1
|
Sanin V, Schmieder RS, Koenig W, Li L, Schunkert H, Chen Z. [Role of genetics in precision medicine of coronary artery disease]. Herz 2025; 50:79-87. [PMID: 40019575 DOI: 10.1007/s00059-025-05297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 03/01/2025]
Abstract
Coronary artery disease (CAD) develops multifactorially through an interplay of lifestyle, environmental and genetic factors. Smoking, hypertension, hyperlipidemia, obesity and diabetes mellitus are modifiable risk factors for CAD. In addition, both rare mutations and multiple frequently occurring genetic variants can cause CAD, whereby the heritability of CAD is ca. 50%. Genetic diagnostics enable the early identification of affected children and adults and, based on a greatly increased cardiovascular risk, initiation of preventive treatment. In recent years, genome-wide association studies have identified hundreds of significant variants that together greatly increase the risk of CAD. In the general population the many frequently occurring risk alleles in combination with modifiable risk factors result in a widespread genetic predisposition to CAD. Their relevance arises in the context of an integrative risk assessment, whereby the additional genetic risk can be calculated by polygenic risk scores (PRS), which provide a hazard ratio that can be multiplied with the clinically determined risk. This overview article discusses the diagnostic principles of rare and frequent genetic causes of CAD as well as their implications in the precision treatment of the disease.
Collapse
Affiliation(s)
- V Sanin
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Universitätsklinikum der Technischen Universität München, Lazarettstr. 36, 80636, München, Deutschland
- Deutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK) e. V. (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, München, Deutschland
| | - R S Schmieder
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Universitätsklinikum der Technischen Universität München, Lazarettstr. 36, 80636, München, Deutschland
| | - W Koenig
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Universitätsklinikum der Technischen Universität München, Lazarettstr. 36, 80636, München, Deutschland
- Deutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK) e. V. (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, München, Deutschland
| | - L Li
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Universitätsklinikum der Technischen Universität München, Lazarettstr. 36, 80636, München, Deutschland
| | - H Schunkert
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Universitätsklinikum der Technischen Universität München, Lazarettstr. 36, 80636, München, Deutschland.
- Deutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK) e. V. (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, München, Deutschland.
| | - Z Chen
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Universitätsklinikum der Technischen Universität München, Lazarettstr. 36, 80636, München, Deutschland
- Deutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK) e. V. (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, München, Deutschland
| |
Collapse
|
2
|
Barreto P, Farinha C, Coimbra R, Cachulo ML, Melo JB, Lechanteur Y, Hoyng CB, Cunha-Vaz J, Silva R. Unveiling Statins and Genetics in Age-Related Macular Degeneration: The Coimbra Eye Study-Report 9. Invest Ophthalmol Vis Sci 2024; 65:38. [PMID: 38935028 PMCID: PMC11216251 DOI: 10.1167/iovs.65.6.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Purpose To assess the association of age-related macular degeneration (AMD) progression and statins, connected with AMD genetic risk, and if there is an interplay between statins and genetics. Methods In this analysis, 682 subjects made two visits (6.5-year follow-up) of the Coimbra Eye Study. Subjects who started taking statins at any time point between the two visits were considered. Progressors were defined as not having AMD at baseline and having any AMD at follow-up. Genetic risk scores (GRSs) were calculated individually with 52 independent variants associated with AMD. Time to progression was estimated using unadjusted Kaplan-Meier curves. An extended Cox model was used for the association between statins and GRS with the risk for AMD progression. Multiplicative and additive interactions were assessed. Results Median survival time was 7.50 years for subjects not taking statins and 7.62 for subjects taking statins (P < 0.001). Statin intake reduced the risk for progression to AMD in 48%, adjusting for age, sex, body mass index, smoking, and diabetes (model 1) and GRS (model 2). The combined effects of not taking statins and having high GRS increased the progression risk fourfold compared to taking statins and having low GRS (hazard ratio [HR] = 4.25; 95% confidence interval [CI], 1.62-11.16; P = 0.003). For subjects not taking statins, an increased risk of progression was found for those subjects with high GRS compared to subjects with low GRS (HR = 1.80; 95% CI, 1.13-2.85; P = 0.013). No statistically significant multiplicative or additive interactions were found. Conclusions Statins seem to be protective against AMD progression, and genetics may play a role in treatment response.
Collapse
Affiliation(s)
- Patrícia Barreto
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Cláudia Farinha
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Ophthalmology Department, Coimbra Hospital and University Center (CHUC), Coimbra, Portugal
- Faculty of Medicine, Clinical Academic Center of Coimbra (CACC), University of Coimbra, Portugal
| | - Rita Coimbra
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
- Department of Mathematics, University of Aveiro, Aveiro, Portugal
| | - Maria Luz Cachulo
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
- Ophthalmology Department, Coimbra Hospital and University Center (CHUC), Coimbra, Portugal
- Faculty of Medicine, Clinical Academic Center of Coimbra (CACC), University of Coimbra, Portugal
| | - Joana Barbosa Melo
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Cytogenetics and Genomics Laboratory, Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Portugal
- Faculty of Medicine, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
| | - Yara Lechanteur
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carel B. Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - José Cunha-Vaz
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - Rufino Silva
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Ophthalmology Department, Coimbra Hospital and University Center (CHUC), Coimbra, Portugal
- Faculty of Medicine, Clinical Academic Center of Coimbra (CACC), University of Coimbra, Portugal
| |
Collapse
|
3
|
Tannu M, Hess CN, Gutierrez JA, Lopes R, Swaminathan RV, Altin SE, Rao SV. Polyvascular Disease: A Narrative Review of Risk Factors, Clinical Outcomes and Treatment. Curr Cardiol Rep 2024; 26:505-520. [PMID: 38743352 DOI: 10.1007/s11886-024-02063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE OF REVIEW Polyvascular disease has a significant global burden and is associated with increased risk of major adverse cardiac events with each additional vascular territory involved. The purpose of this review is to highlight the risk factors, associated outcomes, emerging genetic markers, and evidence for screening and treatment of polyvascular disease. RECENT FINDINGS Polyvascular disease is the presence of atherosclerosis in two or more vascular beds. It has a significant global burden, with a prevalence of 30-70% in patients with known atherosclerosis. Patients with polyvascular disease experience elevated rates of cardiovascular death, myocardial infarction and stroke, especially among high-risk subgroups like those with type 2 diabetes mellitus and there is a step-wise increased risk of adverse outcomes with each additional vascular territory involved. Genetic analyses demonstrate that some individuals may carry a genetic predisposition, while others exhibit higher levels of atherogenic lipoproteins and inflammatory markers. Routine screening for asymptomatic disease is not currently recommended by major cardiovascular societies unless patients are high-risk. While there are no established protocols for escalating treatment, existing guidelines advocate for lipid-lowering therapy. Additionally, recent studies have demonstrated benefit from antithrombotic agents, such as P2Y12 inhibitors and low-dose anticoagulation, but the optimal timing and dosage of these agents has not been established, and the ischemic benefit must be balanced against the increased risk of bleeding in the polyvascular population. Due to the high prevalence and risks associated with polyvascular disease, early identification and treatment intensification are crucial to reduce disease progression. Future research is needed to develop screening protocols and determine the optimal timing and dosing of therapy to prevent ischemic events.
Collapse
Affiliation(s)
- Manasi Tannu
- Division of Cardiology, Duke University Health System, Durham, NC, USA.
- Duke Clinical Research Institute, Durham, NC, USA.
| | - Connie N Hess
- University of Colorado, School of Medicine and CPC Clinical Research, Aurora, CO, USA
| | | | - Renato Lopes
- Division of Cardiology, Duke University Health System, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
| | - Rajesh V Swaminathan
- Division of Cardiology, Duke University Health System, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
| | | | - Sunil V Rao
- NYU Langone Health System, New York, NY, USA
| |
Collapse
|
4
|
Kazemi Asl S, Rahimzadegan M, Kazemi Asl A. Pharmacogenomics-based systematic review of coronary artery disease based on personalized medicine procedure. Heliyon 2024; 10:e28983. [PMID: 38601677 PMCID: PMC11004819 DOI: 10.1016/j.heliyon.2024.e28983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Background Coronary artery disease (CAD) is the most common reason for mortality and disability-adjusted life years (DALYs) lost globally. This study aimed to suggest a new gene list for the treatment of CAD by a systematic review of bioinformatics analyses of pharmacogenomics impacts of potential genes and variants. Methods PubMed search was filtered by the title including Coronary Artery Disease during 2020-2023. To find the genes with pharmacogenetic impact on the CAD, additional filtrations were considered according to the variant annotations. Protein-Protein Interactions (PPIs), Gene-miRNA Interactions (GMIs), Protein-Drug Interactions (PDIs), and variant annotation assessments (VAAs) performed by STRING-MODEL (ver. 12), Cytoscape (ver. 3.10), miRTargetLink.2., NetworkAnalyst (ver 0.3.0), and PharmGKB. Results Results revealed 5618 publications, 1290 papers were qualified, and finally, 650 papers were included. 4608 protein-coding genes were extracted, among them, 1432 unique genes were distinguished and 530 evidence-based repeated genes remained. 71 genes showed a pharmacogenetics-related variant annotation in at least (entirely 6331 annotations). Variant annotation assessment (VAA) showed 532 potential variants for the final report, and finally, the concluding PGs list represented 175 variants. Based on the function and MAF, 57 nonsynonymous variants of 29 Pharmacogenomics-related genes were associated with CAD. Conclusion Conclusively, evaluating circulating miR33a in individuals' plasma with CAD, and genotyping of rs2230806, rs2230808, rs2487032, rs12003906, rs2472507, rs2515629, and rs4149297 (ABCA1 variants) lead to precisely prescribing of well-known drugs. Also, the findings of this review can be used in both whole-genome sequencing (WGS) and whole-exome sequencing (WES) analysis in the prognosis and diagnosis of CAD.
Collapse
Affiliation(s)
- Siamak Kazemi Asl
- Deputy of Education, Ministry of Health and Medical Education, Tehran, Iran
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Kazemi Asl
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Zhao HL, You Y, Tian Y, Wang L, An Y, Zhang G, Shu C, Yu M, Zhu Y, Li Q, Zhang Y, Sun N, Hu S, Liu G. Impact of LDLR polymorphisms on lipid levels and atorvastatin's efficacy in a northern Chinese adult Han cohort with dyslipidemia. Lipids Health Dis 2024; 23:106. [PMID: 38616260 PMCID: PMC11016223 DOI: 10.1186/s12944-024-02101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/04/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Dyslipidemia, a significant risk factor for atherosclerotic cardiovascular disease (ASCVD), is influenced by genetic variations, particularly those in the low-density lipoprotein receptor (LDLR) gene. This study aimed to elucidate the effects of LDLR polymorphisms on baseline serum lipid levels and the therapeutic efficacy of atorvastatin in an adult Han population in northern China with dyslipidemia. METHODS In this study, 255 Han Chinese adults receiving atorvastatin therapy were examined and followed up. The 3' untranslated region (UTR) of the LDLR gene was sequenced to identify polymorphisms. The associations between gene polymorphisms and serum lipid levels, as well as changes in lipid levels after intervention, were evaluated using the Wilcoxon rank sum test, with a P < 0.05 indicating statistical significance. Assessment of linkage disequilibrium patterns and haplotype structures was conducted utilizing Haploview. RESULTS Eleven distinct polymorphisms at LDLR 3' UTR were identified. Seven polymorphisms (rs1433099, rs14158, rs2738466, rs5742911, rs17249057, rs55971831, and rs568219285) were correlated with the baseline serum lipid levels (P < 0.05). In particular, four polymorphisms (rs14158, rs2738466, rs5742911, and rs17249057) were in strong linkage disequilibrium (r2 = 1), and patients with the AGGC haplotype had higher TC and LDL-C levels at baseline. Three polymorphisms (rs1433099, rs2738467, and rs7254521) were correlated with the therapeutic efficacy of atorvastatin (P < 0.05). Furthermore, carriers of the rs2738467 T allele demonstrated a significantly greater reduction in low-density lipoprotein cholesterol (LDL-C) levels post-atorvastatin treatment (P = 0.03), indicating a potentially crucial genetic influence on therapeutic outcomes. Two polymorphisms (rs751672818 and rs566918949) were neither correlated with the baseline serum lipid levels nor atorvastatin's efficacy. CONCLUSIONS This research outlined the complex genetic architecture surrounding LDLR 3' UTR polymorphisms and their role in lipid metabolism and the response to atorvastatin treatment in adult Han Chinese patients with dyslipidemia, highlighting the importance of genetic profiling in enhancing tailored therapeutic strategies. Furthermore, this investigation advocates for the integration of genetic testing into the management of dyslipidemia, paving the way for customized therapeutic approaches that could significantly improve patient care. TRIAL REGISTRATION This multicenter study was approved by the Ethics Committee of Xiangya Hospital Central South University (ethics number K22144). It was a general ethic. In addition, this study was approved by The First Hospital of Hebei Medical University (ethics number 20220418).
