1
|
Arshad H, Gardner QA, Ahmad S, Bukhari SS, Akhtar M. Optimized extraction, identification and characterization of the mosquitocidal surface layer protein from a local bacterial isolate Lysinibacillus sphaericus Q001. Protein Expr Purif 2025; 227:106639. [PMID: 39638165 DOI: 10.1016/j.pep.2024.106639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
Surface layer (S-layer) is an extracellular proteinous layer consisting of two-dimensional lattice. It is typically present on archaea and also found on some bacteria. S-layer proteins from some bacteria are reported to be toxic to mosquito larvae. Here, we aimed to extract and characterize the surface layer protein from a local bacterial strain named Lysinibacillus sphaericus Q001. This bacterium was isolated from Pakistan and characterized through various biochemical tests. It was identified as Lysinibacillus sphaericus through 16S rRNA ribotyping (NCBI accession no. OQ701385.1) and matrix-assisted laser desorption/ionization (MALDI) biotyping with 2.18 ± 0.059 score. The S-layer protein was extracted by both cation exchange method and guanidinium chloride extraction method. The optimized method for the extraction and purification of S-layer yielded 35 mg of protein from 1 L culture of L. sphaericus Q001. A potential S-layer protein band (120 kDa) detected by SDS-PAGE was confirmed by bottom-up proteomics i.e., in-gel tryptic digestion of the protein followed by MALDI-TOF analysis and peptide mass fingerprinting (PMF). The insecticidal bioassays revealed that S-layer protein of L. sphaericus Q001 was toxic against Aedes aegypti larvae with LC50 value of 11 μg/ml. This shows its potential to be used as an alternative to chemical larvicides.
Collapse
Affiliation(s)
- Hamayun Arshad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Qurratulann Afza Gardner
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| | - Saira Ahmad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Syeda Sadia Bukhari
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Muhammad Akhtar
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan; Biological Sciences, University of Southampton, SO17 1BJ, UK
| |
Collapse
|
2
|
Dominguez J, Jayachandran K, Stover E, Krystel J, Shetty KG. Endophytes and Plant Extracts as Potential Antimicrobial Agents against Candidatus Liberibacter Asiaticus, Causal Agent of Huanglongbing. Microorganisms 2023; 11:1529. [PMID: 37375030 DOI: 10.3390/microorganisms11061529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Huanglongbing (HLB), also known as citrus greening, is an insidious disease in citrus and has become a threat to the sustainability of the citrus industry worldwide. In the U.S., Candidatus Liberibacter asiaticus (CLas) is the pathogen that is associated with HLB, an unculturable, phloem-limited bacteria, vectored by the Asian Citrus Psyllid (ACP, Diaphorina citri). There is no known cure nor treatment to effectively control HLB, and current control methods are primarily based on the use of insecticides and antibiotics, where effectiveness is limited and may have negative impacts on beneficial and non-target organisms. Thus, there is an urgent need for the development of effective and sustainable treatment options to reduce or eliminate CLas from infected trees. In the present study, we screened citrus-derived endophytes, their cell-free culture supernatants (CFCS), and crude plant extracts for antimicrobial activity against two culturable surrogates of CLas, Sinorhizobium meliloti and Liberibacter crescens. Candidates considered high-potential antimicrobial agents were assessed directly against CLas in vitro, using a propidium monoazide-based assay. As compared to the negative controls, statistically significant reductions of viable CLas cells were observed for each of the five bacterial CFCS. Subsequent 16S rRNA gene sequencing revealed that each of the five bacterial isolates were most closely related to Bacillus amyloliquefaciens, a species dominating the market of biological control products. As such, the aboveground endosphere of asymptomatic survivor citrus trees, grown in an organic orchard, were found to host bacterial endophytes capable of effectively disrupting CLas cell membranes. These results concur with the theory that native members of the citrus microbiome play a role in the development of HLB. Here, we identify five strains of Bacillus amyloliquefaciens demonstrating notable potential to be used as sources of novel antimicrobials for the sustainable management of HLB.
