1
|
Sharma S, Kumar M, Kumar J, Mazumder S. β-Catenin Elicits Drp1-Mediated Mitochondrial Fission Activating the Pro-Apoptotic Caspase-1/IL-1β Signalosome in Aeromonas hydrophila-Infected Zebrafish Macrophages. Cells 2023; 12:1509. [PMID: 37296630 PMCID: PMC10252323 DOI: 10.3390/cells12111509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Canonical Wnt signaling plays a major role in regulating microbial pathogenesis. However, to date, its involvement in A. hydrophila infection is not well known. Using zebrafish (Danio rerio) kidney macrophages (ZKM), we report that A. hydrophila infection upregulates wnt2, wnt3a, fzd5, lrp6, and β-catenin (ctnnb1) expression, coinciding with the decreased expression of gsk3b and axin. Additionally, increased nuclear β-catenin protein accumulation was observed in infected ZKM, thereby suggesting the activation of canonical Wnt signaling in A. hydrophila infection. Our studies with the β-catenin specific inhibitor JW67 demonstrated β-catenin to be pro-apoptotic, which initiates the apoptosis of A. hydrophila-infected ZKM. β-catenin induces NADPH oxidase (NOX)-mediated ROS production, which orchestrates sustained mitochondrial ROS (mtROS) generation in the infected ZKM. Elevated mtROS favors the dissipation of the mitochondrial membrane potential (ΔΨm) and downstream Drp1-mediated mitochondrial fission, leading to cytochrome c release. We also report that β-catenin-induced mitochondrial fission is an upstream regulator of the caspase-1/IL-1β signalosome, which triggers the caspase-3 mediated apoptosis of the ZKM as well as A. hydrophila clearance. This is the first study suggesting a host-centric role of canonical Wnt signaling pathway in A. hydrophila pathogenesis wherein β-catenin plays a primal role in activating the mitochondrial fission machinery, which actively promotes ZKM apoptosis and helps in containing the bacteria.
Collapse
Affiliation(s)
- Shagun Sharma
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Manmohan Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Jai Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India
- Faculty of Life Sciences and Biotechnology, South Asian University, Delhi 110021, India
| |
Collapse
|
2
|
Lu J, Zhang T, Sun H, Wang S, Liu M. Protective effects of dioscin against cartilage destruction in a monosodium iodoacetate (MIA)-indcued osteoarthritis rat model. Biomed Pharmacother 2018; 108:1029-1038. [DOI: 10.1016/j.biopha.2018.09.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/30/2018] [Accepted: 09/12/2018] [Indexed: 01/01/2023] Open
|
3
|
Li Y, Cui SX, Sun SY, Shi WN, Song ZY, Wang SQ, Yu XF, Gao ZH, Qu XJ. Chemoprevention of intestinal tumorigenesis by the natural dietary flavonoid myricetin in APCMin/+ mice. Oncotarget 2018; 7:60446-60460. [PMID: 27507058 PMCID: PMC5312395 DOI: 10.18632/oncotarget.11108] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/26/2016] [Indexed: 12/12/2022] Open
Abstract
Myricetin is a natural dietary flavonoid compound. We evaluated the efficacy of myricetin against intestinal tumorigenesis in adenomatous polyposis coli multiple intestinal neoplasia (APCMin/+) mice. Myricetin was given orally once a day for 12 consecutive weeks. APCMin/+ mice fed with myricetin developed fewer and smaller polyps without any adverse effects. Histopathological analysis showed a decreased number of dysplastic cells and degree of dysplasia in each polyp. Immunohistochemical and western blot analysis revealed that myricetin selectively inhibits cell proliferation and induces apoptosis in adenomatous polyps. The effects of myricetin were associated with a modulation the GSK-3β and Wnt/β-catenin pathways. ELISA analysis showed a reduced concentration of pro-inflammatory cytokines IL-6 and PGE2 in blood, which were elevated in APCMin/+ mice. The effect of myricetin treatment was more prominent in the adenomatous polyps originating in the colon. Further studies showed that myricetin downregulates the phosphorylated p38 MAPK/Akt/mTOR signaling pathways, which may be the mechanisms for the inhibition of adenomatous polyps by myricetin. Taken together, our data show that myricetin inhibits intestinal tumorigenesis through a collection of biological activities. Given these results, we suggest that myricetin could be used preventatively to reduce the risk of developing colon cancers.