Collapse
Affiliation(s)
- Hong-Liang Zhao
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yang You
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Tian
- Beijing E-Seq Medical Technology Co. Ltd, Beijing, China
| | - Luyan Wang
- Institute of Hypertension, People's Hospital, Peking University, Beijing, China
| | - Yongqiang An
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Guoqiang Zhang
- Beijing E-Seq Medical Technology Co. Ltd, Beijing, China
| | - Chang Shu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Mingxin Yu
- Beijing E-Seq Medical Technology Co. Ltd, Beijing, China
| | - Yihua Zhu
- Beijing E-Seq Medical Technology Co. Ltd, Beijing, China
- College of Information Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Qian Li
- Beijing E-Seq Medical Technology Co. Ltd, Beijing, China
| | - Yanwei Zhang
- Beijing E-Seq Medical Technology Co. Ltd, Beijing, China
| | - Ningling Sun
- Institute of Hypertension, People's Hospital, Peking University, Beijing, China.
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
6
|
Pirillo A, Casula M, Catapano AL. European guidelines for the treatment of dyslipidaemias: New concepts and future challenges. Pharmacol Res 2023; 196:106936. [PMID: 37739143 DOI: 10.1016/j.phrs.2023.106936] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of mortality and morbidity worldwide. Low-density lipoprotein cholesterol (LDL-C) is one of the most important causal factors for ASCVD. Based on the evidence of the clinical benefits of lowering LDL-C, the current 2019 European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS) guidelines provide guidance for optimal management of people with dyslipidaemia. These guidelines include new and revised concepts, with a general tightening of LDL-C goals to be achieved, especially for patients at high and very high cardiovascular risk, based on the results of clinical trials of the recently approved drugs for the treatment of hypercholesterolaemia. However, some issues are still open for discussion. Among others, the concept of lifetime exposure to elevated LDL-C levels will probably drive the pharmacological approach and future guidelines. In addition, other factors such as non-HDL-C, apolipoprotein B, and lipoprotein(a) are becoming increasingly important in determining cardiovascular risk. Finally, there is the question of whether combination therapy should be used as the first step to maximise the effectiveness of the pharmacological approach, avoiding the stepwise approach, which is likely to have a detrimental effect on adherence. Given the ever-changing landscape and the availability of new drugs targeting other important lipids, future guidelines will need to consider all these issues.
Collapse
Affiliation(s)
- Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy
| | - Manuela Casula
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy
| | - Alberico L Catapano
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy.
| |
Collapse
|
7
|
Qureshi N, Woods B, Neves de Faria R, Saramago Goncalves P, Cox E, Leonardi Bee J, Condon L, Weng S, Akyea RK, Iyen B, Roderick P, Humphries SE, Rowlands W, Watson M, Haralambos K, Kenny R, Datta D, Miedzybrodzka Z, Byrne C, Kai J. Alternative cascade-testing protocols for identifying and managing patients with familial hypercholesterolaemia: systematic reviews, qualitative study and cost-effectiveness analysis. Health Technol Assess 2023; 27:1-140. [PMID: 37924278 PMCID: PMC10658348 DOI: 10.3310/ctmd0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023] Open
Abstract
Background Cascade testing the relatives of people with familial hypercholesterolaemia is an efficient approach to identifying familial hypercholesterolaemia. The cascade-testing protocol starts with identifying an index patient with familial hypercholesterolaemia, followed by one of three approaches to contact other relatives: indirect approach, whereby index patients contact their relatives; direct approach, whereby the specialist contacts the relatives; or a combination of both direct and indirect approaches. However, it is unclear which protocol may be most effective. Objectives The objectives were to determine the yield of cases from different cascade-testing protocols, treatment patterns, and short- and long-term outcomes for people with familial hypercholesterolaemia; to evaluate the cost-effectiveness of alternative protocols for familial hypercholesterolaemia cascade testing; and to qualitatively assess the acceptability of different cascade-testing protocols to individuals and families with familial hypercholesterolaemia, and to health-care providers. Design and methods This study comprised systematic reviews and analysis of three data sets: PASS (PASS Software, Rijswijk, the Netherlands) hospital familial hypercholesterolaemia databases, the Clinical Practice Research Datalink (CPRD)-Hospital Episode Statistics (HES) linked primary-secondary care data set, and a specialist familial hypercholesterolaemia register. Cost-effectiveness modelling, incorporating preceding analyses, was undertaken. Acceptability was examined in interviews with patients, relatives and health-care professionals. Result Systematic review of protocols: based on data from 4 of the 24 studies, the combined approach led to a slightly higher yield of relatives tested [40%, 95% confidence interval (CI) 37% to 42%] than the direct (33%, 95% CI 28% to 39%) or indirect approaches alone (34%, 95% CI 30% to 37%). The PASS databases identified that those contacted directly were more likely to complete cascade testing (p < 0.01); the CPRD-HES data set indicated that 70% did not achieve target treatment levels, and demonstrated increased cardiovascular disease risk among these individuals, compared with controls (hazard ratio 9.14, 95% CI 8.55 to 9.76). The specialist familial hypercholesterolaemia register confirmed excessive cardiovascular morbidity (standardised morbidity ratio 7.17, 95% CI 6.79 to 7.56). Cost-effectiveness modelling found a net health gain from diagnosis of -0.27 to 2.51 quality-adjusted life-years at the willingness-to-pay threshold of £15,000 per quality-adjusted life-year gained. The cost-effective protocols cascaded from genetically confirmed index cases by contacting first- and second-degree relatives simultaneously and directly. Interviews found a service-led direct-contact approach was more reliable, but combining direct and indirect approaches, guided by index patients and family relationships, may be more acceptable. Limitations Systematic reviews were not used in the economic analysis, as relevant studies were lacking or of poor quality. As only a proportion of those with primary care-coded familial hypercholesterolaemia are likely to actually have familial hypercholesterolaemia, CPRD analyses are likely to underestimate the true effect. The cost-effectiveness analysis required assumptions related to the long-term cardiovascular disease risk, the effect of treatment on cholesterol and the generalisability of estimates from the data sets. Interview recruitment was limited to white English-speaking participants. Conclusions Based on limited evidence, most cost-effective cascade-testing protocols, diagnosing most relatives, select index cases by genetic testing, with services directly contacting relatives, and contacting second-degree relatives even if first-degree relatives have not been tested. Combined approaches to contact relatives may be more suitable for some families. Future work Establish a long-term familial hypercholesterolaemia cohort, measuring cholesterol levels, treatment and cardiovascular outcomes. Conduct a randomised study comparing different approaches to contact relatives. Study registration This study is registered as PROSPERO CRD42018117445 and CRD42019125775. Funding This project was funded by the National Institute for Health and Care Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 27, No. 16. See the NIHR Journals Library website for further project information.
Collapse
Affiliation(s)
- Nadeem Qureshi
- PRISM Research Group, Centre for Academic Primary Care, School of Medicine, University of Nottingham, Nottingham, UK
| | - Bethan Woods
- Centre for Health Economics, University of York, York, UK
| | | | | | - Edward Cox
- Centre for Health Economics, University of York, York, UK
| | - Jo Leonardi Bee
- PRISM Research Group, Centre for Academic Primary Care, School of Medicine, University of Nottingham, Nottingham, UK
| | - Laura Condon
- PRISM Research Group, Centre for Academic Primary Care, School of Medicine, University of Nottingham, Nottingham, UK
| | - Stephen Weng
- Cardiovascular and Metabolism, Janssen Research and Development, High Wycombe, UK
| | - Ralph K Akyea
- PRISM Research Group, Centre for Academic Primary Care, School of Medicine, University of Nottingham, Nottingham, UK
| | - Barbara Iyen
- PRISM Research Group, Centre for Academic Primary Care, School of Medicine, University of Nottingham, Nottingham, UK
| | - Paul Roderick
- Primary Care, Population Sciences and Medical Education, University of Southampton, Southampton, UK
| | - Steve E Humphries
- Centre for Cardiovascular Genetics, Institute for Cardiovascular Science, University College London, London, UK
| | | | - Melanie Watson
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Kate Haralambos
- Familial Hypercholesterolaemia Service, University Hospital of Wales, Cardiff, UK
| | - Ryan Kenny
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Dev Datta
- Lipid Unit, University Hospital Llandough, Penarth, UK
| | | | - Christopher Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Joe Kai
- PRISM Research Group, Centre for Academic Primary Care, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
8
|
Mohamed-Yassin MS, Rosman N, Kamaruddin KN, Miptah HN, Baharudin N, Ramli AS, Abdul-Razak S, Lai NM. A systematic review and meta-analysis of the prevalence of dyslipidaemia among adults in Malaysia. Sci Rep 2023; 13:11036. [PMID: 37419924 PMCID: PMC10328969 DOI: 10.1038/s41598-023-38275-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/06/2023] [Indexed: 07/09/2023] Open
Abstract
Dyslipidaemia is an established cardiovascular risk factor. This study aimed to determine the pooled prevalence of dyslipidaemia in Malaysian adults. A systematic review and meta-analysis of all cross-sectional, longitudinal observational studies which reported the prevalence of elevated total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), triglycerides (TG), and reduced high-density lipoprotein cholesterol (HDL-c) in adults 18 years old and older, was conducted. A comprehensive search of PubMed and Cochrane Central Register of Controlled Trials (which included Medline, EMBASE and major trial registers) from inception to October 18, 2022, was performed. Risk-of-bias was evaluated using the Johanna-Briggs Institute Prevalence Critical Appraisal Tool, while certainty of evidence was assessed using an adapted version of the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework. Random-effects meta-analyses were performed using MetaXL. This report follows the PRISMA reporting guidelines. The protocol was registered with PROSPERO (CRD42020200281). 26 556 studies were retrieved and 7 941 were shortlisted initially. From this, 70 Malaysian studies plus two studies from citation searching were shortlisted; 46 were excluded, and 26 were included in the review (n = 50 001). The pooled prevalence of elevated TC (≥ 5.2 mmol/L), elevated LDL-c (≥ 2.6 mmol/L), elevated TG (≥ 1.7 mmol/L), and low HDL-c (< 1.0 mmol/L in men and < 1.3 mmol/L in women) were 52% (95% CI 32-71%, I2 = 100%), 73% (95% CI 50-92%, I2 = 100%), 36% (95% CI 32-40%, I2 = 96%), and 40% (95% CI 25-55%, I2 = 99%), respectively. This review found that the prevalence of all dyslipidaemia subtypes is high in Malaysian adults. Ongoing efforts to reduce cardiovascular diseases in Malaysia should integrate effective detection and treatment of dyslipidaemia.
Collapse
Affiliation(s)
- Mohamed-Syarif Mohamed-Yassin
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA, Selayang Campus, Jalan Prima Selayang 7, 68100, Batu Caves, Selangor, Malaysia.
| | - Norhidayah Rosman
- Unit of Pathology, Faculty of Medicine, AIMST University, 08100, Bedong, Kedah, Malaysia
| | - Khairatul Nainey Kamaruddin
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA, Selayang Campus, Jalan Prima Selayang 7, 68100, Batu Caves, Selangor, Malaysia
| | - Hayatul Najaa Miptah
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA, Selayang Campus, Jalan Prima Selayang 7, 68100, Batu Caves, Selangor, Malaysia
| | - Noorhida Baharudin
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA, Selayang Campus, Jalan Prima Selayang 7, 68100, Batu Caves, Selangor, Malaysia
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
| | - Anis Safura Ramli
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA, Selayang Campus, Jalan Prima Selayang 7, 68100, Batu Caves, Selangor, Malaysia
| | - Suraya Abdul-Razak
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA, Selayang Campus, Jalan Prima Selayang 7, 68100, Batu Caves, Selangor, Malaysia
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
- Cardio Vascular and Lungs Research Institute (CaVaLRI), Hospital Universiti Teknologi MARA (HUiTM), Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
| | - Nai Ming Lai
- School of Medicine, Taylor's University, 1, Jalan Taylor's, 47500, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
9
|
Use of bempedoic acid for LDL cholesterol lowering and cardiovascular risk reduction: a consensus document from the Italian study group on atherosclerosis, thrombosis and vascular biology. Vascul Pharmacol 2023; 148:107137. [PMID: 36464086 DOI: 10.1016/j.vph.2022.107137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
The clinical benefit of LDL cholesterol (LDL-C) lowering for cardiovascular disease prevention is well documented. This paper from the Italian Study Group on Atherosclerosis, Thrombosis and Vascular Biology summarizes current recommendations for treatment of hypercholesterolemia, barriers to lipid-lowering therapy implementation and tips to overcome them, as well as available evidence on the efficacy and safety of bempedoic acid. We also report an updated therapeutic algorithm for pharmacological LDL-C lowering in view of the introduction of bempedoic acid in clinical practice.
Collapse
|
10
|
Gkatzionis A, Burgess S, Newcombe PJ. Statistical methods for cis-Mendelian randomization with two-sample summary-level data. Genet Epidemiol 2023; 47:3-25. [PMID: 36273411 PMCID: PMC7614127 DOI: 10.1002/gepi.22506] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 02/03/2023]
Abstract
Mendelian randomization (MR) is the use of genetic variants to assess the existence of a causal relationship between a risk factor and an outcome of interest. Here, we focus on two-sample summary-data MR analyses with many correlated variants from a single gene region, particularly on cis-MR studies which use protein expression as a risk factor. Such studies must rely on a small, curated set of variants from the studied region; using all variants in the region requires inverting an ill-conditioned genetic correlation matrix and results in numerically unstable causal effect estimates. We review methods for variable selection and estimation in cis-MR with summary-level data, ranging from stepwise pruning and conditional analysis to principal components analysis, factor analysis, and Bayesian variable selection. In a simulation study, we show that the various methods have comparable performance in analyses with large sample sizes and strong genetic instruments. However, when weak instrument bias is suspected, factor analysis and Bayesian variable selection produce more reliable inferences than simple pruning approaches, which are often used in practice. We conclude by examining two case studies, assessing the effects of low-density lipoprotein-cholesterol and serum testosterone on coronary heart disease risk using variants in the HMGCR and SHBG gene regions, respectively.