Collapse
Affiliation(s)
- Jessica Dominguez
- Department of Earth and Environment, Florida International University, Miami, FL 33199, USA
| | | | - Ed Stover
- United States Department of Agriculture/Agricultural Research Service, Ft. Pierce, FL 34945, USA
| | - Joseph Krystel
- United States Department of Agriculture/Agricultural Research Service, Ft. Pierce, FL 34945, USA
| | - Kateel G Shetty
- Department of Earth and Environment, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
3
|
Morales-Blancas GY, Reyna-Terán JD, Hernández-Eligio JA, Ortuño-Pineda C, Toribio-Jiménez J, Rodríguez-Barrera MÁ, Toledo-Hernández E, Rojas-Aparicio A, Romero-Ramírez Y. The catE gene of Bacillus licheniformis M2-7 is essential for growth in benzopyrene, and its expression is regulated by the Csr system. World J Microbiol Biotechnol 2023; 39:177. [PMID: 37115273 DOI: 10.1007/s11274-023-03630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/25/2023] [Indexed: 04/29/2023]
Abstract
Benzopyrene is a high-molecular-weight polycyclic aromatic hydrocarbon that is highly recalcitrant and induces carcinogenic effects. CsrA is a conserved regulatory protein that controls the translation and stability of its target transcripts, having negative or positive effects depending on the target mRNAs. It is known that Bacillus licheniformis M2-7 has the ability to grow and survive in certain concentrations of hydrocarbons such as benzopyrene, prompted in part by CsrA, as is present in gasoline. However, there are a few studies that reveal the genes involved in that process. To identify the genes involved in the Bacillus licheniformis M2-7 degradation pathway, the plasmid pCAT-sp containing a mutation in the catE gene was constructed and used to transform B. licheniformis M2-7 and generate a CAT1 strain. We determined the capacity of the mutant B. licheniformis (CAT1) to grow in the presence of glucose or benzopyrene as a carbon source. We observed that the CAT1 strain presented increased growth in the presence of glucose but a statistically considerable decrease in the presence of benzopyrene compared with the wild-type parental strain. Additionally, we demonstrated that the Csr system positively regulates its expression since it was observed that the expression of the gene in the mutant strain LYA12 (M2-7 csrA:: Sp, SpR) was considerably lower than that in the wild-type strain. We were thus able to propose a putative regulation model for catE gene in B. licheniformis M2-7 strain by CsrA regulator in the presence of benzopyrene.
Collapse
Affiliation(s)
- Giselle Yamilet Morales-Blancas
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Unidad Académica de Ciencias Químico- Biológicas, Universidad Autónoma de Guerrero, Avenida Lázaro Cárdenas sin número, Ciudad Universitaria, Chilpancingo, Guerrero, C. P. 39070, México
| | - José Daniel Reyna-Terán
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Unidad Académica de Ciencias Químico- Biológicas, Universidad Autónoma de Guerrero, Avenida Lázaro Cárdenas sin número, Ciudad Universitaria, Chilpancingo, Guerrero, C. P. 39070, México
| | - José Alberto Hernández-Eligio
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, C. P. 62210, México
| | - Carlos Ortuño-Pineda
- Laboratorio de Ácidos Nucleicos y Proteínas, Universidad Autónoma de Guerrero, 16 México. Av. Lázaro Cárdenas. Ciudad Universitaria, Chilpancingo, Guerrero, C. P. 39070, México
| | - Jeiry Toribio-Jiménez
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Unidad Académica de Ciencias Químico- Biológicas, Universidad Autónoma de Guerrero, Avenida Lázaro Cárdenas sin número, Ciudad Universitaria, Chilpancingo, Guerrero, C. P. 39070, México
| | - Miguel Ángel Rodríguez-Barrera
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Unidad Académica de Ciencias Químico- Biológicas, Universidad Autónoma de Guerrero, Avenida Lázaro Cárdenas sin número, Ciudad Universitaria, Chilpancingo, Guerrero, C. P. 39070, México
| | - Erubiel Toledo-Hernández
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Unidad Académica de Ciencias Químico- Biológicas, Universidad Autónoma de Guerrero, Avenida Lázaro Cárdenas sin número, Ciudad Universitaria, Chilpancingo, Guerrero, C. P. 39070, México
| | - Augusto Rojas-Aparicio
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Unidad Académica de Ciencias Químico- Biológicas, Universidad Autónoma de Guerrero, Avenida Lázaro Cárdenas sin número, Ciudad Universitaria, Chilpancingo, Guerrero, C. P. 39070, México
| | - Yanet Romero-Ramírez
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Unidad Académica de Ciencias Químico- Biológicas, Universidad Autónoma de Guerrero, Avenida Lázaro Cárdenas sin número, Ciudad Universitaria, Chilpancingo, Guerrero, C. P. 39070, México.
| |
Collapse
|
4
|
Dabiré Y, Somda NS, Somda MK, Mogmenga I, Traoré AK, Ezeogu LI, Traoré AS, Ugwuanyi JO, Dicko MH. Molecular identification and safety assessment of Bacillus strains isolated from Burkinabe traditional condiment “soumbala”. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01664-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Alkaline-fermented foods (AFFs) play an essential role in the diet of millions of Africans particularly in the fight against hidden hunger. Among AFFs, soumbala is a very popular condiment in Burkina Faso, available and affordable, rich in macronutrients (proteins, lipids, carbohydrates, essential amino acids, and fatty acids), micronutriments (minerals, B group vitamins), and fibers. Bacillus spp. are known to be the predominant microbial species in AFFs and thus have elicited enhanced interest as starter cultures or probiotics. However, few data exist on identification and safety attributes of relevant Bacillus species from African AFFs, particularly from Burkinabe soumbala.