Collapse
Affiliation(s)
- Ye Li
- Department of Pharmacology, School of Chemical Biology & Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Shu-Xiang Cui
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Shi-Yue Sun
- Department of Pharmacology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - Wen-Na Shi
- Department of Pharmacology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - Zhi-Yu Song
- Department of Pharmacology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - Shu-Qing Wang
- Department of Pharmacology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - Xin-Feng Yu
- Department of Pharmacology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - Zu-Hua Gao
- Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Xian-Jun Qu
- Department of Pharmacology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| |
Collapse
|
4
|
McClelland Descalzo DL, Satoorian TS, Walker LM, Sparks NRL, Pulyanina PY, Zur Nieden NI. Glucose-Induced Oxidative Stress Reduces Proliferation in Embryonic Stem Cells via FOXO3A/β-Catenin-Dependent Transcription of p21(cip1). Stem Cell Reports 2017; 7:55-68. [PMID: 27411103 PMCID: PMC4945584 DOI: 10.1016/j.stemcr.2016.06.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 11/17/2022] Open
Abstract
Embryonic stem cells (ESCs), which are derived from a peri-implantation embryo, are routinely cultured in medium containing diabetic glucose (Glc) concentrations. While pregnancy in women with pre-existing diabetes may result in small embryos, whether such high Glc levels affect ESC growth remains uncovered. We show here that long-term exposure of ESCs to diabetic Glc inhibits their proliferation, thereby mimicking in vivo findings. Molecularly, Glc exposure increased oxidative stress and activated Forkhead box O3a (FOXO3a), promoting increased expression and activity of the ROS-removal enzymes superoxide dismutase and catalase and the cell-cycle inhibitors p21cip1 and p27kip1. Diabetic Glc also promoted β-catenin nuclear localization and the formation of a complex with FOXO3a that localized to the promoters of Sod2, p21cip1, and potentially p27kip1. Our results demonstrate an adaptive response to increases in oxidative stress induced by diabetic Glc conditions that promote ROS removal, but also result in a decrease in proliferation. Exposure of ESCs to diabetic glucose (Glc) induces oxidative stress ESCs fight oxidative stress via FOXO3a-mediated transcription of Sod2 FOXO3a activation promotes p21cip1 and p27kip1 expression and cell-cycle inhibition Glc regulates FOXO3a/β-catenin co-occupation of the p21 and Sod2 promoters
Collapse
Affiliation(s)
- Darcie L McClelland Descalzo
- Department of Cell Biology & Neuroscience and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, 1113 Biological Sciences Building, Riverside, CA 92521, USA
| | - Tiffany S Satoorian
- Department of Cell Biology & Neuroscience and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, 1113 Biological Sciences Building, Riverside, CA 92521, USA
| | - Lauren M Walker
- Department of Cell Biology & Neuroscience and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, 1113 Biological Sciences Building, Riverside, CA 92521, USA
| | - Nicole R L Sparks
- Department of Cell Biology & Neuroscience and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, 1113 Biological Sciences Building, Riverside, CA 92521, USA
| | - Polina Y Pulyanina
- Department of Cell Biology & Neuroscience and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, 1113 Biological Sciences Building, Riverside, CA 92521, USA
| | - Nicole I Zur Nieden
- Department of Cell Biology & Neuroscience and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, 1113 Biological Sciences Building, Riverside, CA 92521, USA.