Collapse
Affiliation(s)
- Apostolos Gkatzionis
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Integrative Epidemiology Unit, Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Stephen Burgess
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Paul J. Newcombe
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Rahmani P, Melekoglu E, Tavakoli S, Malekpour Alamdari N, Rohani P, Sohouli MH. Impact of red yeast rice supplementation on lipid profile: a systematic review and meta-analysis of randomized-controlled trials. Expert Rev Clin Pharmacol 2023; 16:73-81. [PMID: 36259545 DOI: 10.1080/17512433.2023.2138342] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Dyslipidemia/hyperlipidemia are among the risk factors for chronic diseases, especially cardiovascular diseases. Red Yeast Rice (RYR) herbal supplement may be helpful in improving serum fat levels due to some mechanisms. Therefore, the aim of this study was to evaluate the effects of RYR consumption on total serum cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C) and triglyceride (TG) levels in adults. RESEARCH DESIGN AND METHODS Four comprehensive databases (SCOPUS, PubMed/MEDLINE, EMBASE, and Web of Science) were employed until 23 December 2021 RCTs, with 24 treatment arms included after screening 3623 articles. RESULTS Pooled data showed significant effectiveness in lowering TC (WMD: -33.16 mg/dl, 95% CI: -37.69, -28.63, P < 0.001), LDL-C (WMD: -28.94 mg/dl, 95% CI: -32.90, -24.99, P < 0.001), and TG (WMD: -23.36 mg/dl, 95% CI: -31.30, -15.43, P < 0.001) concentration and increasing HDL-C concentration (WMD: 2.49 mg/dl, 95% CI: 1.48, 3.49, P < 0.001) following RYR supplementation. Furthermore, the effect of this herbal drug in doses less than 1200 mg and with an intervention duration of less than 12 weeks was more in individuals with dyslipidemia. CONCLUSION In conclusion, this comprehensive article and meta-analysis showed that RYR significantly decreases TC, TG, and LDL-C as well as increases HDL-C.
Collapse
Affiliation(s)
- Parisa Rahmani
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebru Melekoglu
- Faculty of Health Sciences, Nutrition and Dietetics Department, Cukurova University, Adana, Turkey
| | - Sogand Tavakoli
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Malekpour Alamdari
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pejman Rohani
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Sohouli
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Associate Professor of Laparoscopic Surgery, Department of General Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Underberg J, Toth PP, Rodriguez F. LDL-C target attainment in secondary prevention of ASCVD in the United States: barriers, consequences of nonachievement, and strategies to reach goals. Postgrad Med 2022; 134:752-762. [PMID: 36004573 DOI: 10.1080/00325481.2022.2117498] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death in the United States. Elevated low-density lipoprotein cholesterol (LDL-C) is a major causal risk factor for ASCVD. Current evidence overwhelmingly demonstrates that lowering LDL-C reduces the risk of secondary cardiovascular events in patients with previous myocardial infarction or stroke. There is no lower limit for LDL-C: large, randomized studies and meta-analyses have found continuous benefit and no safety concerns in patients achieving LDL-C levels <25 mg/dL. As 'Time is plaque' in patients with ASCVD, early, sustained reductions in LDL-C are critical to slow or halt disease progression. However, despite use of lipid-lowering medications, <30% of patients with ASCVD achieve guideline-recommended reductions in LDL-C, resulting in a substantial societal burden of preventable cardiovascular events and early mortality. LDL-C goals are not met due to several factors: lipid-lowering therapy is not initiated and intensified as directed by clinical guidelines (clinical inertia); most patients do not adhere to prescribed medications; and high-risk patients are frequently denied access to add-on therapies by their insurance providers. Promoting patient and clinician education, multidisciplinary collaboration, and other interventions may help to overcome these barriers. Ultimately, achieving population-level guideline-recommended reductions in LDL-C will require a collaborative effort from patients, clinicians, relevant professional societies, drug manufacturers, and payers.
Collapse
Affiliation(s)
| | - Peter P Toth
- Cicarrone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fatima Rodriguez
- Division of Cardiovascular Medicine and the Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
13
|
Mason AM, Burgess S. Software Application Profile: SUMnlmr, an R package that facilitates flexible and reproducible non-linear Mendelian randomization analyses. Int J Epidemiol 2022; 51:2014-2019. [PMCID: PMC9749704 DOI: 10.1093/ije/dyac150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 08/05/2022] [Indexed: 11/06/2023] Open
Abstract
Motivation Mendelian randomization methods that estimate non-linear exposure-outcome relationships typically require individual-level data. This package implements non-linear Mendelian randomization methods using stratified summarized data, facilitating analyses where individual-level data cannot easily be shared, and additionally increasing reproducibility as summarized data can be reported. Dependence on summarized data means the methods are independent of the form of the individual-level data, increasing flexibility to different outcome types (such as continuous, binary or time-to-event outcomes). Implementation SUMnlmr is available as an R package (version 3.1.0 or higher). General features The package implements the previously proposed fractional polynomial and piecewise linear methods on stratified summarized data that can either be estimated from individual-level data using the package or supplied by a collaborator. It constructs plots to visualize the estimated exposure-outcome relationship, and provides statistics to assess preference for a non-linear model over a linear model. Availability The package is freely available from GitHub [https://github.com/amymariemason/SUMnlmr ].
Collapse
Affiliation(s)
- Amy M Mason
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Stephen Burgess
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Xie R, Huang X, Zhang Y, Liu Q, Liu M. High Low-Density Lipoprotein Cholesterol Levels are Associated with Osteoporosis Among Adults 20-59 Years of Age. Int J Gen Med 2022; 15:2261-2270. [PMID: 35250302 PMCID: PMC8896571 DOI: 10.2147/ijgm.s353531] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/10/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Serum lipids are highly inheritable and play a major role in bone health. However, the relationship between low-density lipoprotein cholesterol (LDL-C) and bone mineral density (BMD) remains uncertain. The goal of this study was to see if there was a link between LDL-C levels and BMD in persons aged 20 to 59. METHODS Using data from the National Health and Nutrition Examination Survey (NHANES) 2011-2018, multivariate logistic regression models were utilized to investigate the association between LDL-C and lumbar BMD. Fitted smoothing curves and generalized additive models were also used. RESULTS The analysis included a total of 4909 adults. After controlling for various variables, we discovered that LDL-C was negatively linked with lumbar BMD. The favorable connection of LDL-C with lumbar BMD was maintained in subgroup analyses stratified by gender and race in both males and females, Whites and Mexican Americans, but not in Blacks and other races. The relationship between LDL-C and lumbar BMD in other races was an inverted U-shaped curve with the inflection point: 2.327 (mmol/L). CONCLUSION In people aged 20 to 59, our research discovered a negative relationship among LDL-C and lumbar BMD. Among races other than Whites, Blacks, Mexican Americans, this relationship followed an inverted U-shaped curve (inflection point: 2.327mmol/L). LDL-C measurement might be used as a responsive biomarker for detecting osteoporosis early and guiding therapy.
Collapse
Affiliation(s)
- Ruijie Xie
- Department of Hand Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, People’s Republic of China
| | - Xiongjie Huang
- Department of Hand Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, People’s Republic of China
| | - Ya Zhang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533099, People’s Republic of China
| | - Qianlong Liu
- The Affiliated Changsha Central Hospital, Hengyang Medical school, University of South China, Changsha, 410004, People’s Republic of China
| | - Mingjiang Liu
- Department of Hand Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, People’s Republic of China
| |
Collapse
|
15
|
Zhu T, Goodarzi MO. Causes and Consequences of Polycystic Ovary Syndrome: Insights From Mendelian Randomization. J Clin Endocrinol Metab 2022; 107:e899-e911. [PMID: 34669940 PMCID: PMC8852214 DOI: 10.1210/clinem/dgab757] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 12/19/2022]
Abstract
CONTEXT Although polycystic ovary syndrome (PCOS) is the most common endocrinopathy affecting women of reproductive age, risk factors that may cause the syndrome are poorly understood. Based on epidemiologic studies, PCOS is thought to cause several adverse outcomes such as cardiovascular disease; however, the common presence of comorbidities such as obesity may be responsible for such associations, rather than PCOS in and of itself. To overcome the limitations of observational studies, investigators have employed Mendelian randomization (MR), which uses genetic variants to interrogate causality between exposures and outcomes. EVIDENCE ACQUISITION To clarify causes and consequences of PCOS, this review will describe MR studies involving PCOS, both as an exposure and as an outcome. The literature was searched using the terms "Mendelian randomization," "polycystic ovary syndrome," "polycystic ovarian syndrome," and "PCOS" (to May 2021). EVIDENCE SYNTHESIS MR studies have suggested that obesity, testosterone levels, fasting insulin, serum sex hormone-binding globulin concentrations, menopause timing, male-pattern balding, and depression may play a causal role in PCOS. In turn, PCOS may increase the risk of estrogen receptor-positive breast cancer, decrease the risk of endometrioid ovarian cancer, and have no direct causal effect on type 2 diabetes, coronary heart disease, or stroke. CONCLUSIONS The accumulation of genome-wide association studies in PCOS has enabled multiple MR analyses identifying factors that may cause PCOS or be caused by PCOS. This knowledge will be critical to future development of measures to prevent PCOS in girls at risk as well as prevent complications in those who have PCOS.
Collapse
Affiliation(s)
- Tiantian Zhu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
16
|
Tall AR, Thomas DG, Gonzalez-Cabodevilla AG, Goldberg IJ. Addressing dyslipidemic risk beyond LDL-cholesterol. J Clin Invest 2022; 132:e148559. [PMID: 34981790 PMCID: PMC8718149 DOI: 10.1172/jci148559] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the success of LDL-lowering drugs in reducing cardiovascular disease (CVD), there remains a large burden of residual disease due in part to persistent dyslipidemia characterized by elevated levels of triglyceride-rich lipoproteins (TRLs) and reduced levels of HDL. This form of dyslipidemia is increasing globally as a result of the rising prevalence of obesity and metabolic syndrome. Accumulating evidence suggests that impaired hepatic clearance of cholesterol-rich TRL remnants leads to their accumulation in arteries, promoting foam cell formation and inflammation. Low levels of HDL may associate with reduced cholesterol efflux from foam cells, aggravating atherosclerosis. While fibrates and fish oils reduce TRL, they have not been uniformly successful in reducing CVD, and there is a large unmet need for new approaches to reduce remnants and CVD. Rare genetic variants that lower triglyceride levels via activation of lipolysis and associate with reduced CVD suggest new approaches to treating dyslipidemia. Apolipoprotein C3 (APOC3) and angiopoietin-like 3 (ANGPTL3) have emerged as targets for inhibition by antibody, antisense, or RNAi approaches. Inhibition of either molecule lowers TRL but respectively raises or lowers HDL levels. Large clinical trials of such agents in patients with high CVD risk and elevated levels of TRL will be required to demonstrate efficacy of these approaches.
Collapse
Affiliation(s)
- Alan R. Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, New York, USA
| | - David G. Thomas
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, New York, USA
| | - Ainara G. Gonzalez-Cabodevilla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
17
|
Longchamps RJ, Yang SY, Castellani CA, Shi W, Lane J, Grove ML, Bartz TM, Sarnowski C, Liu C, Burrows K, Guyatt AL, Gaunt TR, Kacprowski T, Yang J, De Jager PL, Yu L, Bergman A, Xia R, Fornage M, Feitosa MF, Wojczynski MK, Kraja AT, Province MA, Amin N, Rivadeneira F, Tiemeier H, Uitterlinden AG, Broer L, Van Meurs JBJ, Van Duijn CM, Raffield LM, Lange L, Rich SS, Lemaitre RN, Goodarzi MO, Sitlani CM, Mak ACY, Bennett DA, Rodriguez S, Murabito JM, Lunetta KL, Sotoodehnia N, Atzmon G, Ye K, Barzilai N, Brody JA, Psaty BM, Taylor KD, Rotter JI, Boerwinkle E, Pankratz N, Arking DE. Genome-wide analysis of mitochondrial DNA copy number reveals loci implicated in nucleotide metabolism, platelet activation, and megakaryocyte proliferation. Hum Genet 2022; 141:127-146. [PMID: 34859289 PMCID: PMC8758627 DOI: 10.1007/s00439-021-02394-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
Mitochondrial DNA copy number (mtDNA-CN) measured from blood specimens is a minimally invasive marker of mitochondrial function that exhibits both inter-individual and intercellular variation. To identify genes involved in regulating mitochondrial function, we performed a genome-wide association study (GWAS) in 465,809 White individuals from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank (UKB). We identified 133 SNPs with statistically significant, independent effects associated with mtDNA-CN across 100 loci. A combination of fine-mapping, variant annotation, and co-localization analyses was used to prioritize genes within each of the 133 independent sites. Putative causal genes were enriched for known mitochondrial DNA depletion syndromes (p = 3.09 × 10-15) and the gene ontology (GO) terms for mtDNA metabolism (p = 1.43 × 10-8) and mtDNA replication (p = 1.2 × 10-7). A clustering approach leveraged pleiotropy between mtDNA-CN associated SNPs and 41 mtDNA-CN associated phenotypes to identify functional domains, revealing three distinct groups, including platelet activation, megakaryocyte proliferation, and mtDNA metabolism. Finally, using mitochondrial SNPs, we establish causal relationships between mitochondrial function and a variety of blood cell-related traits, kidney function, liver function and overall (p = 0.044) and non-cancer mortality (p = 6.56 × 10-4).
