Metals and Oxidative Stress Group, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| |
Collapse
|
28
|
Shrestha A, Megeney LA. Yeast proteinopathy models: a robust tool for deciphering the basis of neurodegeneration. MICROBIAL CELL 2015; 2:458-465. [PMID: 28357271 PMCID: PMC5354604 DOI: 10.15698/mic2015.12.243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein quality control or proteostasis is an essential determinant of basic cell health and aging. Eukaryotic cells have evolved a number of proteostatic mechanisms to ensure that proteins retain functional conformation, or are rapidly degraded when proteins misfold or self-aggregate. Disruption of proteostasis is now widely recognized as a key feature of aging related illness, specifically neurodegenerative disease. For example, Alzheimer’s disease, Huntington’s disease, Parkinson’s disease and Amyotrophic Lateral Sclerosis (ALS) each target and afflict distinct neuronal cell subtypes, yet this diverse array of human pathologies share the defining feature of aberrant protein aggregation within the affected cell population. Here, we review the use of budding yeast as a robust proxy to study the intersection between proteostasis and neurodegenerative disease. The humanized yeast model has proven to be an amenable platform to identify both, conserved proteostatic mechanisms across eukaryotic phyla and novel disease specific molecular dysfunction. Moreover, we discuss the intriguing concept that yeast specific proteins may be utilized as bona fide therapeutic agents, to correct proteostasis errors across various forms of neurodegeneration.
Collapse
Affiliation(s)
- Amit Shrestha
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Centre for Stem Cell Research, The Ottawa Hospital, Ottawa, Ontario, Canada. ; Department of Cellular and Molecular Medicine University of Ottawa, Ottawa, Ontario, Canada
| | - Lynn A Megeney
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Centre for Stem Cell Research, The Ottawa Hospital, Ottawa, Ontario, Canada. ; Department of Cellular and Molecular Medicine University of Ottawa, Ottawa, Ontario, Canada ; Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
29
|
Longo V, Ždralević M, Guaragnella N, Giannattasio S, Zolla L, Timperio AM. Proteome and metabolome profiling of wild-type and YCA1-knock-out yeast cells during acetic acid-induced programmed cell death. J Proteomics 2015; 128:173-188. [PMID: 26269384 DOI: 10.1016/j.jprot.2015.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/03/2015] [Accepted: 08/05/2015] [Indexed: 01/13/2023]
Abstract
UNLABELLED Caspase proteases are responsible for the regulated disassembly of the cell into apoptotic bodies during mammalian apoptosis. Structural homologues of the caspase family (called metacaspases) are involved in programmed cell death in single-cell eukaryotes, yet the molecular mechanisms that contribute to death are currently undefined. Recent evidence revealed that a programmed cell death process is induced by acetic acid (AA-PCD) in Saccharomyces cerevisiae both in the presence and absence of metacaspase encoding gene YCA1. Here, we report an unexpected role for the yeast metacaspase in protein quality and metabolite control. By using an "omics" approach, we focused our attention on proteins and metabolites differentially modulated en route to AA-PCD either in wild type or YCA1-lacking cells. Quantitative proteomic and metabolomic analyses of wild type and Δyca1 cells identified significant alterations in carbohydrate catabolism, lipid metabolism, proteolysis and stress-response, highlighting the main roles of metacaspase in AA-PCD. Finally, deletion of YCA1 led to AA-PCD pathway through the activation of ceramides, whereas in the presence of the gene yeast cells underwent an AA-PCD pathway characterized by the shift of the main glycolytic pathway to the pentose phosphate pathway and a proteolytic mechanism to cope with oxidative stress. SIGNIFICANCE The yeast metacaspase regulates both proteolytic activities through the ubiquitin-proteasome system and ceramide metabolism as revealed by proteome and metabolome profiling of YCA1-knock-out cells during acetic-acid induced programmed cell death.
Collapse
Affiliation(s)
- Valentina Longo
- Department of Ecology and Biology, "La Tuscia" University, Viterbo, Italy
| | - Maša Ždralević
- Institute of Biomembrane and Bioenergetics, CNR, Bari, Italy
| | | | | | - Lello Zolla
- Department of Ecology and Biology, "La Tuscia" University, Viterbo, Italy.