Methods
This study aimed to genotypically characterize 20 Bacillus strains previously isolated from soumbala, using PCR and sequencing of the 16S rRNA genes, and to evaluate their safety attributes.
Results
Phylogenetic analysis revealed that the strains were most closely related by decreasing numbers to B. cereus, B. subtilis, Bacillus sp., B. tropicus, B. toyonensis, B. nealsonii, B. amyloliquefaciens, Brevibacillus parabrevis, and B. altitudinis. Among the isolates, 10 were β-hemolytic and 6 were γ-hemolytic while 4 were of indeterminate hemolysis. The 6 γ-hemolytic (presumptively non-pathogenic) strains were susceptible to all tested antibiotics except bacitracin. Strains F20, and F21 were the most sensitive to imipenem (38.04 ± 1.73 mm and 38.80 ± 1.57 mm, respectively) while strain B54 showed the weakest sensitivity to bacitracin (11.00 ± 0.63 mm) with high significant differences (p < 0.0001).
Conclusion
The findings highlight identification and safety quality of Bacillus strains which could be further characterized as probiotic-starter cultures for high-quality soumbala production.
Collapse
|
5
|
Sunilkumar CR, Stephen-Victor E, Naripogu KB, Samanth Kumar J, Nuthan BR, Marulasiddaswamy KM, Kini KR, Geetha N. Differential Multi-cellularity Is Required for the Adaptation for Bacillus licheniformis to Withstand Heavy Metals Toxicity. Indian J Microbiol 2021; 61:524-529. [PMID: 34744208 DOI: 10.1007/s12088-021-00958-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/14/2021] [Indexed: 12/28/2022] Open
Abstract
Bacillus licheniformis is a multi-metal tolerant bacteria, isolated from the paddy rhizospheric soil sample. Upon the multiple metal toxicity, B. licheniformis altered their phenotypic/morphogenesis. Here we examined the effects of cadmium (Cd2+), chromium (Cr2+), and mercury (Hg2+) on the morphogenesis of B. licheniformis in comparison to control. We found that the ability of bacteria to grow effectively in presence of cadmium and chromium comes at a cost of acquiring cell density-driven mobility and reformation of filamentous to donut shape respectively. In particular, when bacteria grown on mercury it showed the bacteriostatic strategy to resist mercury. Furthermore, the findings suggest a large variation in the production of exo-polysaccharides (EPS) and suggest the possible role of EPS in gaining resistance to cadmium and chromium. Together this study identifies previously unknown characteristics of B. licheniformis to participate in bioremediation and provides the first evidence on positive effects of bacterial morphogenesis and the involvement of EPS in bacteria to resisting metal toxicity.