Collapse
Affiliation(s)
- R J Longchamps
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S Y Yang
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - C A Castellani
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - W Shi
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - M L Grove
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - T M Bartz
- Cardiovascular Health Research Unit, Departments of Medicine and Biostatistics, University of Washington, Seattle, WA, USA
| | - C Sarnowski
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - C Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - K Burrows
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - A L Guyatt
- Department of Health Sciences, University of Leicester, University Road, Leicester, UK
| | - T R Gaunt
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - T Kacprowski
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
- Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics, TU Braunschweig and Hannover Medical School, Brunswick, Germany
| | - J Yang
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - P L De Jager
- Center for Translational and Systems Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - L Yu
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - A Bergman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - R Xia
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - M Fornage
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, USA
| | - M F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - M K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - A T Kraja
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - M A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - N Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - F Rivadeneira
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - H Tiemeier
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Social and Behavioral Science, Harvard T.H. School of Public Health, Boston, USA
| | - A G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - L Broer
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - J B J Van Meurs
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - C M Van Duijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - L M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - L Lange
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - S S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - R N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - M O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - C M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - A C Y Mak
- Cardiovascular Research Institute and Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - D A Bennett
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - S Rodriguez
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - J M Murabito
- Boston University School of Medicine, Boston University, Boston, MA, USA
| | - K L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - N Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, University of Washington, Seattle, WA, USA
| | - G Atzmon
- Department of Natural Science, University of Haifa, Haifa, Israel
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - K Ye
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - N Barzilai
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - J A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - B M Psaty
- Cardiovascular Health Research Unit, Departments of Epidemiology, Medicine and Health Services, University of Washington, Seattle, WA, USA
| | - K D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - J I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - E Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Baylor College of Medicine, Human Genome Sequencing Center, Houston, TX, USA
| | - N Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - D E Arking
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
18
|
Association between low density lipoprotein cholesterol and all-cause mortality: results from the NHANES 1999-2014. Sci Rep 2021; 11:22111. [PMID: 34764414 PMCID: PMC8586008 DOI: 10.1038/s41598-021-01738-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
The association between low density lipoprotein cholesterol (LDL-C) and all-cause mortality has been examined in many studies. However, inconsistent results and limitations still exist. We used the 1999–2014 National Health and Nutrition Examination Survey (NHANES) data with 19,034 people to assess the association between LDL-C level and all-cause mortality. All participants were followed up until 2015 except those younger than 18 years old, after excluding those who died within three years of follow-up, a total of 1619 deaths among 19,034 people were included in the analysis. In the age-adjusted model (model 1), it was found that the lowest LDL-C group had a higher risk of all-cause mortality (HR 1.708 [1.432–2.037]) than LDL-C 100–129 mg/dL as a reference group. The crude-adjusted model (model 2) suggests that people with the lowest level of LDL-C had 1.600 (95% CI [1.325–1.932]) times the odds compared with the reference group, after adjusting for age, sex, race, marital status, education level, smoking status, body mass index (BMI). In the fully-adjusted model (model 3), people with the lowest level of LDL-C had 1.373 (95% CI [1.130–1.668]) times the odds compared with the reference group, after additionally adjusting for hypertension, diabetes, cardiovascular disease, cancer based on model 2. The results from restricted cubic spine (RCS) curve showed that when the LDL-C concentration (130 mg/dL) was used as the reference, there is a U-shaped relationship between LDL-C level and all-cause mortality. In conclusion, we found that low level of LDL-C is associated with higher risk of all-cause mortality. The observed association persisted after adjusting for potential confounders. Further studies are warranted to determine the causal relationship between LDL-C level and all-cause mortality.
Collapse
|
19
|
Abstract
During the past decade, genome-wide association studies (GWAS) have transformed our understanding of many heritable traits. Three recent large-scale GWAS meta-analyses now further markedly expand the knowledge on coronary artery disease (CAD) genetics in doubling the number of loci with genome-wide significant signals. Here, we review the unprecedented discoveries of CAD GWAS on low-frequency variants, underrepresented populations, sex differences and integrated polygenic risk. We present the milestones of CAD GWAS and post-GWAS studies from 2007 to 2021, and the trend in identification of variants with smaller odds ratio by year due to the increasing sample size. We compile the 321 CAD loci discovered thus far and classify candidate genes as well as distinct functional pathways on the road to indepth biological investigation and identification of novel treatment targets. We draw attention to systems genetics in integrating these loci into gene regulatory networks within and across tissues. We review the traits, biomarkers and diseases scrutinized by Mendelian randomization studies for CAD. Finally, we discuss the potentials and concerns of polygenic scores in predicting CAD risk in patient care as well as future directions of GWAS and post-GWAS studies in the field of precision medicine.
Collapse
Affiliation(s)
- Zhifen Chen
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany.,Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany.,Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Munich Heart Alliance, Munich, Germany
| |
Collapse
|
20
|
Zuber V, Gill D, Ala-Korpela M, Langenberg C, Butterworth A, Bottolo L, Burgess S. High-throughput multivariable Mendelian randomization analysis prioritizes apolipoprotein B as key lipid risk factor for coronary artery disease. Int J Epidemiol 2021; 50:893-901. [PMID: 33130851 PMCID: PMC8271202 DOI: 10.1093/ije/dyaa216] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Genetic variants can be used to prioritize risk factors as potential therapeutic targets via Mendelian randomization (MR). An agnostic statistical framework using Bayesian model averaging (MR-BMA) can disentangle the causal role of correlated risk factors with shared genetic predictors. Here, our objective is to identify lipoprotein measures as mediators between lipid-associated genetic variants and coronary artery disease (CAD) for the purpose of detecting therapeutic targets for CAD. METHODS As risk factors we consider 30 lipoprotein measures and metabolites derived from a high-throughput metabolomics study including 24 925 participants. We fit multivariable MR models of genetic associations with CAD estimated in 453 595 participants (including 113 937 cases) regressed on genetic associations with the risk factors. MR-BMA assigns to each combination of risk factors a model score quantifying how well the genetic associations with CAD are explained. Risk factors are ranked by their marginal score and selected using false-discovery rate (FDR) criteria. We perform supplementary and sensitivity analyses varying the dataset for genetic associations with CAD. RESULTS In the main analysis, the top combination of risk factors ranked by the model score contains apolipoprotein B (ApoB) only. ApoB is also the highest ranked risk factor with respect to the marginal score (FDR <0.005). Additionally, ApoB is selected in all sensitivity analyses. No other measure of cholesterol or triglyceride is consistently selected otherwise. CONCLUSIONS Our agnostic genetic investigation prioritizes ApoB across all datasets considered, suggesting that ApoB, representing the total number of hepatic-derived lipoprotein particles, is the primary lipid determinant of CAD.
Collapse
Affiliation(s)
- Verena Zuber
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu & Biocenter Oulu, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Claudia Langenberg
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Adam Butterworth
- Department of Public Health and Primary Care, British Heart Foundation Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Leonardo Bottolo
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Alan Turing Institute, London, UK
| | - Stephen Burgess
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, British Heart Foundation Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
21
|
Libuda L, Hebebrand J, Föcker M, Peters T, Hinney A. [Nutrition and mental health - how findings from genetic studies can support the identification of dietary effects]. ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2021; 50:217-226. [PMID: 34114882 DOI: 10.1024/1422-4917/a000807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Nutrition and mental health - how findings from genetic studies can support the identification of dietary effects Abstract. Introduction: Numerous studies indicate that dietary interventions could be an important approach to the prevention and treatment of mental disorders. However, conventional nutritional epidemiological approaches (e. g., observational studies and randomized controlled trials, RCTs) have specific limitations to consider when interpreting the results. This article examines whether genetic studies could help to establish a link between diet and the prevention of mental disorders. Furthermore, it examines whether it is possible to draw conclusions about causal relationships. Methods: This narrative review describes various approaches of genetic cross-phenotype studies and presents examples of their applications in nutritional psychiatry. In addition, it discusses specific requirements as well as the strengths and limitations of the respective approaches. Results: To date, in the context of nutritional psychiatry, genetic correlation analyses, look-up analyses, and Mendelian randomization (MR) studies have been used for genetic crossphenotype analyses. Genetic correlation and look-up analyses provide initial evidence of possible overlap between specific mental disorders and metabolic pathways or specific nutrients. MR studies are used for detailed analyses that aim to identify causal relationships. However, MR is based on specific assumptions that must be met and considered when results are interpreted. Conclusion: Genetic cross-phenotype analyses are a useful amendment to conventional nutritional epidemiological research. In particular, positive results from MR studies provide an important fundament for identifying and developing suitable dietary interventions, which in turn increases the chance of success upon testing in subsequent RCTs. Accordingly, genetic cross-phenotype analyses are important instruments for increasing the efficiency in nutritional psychiatric research.
Collapse
Affiliation(s)
- Lars Libuda
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, LVR-Klinikum Essen, Kliniken und Institut der Universität Duisburg-Essen.,Institut für Ernährung, Konsum und Gesundheit, Fakultät für Naturwissenschaften, Universität Paderborn
| | - Johannes Hebebrand
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, LVR-Klinikum Essen, Kliniken und Institut der Universität Duisburg-Essen
| | - Manuel Föcker
- Klinik für Kinder- und Jugendpsychiatrie Psychosomatik und Psychotherapie, Universitätsklinikum Münster, Universität Münster
| | - Triinu Peters
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, LVR-Klinikum Essen, Kliniken und Institut der Universität Duisburg-Essen
| | - Anke Hinney
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, LVR-Klinikum Essen, Kliniken und Institut der Universität Duisburg-Essen
| |
Collapse
|
22
|
Early Childhood Fat Tissue Changes-Adipocyte Morphometry, Collagen Deposition, and Expression of CD163 + Cells in Subcutaneous and Visceral Adipose Tissue of Male Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073627. [PMID: 33807325 PMCID: PMC8037722 DOI: 10.3390/ijerph18073627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/06/2021] [Accepted: 03/26/2021] [Indexed: 01/14/2023]
Abstract
Childhood obesity is a complex health problem, and not many studies have been done on adipose tissue remodeling in early childhood. The aim of this study was to examine extracellular matrix remodeling in the adipose tissue of healthy male children depending on their weight status. Subcutaneous and visceral adipose tissue was obtained from 45 otherwise healthy male children who underwent elective surgery for hernia repairs or orchidopexy. The children were divided into overweight/obese (n = 17) or normal weight groups (n = 28) depending on their body mass index (BMI) z-score. Serum was obtained for glucose, testosterone, triglyceride, total cholesterol, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) measurements. Sections of adipose tissue were stained with hematoxylin and eosin to determine the adipocytes' surface area, and Masson's trichrome stain was used to detect the adipocytes' collagen content. Immunohistochemistry for CD163+ cells was also performed. The results showed that male children in the overweight group had higher serum triglyceride levels, greater adipocyte surface area and collagen content in their subcutaneous adipose tissue, more crown-like structures in fat tissues, and more CD163+ cells in their visceral adipose tissue than males in the normal weight group. In conclusion, in male children, obesity can lead to the hypertrophy of adipocytes, increased collagen deposition in subcutaneous adipose tissues, and changes in the polarization and accumulation of macrophages.
Collapse
|
23
|
Thomas DG, Wei Y, Tall AR. Lipid and metabolic syndrome traits in coronary artery disease: a Mendelian randomization study. J Lipid Res 2021; 62:100044. [PMID: 32907989 PMCID: PMC7933489 DOI: 10.1194/jlr.p120001000] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/20/2020] [Indexed: 01/14/2023] Open
Abstract
Mendelian randomization (MR) of lipid traits in CAD has provided evidence for causal associations of LDL-C and TGs in CAD, but many lipid trait genetic variants have pleiotropic effects on other cardiovascular risk factors that may bias MR associations. The goal of this study was to evaluate pleiotropic effects of lipid trait genetic variants and to account for these effects in MR of lipid traits in CAD. We performed multivariable MR using inverse variance-weighted and MR-Egger methods in large (n ≥ 300,000) GWAS datasets. We found that 30% of lipid trait genetic variants have effects on metabolic syndrome traits, including BMI, T2D, and systolic blood pressure (SBP). Nonetheless, in multivariable MR analysis, LDL-C, HDL-C, TGs, BMI, T2D, and SBP are independently associated with CAD, and each of these associations is robust to adjustment for directional pleiotropy. MR at loci linked to direct effects on HDL-C and TGs suggests locus- and mechanism-specific causal effects of these factors on CAD.