| | | |
Collapse
|
30
|
Fagundes D, Bohn B, Cabreira C, Leipelt F, Dias N, Bodanese-Zanettini MH, Cagliari A. Caspases in plants: metacaspase gene family in plant stress responses. Funct Integr Genomics 2015; 15:639-49. [PMID: 26277721 DOI: 10.1007/s10142-015-0459-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 12/26/2022]
Abstract
Programmed cell death (PCD) is an ordered cell suicide that removes unwanted or damaged cells, playing a role in defense to environmental stresses and pathogen invasion. PCD is component of the life cycle of plants, occurring throughout development from embryogenesis to the death. Metacaspases are cysteine proteases present in plants, fungi, and protists. In certain plant-pathogen interactions, the PCD seems to be mediated by metacaspases. We adopted a comparative genomic approach to identify genes coding for the metacaspases in Viridiplantae. We observed that the metacaspase was divided into types I and II, based on their protein structure. The type I has a metacaspase domain at the C-terminus region, presenting or not a zinc finger motif in the N-terminus region and a prodomain rich in proline. Metacaspase type II does not feature the prodomain and the zinc finger, but has a linker between caspase-like catalytic domains of 20 kDa (p20) and 10 kDa (p10). A high conservation was observed in the zinc finger domain (type I proteins) and in p20 and p10 subunits (types I and II proteins). The phylogeny showed that the metacaspases are divided into three principal groups: type I with and without zinc finger domain and type II metacaspases. The algae and moss are presented as outgroup, suggesting that these three classes of metacaspases originated in the early stages of Viridiplantae, being the absence of the zinc finger domain the ancient condition. The study of metacaspase can clarify their assignment and involvement in plant PCD mechanisms.
Collapse
Affiliation(s)
- David Fagundes
- Universidade Estadual do Rio Grande do Sul (UERGS), CEP 96816-50, Santa Cruz do Sul, RS, Brazil.
| | - Bianca Bohn
- Universidade Estadual do Rio Grande do Sul (UERGS), CEP 96816-50, Santa Cruz do Sul, RS, Brazil.
| | - Caroline Cabreira
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Fábio Leipelt
- Universidade Estadual do Rio Grande do Sul (UERGS), CEP 96816-50, Santa Cruz do Sul, RS, Brazil.
| | - Nathalia Dias
- Universidade Estadual do Rio Grande do Sul (UERGS), CEP 96816-50, Santa Cruz do Sul, RS, Brazil.
| | | | - Alexandro Cagliari
- Universidade Estadual do Rio Grande do Sul (UERGS), CEP 96816-50, Santa Cruz do Sul, RS, Brazil.
| |
Collapse
|
31
|
Ždralević M, Longo V, Guaragnella N, Giannattasio S, Timperio AM, Zolla L. Differential proteome-metabolome profiling of YCA1-knock-out and wild type cells reveals novel metabolic pathways and cellular processes dependent on the yeast metacaspase. MOLECULAR BIOSYSTEMS 2015; 11:1573-1583. [PMID: 25697364 DOI: 10.1039/c4mb00660g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The yeast Saccharomyces cerevisiae expresses one member of the metacaspase Cys protease family, encoded by the YCA1 gene. Combination of proteomics and metabolomics data showed that YCA1 deletion down-regulated glycolysis, the TCA cycle and alcoholic fermentation as compared with WT cells. Δyca1 cells also showed a down-regulation of the pentose phosphate pathway and accumulation of pyruvate, correlated with higher levels of certain amino acids found in these cells. Accordingly, there is a decrease in protein biosynthesis, and up-regulation of specific stress response proteins like Ahp1p, which possibly provides these cells with a better protection against stress. Moreover, in agreement with the down-regulation of protein biosynthesis machinery in Δyca1 cells, we have found that regulation of transcription, co-translational protein folding and protein targeting to different subcellular locations were also down-regulated. Metabolomics analysis of the nucleotide content showed a significant reduction in Δyca1 cells in comparison with the WT, except for GTP content which remained unchanged. Thus, our combined proteome-metabolome approach added a new dimension to the non-apoptotic function of yeast metacaspase, which can specifically affect cell metabolism through as yet unknown mechanisms and possibly stress-response pathways, like HOG and cell wall integrity pathways. Certainly, YCA1 deletion may induce compensatory changes in stress response proteins offering a better protection against apoptosis to Δyca1 cells rather than a loss in pro-apoptotic YCA1-associated activity.