| |
Collapse
|
5
|
Contino S, Porporato PE, Bird M, Marinangeli C, Opsomer R, Sonveaux P, Bontemps F, Dewachter I, Octave JN, Bertrand L, Stanga S, Kienlen-Campard P. Presenilin 2-Dependent Maintenance of Mitochondrial Oxidative Capacity and Morphology. Front Physiol 2017; 8:796. [PMID: 29085303 PMCID: PMC5650731 DOI: 10.3389/fphys.2017.00796] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/28/2017] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial dysfunction plays a pivotal role in the progression of Alzheimer's disease (AD), and yet the mechanisms underlying the impairment of mitochondrial function in AD remain elusive. Recent evidence suggested a role for Presenilins (PS1 or PS2) in mitochondrial function. Mutations of PSs, the catalytic subunits of the γ-secretase complex, are responsible for the majority of inherited AD cases (FAD). PSs were shown to be present in mitochondria and particularly enriched in mitochondria-associated membranes (MAM), where PS2 is involved in the calcium shuttling between mitochondria and the endoplasmic reticulum (ER). We investigated the precise contribution of PS1 and PS2 to the bioenergetics of the cell and to mitochondrial morphology in cell lines derived from wild type (PS+/+), PS1/2 double knock-out (PSdKO), PS2KO and PS1KO embryos. Our results showed a significant impairment in the respiratory capacity of PSdKO and PS2KO cells with reduction of basal oxygen consumption, oxygen utilization dedicated to ATP production and spare respiratory capacity. In line with these functional defects, we found a decrease in the expression of subunits responsible for mitochondrial oxidative phosphorylation (OXPHOS) associated with an altered morphology of the mitochondrial cristae. This OXPHOS disruption was accompanied by a reduction of the NAD+/NADH ratio. Still, neither ADP/ATP ratio nor mitochondrial membrane potential (ΔΨ) were affected, suggesting the existence of a compensatory mechanism for energetic balance. We observed indeed an increase in glycolytic flux in PSdKO and PS2KO cells. All these effects were truly dependent on PS2 since its stable re-expression in a PS2KO background led to a complete restoration of the parameters impaired in the absence of PS2. Our data clearly demonstrate here the crucial role of PS2 in mitochondrial function and cellular bioenergetics, pointing toward its peculiar role in the formation and integrity of the electron transport chain.
Collapse
Affiliation(s)
- Sabrina Contino
- Alzheimer Research Group, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Paolo E Porporato
- Pharmacology and Therapeutics, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Matthew Bird
- Alzheimer Research Group, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Claudia Marinangeli
- Alzheimer Research Group, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Rémi Opsomer
- Alzheimer Research Group, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Pierre Sonveaux
- Pharmacology and Therapeutics, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Françoise Bontemps
- Metabolic Research Group, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Ilse Dewachter
- Alzheimer Research Group, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Jean-Noël Octave
- Alzheimer Research Group, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institute of Experimental and clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Serena Stanga
- Alzheimer Research Group, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Pascal Kienlen-Campard
- Alzheimer Research Group, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
6
|
Zhang YS, Li Y, Wang Y, Sun SY, Jiang T, Li C, Cui SX, Qu XJ. Naringin, a natural dietary compound, prevents intestinal tumorigenesis in Apc (Min/+) mouse model. J Cancer Res Clin Oncol 2016; 142:913-25. [PMID: 26702935 DOI: 10.1007/s00432-015-2097-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/11/2015] [Indexed: 02/06/2023]
Abstract
PURPOSE Naringin is a natural dietary flavonoid compound. We aimed to evaluate the effects of naringin on intestinal tumorigenesis in the adenomatous polyposis coli multiple intestinal neoplasia (Apc (Min/+)) mouse model. METHODS Apc (Min/+) mice were given either naringin (150 mg/kg) or vehicle by p.o. gavage daily for 12 consecutive weeks. Mice were killed with ether, and blood samples were collected to assess the concentrations of IL-6 and PGE2. Total intestines were removed, and the number of polyps was examined. Tissue samples of intestinal polyps were subjected to the assays of histopathology, immunohistochemical analysis and Western blotting analysis. RESULTS Apc (Min/+) mice fed with naringin developed less and smaller polyps in total intestines. Naringin prevented intestinal tumorigenesis without adverse effects. Histopathologic analysis revealed the reduction of dysplastic cells and dysplasia in the adenomatous polyps. The treatments' effects might arise from its anti-proliferation, induction of apoptosis and modulation of GSK-3β and APC/β-catenin signaling pathways. Naringin also exerted its effects on tumorigenesis through anti-chronic inflammation. CONCLUSION Naringin prevented intestinal tumorigenesis likely through a collection of activities including anti-proliferation, induction of apoptosis, modulation of GSK-3β and APC/β-catenin pathways and anti-inflammation. Naringin is a potential chemopreventive agent for reducing the risk of colonic cancers.
Collapse
Affiliation(s)
- Yu-Sheng Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ye Li
- Department of Pharmacology, School of Chemical Biology & Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Yan Wang
- Department of Pharmacology, Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - Shi-Yue Sun
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Tao Jiang
- Shandong Tumor Hospital, Jinan, China
| | - Cong Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shu-Xiang Cui
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xian-Jun Qu
- School of Pharmaceutical Sciences, Shandong University, Jinan, China.