Collapse
Affiliation(s)
- David G Thomas
- Department of Medicine, New York Presbyterian Hospital/Weill Cornell Medicine, New York, NY, USA
| | - Ying Wei
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
24
|
Jha CK, Mir R, Banu S, Elfaki I, Chahal SMS. Heterozygosity in LDLR rs2228671 and rs72658855 Gene is Associated with Increased Risk of Developing Coronary Artery Disease in India -A Case-Control Study. Endocr Metab Immune Disord Drug Targets 2021; 20:388-399. [PMID: 31613733 DOI: 10.2174/1871530319666191015164505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/09/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Coronary artery disease (CAD) is one of the most common causes of death worldwide. Risk factors of CAD include high LDL-C, low high-density lipoprotein (HDL), hypertension, lack of exercise, genetic factors, etc. Polymorphisms of the LDLR gene have been associated with CAD in previous studies. METHODS The LDLR-rs72658855 C>T genotyping was detected by using allele-specific PCR (ASPCR). The association of rs2228671 and rs72658855 with CAD in a south Indian cohort (200 CAD patients and 200 matched healthy controls was studied. RESULTS Our findings showed that rs2228671 gene variability is associated with increased susceptibility to coronary artery disease in the codominant inheritance model for variant CC vs. CT OR 3.42(1.09-10.7), with P<0.034. A non-significant association was reported in the recessive inheritance model for the variant (CC+CT) vs. TT OR 0.56(0.16-1.95), at P<0.36. and in the dominant inheritance model for variant CC vs. (CT+TT) OR 2.8(1.07-7.34), at P<0.032 .In case of allelic comparison, it was indicated that the LDLR rs2228671-T allele was associated with an increased risk of developing CAD compared to C allele OR=2.4, with 95% CI (1.05-5.64) and P< 0.036 . Our findings showed that LDLR rs72658855 C>T gene variability was associated with an increased susceptibility to coronary artery disease in the codominant inheritance model for variant CC vs. CT OR 1.7(1.1-2.6), at P<0.015 and in the dominant inheritance model for variant CC vs. (CT+TT) OR 1.66(1.07-2.58), at P<0.0.02.. In case of allelic comparison, a non-significant association was reported in LDLR rs72658855-T and C allele. CONCLUSION We concluded that the heterozygosity in LDLR-rs72658855 and rs2228671 and T allele in LDLR rs2228671 are strongly associated with increased susceptibility to coronary artery disease. These results must be validated by future well-designed studies with larger sample sizes and different populations.
Collapse
Affiliation(s)
- Chandan K Jha
- Department of Human Genetics, Punjabi University, Patiala, Punjab 147002, India
| | - Rashid Mir
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Shaheena Banu
- Sri Jayadeva Institute of Cardiovascular science and Research, Bangalore, India
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Sukh M S Chahal
- Department of Human Genetics, Punjabi University, Patiala, Punjab 147002, India
| |
Collapse
|
25
|
Schunkert H, Pang S, Li L, Paré G. Tracing risk of multiple cardiovascular diseases to smoking-related genes. Eur Heart J 2020; 41:3311-3313. [PMID: 32357238 DOI: 10.1093/eurheartj/ehaa285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Heribert Schunkert
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany.,Deutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Shichao Pang
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany
| | - Ling Li
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany
| | - Guillaume Paré
- Genetic and Molecular Epidemiology Laboratory, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
26
|
Lechner K, Kessler T, Schunkert H. Should We Use Genetic Scores in the Determination of Treatment Strategies to Control Dyslipidemias? Curr Cardiol Rep 2020; 22:146. [DOI: 10.1007/s11886-020-01408-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Lee SH, Lee JY, Kim GH, Jung KJ, Lee S, Kim HC, Jee SH. Two-Sample Mendelian Randomization Study of Lipid levels and Ischemic Heart Disease. Korean Circ J 2020; 50:940-948. [PMID: 32812402 PMCID: PMC7515757 DOI: 10.4070/kcj.2020.0131] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/20/2020] [Accepted: 06/18/2020] [Indexed: 11/21/2022] Open
Abstract
Background and Objectives Associations between blood lipids and risk of ischemic heart disease (IHD) have been reported in observational studies. However, due to confounding and reverse causation, observational studies are influenced by bias, thus their results show inconsistency in the effects of lipid levels on IHD. In this study, we evaluate whether lipid levels have an effect on the risk of IHD in a Korean population. Methods A 2-sample Mendelian randomization (MR) study, using the genetic variants associated with lipid levels as the instrumental variables was performed. Genetic variants significantly associated with lipid concentrations were obtained from the Korean Genome and Epidemiology Study (n=35,000), and the same variants on IHD were obtained from the Korean Cancer Prevention Study-II (n=13,855). Inverse variance weighting (IVW), weighted median, and MR-Egger approaches were used to assess the causal association between lipid levels and IHD. Radial MR methods were applied to remove outliers subject to pleiotropic bias. Results Causal association between low-density lipoprotein-cholesterol (LDL-C) and IHD was observed in the IVW method (odds ratio, 1.013; 95% confidence interval, 1.007–1.109). However, high-density lipoprotein-cholesterol (HDL-C) and triglyceride (TG) did not show causal association with IHD. In the Radial MR analysis of the relationship between HDL-C, TG and IHD, outliers were detected. Interestingly, after removing the outliers, a causal association between TG and IHD was found. Conclusions High levels LDL-C and TG were causally associated with increased IHD risk in a Korean population, these results are potentially useful as evidence of a significant causal relationship.
Collapse
Affiliation(s)
- Su Hyun Lee
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Ji Young Lee
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Guen Hui Kim
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Keum Ji Jung
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Sunmi Lee
- Health Insurance Policy Research Institute, National Health Insurance Service, Wonju, Korea
| | - Hyeon Chang Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea.
| |
Collapse
|
28
|
Zhao Q, Chen Y, Wang J, Small DS. Powerful three-sample genome-wide design and robust statistical inference in summary-data Mendelian randomization. Int J Epidemiol 2020; 48:1478-1492. [PMID: 31298269 DOI: 10.1093/ije/dyz142] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Summary-data Mendelian randomization (MR) has become a popular research design to estimate the causal effect of risk exposures. With the sample size of GWAS continuing to increase, it is now possible to use genetic instruments that are only weakly associated with the exposure. DEVELOPMENT We propose a three-sample genome-wide design where typically 1000 independent genetic instruments across the whole genome are used. We develop an empirical partially Bayes statistical analysis approach where instruments are weighted according to their strength; thus weak instruments bring less variation to the estimator. The estimator is highly efficient with many weak genetic instruments and is robust to balanced and/or sparse pleiotropy. APPLICATION We apply our method to estimate the causal effect of body mass index (BMI) and major blood lipids on cardiovascular disease outcomes, and obtain substantially shorter confidence intervals (CIs). In particular, the estimated causal odds ratio of BMI on ischaemic stroke is 1.19 (95% CI: 1.07-1.32, P-value <0.001); the estimated causal odds ratio of high-density lipoprotein cholesterol (HDL-C) on coronary artery disease (CAD) is 0.78 (95% CI: 0.73-0.84, P-value <0.001). However, the estimated effect of HDL-C attenuates and become statistically non-significant when we only use strong instruments. CONCLUSIONS A genome-wide design can greatly improve the statistical power of MR studies. Robust statistical methods may alleviate but not solve the problem of horizontal pleiotropy. Our empirical results suggest that the relationship between HDL-C and CAD is heterogeneous, and it may be too soon to completely dismiss the HDL hypothesis.
Collapse
Affiliation(s)
- Qingyuan Zhao
- Department of Statistics, Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Yang Chen
- Department of Statistics, University of Michigan, Ann Arbor, MI, USA
| | - Jingshu Wang
- Department of Statistics, Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Dylan S Small
- Department of Statistics, Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
29
|
Farràs M, Canyelles M, Fitó M, Escolà-Gil JC. Effects of Virgin Olive Oil and Phenol-Enriched Virgin Olive Oils on Lipoprotein Atherogenicity. Nutrients 2020; 12:nu12030601. [PMID: 32110861 PMCID: PMC7146215 DOI: 10.3390/nu12030601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 01/22/2023] Open
Abstract
The atherogenicity of low-density lipoprotein (LDL) and triglyceride-rich lipoproteins (TRLs) may be more significant than LDL cholesterol levels. Clinical trials which have led to increased high-density lipoprotein (HDL) cholesterol have not always seen reductions in cardiovascular disease (CVD). Furthermore, genetic variants predisposing individuals to high HDL cholesterol are not associated with a lower risk of suffering a coronary event, and therefore HDL functionality is considered to be the most relevant aspect. Virgin olive oil (VOO) is thought to play a protective role against CVD. This review describes the effects of VOO and phenol-enriched VOOs on lipoprotein atherogenicity and HDL atheroprotective properties. The studies have demonstrated a decrease in LDL atherogenicity and an increase in the HDL-mediated macrophage cholesterol efflux capacity, HDL antioxidant activity, and HDL anti-inflammatory characteristics after various VOO interventions. Moreover, the expression of cholesterol efflux-related genes was enhanced after exposure to phenol-enriched VOOs in both post-prandial and sustained trials. Improvements in HDL antioxidant properties were also observed after VOO and phenol-enriched VOO interventions. Furthermore, some studies have demonstrated improved characteristics of TRL atherogenicity under postprandial conditions after VOO intake. Large-scale, long-term randomized clinical trials, and Mendelian analyses which assess the lipoprotein state and properties, are required to confirm these results.
Collapse
Affiliation(s)
- Marta Farràs
- Molecular Bases of Cardiovascular Risk Group Institut de Recerca de l’Hospital Santa Creu i Sant Pau-Institut d’Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain; (M.C.); (J.C.E.-G.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-935537595
| | - Marina Canyelles
- Molecular Bases of Cardiovascular Risk Group Institut de Recerca de l’Hospital Santa Creu i Sant Pau-Institut d’Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain; (M.C.); (J.C.E.-G.)
- Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Departament de Bioquímica, Biologia Molecular i Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Montserrat Fitó
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain;
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Madrid, Spain
| | - Joan Carles Escolà-Gil
- Molecular Bases of Cardiovascular Risk Group Institut de Recerca de l’Hospital Santa Creu i Sant Pau-Institut d’Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain; (M.C.); (J.C.E.-G.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
- Departament de Bioquímica, Biologia Molecular i Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
30
|
Burgess S, Foley CN, Allara E, Staley JR, Howson JMM. A robust and efficient method for Mendelian randomization with hundreds of genetic variants. Nat Commun 2020; 11:376. [PMID: 31953392 PMCID: PMC6969055 DOI: 10.1038/s41467-019-14156-4] [Citation(s) in RCA: 383] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
Mendelian randomization (MR) is an epidemiological technique that uses genetic variants to distinguish correlation from causation in observational data. The reliability of a MR investigation depends on the validity of the genetic variants as instrumental variables (IVs). We develop the contamination mixture method, a method for MR with two modalities. First, it identifies groups of genetic variants with similar causal estimates, which may represent distinct mechanisms by which the risk factor influences the outcome. Second, it performs MR robustly and efficiently in the presence of invalid IVs. Compared to other robust methods, it has the lowest mean squared error across a range of realistic scenarios. The method identifies 11 variants associated with increased high-density lipoprotein-cholesterol, decreased triglyceride levels, and decreased coronary heart disease risk that have the same directions of associations with various blood cell traits, suggesting a shared mechanism linking lipids and coronary heart disease risk mediated via platelet aggregation.
Collapse
Affiliation(s)
- Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK.
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| | | | - Elias Allara
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - James R Staley
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Joanna M M Howson
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
- Novo Nordisk Research Centre Oxford, Innovation Building - Old Road Campus, Roosevelt Drive, Oxford, UK
| |
Collapse
|
31
|
Kessler T, Schunkert H. Genomic Strategies Toward Identification of Novel Therapeutic Targets. Handb Exp Pharmacol 2020; 270:429-462. [PMID: 32399778 DOI: 10.1007/164_2020_360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Coronary artery disease, myocardial infarction, and secondary damages of the myocardium in the form of ischemic heart disease remain major causes of death in Western countries. Beyond traditional risk factors such as smoking, hypertension, dyslipidemia, or diabetes, a positive family history is known to increase risk. The genetic factors underlying this observation remained unknown for decades until genetic studies were able to identify multiple genomic loci contributing to the heritability of the trait. Knowledge of the affected genes and the resulting molecular and cellular mechanisms leads to improved understanding of the pathophysiology leading to coronary atherosclerosis. Major goals are also to improve prevention and therapy of coronary artery disease and its sequelae via improved risk prediction tools and pharmacological targets. In this chapter, we recapitulate recent major findings. We focus on established novel targets and discuss possible further targets which are currently explored in translational studies.
Collapse
Affiliation(s)
- Thorsten Kessler
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Munich, Germany. .,Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., partner site Munich Heart Alliance, Munich, Germany.
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Munich, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
32
|
Valsdottir TD, Henriksen C, Odden N, Nellemann B, Jeppesen PB, Hisdal J, Westerberg AC, Jensen J. Effect of a Low-Carbohydrate High-Fat Diet and a Single Bout of Exercise on Glucose Tolerance, Lipid Profile and Endothelial Function in Normal Weight Young Healthy Females. Front Physiol 2019; 10:1499. [PMID: 31920704 PMCID: PMC6931312 DOI: 10.3389/fphys.2019.01499] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/25/2019] [Indexed: 01/07/2023] Open
Abstract
Low-carbohydrate-high-fat (LCHF) diets are efficient for weight loss, and are also used by healthy people to maintain bodyweight. The main aim of this study was to investigate the effect of 3-week energy-balanced LCHF-diet, with >75 percentage energy (E%) from fat, on glucose tolerance and lipid profile in normal weight, young, healthy women. The second aim of the study was to investigate if a bout of exercise would prevent any negative effect of LCHF-diet on glucose tolerance. Seventeen females participated, age 23.5 ± 0.5 years; body mass index 21.0 ± 0.4 kg/m2, with a mean dietary intake of 78 ± 1 E% fat, 19 ± 1 E% protein and 3 ± 0 E% carbohydrates. Measurements were performed at baseline and post-intervention. Fasting glucose decreased from 4.7 ± 0.1 to 4.4 mmol/L (p < 0.001) during the dietary intervention whereas fasting insulin was unaffected. Glucose area under the curve (AUC) and insulin AUC did not change during an OGTT after the intervention. Before the intervention, a bout of aerobic exercise reduced fasting glucose (4.4 ± 0.1 mmol/L, p < 0.001) and glucose AUC (739 ± 41 to 661 ± 25, p = 0.008) during OGTT the following morning. After the intervention, exercise did not reduce fasting glucose the following morning, and glucose AUC during an OGTT increased compared to the day before (789 ± 43 to 889 ± 40 mmol/L∙120min–1, p = 0.001). AUC for insulin was unaffected. The dietary intervention increased total cholesterol (p < 0.001), low-density lipoprotein (p ≤ 0.001), high-density lipoprotein (p = 0.011), triglycerides (p = 0.035), and free fatty acids (p = 0.021). In conclusion, 3-week LCHF-diet reduced fasting glucose, while glucose tolerance was unaffected. A bout of exercise post-intervention did not decrease AUC glucose as it did at baseline. Total cholesterol increased, mainly due to increments in low-density lipoprotein. LCHF-diets should be further evaluated and carefully considered for healthy individuals.