Collapse
Affiliation(s)
- Maša Ždralević
- CNR, Istituto di Biomembrane e Bioenergetica, Via Amendola 165/a, 70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Beidong Liu
- a Department of Chemistry and Molecular Biology ; University of Gothenburg ; Göteborg , Sweden
| |
Collapse
|
33
|
McLuskey K, Mottram J. Comparative structural analysis of the caspase family with other clan CD cysteine peptidases. Biochem J 2015; 466:219-32. [PMID: 25697094 PMCID: PMC4357240 DOI: 10.1042/bj20141324] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/19/2014] [Accepted: 12/08/2014] [Indexed: 11/29/2022]
Abstract
Clan CD forms a structural group of cysteine peptidases, containing seven individual families and two subfamilies of structurally related enzymes. Historically, it is most notable for containing the mammalian caspases, on which the structures of the clan were founded. Interestingly, the caspase family is split into two subfamilies: the caspases, and a second subfamily containing both the paracaspases and the metacaspases. Structural data are now available for both the paracaspases and the metacaspases, allowing a comprehensive structural analysis of the entire caspase family. In addition, a relative plethora of structural data has recently become available for many of the other families in the clan, allowing both the structures and the structure-function relationships of clan CD to be fully explored. The present review compares the enzymes in the caspase subfamilies with each other, together with a comprehensive comparison of all the structural families in clan CD. This reveals a diverse group of structures with highly conserved structural elements that provide the peptidases with a variety of substrate specificities and activation mechanisms. It also reveals conserved structural elements involved in substrate binding, and potential autoinhibitory functions, throughout the clan, and confirms that the metacaspases are structurally diverse from the caspases (and paracaspases), suggesting that they should form a distinct family of clan CD peptidases.
Collapse
Key Words
- caspase
- clan cd
- crystallography
- metacaspase
- peptidase
- protein structure
- ap, activation peptide
- card, caspase recruitment domain
- chf, caspase/haemoglobinase fold
- cpd, cysteine peptidase domain
- csd, c-terminal subdomain
- dd, death domain
- ded, death effector domain
- insp6, myo-inositol hexakisphosphate
- lsam, legumain stabilization and activity modulation
- lsd1, lesion-simulating disease 1
- malt1, mucosa-associated lymphoid tissue translocation protein 1
- martx, multi-functional, autoprocessing repeat in toxin
- rmsd, root-mean-square deviation
- sse, secondary structural element
- xiap, x-linked inhibitor of apoptosis
- z-vrpr-fmk, benzoxycarbonyl-val-arg-pro-arg-fluoromethylketone
Collapse
Affiliation(s)
- Karen McLuskey
- *Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Jeremy C. Mottram
- *Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
34
|
Abstract
Recent reports suggest that the yeast Saccharomyces cerevisiae caspase‐related metacaspase, Mca1, is required for cell‐autonomous cytoprotective functions that slow cellular aging. Because the Mca1 protease has previously been suggested to be responsible for programmed cell death (PCD) upon stress and aging, these reports raise the question of how the opposing roles of Mca1 as a protector and executioner are regulated. One reconciling perspective could be that executioner activation may be restricted to situations where the death of part of the population would be beneficial, for example during colony growth or adaptation into specialized survival forms. Another possibility is that metacaspases primarily harbor beneficial functions and that the increased survival observed upon metacaspase removal is due to compensatory responses. Herein, we summarize data on the role of Mca1 in cell death and survival and approach the question of how a metacaspase involved in protein quality control may act as killer protein.
Collapse
Affiliation(s)
- Sandra Malmgren Hill
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | | |
Collapse
|
35
|
Léger T, Garcia C, Ounissi M, Lelandais G, Camadro JM. The metacaspase (Mca1p) has a dual role in farnesol-induced apoptosis in Candida albicans. Mol Cell Proteomics 2014; 14:93-108. [PMID: 25348831 DOI: 10.1074/mcp.m114.041210] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Manipulating the apoptotic response of Candida albicans may help in the control of this opportunistic pathogen. The metacaspase Mca1p has been described as a key protease for apoptosis in C. albicans but little is known about its cleavage specificity and substrates. We therefore initiated a series of studies to describe its function. We used a strain disrupted for the MCA1 gene (mca1Δ/Δ) and compared its proteome to that of a wild-type isogenic strain, in the presence and absence of a known inducer of apoptosis, the quorum-sensing molecule farnesol. Label-free and TMT labeling quantitative proteomic analyses showed that both mca1 disruption and farnesol treatment significantly affected the proteome of the cells. The combination of both conditions led to an unexpected biological response: the strong overexpression of proteins implicated in the general stress. We studied sites cleaved by Mca1p using native peptidomic techniques, and a bottom-up approach involving GluC endoprotease: there appeared to be a "K/R" substrate specificity in P1 and a "D/E" specificity in P2. We also found 77 potential substrates of Mca1p, 13 of which validated using the most stringent filters, implicated in protein folding, protein aggregate resolubilization, glycolysis, and a number of mitochondrial functions. An immunoblot assay confirmed the cleavage of Ssb1p, a member of the HSP70 family of heat-shock proteins, in conditions where the metacaspase is activated. These various results indicate that Mca1p is involved in a limited and specific proteolysis program triggered by apoptosis. One of the main functions of Mca1p appears to be the degradation of several major heat-shock proteins, thereby contributing to weakening cellular defenses and amplifying the cell death process. Finally, Mca1p appears to contribute significantly to the control of mitochondria biogenesis and degradation. Consequently, Mca1p may be a link between the extrinsic and the intrinsic programmed cell death pathways in C. albicans.