Collapse
Affiliation(s)
- Channarayapatna-Ramesh Sunilkumar
- Global Association of Scientific Young Minds (GASYM), Mysuru, India.,Research Institute for Interdisciplinary Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530 Japan.,Laboratory of Microbial Metabolism and Stress Response, Department of Biotechnology, SDM and MMK College for Women, Mysuru, India
| | - Emmanuel Stephen-Victor
- Global Association of Scientific Young Minds (GASYM), Mysuru, India.,Department of Pediatrics, Harvard Medical School, Boston, USA
| | - Kishore Babu Naripogu
- Global Association of Scientific Young Minds (GASYM), Mysuru, India.,Research Institute for Interdisciplinary Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530 Japan
| | - J Samanth Kumar
- Department of Studies in Biotechnology, Manasagangotri, University of Mysore, Mysuru, India
| | - Bettadapura Rameshgowda Nuthan
- Global Association of Scientific Young Minds (GASYM), Mysuru, India.,Department of Studies in Microbiology, Manasagangotri, University of Mysore, Mysuru, India
| | - K M Marulasiddaswamy
- Global Association of Scientific Young Minds (GASYM), Mysuru, India.,Department of Studies in Biotechnology, Manasagangotri, University of Mysore, Mysuru, India
| | | | - Nagaraja Geetha
- Global Association of Scientific Young Minds (GASYM), Mysuru, India.,Department of Studies in Biotechnology, Manasagangotri, University of Mysore, Mysuru, India
| |
Collapse
|
6
|
Courchesne B, Schindler M, Mykytczuk NCS. Relationships Between the Microbial Composition and the Geochemistry and Mineralogy of the Cobalt-Bearing Legacy Mine Tailings in Northeastern Ontario. Front Microbiol 2021; 12:660190. [PMID: 34603222 PMCID: PMC8485068 DOI: 10.3389/fmicb.2021.660190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/23/2021] [Indexed: 01/04/2023] Open
Abstract
Mine tailings host dynamic biogeochemical processes that can mobilize a range of elements from the host material and release them into the environment through acidic, neutral, or alkaline mine drainage. Here we use a combination of mineralogical, geochemical, and microbiological techniques that provide a better understanding of biogeochemical processes within the surficial layers of neutral cobalt and arsenic-rich tailings material at Cobalt, ON, Canada. Tailings material within 30-cm depth profiles from three tailings sites (sites A, B, and C) were characterized for their mineralogical, chemical and microbial community compositions. The tailings material at all sites contains (sulf)arsenides (safflorite, arsenopyrite), and arsenates (erythrite and annabergite). Site A contained a higher and lower amount of (sulf)arsenides and arsenates than site B, respectively. Contrary to site A and B, site C depicted a distinct zoning with (sulf)arsenides found in the deeper reduced zone, and arsenates occurring in the shallow oxidized zone. Variations in the abundance of Co+As+Sb+Zn (Co#), Fe (Fe#), total S (S#), and average valence of As indicated differences in the mineralogical composition of the tailings material. For example, material with a high Co#, lo Fe# and high average valence of As commonly have a higher proportion of secondary arsenate to primary (sulf)arsenide minerals. Microbial community profiling indicated that the Cobalt tailings are primarily composed of Actinobacteria and Proteobacteria, and known N, S, Fe, methane, and possible As-cycling bacteria. The tailings from sites B and C had a larger abundance of Fe and S-cycling bacteria (e.g., Sulfurifustis and Thiobacillus), which are more abundant at greater depths, whereas the tailings of site A had a higher proportion of potential As-cycling and -resistant genera (e.g., Methylocystis and Sphingomonas). A multi-variate statistical analysis showed that (1) distinct site-specific groupings occur for the Co # vs. Fe #, Co# vs. S#'s and for the microbial community structure and (2) microbial communities are statistically highly correlated to depth, S#, Fe#, pH and the average valence of As. The variation in As valence correlated well with the abundance of N, S, Fe, and methane-cycling bacteria. The results of this study provide insights into the complex interplay between minerals containing the critical element cobalt, arsenic, and microbial community structure in the Cobalt Mining Camp tailings.
Collapse
Affiliation(s)
| | - Michael Schindler
- Department of Geological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | |
Collapse
|
7
|
Miljaković D, Marinković J, Balešević-Tubić S. The Significance of Bacillus spp. in Disease Suppression and Growth Promotion of Field and Vegetable Crops. Microorganisms 2020; 8:microorganisms8071037. [PMID: 32668676 PMCID: PMC7409232 DOI: 10.3390/microorganisms8071037] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/19/2022] Open
Abstract
Bacillus spp. produce a variety of compounds involved in the biocontrol of plant pathogens and promotion of plant growth, which makes them potential candidates for most agricultural and biotechnological applications. Bacilli exhibit antagonistic activity by excreting extracellular metabolites such as antibiotics, cell wall hydrolases, and siderophores. Additionally, Bacillus spp. improve plant response to pathogen attack by triggering induced systemic resistance (ISR). Besides being the most promising biocontrol agents, Bacillus spp. promote plant growth via nitrogen fixation, phosphate solubilization, and phytohormone production. Antagonistic and plant growth-promoting strains of Bacillus spp. might be useful in formulating new preparations. Numerous studies of a wide range of plant species revealed a steady increase in the number of Bacillus spp. identified as potential biocontrol agents and plant growth promoters. Among different mechanisms of action, it remains unclear which individual or combined traits could be used as predictors in the selection of the best strains for crop productivity improvement. Due to numerous factors that influence the successful application of Bacillus spp., it is necessary to understand how different strains function in biological control and plant growth promotion, and distinctly define the factors that contribute to their more efficient use in the field.