Collapse
Affiliation(s)
- Thorhildur Ditta Valsdottir
- Department of Medicine, Atlantis Medical University College, Oslo, Norway.,Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Christine Henriksen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nancy Odden
- Department of Nutrition, Atlantis Medical University College, Oslo, Norway
| | - Birgitte Nellemann
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Per B Jeppesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jonny Hisdal
- Oslo Vascular Center, Department of Vascular Surgery, Oslo University Hospital, Oslo, Norway
| | - Ane C Westerberg
- Department of Nutrition, Atlantis Medical University College, Oslo, Norway.,Institute of Health Sciences, Kristiania University College, Oslo, Norway
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
33
|
Brunner FJ, Waldeyer C, Ojeda F, Salomaa V, Kee F, Sans S, Thorand B, Giampaoli S, Brambilla P, Tunstall-Pedoe H, Moitry M, Iacoviello L, Veronesi G, Grassi G, Mathiesen EB, Söderberg S, Linneberg A, Brenner H, Amouyel P, Ferrières J, Tamosiunas A, Nikitin YP, Drygas W, Melander O, Jöckel KH, Leistner DM, Shaw JE, Panagiotakos DB, Simons LA, Kavousi M, Vasan RS, Dullaart RPF, Wannamethee SG, Risérus U, Shea S, de Lemos JA, Omland T, Kuulasmaa K, Landmesser U, Blankenberg S. Application of non-HDL cholesterol for population-based cardiovascular risk stratification: results from the Multinational Cardiovascular Risk Consortium. Lancet 2019; 394:2173-2183. [PMID: 31810609 PMCID: PMC6913519 DOI: 10.1016/s0140-6736(19)32519-x] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND The relevance of blood lipid concentrations to long-term incidence of cardiovascular disease and the relevance of lipid-lowering therapy for cardiovascular disease outcomes is unclear. We investigated the cardiovascular disease risk associated with the full spectrum of bloodstream non-HDL cholesterol concentrations. We also created an easy-to-use tool to estimate the long-term probabilities for a cardiovascular disease event associated with non-HDL cholesterol and modelled its risk reduction by lipid-lowering treatment. METHODS In this risk-evaluation and risk-modelling study, we used Multinational Cardiovascular Risk Consortium data from 19 countries across Europe, Australia, and North America. Individuals without prevalent cardiovascular disease at baseline and with robust available data on cardiovascular disease outcomes were included. The primary composite endpoint of atherosclerotic cardiovascular disease was defined as the occurrence of the coronary heart disease event or ischaemic stroke. Sex-specific multivariable analyses were computed using non-HDL cholesterol categories according to the European guideline thresholds, adjusted for age, sex, cohort, and classical modifiable cardiovascular risk factors. In a derivation and validation design, we created a tool to estimate the probabilities of a cardiovascular disease event by the age of 75 years, dependent on age, sex, and risk factors, and the associated modelled risk reduction, assuming a 50% reduction of non-HDL cholesterol. FINDINGS Of the 524 444 individuals in the 44 cohorts in the Consortium database, we identified 398 846 individuals belonging to 38 cohorts (184 055 [48·7%] women; median age 51·0 years [IQR 40·7-59·7]). 199 415 individuals were included in the derivation cohort (91 786 [48·4%] women) and 199 431 (92 269 [49·1%] women) in the validation cohort. During a maximum follow-up of 43·6 years (median 13·5 years, IQR 7·0-20·1), 54 542 cardiovascular endpoints occurred. Incidence curve analyses showed progressively higher 30-year cardiovascular disease event-rates for increasing non-HDL cholesterol categories (from 7·7% for non-HDL cholesterol <2·6 mmol/L to 33·7% for ≥5·7 mmol/L in women and from 12·8% to 43·6% in men; p<0·0001). Multivariable adjusted Cox models with non-HDL cholesterol lower than 2·6 mmol/L as reference showed an increase in the association between non-HDL cholesterol concentration and cardiovascular disease for both sexes (from hazard ratio 1·1, 95% CI 1·0-1·3 for non-HDL cholesterol 2·6 to <3·7 mmol/L to 1·9, 1·6-2·2 for ≥5·7 mmol/L in women and from 1·1, 1·0-1·3 to 2·3, 2·0-2·5 in men). The derived tool allowed the estimation of cardiovascular disease event probabilities specific for non-HDL cholesterol with high comparability between the derivation and validation cohorts as reflected by smooth calibration curves analyses and a root mean square error lower than 1% for the estimated probabilities of cardiovascular disease. A 50% reduction of non-HDL cholesterol concentrations was associated with reduced risk of a cardiovascular disease event by the age of 75 years, and this risk reduction was greater the earlier cholesterol concentrations were reduced. INTERPRETATION Non-HDL cholesterol concentrations in blood are strongly associated with long-term risk of atherosclerotic cardiovascular disease. We provide a simple tool for individual long-term risk assessment and the potential benefit of early lipid-lowering intervention. These data could be useful for physician-patient communication about primary prevention strategies. FUNDING EU Framework Programme, UK Medical Research Council, and German Centre for Cardiovascular Research.
Collapse
Affiliation(s)
- Fabian J Brunner
- University Heart & Vascular Center Hamburg, Department of Cardiology, Hamburg, Germany
| | - Christoph Waldeyer
- University Heart & Vascular Center Hamburg, Department of Cardiology, Hamburg, Germany
| | - Francisco Ojeda
- University Heart & Vascular Center Hamburg, Department of Cardiology, Hamburg, Germany
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Frank Kee
- Centre for Public Health, Queens University of Belfast, Belfast, UK
| | - Susana Sans
- Catalan Department of Health, Barcelona, Spain
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Simona Giampaoli
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Ageing, National Institutes of Health-ISS, Rome, Italy
| | - Paolo Brambilla
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Hugh Tunstall-Pedoe
- Cardiovascular Epidemiology Unit, Institute of Cardiovascular Research, University of Dundee, Dundee, UK
| | - Marie Moitry
- Department of Epidemiology and Public health, University Hospital of Strasbourg, Strasbourg, France
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy; Research Center in Epidemiology and Preventive Medicine, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Giovanni Veronesi
- Research Center in Epidemiology and Preventive Medicine, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Ellisiv B Mathiesen
- Department of Clinical Medicine, University of Tromsø-The Arctic University of Tromsø, Tromsø, Norway; Department of Neurology and Neurophysiology, University Hospital of North Norway, Tromsø, Norway
| | - Stefan Söderberg
- Department of Public Health and Clinical Medicine, and Heart Center, Cardiology, Umeå University, Umeå, Sweden
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Philippe Amouyel
- Risk Factors and Molecular Determinants of Aging Diseases, University of Lille, Lille, France; Inserm, Lille, France; Centre Hospitalier Universitaire de Lille, Lille, France; Institut Pasteur de Lille, Lille, France
| | - Jean Ferrières
- Toulouse University School of Medicine, Toulouse, France
| | - Abdonas Tamosiunas
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Yuriy P Nikitin
- Research Institute of Internal and Preventive Medicine, Branch of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Wojciech Drygas
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, National Institute of Cardiology, Warsaw, Poland
| | - Olle Melander
- Department of Clinical Sciences, Malmö, Lund University, Malmö, Sweden
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, Germany
| | - David M Leistner
- Department of Cardiology, Charité Berlin-University Medicine, Campus Benjamin Franklin, Berlin, Germany; German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
| | - Jonathan E Shaw
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Demosthenes B Panagiotakos
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Leon A Simons
- University of New South Wales, Sydney, NSW, Australia; St Vincent's Hospital, Sydney, NSW, Australia
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ramachandran S Vasan
- Boston University and the National Heart, Lung, and Blood Institute's Framingham Study, Framingham, MA, USA
| | - Robin P F Dullaart
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - S Goya Wannamethee
- Department of Primary Care and Population Health, University College London, London, UK
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Steven Shea
- Departments of Medicine and Epidemiology, Columbia University, New York, NY, USA
| | - James A de Lemos
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Torbjørn Omland
- Department of Cardiology, Division of Medicine, Akershus University Hospital, Lørenskog, Norway; Center for Heart Failure Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kari Kuulasmaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Ulf Landmesser
- Department of Cardiology, Charité Berlin-University Medicine, Campus Benjamin Franklin, Berlin, Germany; German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany; Berlin Institute of Health, Berlin, Germany
| | - Stefan Blankenberg
- University Heart & Vascular Center Hamburg, Department of Cardiology, Hamburg, Germany; German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
34
|
Sung KC, Huh JH, Ryu S, Lee JY, Scorletti E, Byrne CD, Kim JY, Hyun DS, Ko SB. Low Levels of Low-Density Lipoprotein Cholesterol and Mortality Outcomes in Non-Statin Users. J Clin Med 2019; 8:1571. [PMID: 31581520 PMCID: PMC6832139 DOI: 10.3390/jcm8101571] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 11/16/2022] Open
Abstract
We aimed to test the association between low-density lipoprotein cholesterol (LDL-C) and cardiovascular disease (CVD), cancer, and all-cause mortality in non-statin users. A total of 347,971 subjects in Kangbuk Samsung Health Study (KSHS.57.4% men, mean follow up: 5.64 ± 3.27 years) were tested. To validate these associations, we analyzed data from another cohort (Korean genome and epidemiology study, KoGES, 182,943 subjects). All subjects treated with any lipid-lowering therapy and who died during the first 3 years of follow up were excluded. Five groups were defined according to baseline LDL-C concentration (<70, 70-99, 100-129, 130-159, ≥160 mg/dL). A total of 2028 deaths occurred during follow-up in KSHS. The lowest LDL-C group (LDL < 70 mg/dL) had a higher risk of all-cause mortality (HR 1.95, 1.55-2.47), CVD mortality (HR 2.02, 1.11-3.64), and cancer mortality (HR 2.06, 1.46-2.90) compared to the reference group (LDL 120-139 mg/dL). In the validation cohort, 2338 deaths occurred during follow-up. The lowest LDL-C group (LDL < 70 mg/dL) had a higher risk of all-cause mortality (HR 1.81, 1.44-2.28) compared to the reference group. Low levels of LDL-C concentration are strongly and independently associated with increased risk of cancer, CVD, and all-cause mortality. These findings suggest that more attention is needed for subjects with no statin-induced decrease in LDL-C concentrations.
Collapse
Affiliation(s)
- Ki-Chul Sung
- Division of Cardiology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea.
| | - Ji Hye Huh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju 26426, Korea.
| | - Seungho Ryu
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea.
| | - Jong-Young Lee
- Division of Cardiology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea.
| | - Eleonora Scorletti
- Nutrition and Metabolism Unit, IDS Building, Southampton General Hospital, (University of Southampton) and Southampton National Institute for Health Research Biomedical Research Centre, Southampton SO17 1BJ, UK.
- Department of Gastroenterology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Christopher D Byrne
- Nutrition and Metabolism Unit, IDS Building, Southampton General Hospital, (University of Southampton) and Southampton National Institute for Health Research Biomedical Research Centre, Southampton SO17 1BJ, UK.
| | - Jang Young Kim
- Division of Cardiology, Department of Internal Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju 26426, Korea.
| | - Dae Sung Hyun
- Department of Preventive Medicine and Institute of Occupational and Environmental Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Korea.
| | - Sang-Baek Ko
- Department of Preventive Medicine and Institute of Occupational and Environmental Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Korea.
| |
Collapse
|
35
|
Gomez JL, Himes BE, Kaminski N. Precision Medicine in Critical Illness: Sepsis and Acute Respiratory Distress Syndrome. PRECISION IN PULMONARY, CRITICAL CARE, AND SLEEP MEDICINE 2019. [PMCID: PMC7120471 DOI: 10.1007/978-3-030-31507-8_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Sepsis and the acute respiratory distress syndrome (ARDS) each cause substantial morbidity and mortality. In contrast to other lung diseases, the entire course of disease in these syndromes is measured in days to weeks rather than months to years, which raises unique challenges in achieving precision medicine. We review advances in sepsis and ARDS resulting from omics studies, including those involving genome-wide association, gene expression, targeted proteomics, and metabolomics approaches. We focus on promising evidence of biological subtypes in both sepsis and ARDS that consistently display high risk for death. In sepsis, a gene expression signature with dysregulated adaptive immune signaling has evidence for a differential response to systemic steroid therapy, whereas in ARDS, a hyperinflammatory pattern identified in plasma using targeted proteomics responded more favorably to randomized interventions including high positive end-expiratory pressure, volume conservative fluid therapy, and simvastatin therapy. These early examples suggest heterogeneous biology that may be challenging to detect by clinical factors alone and speak to the promise of a precision approach that targets the right treatment at the right time to the right patient.