Collapse
Affiliation(s)
- Thibaut Léger
- From the ‡Mass spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Camille Garcia
- From the ‡Mass spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Marwa Ounissi
- From the ‡Mass spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Gaëlle Lelandais
- §Mitochondria, Metals and Oxidative Stress group, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Jean-Michel Camadro
- From the ‡Mass spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France; §Mitochondria, Metals and Oxidative Stress group, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| |
Collapse
|
36
|
Hill SM, Hao X, Liu B, Nyström T. Life-span extension by a metacaspase in the yeast Saccharomyces cerevisiae. Science 2014; 344:1389-92. [PMID: 24855027 DOI: 10.1126/science.1252634] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Single-cell species harbor ancestral structural homologs of caspase proteases, although the evolutionary benefit of such apoptosis-related proteins in unicellular organisms is unclear. Here, we found that the yeast metacaspase Mca1 is recruited to the insoluble protein deposit (IPOD) and juxtanuclear quality-control compartment (JUNQ) during aging and proteostatic stress. Elevating MCA1 expression counteracted accumulation of unfolded proteins and aggregates and extended life span in a heat shock protein Hsp104 disaggregase- and proteasome-dependent manner. Consistent with a role in protein quality control, genetic interaction analysis revealed that MCA1 buffers against deficiencies in the Hsp40 chaperone YDJ1 in a caspase cysteine-dependent manner. Life-span extension and aggregate management by Mca1 was only partly dependent on its conserved catalytic cysteine, which suggests that Mca1 harbors both caspase-dependent and independent functions related to life-span control.
Collapse
Affiliation(s)
- Sandra Malmgren Hill
- Department of Chemistry and Molecular Biology (CMB), University of Gothenburg, Medicinaregatan 9C, S-413 90 Göteborg, Sweden
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology (CMB), University of Gothenburg, Medicinaregatan 9C, S-413 90 Göteborg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology (CMB), University of Gothenburg, Medicinaregatan 9C, S-413 90 Göteborg, Sweden.
| | - Thomas Nyström
- Department of Chemistry and Molecular Biology (CMB), University of Gothenburg, Medicinaregatan 9C, S-413 90 Göteborg, Sweden.
| |
Collapse
|
37
|
Coll NS, Smidler A, Puigvert M, Popa C, Valls M, Dangl JL. The plant metacaspase AtMC1 in pathogen-triggered programmed cell death and aging: functional linkage with autophagy. Cell Death Differ 2014; 21:1399-408. [PMID: 24786830 DOI: 10.1038/cdd.2014.50] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 01/01/2023] Open
Abstract
Autophagy is a major nutrient recycling mechanism in plants. However, its functional connection with programmed cell death (PCD) is a topic of active debate and remains not well understood. Our previous studies established the plant metacaspase AtMC1 as a positive regulator of pathogen-triggered PCD. Here, we explored the linkage between plant autophagy and AtMC1 function in the context of pathogen-triggered PCD and aging. We observed that autophagy acts as a positive regulator of pathogen-triggered PCD in a parallel pathway to AtMC1. In addition, we unveiled an additional, pro-survival homeostatic function of AtMC1 in aging plants that acts in parallel to a similar pro-survival function of autophagy. This novel pro-survival role of AtMC1 may be functionally related to its prodomain-mediated aggregate localization and potential clearance, in agreement with recent findings using the single budding yeast metacaspase YCA1. We propose a unifying model whereby autophagy and AtMC1 are part of parallel pathways, both positively regulating HR cell death in young plants, when these functions are not masked by the cumulative stresses of aging, and negatively regulating senescence in older plants.