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Robinson A, Grösgen S, Mett J, Zimmer VC, Haupenthal VJ, Hundsdörfer B, P. Stahlmann C, Slobodskoy Y, Müller UC, Hartmann T, Stein R, Grimm MOW. Upregulation of PGC-1α expression by Alzheimer's disease-associated pathway: presenilin 1/amyloid precursor protein (APP)/intracellular domain of APP. Aging Cell 2014; 13:263-72. [PMID: 24304563 PMCID: PMC4331788 DOI: 10.1111/acel.12183] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2013] [Indexed: 01/19/2023] Open
Abstract
Cleavage of amyloid precursor protein (APP) by β- and γ-secretase generates amyloid-β (Aβ) and APP intracellular domain (AICD) peptides. Presenilin (PS) 1 or 2 is the catalytic component of the γ-secretase complex. Mitochondrial dysfunction is an established phenomenon in Alzheimer’s disease (AD), but the causes and role of PS1, APP, and APP’s cleavage products in this process are largely unknown. We studied the effect of these AD-associated molecules on mitochondrial features. Using cells deficient in PSs expression, expressing human wild-type PS1, or PS1 familial AD (FAD) mutants, we found that PS1 affects mitochondrial energy metabolism (ATP levels and oxygen consumption) and expression of mitochondrial proteins. These effects were associated with enhanced expression of the mitochondrial master transcriptional coactivator PGC-1α and its target genes. Importantly, PS1-FAD mutations decreased PS1’s ability to enhance PGC-1α mRNA levels. Analyzing the effect of APP and its γ-secretase-derived cleavage products Aβ and AICD on PGC-1α expression showed that APP and AICD increase PGC-1α expression. Accordingly, PGC-1α mRNA levels in cells deficient in APP/APLP2 or expressing APP lacking its last 15 amino acids were lower than in control cells, and treatment with AICD, but not with Aβ, enhanced PGC-1α mRNA levels in these and PSs-deficient cells. In addition, knockdown of the AICD-binding partner Fe65 reduced PGC-1α mRNA levels. Importantly, APP/AICD increases PGC-1α expression also in the mice brain. Our results therefore suggest that APP processing regulates mitochondrial function and that impairments in the newly discovered PS1/APP/AICD/PGC-1α pathway may lead to mitochondrial dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Ari Robinson
- Department of Neurobiology George S. Wise Faculty of Life Sciences Tel Aviv University Ramat Aviv Israel
| | - Sven Grösgen
- Neurodegeneration and Neurobiology Saarland University Homburg/Saar Germany
| | - Janine Mett
- Neurodegeneration and Neurobiology Saarland University Homburg/Saar Germany
| | - Valerie C. Zimmer
- Neurodegeneration and Neurobiology Saarland University Homburg/Saar Germany
| | | | | | | | - Yulia Slobodskoy
- Department of Neurobiology George S. Wise Faculty of Life Sciences Tel Aviv University Ramat Aviv Israel
| | - Ulrike C. Müller
- Department of Functional Genomics Institute of Pharmacy and Molecular Biotechnology Heidelberg University Heidelberg Germany
| | - Tobias Hartmann
- Neurodegeneration and Neurobiology Saarland University Homburg/Saar Germany
- Deutsches Institut für DemenzPrävention (DIDP) Saarland University Homburg/Saar Germany
- Experimental Neurology Saarland University Homburg/Saar Germany
| | - Reuven Stein
- Department of Neurobiology George S. Wise Faculty of Life Sciences Tel Aviv University Ramat Aviv Israel
- Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel
| | - Marcus O. W. Grimm
- Neurodegeneration and Neurobiology Saarland University Homburg/Saar Germany
- Deutsches Institut für DemenzPrävention (DIDP) Saarland University Homburg/Saar Germany
- Experimental Neurology Saarland University Homburg/Saar Germany
| |
Collapse
|
8
|
Ghani M, Sato C, Lee JH, Reitz C, Moreno D, Mayeux R, St George-Hyslop P, Rogaeva E. Evidence of recessive Alzheimer disease loci in a Caribbean Hispanic data set: genome-wide survey of runs of homozygosity. JAMA Neurol 2013; 70:1261-7. [PMID: 23978990 PMCID: PMC3991012 DOI: 10.1001/jamaneurol.2013.3545] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPORTANCE The search for novel Alzheimer disease (AD) genes or pathologic mutations within known AD loci is ongoing. The development of array technologies has helped to identify rare recessive mutations among long runs of homozygosity (ROHs), in which both parental alleles are identical. Caribbean Hispanics are known to have an elevated risk for AD and tend to have large families with evidence of inbreeding. OBJECTIVE To test the hypothesis that the late-onset AD in a