Collapse
Affiliation(s)
- Jose L. Gomez
- Assistant Professor Pulmonary, Critical Care and Sleep Medicine Section, Department of Medicine, Yale University School of Medicine, New Haven, CT USA
| | - Blanca E. Himes
- Assistant Professor of Informatics, Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA USA
| | - Naftali Kaminski
- Boehringer-Ingelheim Endowed, Professor of Internal Medicine, Chief of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
36
|
Benn M, Nordestgaard BG. From genome-wide association studies to Mendelian randomization: novel opportunities for understanding cardiovascular disease causality, pathogenesis, prevention, and treatment. Cardiovasc Res 2019; 114:1192-1208. [PMID: 29471399 DOI: 10.1093/cvr/cvy045] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/16/2018] [Indexed: 12/22/2022] Open
Abstract
The Mendelian randomization approach is an epidemiological study design incorporating genetic information into traditional epidemiological studies to infer causality of biomarkers, risk factors, or lifestyle factors on disease risk. Mendelian randomization studies often draw on novel information generated in genome-wide association studies on causal associations between genetic variants and a risk factor or lifestyle factor. Such information can then be used in a largely unconfounded study design free of reverse causation to understand if and how risk factors and lifestyle factors cause cardiovascular disease. If causation is demonstrated, an opportunity for prevention of disease is identified; importantly however, before prevention or treatment can be implemented, randomized intervention trials altering risk factor levels or improving deleterious lifestyle factors needs to document reductions in cardiovascular disease in a safe and side-effect sparse manner. Documentation of causality can also inform on potential drug targets, more likely to be successful than prior approaches often relying on animal or cell studies mainly. The present review summarizes the history and background of Mendelian randomization, the study design, assumptions for using the design, and the most common caveats, followed by a discussion on advantages and disadvantages of different types of Mendelian randomization studies using one or more samples and different levels of information on study participants. The review also provides an overview of results on many of the risk factors and lifestyle factors for cardiovascular disease examined to date using the Mendelian randomization study design.
Collapse
Affiliation(s)
- Marianne Benn
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Børge G Nordestgaard
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark.,The Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen University Hospital, Denmark
| |
Collapse
|
37
|
Jones TK, Wong HR, Meyer NJ. HDL Cholesterol: A "Pathogen Lipid Sink" for Sepsis? Am J Respir Crit Care Med 2019; 199:812-814. [PMID: 30428278 PMCID: PMC6444663 DOI: 10.1164/rccm.201811-2084ed] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Tiffanie K Jones
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine.,2 Center for Translational Lung Biology University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania and
| | - Hector R Wong
- 3 Cincinnati Children's Hospital Medical Center Children's Hospital Research Foundation Cincinnati, Ohio
| | - Nuala J Meyer
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine.,2 Center for Translational Lung Biology University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania and
| |
Collapse
|
38
|
Hu Q, Hao P, Liu Q, Dong M, Gong Y, Zhang C, Zhang Y. Mendelian randomization studies on atherosclerotic cardiovascular disease: evidence and limitations. SCIENCE CHINA-LIFE SCIENCES 2019; 62:758-770. [DOI: 10.1007/s11427-019-9537-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/26/2019] [Indexed: 12/26/2022]
|
39
|
Reilly JP, Calfee CS, Christie JD. Acute Respiratory Distress Syndrome Phenotypes. Semin Respir Crit Care Med 2019; 40:19-30. [PMID: 31060085 DOI: 10.1055/s-0039-1684049] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The acute respiratory distress syndrome (ARDS) phenotype was first described over 50 years ago and since that time significant progress has been made in understanding the biologic processes underlying the syndrome. Despite this improved understanding, no pharmacologic therapies aimed at the underlying biology have been proven effective in ARDS. Increasingly, ARDS has been recognized as a heterogeneous syndrome characterized by subphenotypes with distinct clinical, radiographic, and biologic differences, distinct outcomes, and potentially distinct responses to therapy. The Berlin Definition of ARDS specifies three severity classifications: mild, moderate, and severe based on the PaO2 to FiO2 ratio. Two randomized controlled trials have demonstrated a potential benefit to prone positioning and neuromuscular blockade in moderate to severe phenotypes of ARDS only. Precipitating risk factor, direct versus indirect lung injury, and timing of ARDS onset can determine other clinical phenotypes of ARDS after admission. Radiographic phenotypes of ARDS have been described based on a diffuse versus focal pattern of infiltrates on chest imaging. Finally and most promisingly, biologic subphenotypes or endotypes have increasingly been identified using plasma biomarkers, genetics, and unbiased approaches such as latent class analysis. The potential of precision medicine lies in identifying novel therapeutics aimed at ARDS biology and the subpopulation within ARDS most likely to respond. In this review, we discuss the challenges and approaches to subphenotype ARDS into clinical, radiologic, severity, and biologic phenotypes with an eye toward the future of precision medicine in critical care.
Collapse
Affiliation(s)
- John P Reilly
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carolyn S Calfee
- Department of Medicine and Anesthesia, University of California, San Francisco, San Francisco, California
| | - Jason D Christie
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
40
|
Jia X, Hou Y, Xu M, Zhao Z, Xuan L, Wang T, Li M, Xu Y, Lu J, Bi Y, Wang W, Chen Y. Mendelian Randomization Analysis Support Causal Associations of HbA1c with Circulating Triglyceride, Total and Low-density Lipoprotein Cholesterol in a Chinese Population. Sci Rep 2019; 9:5525. [PMID: 30940890 PMCID: PMC6445078 DOI: 10.1038/s41598-019-41076-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/25/2019] [Indexed: 01/06/2023] Open
Abstract
Previous observational studies supported a positive association of glycated hemoglobin A1c (HbA1c) level with serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C). However, the causal relationship between HbA1c and either one of them was unclear in the East Asians. We performed a Mendelian Randomization (MR) analysis in a community-based study sample in Shanghai, China (n = 11,935). To clarify the cause-and-effect relationships of HbA1c with the four interested lipids, an Expanded HbA1c genetic risk score (GRS) with 17 HbA1c-related common variants and a Conservative score by excluding 11 variants were built and adopted as the Instrumental Variables (IVs), respectively. The Expanded HbA1c-GRS was associated with 0.19 unit increment in log-TG (P = 0.009), 0.42 mmol/L TC (P = 0.01), and 0.33 mmol/L LDL-C (P = 0.01); while the Conservative HbA1c-GRS was associated with 0.22 unit in log-TG (P = 0.03), 0.60 mmol/L TC (P = 0.01), and 0.51 mmol/L LDL-C (P = 0.007). No causal relationship was detected for HDL-C. Sensitivity analysis supported the above findings. In conclusions, MR analysis supports a causal role of increased HbA1c level in increment of circulating TG, TC, and LDL-C in a Chinese population.
Collapse
Affiliation(s)
- Xu Jia
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, Shanghai National Clinical Research Center for Metabolic Diseases, and Collaborative Innovation Center of Systems Biomedicine, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanan Hou
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, Shanghai National Clinical Research Center for Metabolic Diseases, and Collaborative Innovation Center of Systems Biomedicine, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Min Xu
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, Shanghai National Clinical Research Center for Metabolic Diseases, and Collaborative Innovation Center of Systems Biomedicine, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhiyun Zhao
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, Shanghai National Clinical Research Center for Metabolic Diseases, and Collaborative Innovation Center of Systems Biomedicine, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liping Xuan
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, Shanghai National Clinical Research Center for Metabolic Diseases, and Collaborative Innovation Center of Systems Biomedicine, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tiange Wang
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, Shanghai National Clinical Research Center for Metabolic Diseases, and Collaborative Innovation Center of Systems Biomedicine, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mian Li
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, Shanghai National Clinical Research Center for Metabolic Diseases, and Collaborative Innovation Center of Systems Biomedicine, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu Xu
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, Shanghai National Clinical Research Center for Metabolic Diseases, and Collaborative Innovation Center of Systems Biomedicine, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jieli Lu
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, Shanghai National Clinical Research Center for Metabolic Diseases, and Collaborative Innovation Center of Systems Biomedicine, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yufang Bi
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, Shanghai National Clinical Research Center for Metabolic Diseases, and Collaborative Innovation Center of Systems Biomedicine, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weiqing Wang
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, Shanghai National Clinical Research Center for Metabolic Diseases, and Collaborative Innovation Center of Systems Biomedicine, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuhong Chen
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, Shanghai National Clinical Research Center for Metabolic Diseases, and Collaborative Innovation Center of Systems Biomedicine, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
41
|
Šabovič M, Petrovič D. The Effect of Drugs and Genetic Factors on the Development and Progression of the Atherosclerotic Process. Curr Vasc Pharmacol 2018; 17:3-5. [PMID: 30474522 DOI: 10.2174/157016111701181101092855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mišo Šabovič
- Department of Vascular Diseases Ljubljana University Medical Center Zaloska cesta 7 SI-1000 Ljubljana, Slovenia
| | - Daniel Petrovič
- Institute of Histology and Embryology Faculty of Medicine University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
42
|
Reilly JP, Wang F, Jones TK, Palakshappa JA, Anderson BJ, Shashaty MGS, Dunn TG, Johansson ED, Riley TR, Lim B, Abbott J, Ittner CAG, Cantu E, Lin X, Mikacenic C, Wurfel MM, Christiani DC, Calfee CS, Matthay MA, Christie JD, Feng R, Meyer NJ. Plasma angiopoietin-2 as a potential causal marker in sepsis-associated ARDS development: evidence from Mendelian randomization and mediation analysis. Intensive Care Med 2018; 44:1849-1858. [PMID: 30343317 PMCID: PMC6697901 DOI: 10.1007/s00134-018-5328-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE A causal biomarker for acute respiratory distress syndrome (ARDS) could fuel precision therapy options. Plasma angiopoietin-2 (ANG2), a vascular permeability marker, is a strong candidate on the basis of experimental and observational evidence. We used genetic causal inference methods-Mendelian randomization and mediation-to infer potential effects of plasma ANG2. METHODS We genotyped 703 septic subjects, measured ICU admission plasma ANG2, and performed a quantitative trait loci (QTL) analysis to determine variants in the ANGPT2 gene associated with plasma ANG2 (p < 0.005). We then used linear regression and post-estimation analysis to genetically predict plasma ANG2 and tested genetically predicted ANG2 for ARDS association using logistic regression. We estimated the proportion of the genetic effect explained by plasma ANG2 using mediation analysis. RESULTS Plasma ANG2 was strongly associated with ARDS (OR 1.59 (95% CI 1.35, 1.88) per log). Five ANGPT2 variants were associated with ANG2 in European ancestry subjects (n = 404). Rs2442608C, the most extreme cis QTL (coefficient 0.22, 95% CI 0.09-0.36, p = 0.001), was associated with higher ARDS risk: adjusted OR 1.38 (95% CI 1.01, 1.87), p = 0.042. No significant QTL were identified in African ancestry subjects. Genetically predicted plasma ANG2 was associated with ARDS risk: adjusted OR 2.25 (95% CI 1.06-4.78), p = 0.035. Plasma ANG2 mediated 34% of the rs2442608C-related ARDS risk. CONCLUSIONS In septic European ancestry subjects, the strongest ANG2-determining ANGPT2 genetic variant is associated with higher ARDS risk. Plasma ANG2 may be a causal factor in ARDS development. Strategies to reduce plasma ANG2 warrant testing to prevent or treat sepsis-associated ARDS.
Collapse
Affiliation(s)
- John P Reilly
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Fan Wang
- Department of Molecular Cardiology, Cleveland Clinic Lerner Research Institute, Cleveland, USA
| | - Tiffanie K Jones
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Jessica A Palakshappa
- Pulmonary, Critical Care, Allergy, and Immunologic Medicine, Wake Forest School of Medicine, Winston-Salem, USA
| | - Brian J Anderson
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Michael G S Shashaty
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Thomas G Dunn
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Erik D Johansson
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Thomas R Riley
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Brian Lim
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Jason Abbott
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, USA
| | - Caroline A G Ittner
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
| | - Edward Cantu
- Divison of Cardiothoracic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Xihong Lin
- Harvard University T.H. Chan School of Public Health, Boston, USA
| | - Carmen Mikacenic
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, USA
| | - Mark M Wurfel
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, USA
| | - David C Christiani
- Harvard University T.H. Chan School of Public Health, Boston, USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, USA
| | - Carolyn S Calfee
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, USA
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, USA
| | - Jason D Christie
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, USA
| | - Rui Feng
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, USA
| | - Nuala J Meyer
- Pulmonary, Allergy, and Critical Care Medicine Division, University of Pennsylvania Perelman School of Medicine, 3600 Spruce Street 5039 Gates Building, Philadelphia, PA, 19104, USA.
| |
Collapse
|
43
|
Nelson CP, Erridge C. Are toll-like receptors potential drug targets for atherosclerosis? Evidence from genetic studies to date. Immunogenetics 2018; 71:1-11. [PMID: 30327825 DOI: 10.1007/s00251-018-1092-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/09/2018] [Indexed: 01/08/2023]
Abstract
Low-density lipoprotein cholesterol lowering, most notably via statin therapy, has successfully reduced the burden of coronary artery disease (CAD) in recent decades. However, the residual risk remaining even after aggressive lipid lowering has renewed interest in alternative targets. Anti-inflammatory drugs are thought to have much potential in this context, but side effects associated with long-term use of conventional anti-inflammatories, such as NSAIDs and glucocorticoids, preclude their use as preventive agents for CAD. Evidence from epidemiological studies and murine models of atherosclerosis suggests that toll-like receptors (TLRs) may have utility as targets for more focused anti-inflammatories, but it remains unclear if this pathway is causally related to CAD in man. Here, we review recent insight into this question gained from genetic studies of cardiovascular risk and innate immune function, focussing on the potential of Mendelian randomisation approaches based on intracellular-signalling pathways to identify and prioritise targets for drug development.