Collapse
Affiliation(s)
- N S Coll
- 1] Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA [2] Centre for Research in Agricultural Genomics, Barcelona, Spain
| | - A Smidler
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - M Puigvert
- Centre for Research in Agricultural Genomics, Barcelona, Spain
| | - C Popa
- Centre for Research in Agricultural Genomics, Barcelona, Spain
| | - M Valls
- 1] Centre for Research in Agricultural Genomics, Barcelona, Spain [2] Department of Genetics, Universitat de Barcelona, Barcelona, Spain
| | - J L Dangl
- 1] Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA [2] Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC 27599, USA [3] Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA [4] Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA [5] Carolina Center for Genome Sciences University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
38
|
Shrestha A, Lee REC, Megeney LA. Monitoring the proteostasis function of the Saccharomyces cerevisiae metacaspase Yca1. Methods Mol Biol 2014; 1133:223-35. [PMID: 24567105 DOI: 10.1007/978-1-4939-0357-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The functional versatility of metacaspase proteases has been established by reports of their involvement in non-apoptotic cellular processes, in addition to their canonical role in apoptosis/programmed cell death. While the budding yeast metacaspase Yca1 has been well characterized for its role in cell death regulation, more recent examinations suggest that the protease may be involved in key processes that increase survival and fitness. More specifically, examinations suggest that Yca1 is central to maintaining cellular proteostasis as it interacts with major components involved in protein biosynthesis and functions to limit aggregate deposition. Here, we describe the methods utilized to analyze the role Yca1 in proteostasis.
Collapse
Affiliation(s)
- Amit Shrestha
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
39
|
Eid R, Sheibani S, Gharib N, Lapointe JF, Horowitz A, Vali H, Mandato CA, Greenwood MT. Human ribosomal protein L9 is a Bax suppressor that promotes cell survival in yeast. FEMS Yeast Res 2013; 14:495-507. [DOI: 10.1111/1567-1364.12121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/21/2013] [Accepted: 10/24/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
- Rawan Eid
- Department of Chemistry and Chemical Engineering; Royal Military College; Kingston ON Canada
| | - Sara Sheibani
- Department of Chemistry and Chemical Engineering; Royal Military College; Kingston ON Canada
| | - Nada Gharib
- Department of Chemistry and Chemical Engineering; Royal Military College; Kingston ON Canada
| | - Jason F. Lapointe
- Department of Anatomy and Cell Biology; McGill University; Montreal QC Canada
| | - Avital Horowitz
- Department of Chemistry and Chemical Engineering; Royal Military College; Kingston ON Canada
- Department of Anatomy and Cell Biology; McGill University; Montreal QC Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology; McGill University; Montreal QC Canada
| | - Craig A. Mandato
- Department of Anatomy and Cell Biology; McGill University; Montreal QC Canada
| | - Michael T. Greenwood
- Department of Chemistry and Chemical Engineering; Royal Military College; Kingston ON Canada
| |
Collapse
|
40
|
Dick SA, Megeney LA. Cell death proteins: an evolutionary role in cellular adaptation before the advent of apoptosis. Bioessays 2013; 35:974-83. [PMID: 23943356 DOI: 10.1002/bies.201300052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Programmed cell death (PCD) or apoptosis is a broadly conserved phenomenon in metazoans, whereby activation of canonical signal pathways induces an ordered dismantling and death of a cell. Paradoxically, the constituent proteins and pathways of PCD (most notably the metacaspase/caspase protease mediated signal pathways) have been demonstrated to retain non-death functions across all phyla including yeast, nematodes, drosophila, and mammals. The ancient conservation of both death and non-death functions of PCD proteins raises an interesting evolutionary conundrum: was the primordial intent of these factors to induce cell death or to regulate other cellular adaptations? Here, we propose the hypothesis that apoptotic behavior of PCD proteins evolved or were co-opted from core non-death functions.
Collapse
Affiliation(s)
- Sarah A Dick
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
41
|
Tsiatsiani L, Timmerman E, De Bock PJ, Vercammen D, Stael S, van de Cotte B, Staes A, Goethals M, Beunens T, Van Damme P, Gevaert K, Van Breusegem F. The Arabidopsis metacaspase9 degradome. THE PLANT CELL 2013; 25:2831-47. [PMID: 23964026 PMCID: PMC3784583 DOI: 10.1105/tpc.113.115287] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Metacaspases are distant relatives of the metazoan caspases, found in plants, fungi, and protists. However, in contrast with caspases, information about the physiological substrates of metacaspases is still scarce. By means of N-terminal combined fractional diagonal chromatography, the physiological substrates of metacaspase9 (MC9; AT5G04200) were identified in young seedlings of Arabidopsis thaliana on the proteome-wide level, providing additional insight into MC9 cleavage specificity and revealing a previously unknown preference for acidic residues at the substrate prime site position P1'. The functionalities of the identified MC9 substrates hinted at metacaspase functions other than those related to cell death. These results allowed us to resolve the substrate specificity of MC9 in more detail and indicated that the activity of phosphoenolpyruvate carboxykinase 1 (AT4G37870), a key enzyme in gluconeogenesis, is enhanced upon MC9-dependent proteolysis.