Caribbean Hispanic population might be explained in part by the homozygosity of unknown loci that could harbor recessive AD risk haplotypes or pathologic mutations. DESIGN We used genome-wide array data to identify ROHs (>1 megabase) and conducted global burden and locus-specific ROH analyses. SETTING A whole-genome case-control ROH study. PARTICIPANTS A Caribbean Hispanic data set of 547 unrelated cases (48.8% with familial AD) and 542 controls collected from a population known to have a 3-fold higher risk of AD vs non-Hispanics in the same community. Based on a Structure program analysis, our data set consisted of African Hispanic (207 cases and 192 controls) and European Hispanic (329 cases and 326 controls) participants. EXPOSURE Alzheimer disease risk genes. MAIN OUTCOMES AND MEASURES We calculated the total and mean lengths of the ROHs per sample. Global burden measurements among autosomal chromosomes were investigated in cases vs controls. Pools of overlapping ROH segments (consensus regions) were identified, and the case to control ratio was calculated for each consensus region. We formulated the tested hypothesis before data collection. RESULTS In total, we identified 17 137 autosomal regions with ROHs. The mean length of the ROH per person was significantly greater in cases vs controls (P = .0039), and this association was stronger with familial AD (P = .0005). Among the European Hispanics, a consensus region at the EXOC4 locus was significantly associated with AD even after correction for multiple testing (empirical P value 1 [EMP1], .0001; EMP2, .002; 21 AD cases vs 2 controls). Among the African Hispanic subset, the most significant but nominal association was observed for CTNNA3, a well-known AD gene candidate (EMP1, .002; 10 AD cases vs 0 controls). CONCLUSIONS AND RELEVANCE Our results show that ROHs could significantly contribute to the etiology of AD. Future studies would require the analysis of larger, relatively inbred data sets that might reveal novel recessive AD genes. The next step is to conduct sequencing of top significant loci in a subset of samples with overlapping ROHs.
Collapse
Affiliation(s)
- Mahdi Ghani
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Joseph H Lee
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Departments of Neurology, Psychiatry, and Medicine, College of Physicians and Surgeons, Columbia University, New York, New York3Department of Epidemiolo
| | - Christiane Reitz
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Departments of Neurology, Psychiatry, and Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Danielle Moreno
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Departments of Neurology, Psychiatry, and Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada4Department of Medicine, University of Toronto, Toronto, Ontario, Canada5Cambridge Institute for Medical Research and Department of Clinical Neuroscienc
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada4Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Park MR, Park JY, Kwon DN, Cho SG, Park C, Seo HG, Ko YG, Gurunathan S, Kim JH. Altered protein profiles in human umbilical cords with preterm and full-term delivery. Electrophoresis 2013. [DOI: 10.1002/elps.201200197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mi-Ryung Park
- Department of Animal Biotechnology; Konkuk University; Seoul; Republic of Korea
| | - Jong-Yi Park
- Department of Animal Biotechnology; Konkuk University; Seoul; Republic of Korea
| | - Deug-Nam Kwon
- Department of Animal Biotechnology; Konkuk University; Seoul; Republic of Korea
| | - Ssang-Goo Cho
- Department of Animal Biotechnology; Konkuk University; Seoul; Republic of Korea
| | - Chankyu Park
- Department of Animal Biotechnology; Konkuk University; Seoul; Republic of Korea
| | - Han-Geuk Seo
- Department of Animal Biotechnology; Konkuk University; Seoul; Republic of Korea
| | - Yeoung-Gyu Ko
- Animal Genetic Resources Station, National Institute of Animal Science; RDA; Namwon; Republic of Korea
| | | | - Jin-Hoi Kim
- Department of Animal Biotechnology; Konkuk University; Seoul; Republic of Korea
| |
Collapse
|
10
|