Collapse
Affiliation(s)
- Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, LE3 9QP, UK.,NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Groby Road, Leicester, LE3 9QP, UK
| | - Clett Erridge
- Department of Cardiovascular Sciences, University of Leicester, Leicester, LE3 9QP, UK. .,Department of Biomedical and Forensic Sciences, Anglia Ruskin University, East Rd, Cambridge, CB1 1PT, UK.
| |
Collapse
|
44
|
Vernon ST, Hansen T, Kott KA, Yang JY, O'Sullivan JF, Figtree GA. Utilizing state-of-the-art
“omics” technology and bioinformatics to identify new biological mechanisms and biomarkers for coronary artery disease. Microcirculation 2018; 26:e12488. [DOI: 10.1111/micc.12488] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Stephen T. Vernon
- Cardiothoracic and Vascular Health; Kolling Institute and Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District; Sydney NSW Australia
- Sydney Medical School; Faculty of Medicine and Health; The University of Sydney; Sydney NSW Australia
| | - Thomas Hansen
- Cardiothoracic and Vascular Health; Kolling Institute and Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District; Sydney NSW Australia
- Sydney Medical School; Faculty of Medicine and Health; The University of Sydney; Sydney NSW Australia
| | - Katharine A. Kott
- Cardiothoracic and Vascular Health; Kolling Institute and Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District; Sydney NSW Australia
- Sydney Medical School; Faculty of Medicine and Health; The University of Sydney; Sydney NSW Australia
| | - Jean Y. Yang
- School of Mathematics and Statistics; The University of Sydney; Sydney NSW Australia
- Charles Perkins Centre; The University of Sydney; Sydney NSW Australia
| | - John F. O'Sullivan
- Sydney Medical School; Faculty of Medicine and Health; The University of Sydney; Sydney NSW Australia
- Charles Perkins Centre; The University of Sydney; Sydney NSW Australia
- Heart Research Institute; Sydney NSW Australia
| | - Gemma A. Figtree
- Cardiothoracic and Vascular Health; Kolling Institute and Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District; Sydney NSW Australia
- Sydney Medical School; Faculty of Medicine and Health; The University of Sydney; Sydney NSW Australia
| |
Collapse
|
45
|
Genetics of coronary artery disease in the light of genome-wide association studies. Clin Res Cardiol 2018; 107:2-9. [DOI: 10.1007/s00392-018-1324-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/04/2018] [Indexed: 11/26/2022]
|
46
|
Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, Hegele RA, Krauss RM, Raal FJ, Schunkert H, Watts GF, Borén J, Fazio S, Horton JD, Masana L, Nicholls SJ, Nordestgaard BG, van de Sluis B, Taskinen MR, Tokgözoglu L, Landmesser U, Laufs U, Wiklund O, Stock JK, Chapman MJ, Catapano AL. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 2018; 38:2459-2472. [PMID: 28444290 PMCID: PMC5837225 DOI: 10.1093/eurheartj/ehx144] [Citation(s) in RCA: 2392] [Impact Index Per Article: 341.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/08/2017] [Indexed: 12/15/2022] Open
Abstract
Aims To appraise the clinical and genetic evidence that low-density lipoproteins (LDLs) cause atherosclerotic cardiovascular disease (ASCVD). Methods and results We assessed whether the association between LDL and ASCVD fulfils the criteria for causality by evaluating the totality of evidence from genetic studies, prospective epidemiologic cohort studies, Mendelian randomization studies, and randomized trials of LDL-lowering therapies. In clinical studies, plasma LDL burden is usually estimated by determination of plasma LDL cholesterol level (LDL-C). Rare genetic mutations that cause reduced LDL receptor function lead to markedly higher LDL-C and a dose-dependent increase in the risk of ASCVD, whereas rare variants leading to lower LDL-C are associated with a correspondingly lower risk of ASCVD. Separate meta-analyses of over 200 prospective cohort studies, Mendelian randomization studies, and randomized trials including more than 2 million participants with over 20 million person-years of follow-up and over 150 000 cardiovascular events demonstrate a remarkably consistent dose-dependent log-linear association between the absolute magnitude of exposure of the vasculature to LDL-C and the risk of ASCVD; and this effect appears to increase with increasing duration of exposure to LDL-C. Both the naturally randomized genetic studies and the randomized intervention trials consistently demonstrate that any mechanism of lowering plasma LDL particle concentration should reduce the risk of ASCVD events proportional to the absolute reduction in LDL-C and the cumulative duration of exposure to lower LDL-C, provided that the achieved reduction in LDL-C is concordant with the reduction in LDL particle number and that there are no competing deleterious off-target effects. Conclusion Consistent evidence from numerous and multiple different types of clinical and genetic studies unequivocally establishes that LDL causes ASCVD.
Collapse
Affiliation(s)
- Brian A Ference
- Division of Translational Research and Clinical Epidemiology, Division of Cardiovascular Medicine, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Henry N Ginsberg
- Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA
| | | | - Kausik K Ray
- Department of Primary Care and Public Health, Imperial Centre for Cardiovascular Disease Prevention, Imperial College, London, UK
| | - Chris J Packard
- College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - Eric Bruckert
- INSERM UMRS1166, Department of Endocrinology-Metabolism, ICAN - Institute of CardioMetabolism and Nutrition, AP-HP, Hôpital de la Pitié, Paris, France
| | - Robert A Hegele
- Department of Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Ronald M Krauss
- Department of Atherosclerosis Research, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Frederick J Raal
- Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Technische Universität München, Munich 80636, Germany.,Deutsches Zentrum für Herz und Kreislauferkrankungen (DZHK), Partner Site Munich Heart Alliance, Munich 81377, Germany
| | - Gerald F Watts
- Lipid Disorders Clinic, Centre for Cardiovascular Medicine, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Sergio Fazio
- Department of Medicine, Center for Preventive Cardiology of the Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Jay D Horton
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Luis Masana
- Research Unit of Lipids and Atherosclerosis, University Rovira i Virgili, C. Sant Llorenç 21, Reus 43201, Spain
| | - Stephen J Nicholls
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry and The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,The Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen University Hospital, Denmark
| | - Bart van de Sluis
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen AV 9713, The Netherlands
| | - Marja-Riitta Taskinen
- Helsinki University Central Hospital and Research Programs' Unit, Diabetes and Obesity, Heart and Lung Centre, University of Helsinki, Helsinki, Finland
| | | | - Ulf Landmesser
- Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA.,INSERM UMRS1166, Department of Endocrinology-Metabolism, ICAN - Institute of CardioMetabolism and Nutrition, AP-HP, Hôpital de la Pitié, Paris, France.,Department of Cardiology, Charité-Universitätsmedizin Berlin (CBF), Hindenburgdamm 30, Berlin 12203, Germany
| | - Ulrich Laufs
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Homburg, Saar, Germany
| | - Olov Wiklund
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jane K Stock
- European Atherosclerosis Society, Gothenburg, Sweden
| | - M John Chapman
- INSERM, Dyslipidemia and Atherosclerosis Research, and University of Pierre and Marie Curie, Pitié-Sâlpetrière University Hospital, Paris, France
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan and IRCCS Multimedica, Milan, Italy
| |
Collapse
|
47
|
He L, Culminskaya I, Loika Y, Arbeev KG, Bagley O, Duan M, Yashin AI, Kulminski AM. Causal effects of cardiovascular risk factors on onset of major age-related diseases: A time-to-event Mendelian randomization study. Exp Gerontol 2018; 107:74-86. [PMID: 28964830 PMCID: PMC5874182 DOI: 10.1016/j.exger.2017.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/01/2017] [Accepted: 09/26/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUNDS Elucidating the causal effects of common intermediate risk factors on the onset of age-related diseases is indispensable for developing prevention and intervention procedures. METHODS We conducted two-stage time-to-event Mendelian randomization meta-analyses combining five large-scale longitudinal cohorts to investigate dynamic causal effects of cardiovascular disease risk factors including body mass index (BMI), systolic blood pressure (SBP), and lipids on the age-at-onset of age-related diseases. We constructed weighted polygenic scores based on genetic markers from previously reported genome-wide association studies as instrumental variables to estimate the causal effects. To avoid false positive due to potential pleiotropic effects of the genetic markers, we performed a leave-one-out sensitivity analysis and an MR-Egger sensitivity analysis that we expanded in the survival context. RESULTS Our results show that elevated BMI increases the absolute risk of type 2 diabetes (T2D) (p=7.68e-04), heart failure (p=9.03e-03), and cardiovascular diseases (CVD) (p=1.69e-03) and the causal effects start at different ages. A significant association between BMI and the risk of stroke is observed; however, the sensitivity analyses suggest that the association is attributed to the potential pleiotropic effects of rs2867125 and rs1558902. Raised SBP levels are significantly associated with the development of atrial fibrillation (p=6.42e-03). Low-density lipoprotein cholesterol (LDL-C) levels are inversely associated with the age-at-onset of T2D (p=1.05e-02). In addition, LDL-C and triglycerides are inversely associated with the risks of cancer and T2D, respectively. Nevertheless, the sensitivity analyses suggest that these associations are probably due to pleiotropic effects of several single-nucleotide polymorphisms including rs4970834 and rs1260326. CONCLUSIONS Our results highlight the involvement of BMI in the development of multiple age-related diseases. Some observed causal associations can attribute to pleiotropic effects of some genetic variations. These findings have important implications in unraveling causal effects of common risk factors on age-related diseases and guiding effective intervention strategies to reduce the incidence of these diseases.
Collapse
Affiliation(s)
- Liang He
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27708, USA.
| | - Irina Culminskaya
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27708, USA
| | - Yury Loika
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27708, USA
| | - Konstantin G Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27708, USA
| | - Olivia Bagley
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27708, USA
| | - Matt Duan
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27708, USA
| | - Anatoliy I Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27708, USA
| | - Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
48
|
|
49
|
Low-carbohydrate diets increase LDL-cholesterol, and thereby indicate increased risk of CVD. Br J Nutr 2018; 115:2264-6. [PMID: 27376624 DOI: 10.1017/s0007114516001343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Franzago M, Fraticelli F, Di Nicola M, Bianco F, Marchetti D, Celentano C, Liberati M, De Caterina R, Stuppia L, Vitacolonna E. Early Subclinical Atherosclerosis in Gestational Diabetes: The Predictive Role of Routine Biomarkers and Nutrigenetic Variants. J Diabetes Res 2018; 2018:9242579. [PMID: 30671483 PMCID: PMC6323479 DOI: 10.1155/2018/9242579] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/17/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022] Open
Abstract
Gestational diabetes mellitus (GDM) can be considered a silent risk for out-of-pregnancy diabetes mellitus (DM) and cardiovascular disease (CVD) later in life. We aimed to assess the predictive role of 3rd trimester lipid profile during pregnancy for the susceptibility to markers of subclinical atherosclerosis (CVD susceptibility) at 3 years in a cohort of women with history of GDM. A secondary aim is to evaluate the usefulness of novel nutrigenetic markers, in addition to traditional parameters, for predicting early subclinical atherosclerosis in such women in order to plan adequate early prevention interventions. We assessed 28 consecutive GDM women in whom we collected socio-demographic characteristics and clinical and anthropometric parameters at the 3rd trimester of pregnancy. In a single blood sample, from each patient, we assessed 9 single nucleotide polymorphisms (SNPs) from 9 genes related to nutrients and metabolism, which were genotyped by High Resolution Melting analysis. All women then attended a 3-year-postpartum follow-up and on that occasion performed an oral glucose tolerance test (OGTT, with 75 g oral glucose), the measurement of carotid artery intima-media thickness (cIMT), and analyses of metabolic parameters. In addition, we evaluated the physical activity level and the adherence to Mediterranean diet (MedDiet) using the International Physical Activity Questionnaire (IPAQ-short version) and PREDIMED questionnaires. We found an association between 3rd trimester triglycerides and cIMT (p = 0.014). We also found significant associations between the APOA5 CC genotype and cIMT after adjustments for age and body mass index (p = 0.045) and between the interaction CC APOA5/CC LDLR and cIMT (p = 0.010). At the follow-up, the cohort also featured a mean BMI in the overweight range and a high mean waist circumference. We found no difference in the MedDiet adherence, physical activity, and smoking but an inverse correlation between the PREDIMED and the IPAQ scores with the IMT. In conclusion, this preliminary study provides insight into the predictive role of lipid profile during pregnancy and of some genetic variants on cIMT taken as a parameter of subclinical CVD susceptibility in GDM.
Collapse
Affiliation(s)
- Marica Franzago
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Federica Fraticelli
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Marta Di Nicola
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Francesco Bianco
- Institute of Cardiology, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Daniela Marchetti
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Claudio Celentano
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Marco Liberati
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Raffaele De Caterina
- Institute of Cardiology, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Ester Vitacolonna
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| |
Collapse
|