Collapse
Affiliation(s)
- Liana Tsiatsiani
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Evy Timmerman
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Pieter-Jan De Bock
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Dominique Vercammen
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Simon Stael
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Brigitte van de Cotte
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - An Staes
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Marc Goethals
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Tine Beunens
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Petra Van Damme
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Address correspondence to
| |
Collapse
|
42
|
Giannattasio S, Guaragnella N, Ždralević M, Marra E. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid. Front Microbiol 2013; 4:33. [PMID: 23430312 PMCID: PMC3576806 DOI: 10.3389/fmicb.2013.00033] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/05/2013] [Indexed: 01/07/2023] Open
Abstract
Beyond its classical biotechnological applications such as food and beverage production or as a cell factory, the yeast Saccharomyces cerevisiae is a valuable model organism to study fundamental mechanisms of cell response to stressful environmental changes. Acetic acid is a physiological product of yeast fermentation and it is a well-known food preservative due to its antimicrobial action. Acetic acid has recently been shown to cause yeast cell death and aging. Here we shall focus on the molecular mechanisms of S. cerevisiae stress adaptation and programmed cell death in response to acetic acid. We shall elaborate on the intracellular signaling pathways involved in the cross-talk of pro-survival and pro-death pathways underlying the importance of understanding fundamental aspects of yeast cell homeostasis to improve the performance of a given yeast strain in biotechnological applications.
Collapse
Affiliation(s)
- Sergio Giannattasio
- Istituto di Biomembrane e Bioenergetica, Consiglio Nazionale delle RicercheBari, Italy
| | | | | | | |
Collapse
|
43
|
Abstract
Metacaspases are evolutionarily distant homologs of caspases that are found outside the metazoan and are known to have key roles in programmed cell death (PCD). Two types of metacaspases (types I and II) have been defined in plants based on their domain structures; these have similarities to metazoan ‘initiator' and ‘executioner' caspases. However, we know little about metacaspases in unicellular organisms and even less about their roles in cell death. We identified a novel group of metacaspases in sequenced phytoplanktonic protists that show domain architectures distinct from either type I or II enzymes; we designate them as type III. Type III metacaspases exhibit a rearrangement of domain structures between N- and C-terminus. In addition, we found a group of metacaspase-like proteases in phytoplankton that show sequence homology with other metacaspases, but defy classification in conventional schemes. These metacaspase-like proteases exist in bacteria alongside a variant of type I metacaspases and we propose these bacterial metacaspases are the origins of eukaryotic metacaspases. Type II and III metacaspases were not detected in bacteria and they might be variants of bacterial type I metacaspases that evolved in plants and phytoplanktonic protists, respectively, during the establishment of plastids through the primary and secondary endosymbiotic events. A complete absence of metacaspases in protists that lost plastids, such as oömycetes and ciliates indicates the gene loss during the plastid-to-nucleus gene transfer. Taken together, our findings suggest endosymbiotic gene transfer (EGT) is a key mechanism resulting in the evolutionary diversity of cell death proteases.
Collapse
|
44
|
Shrestha A, Puente LG, Brunette S, Megeney LA. The role of Yca1 in proteostasis. Yca1 regulates the composition of the insoluble proteome. J Proteomics 2013; 81:24-30. [PMID: 23376483 DOI: 10.1016/j.jprot.2013.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/28/2012] [Accepted: 01/03/2013] [Indexed: 12/31/2022]
Abstract
Proteostasis, the process of balancing protein production with protein degradation is vital to normal cell function. Defects within the mechanisms that control proteostasis lead to increased content of a specialized insoluble protein fraction that forms dense aggregates within the cell. We have previously implicated the Saccharomyces cerevisiae metacaspase Yca1 as an active participant in maintaining proteostasis, whereby Yca1 acts to limit aggregate content. Here, we further characterized the proteostasis role of Yca1 by conducting proteomic analysis of the insoluble protein fraction in wildtype and Yca1 knockout cells, under normal and heat stressed conditions. Our findings suggest that the composition of insoluble protein fraction is non-specific and comprises a wide array of protein species rather than a limited repertoire of aggregate susceptible proteins or peptides. Interestingly, the loss of Yca1 led to a significant decrease of proteins that control ribosome biogenesis and protein synthesis within the insoluble fraction, indicating that the cell may invoke a compensatory mechanism to limit protein production during stress, a feature dependent on Yca1 activity. Finally, we noted that protein degradation factors such as Cdc48 co-localize with Yca1 to the insoluble fraction, supporting the hypothesis that Yca1 may act primarily to dissolve or reduce accumulated aggregates. This article is part of a Special Issue entitled: From protein structures to clinical applications.