Song H, Boo JH, Kim KH, Kim C, Kim YE, Ahn JH, Jeon GS, Ryu H, Kang DE, Mook-Jung I. Critical role of presenilin-dependent γ-secretase activity in DNA damage-induced promyelocytic leukemia protein expression and apoptosis. Cell Death Differ 2013; 20:639-48. [PMID: 23306558 DOI: 10.1038/cdd.2012.162] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Promyelocytic leukemia (PML) is a major component of macromolecular multiprotein complexes called PML nuclear-bodies (PML-NBs). These PML-NBs recruit numerous proteins including CBP, p53 and HIPK2 in response to DNA damage, senescence and apoptosis. In this study, we investigated the effect of presenilin (PS), the main component of the γ-secretase complex, in PML/p53 expression and downstream consequences during DNA damage-induced cell death using camptothecin (CPT). We found that the loss of PS in PS knockout (KO) MEFs (mouse embryonic fibroblasts) results in severely blunted PML expression and attenuated cell death upon CPT exposure, a phenotype that is fully reversed by re-expression of PS1 in PS KO cells and recapitulated by γ-secretase inhibitors in hPS1 MEFs. Interestingly, the γ-secretase cleavage product, APP intracellular domain (AICD), together with Fe65-induced PML expression at the protein and transcriptional levels in PS KO cells. PML and p53 reciprocally positively regulated each other during CPT-induced DNA damage, both of which were dependent on PS. Finally, elevated levels of PML-NB, PML protein and PML mRNA were detected in the brain tissues from Alzheimer's disease (AD) patients, where γ-secretase activity is essential for pathogenesis. Our data provide for the first time, a critical role of the PS/AICD-PML/p53 pathway in DNA damage-induced apoptosis, and implicate this pathway in AD pathogenesis.
Collapse
Affiliation(s)
- H Song
- Department of Biochemistry and Biomedical Sciences, WCU neurocytomics, College of Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kim C, Choi H, Jung ES, Lee W, Oh S, Jeon NL, Mook-Jung I. HDAC6 inhibitor blocks amyloid beta-induced impairment of mitochondrial transport in hippocampal neurons. PLoS One 2012; 7:e42983. [PMID: 22937007 PMCID: PMC3425572 DOI: 10.1371/journal.pone.0042983] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 07/16/2012] [Indexed: 11/18/2022] Open
Abstract
Even though the disruption of axonal transport is an important pathophysiological factor in neurodegenerative diseases including Alzheimer's disease (AD), the relationship between disruption of axonal transport and pathogenesis of AD is poorly understood. Considering that α-tubulin acetylation is an important factor in axonal transport and that Aβ impairs mitochondrial axonal transport, we manipulated the level of α-tubulin acetylation in hippocampal neurons with Aβ cultured in a microfluidic system and examined its effect on mitochondrial axonal transport. We found that inhibiting histone deacetylase 6 (HDAC6), which deacetylates α-tubulin, significantly restored the velocity and motility of the mitochondria in both anterograde and retrograde axonal transports, which would be otherwise compromised by Aβ. The inhibition of HDAC6 also recovered the length of the mitochondria that had been shortened by Aβ to a normal level. These results suggest that the inhibition of HDAC6 significantly rescues hippocampal neurons from Aβ-induced impairment of mitochondrial axonal transport as well as mitochondrial length. The results presented in this paper identify HDAC6 as an important regulator of mitochondrial transport as well as elongation and, thus, a potential target whose pharmacological inhibition contributes to improving mitochondrial dynamics in Aβ treated neurons.
Collapse
Affiliation(s)
- Chaeyoung Kim
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Heesun Choi
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Sun Jung
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Wonik Lee
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Soojung Oh
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea
- World Class University (WCU) Program of Multiscale Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea
| | - Noo Li Jeon
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea
- World Class University (WCU) Program of Multiscale Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
12
|
Octyl and dodecyl gallates induce oxidative stress and apoptosis in a melanoma cell line. Toxicol In Vitro 2011; 25:2025-34. [DOI: 10.1016/j.tiv.2011.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 08/02/2011] [Accepted: 08/04/2011] [Indexed: 12/29/2022]
|
13
|
Pattanayak P, Pratihar JL, Patra D, Mitra S, Bhattacharyya A, Man Lee H, Chattopadhyay S. Synthesis, structure and reactivity of azosalophen complexes of vanadium(IV): studies on cytotoxic properties. Dalton Trans 2009:6220-30. [DOI: 10.1039/b903352a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|