Collapse
Affiliation(s)
- Dragana Miljaković
- Department of Microbiological Preparations, Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
- Correspondence:
| | - Jelena Marinković
- Department of Microbiological Preparations, Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
| | - Svetlana Balešević-Tubić
- Soybean Department, Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
| |
Collapse
|
8
|
Khan MS, Gao J, Zhang M, Chen X, Moe TS, Du Y, Yang F, Xue J, Zhang X. Isolation and characterization of plant growth-promoting endophytic bacteria Bacillus stratosphericus LW-03 from Lilium wardii. 3 Biotech 2020; 10:305. [PMID: 32612899 PMCID: PMC7313711 DOI: 10.1007/s13205-020-02294-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 06/07/2020] [Indexed: 02/01/2023] Open
Abstract
In the present study, a new strain of Bacillus stratosphericus LW-03 was isolated from the bulbs of Lilium wardii. The isolated endophytic strain LW-03 exhibited excellent antifungal activity against common plant pathogens, such as Fusarium oxysporum, Botryosphaeria dothidea, Botrytis cinerea, and Fusarium fujikuroi. The growth inhibition percentage of Botryosphaeria dothidea was 74.56 ± 2.35%, which was the highest, followed by Botrytis cinerea, Fusarium fujikuroi, and Fusarium oxysporum were 71.91 ± 2.87%, 69.54 ± 2.73%, and 65.13 ± 1.91%, respectively. The ethyl acetate fraction revealed a number of bioactive compounds and several of which were putatively identified as antimicrobial agents, such as 4-hydroxy-2-nonenylquinoline N-oxide, sphingosine ceramides like cer(d18:0/16:0(2OH)), cer(d18:0/16:0), and cer(d18:1/0:0), di-peptides, tri-peptide, cyclopeptides [cyclo(D-Trp-L-Pro)], [cyclo (Pro-Phe)], dehydroabietylamine, oxazepam, 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine like compound (PC(0:0/20:4), phosphatidylethanolamine (PE(18:1/0:0)), 3-Hydroxyoctadecanoic acid, 7.alpha.,27-Dihydroxycholesterol, N-Acetyl-d-mannosamine, p-Hydroxyphenyllactic acid, Phytomonic acid, and 2-undecenyl-quinoloin-4 (1H). The LW-03 strain exhibits multiple plant growth-promoting traits, including the production of organic acids, ACC deaminase, indole-3-acetic acid (IAA), siderophores, and nitrogen fixation activity. The beneficial effects of the endophytic strain LW-03 on the growth of two lily varieties were further evaluated under greenhouse conditions. Our results revealed plant growth-promoting activity in inoculated plants relative to non-inoculated control plants. The broad-spectrum antifungal activity and multiple plant growth-promoting properties of Bacillus stratosphericus LW-03 make it an important player in the development of biological fertilizers and sustainable agricultural biological control strategies.
Collapse
Affiliation(s)
- Mohammad Sayyar Khan
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
- Genomics and Bioinformatics Division, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Khyber Pakhtunkhwa, Peshawar, 25000 Pakistan
| | - Junlian Gao
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Mingfang Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Xuqing Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - The Su Moe
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
- Pharmaceutical Research Laboratory, Biotechnology Research Department, Ministry of Education, Mandalay Division, Kyaukse, 05151 Myanmar
| | - Yunpeng Du
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Fengping Yang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Jing Xue
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Xiuhai Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| |
Collapse
|
9
|
Khurana H, Sharma M, Verma H, Lopes BS, Lal R, Negi RK. Genomic insights into the phylogeny of Bacillus strains and elucidation of their secondary metabolic potential. Genomics 2020; 112:3191-3200. [PMID: 32512145 DOI: 10.1016/j.ygeno.2020.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/17/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022]
Abstract
The genus Bacillus constitutes a plethora of species that have medical, environmental, and industrial applications. While genus Bacillus has been the focus of several studies where genomic data have been used to resolve many taxonomic issues, there still exist several ambiguities. Through the use of in-silico genome-based methods, we tried to resolve the taxonomic anomalies of a large set of Bacillus genomes (n = 178). We also proposed species names for uncharacterized strains and reported genome sequence of a novel isolate Bacillus sp. RL. In the hierarchical clustering on genome-to-genome distances, we observed 11 distinct monophyletic clusters and investigated the functional pathways annotated as the property of these clusters and core-gene content of the entire dataset. Thus, we were able to assert the possible outlier strains (n = 17) for this genus. Analyses of secondary metabolite potential of each strain helped us unravel still unexplored diversity for various biosynthetic genes.