Collapse
Affiliation(s)
- Amit Shrestha
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital, Ottawa, Ontario, Canada, K1H8L6
| | | | | | | |
Collapse
|
45
|
Kajiwara K, Muneoka T, Watanabe Y, Karashima T, Kitagaki H, Funato K. Perturbation of sphingolipid metabolism induces endoplasmic reticulum stress-mediated mitochondrial apoptosis in budding yeast. Mol Microbiol 2012; 86:1246-61. [PMID: 23062268 DOI: 10.1111/mmi.12056] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2012] [Indexed: 12/26/2022]
Abstract
Sphingolipids are a class of membrane lipids conserved from yeast to mammals which determine whether a cell dies or survives. Perturbations in sphingolipid metabolism cause apoptotic cell death. Recent studies indicate that reduced sphingolipid levels trigger the cell death, but little is known about the mechanisms. In the budding yeast Saccharomyces cerevisiae, we show that reduction in complex sphingolipid levels causes loss of viability, most likely due to the induction of mitochondria-dependent apoptotic cell death pathway, accompanied by changes in mitochondrial and endoplasmic reticulum morphology and endoplasmic reticulum stress. Elevated cytosolic free calcium is required for the loss of viability. These results indicate that complex sphingolipids are essential for maintaining endoplasmic reticulum homeostasis and suggest that perturbation in complex sphingolipid levels activates an endoplasmic reticulum stress-mediated and calcium-dependent pathway to propagate apoptotic signals to the mitochondria.
Collapse
Affiliation(s)
- Kentaro Kajiwara
- Department of Bioresource Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Castanys-Muñoz E, Brown E, Coombs GH, Mottram JC. Leishmania mexicana metacaspase is a negative regulator of amastigote proliferation in mammalian cells. Cell Death Dis 2012; 3:e385. [PMID: 22951982 PMCID: PMC3461358 DOI: 10.1038/cddis.2012.113] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metacaspases (MCAs) are caspase family cysteine peptidases that have been implicated in cell death processes in plants, fungi and protozoa. MCAs have also been suggested to be involved in cell cycle control, differentiation and clearance of aggregates; they are virulence factors. Dissecting the function of MCAs has been complicated by the presence in many organisms of multiple MCA genes or limitations on genetic manipulation. We describe here the creation of a MCA gene-deletion mutant (Δmca) in the protozoan parasite Leishmania mexicana, which has allowed us to dissect the role of the parasite's single MCA gene in cell growth and cell death. Δmca parasites are viable as promastigotes, and differentiate normally to the amastigote form both in in vitro macrophages infection and in mice. Δmca promastigotes respond to cell death inducers such as the drug miltefosine and H2O2 similarly to wild-type (WT) promastigotes, suggesting that MCAs do not have a caspase-like role in execution of L. mexicana cell death. Δmca amastigotes replicated significantly faster than WT amastigotes in macrophages and in mice, but not as axenic culture in vitro. We propose that the Leishmania MCA acts as a negative regulator of amastigote proliferation, thereby acting to balance cell growth and cell death.
Collapse
Affiliation(s)
- E Castanys-Muñoz
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | | | | | | |
Collapse
|
47
|
Shrestha A, Megeney LA. The non-death role of metacaspase proteases. Front Oncol 2012; 2:78. [PMID: 22837984 PMCID: PMC3402860 DOI: 10.3389/fonc.2012.00078] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/05/2012] [Indexed: 11/24/2022] Open
Abstract
The activation of caspase proteases and the targeting of protein substrates act as key steps in the engagement and conduct of apoptosis/programmed cell death. However, the discovery of caspase involvement in diverse non-apoptotic cellular functions strongly suggests that these proteins may have evolved from a core behavior unrelated to the induction of cell death. The presence of similar proteases, termed metacaspases, in single cell organisms supports the contention that such proteins may have co-evolved or derived from a critical non-death function. Indeed, the benefit(s) for single cell life forms to retain proteins solely dedicated to self destruction would be countered by a strong selection pressure to curb or eliminate such processes. Examination of metacaspase biology provides evidence that these ancient protease forerunners of the caspase family also retain versatility in function, i.e., death and non-death cell functions. Here, we provide a critical review that highlights the non-death roles of metacaspases that have been described thus far, and the impact that these observations have for our understanding of the evolution and cellular utility of this protease family.
Collapse
Affiliation(s)
- Amit Shrestha
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
| | | |
Collapse
|
48
|
Abstract
Yca1, the only metacaspase in Saccharomyces cerevisiae, is thought to be a clan CD cysteine protease that includes the caspase subfamily. Although yeast is a single cell eukaryote, it can undergo a cell death process reminiscent of apoptosis. Yca1 has been reported to play an important role in the regulation of such apoptotic process. However, the structure and functional mechanism of Yca1 remain largely enigmatic. In this study, we report the crystal structure of the Yca1 metacaspase at 1.7 Å resolution, confirming a caspase-like fold. In sharp contrast to canonical caspases, however, Yca1 exists as a monomer both in solution and in the crystals. Canonical caspase contains six β-strands, with strand β6 pairing up with β6 of another caspase molecule to form a homodimerization interface. In Yca1, an extra pair of antiparallel β-strands forms a continuous β-sheet with the six caspase-common β-strands, blocking potential dimerization. Yca1 was reported to undergo autocatalytic processing in yeast; overexpression in bacteria also led to autoprocessing of Yca1 into two fragments. Unexpectedly, we found that both the autocatalytic processing and the proteolytic activity of Yca1 are greatly facilitated by the presence of calcium (Ca(2+)), but not other divalent cations. Our structural and biochemical characterization identifies Yca1 as a Ca(2+)-activated cysteine protease that may cleave specific substrates during stress response in yeast.
Collapse
Affiliation(s)
- Ada Hang-Heng Wong
- Ministry of Education Protein Science Laboratory, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | |
Collapse
|
49
|
Abstract
Metacaspases are distantly related caspase-family cysteine peptidases implicated in programmed cell death in plants and lower eukaryotes. They differ significantly from caspases because they are calcium-activated, arginine-specific peptidases that do not require processing or dimerization for activity. To elucidate the basis of these differences and to determine the impact they might have on the control of cell death pathways in lower eukaryotes, the previously undescribed crystal structure of a metacaspase, an inactive mutant of metacaspase 2 (MCA2) from Trypanosoma brucei, has been determined to a resolution of 1.4 Å. The structure comprises a core caspase fold, but with an unusual eight-stranded β-sheet that stabilizes the protein as a monomer. Essential aspartic acid residues, in the predicted S1 binding pocket, delineate the arginine-specific substrate specificity. In addition, MCA2 possesses an unusual N terminus, which encircles the protein and traverses the catalytic dyad, with Y31 acting as a gatekeeper residue. The calcium-binding site is defined by samarium coordinated by four aspartic acid residues, whereas calcium binding itself induces an allosteric conformational change that could stabilize the active site in a fashion analogous to subunit processing in caspases. Collectively, these data give insights into the mechanistic basis of substrate specificity and mode of activation of MCA2 and provide a detailed framework for understanding the role of metacaspases in cell death pathways of lower eukaryotes.
Collapse
|
50
|
Das D, De A, Dutta S, Biswas R, Boujedaini N, Khuda-Bukhsh AR. Potentized homeopathic drug Arsenicum Album 30C positively modulates protein biomarkers and gene expressions in Saccharomyces cerevisae exposed to arsenate. ACTA ACUST UNITED AC 2012; 9:752-60. [PMID: 21749826 DOI: 10.3736/jcim20110709] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This study examines if homeopathic drug Arsenicum Album 30C (Ars Alb 30C) can elicit ameliorative responses in yeast (Saccharomyces cerevisiae) exposed to arsenate. METHODS The yeast S. cerevisiae 699 was cultured in a standard yeast extract peptone dextrose broth medium. It was exposed to the final concentration of 0.15 mmol/L arsenate for two intervals, 1 h and 2 h, respectively. The cell viability was determined along with the assessment of several toxicity biomarkers such as catalase (CAT), superoxide dismutase (SOD), total thiol (GSH) and glucose-6-phosphate dehydrogenase (G6PDH), lipid peroxidation, protein carbonylation and DNA damage. Reactive oxygen species (ROS) accumulation, expressions of relevant stress transcription activators like Yap-1 and Msn 2, and mRNA expression of yeast caspase-1 (Yca-1) were also measured. RESULTS Treatment of arsenate increased lipid peroxidation, protein carbonylation, DNA damage, ROS accumulation and expressions of Yap-1, Msn 2 and Yca-1 and decreased GSH, G6PDH, CAT and SOD. Ars Alb 30C administration decreased lipid peroxidation, protein carbonylation, DNA damage, ROS formation and Msn 2 and Yca-1 expressions and increased cell viability, GSH, G6PDH, CAT and SOD significantly (P<0.05), except for a slight increase in Yap-1 expression. CONCLUSION Ars Alb 30C triggers ameliorative responses in S. cerevisiae exposed to arsenate.
Collapse
Affiliation(s)
- Durba Das
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, India
| | | | | | | | | | | |
Collapse
|