Collapse
Affiliation(s)
- Himani Khurana
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Monika Sharma
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Helianthous Verma
- Molecular Biology and Genomics Research Laboratory, Ramjas College, University of Delhi, Delhi 110007, India
| | - Bruno Silvester Lopes
- School of Medicine, Medical Sciences and Nutrition, Medical Microbiology, 0:025 Polwarth Building, Aberdeen AB25 2ZD, UK
| | - Rup Lal
- The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi 110003, India.
| | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
10
|
Khatri I, Sharma G, Subramanian S. Composite genome sequence of Bacillus clausii, a probiotic commercially available as Enterogermina ®, and insights into its probiotic properties. BMC Microbiol 2019; 19:307. [PMID: 31888501 PMCID: PMC6937992 DOI: 10.1186/s12866-019-1680-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/11/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Some of the spore-forming strains of Bacillus probiotics are marketed commercially as they survive harsh gastrointestinal conditions and bestow health benefits to the host. RESULTS We report the composite genome of Bacillus clausii ENTPro from a commercially available probiotic Enterogermina® and compare it with the genomes of other Bacillus probiotics. We find that the members of B. clausii species harbor high heterogeneity at the species as well as genus level. The genes conferring resistance to chloramphenicol, streptomycin, rifampicin, and tetracycline in the B. clausii ENTPro strain could be identified. The genes coding for the bacteriocin gallidermin, which prevents biofilm formation in the pathogens Staphylococcus aureus and S. epidermidis, were also identified. KEGG Pathway analysis suggested that the folate biosynthesis pathway, which depicts one of the important roles of probiotics in the host, is conserved completely in B. subtilis and minimally in B. clausii and other probiotics. CONCLUSIONS We identified various antibiotic resistance, bacteriocins, stress-related, and adhesion-related domains, and industrially-relevant pathways, in the genomes of these probiotic bacteria that are likely to help them survive in the harsh gastrointestinal tract, facilitating adhesion to host epithelial cells, persistence during antibiotic treatment and combating bacterial infections.
Collapse
Affiliation(s)
- Indu Khatri
- CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, 160036, India.,Leiden University Medical Center, Leiden, the Netherlands
| | - Gaurav Sharma
- CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, 160036, India.,Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
| | | |
Collapse
|
11
|
Mapping Microbial Capacities for Bioremediation: Genes to Genomics. Indian J Microbiol 2019; 60:45-53. [PMID: 32089573 DOI: 10.1007/s12088-019-00842-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
Bioremediation is a process wherein the decontamination strategies are designed so that a site could achieve the environmental abiotic and biotic parameters close to its baseline. In the process, the driving force is the available microbial genetic degradative capabilities, which are supported by required nutrients so that the desired expression of these capabilities could be exploited in favour of removal of pollutants. With genomics tools not only the available abilities could be estimated but their dynamic performance could also be established. These tools are now playing important role in bioprocess optimization, which not only derive the bio-stimulation plans but also could suggest possible genetic bio-augmentation options.
Collapse
|
12
|
Purohit HJ. Aligning Microbial Biodiversity for Valorization of Biowastes: Conception to Perception. Indian J Microbiol 2019; 59:391-400. [PMID: 31762500 DOI: 10.1007/s12088-019-00826-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022] Open
Abstract
Generation of biowastes is increasing rapidly and its uncontrolled, slow and persistent fermentation leads to the release of Green-house gases (GHGs) into the environment. Exploration and exploitation of microbial diversity for degrading biowastes can result in producing diverse range of bioactive molecules, which can act as a source of bioenergy, biopolymers, nutraceuticals and antimicrobials. The whole process is envisaged to manage biowastes, and reduce their pollution causing capacity, and lead to a sustainable society. A strategy has been proposed for: (1) producing bioactive molecules, and (2) achieving a zero-pollution emission by recycling of the GHGs through biological routes.
Collapse
Affiliation(s)
- Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, Maharashtra 440020 India
| |
Collapse
|
13
|
Wang C, Du Q, Yao T, Dong H, Wu D, Qin W, Raheem D, Zhang Q. Spoilage Bacteria Identification and Food Safety Risk Assessment of Whole Soybean Curd. Indian J Microbiol 2019; 59:250-253. [PMID: 31031443 PMCID: PMC6458188 DOI: 10.1007/s12088-019-00778-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 11/26/2022] Open
Abstract
As a highly hydrated gel-type food, soybean curd is perishable and the development of spoilage bacteria has been described. Whole soybean curd (WSC), an innovative soy product retains the most nutrients in raw ingredients and exhibits more nutritive value compared with conventional soybean curd (CSC). However, the risk assessment of WSC is not well evaluated up to now. In this study, the same species of spoilage microorganism were separated from WSC and CSC. Two main spoilage strains were separated and identified as B. subtilis and B. cereus. The risk ranking scores of WSC was higher than that of CSC but still within medium risk range. In summary, we reported the presence of B. subtilis and B. cereus in WSC for the first time. Further, application of the risk ranger tool confirmed that the risk profile of WSC was medium and acceptable.
Collapse
Affiliation(s)
- Chenzhi Wang
- College of Food Science, Sichuan Agricultural University, Ya’an, 625014 China
| | - Qinling Du
- College of Food Science, Sichuan Agricultural University, Ya’an, 625014 China
| | - Tianwei Yao
- College of Food Science, Sichuan Agricultural University, Ya’an, 625014 China
| | - Hongmin Dong
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - Dingtao Wu
- College of Food Science, Sichuan Agricultural University, Ya’an, 625014 China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya’an, 625014 China
| | - Dele Raheem
- Northern Institute for Environmental and Minority Law (NIEM), Arctic Centre, University of Lapland, 96101 Rovaniemi, Finland
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya’an, 625014 China
| |
Collapse
|
14
|
LANDRIEL SOLEDADCAMINATA, CASTILLO JULIETAD, TABOGA OSCARA, FERRAROTTI SUSANAA, GOTTLIEB ALEXANDRAM, COSTA HERNÁN. Molecular identification of a cyclodextrin glycosyltransferase-producing microorganism and phylogenetic assessment of enzymatic activities. AN ACAD BRAS CIENC 2019; 91:e20180568. [DOI: 10.1590/0001-3765201920180568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/10/2019] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - OSCAR A. TABOGA
- Instituto Nacional de Tecnología Agropecuaria (IABIMO-INTA-CONICET), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas/CONICET, Argentina
| | | | - ALEXANDRA M. GOTTLIEB
- Universidad de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas/CONICET, Argentina
| | - HERNÁN COSTA
- Universidad Nacional de Luján, Argentina; Universidad Nacional de Luján, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas/CONICET, Argentina
| |
Collapse
|
15
|
Prakash J, Sharma R, Patel SKS, Kim IW, Kalia VC. Bio-hydrogen production by co-digestion of domestic wastewater and biodiesel industry effluent. PLoS One 2018; 13:e0199059. [PMID: 29995877 PMCID: PMC6040696 DOI: 10.1371/journal.pone.0199059] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/30/2018] [Indexed: 11/18/2022] Open
Abstract
The increasing water crisis makes fresh water a valuable resource, which must be used wisely. However, with growing population and inefficient waste treatment systems, the amount of wastewater dispelled in rivers is increasing abominably. Utilizing this freely available waste-water along with biodiesel industry waste- crude glycerol for bio-hydrogen production is being reported here. The bacterial cultures of Bacillus thuringiensis strain EGU45 and Bacillus amyloliquefaciens strain CD16 produced2.4-3.0 L H2/day/L feed during a 60 days continuous culture system at hydraulic retention time of 2 days. An average H2 yield of 100-120 L/L CG was reported by the two strains. Recycling of the effluent by up to 25% resulted in up to 94% H2 production compared to control.
Collapse
Affiliation(s)
- Jyotsana Prakash
- Department of Chemical Engineering, Konkuk University, Seoul, Republic of Korea
- CSIR–Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Delhi, India
- Academy of Scientific & Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | - Rakesh Sharma
- CSIR–Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Delhi, India
| | - Sanjay K. S. Patel
- Department of Chemical Engineering, Konkuk University, Seoul, Republic of Korea
| | - In-Won Kim
- Department of Chemical Engineering, Konkuk University, Seoul, Republic of Korea
- * E-mail: (VCK); (IWK)
| | - Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul, Republic of Korea
- CSIR–Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Delhi, India
- Academy of Scientific & Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
- * E-mail: (VCK); (IWK)
| |
Collapse
|
16
|
Diversity and functionality of bacillus species associated with alkaline fermentation of bambara groundnut (Vigna subterranean L. Verdc) into dawadawa-type African condiment. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-017-3024-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Fu P, Ge Y, Wu Y, Zhao N, Yuan Z, Hu X. The LspC3-41I restriction-modification system is the major determinant for genetic manipulations of Lysinibacillus sphaericus C3-41. BMC Microbiol 2017; 17:116. [PMID: 28525986 PMCID: PMC5437673 DOI: 10.1186/s12866-017-1014-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/26/2017] [Indexed: 12/26/2022] Open
Abstract
Background Lysinibacillus sphaericus has been widely used in integrated mosquito control program and it is one of the minority bacterial species unable to metabolize carbohydrates. In consideration of the high genetic conservation at genomic level and difficulty of genetic horizontal transfer, it is hypothesized that effective restriction-modification (R-M) systems existed in mosquitocidal L. sphaericus. Results In this study, six type II R-M systems including LspC3–41I were predicted in L. sphaericus C3–41 genome. It was found that the cell free extracts (CFE) from this strain shown similar restriction and methylation activity on exogenous Bacillus/Escherichia coli shuttle vector pBU4 as the HaeIII, which is an isoschizomer of BspRI. The Bsph_0498 (encoding the predicted LspC3–41IR) knockout mutant Δ0498 and the complement strain RC0498 were constructed. It was found that the unmethylated pBU4 can be digested by the CFE of C3–41 and RC0498, but not by that of Δ0498. Furthermore, the exogenous plasmid pBU4 can be transformed at very high efficacy into Δ0498, low efficacy into RC0498, but no transformation into C3–41, indicating that LspC3–41I might be a major determinant for the genetic restriction barrier of strain C3–41. Besides, lspC3–41IR and lspC3–41IM genes are detected in other two strains besides C3–41 of the tested 16 L. sphaericus strains, which all belonging to serotype H5 and MLST sequence type (ST) 1. Furthermore, the three strains are not horizontal transferred, and this restriction could be overcome by in vitro methylation either by the host CFE or by commercial methytransferase M. HaeIII. The results provide an insight to further study the genetic restriction, modification and evolution of mosquitocidal L. sphaericus, also a theoretical basis and a method for the genetic manipulations of L. sphaericus. Conclusions LspC3–41I is identified as the major determinant for the restriction barrier of L. sphaericus C3–41. Only three strains of the tested 16 L. sphaericus strains, which all belonging to serotype H5 and ST1 by MLST scheme, contain LspC3–41I system. Two different methods can be used to overcome the restriction barrier of the three isolates to get transformants efficiently: 1) to methylate plasmid DNA prior to the electroporation; and 2) to delete the major restriction endonuclease encoding gene lspC3–41IR.
Collapse
Affiliation(s)
- Pan Fu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yong Ge
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yiming Wu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ni Zhao
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhiming Yuan
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Xiaomin Hu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
18
|
Puri A, Rai A, Dhanaraj PS, Lal R, Patel DD, Kaicker A, Verma M. An In Silico Approach for Identification of the Pathogenic Species, Helicobacter pylori and Its Relatives. Indian J Microbiol 2016; 56:277-86. [PMID: 27407291 PMCID: PMC4920758 DOI: 10.1007/s12088-016-0575-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/11/2016] [Indexed: 12/19/2022] Open
Abstract
Helicobacter is an economically important genus within the phylum Proteobacteria and include many species which cause many diseases in humans. With the conventional methods, it is difficult to identify them easily due to the high genetic similarity among its species. In the present study, 361 16S rRNA (rrs) gene sequences belonging to 45 species of genus Helicobacter were analyzed. Out of these, 264 sequences of 10 clinically relevant species (including Helicobacter pylori) were used. rrs gene sequences were analyzed to obtain a phylogenetic framework tree, in silico restriction enzyme analysis and species-specific conserved motifs. Protein sequences of another housekeeping gene, hsp60 were also subjected to phylogenetic analysis to supplement the data obtained using rrs sequences. Using these approaches, six out of ten species (including H. pylori) were easily segregated, whereas four species namely H. bilis, H. cinaedi, H. felis and Candidatus H. heilmannii were found to be heterogeneous. The above approaches have also helped in segregating unclassified sequences, thus proving them as an easy diagnostic method for identifying members of genus Helicobacter up to species level.
Collapse
Affiliation(s)
- Ayush Puri
- />Department of Zoology, Sri Venkateswara College, University of Delhi, South Campus, New Delhi, 110 021 India
| | - Arshiya Rai
- />Department of Zoology, Sri Venkateswara College, University of Delhi, South Campus, New Delhi, 110 021 India
| | - P. S. Dhanaraj
- />Department of Zoology, Sri Venkateswara College, University of Delhi, South Campus, New Delhi, 110 021 India
| | - Rup Lal
- />Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110 007 India
| | - Dev Dutt Patel
- />Department of Zoology, Sri Venkateswara College, University of Delhi, South Campus, New Delhi, 110 021 India
| | - Anju Kaicker
- />Department of Biochemistry, Sri Venkateswara College, University of Delhi, South Campus, New Delhi, 110 021 India
| | - Mansi Verma
- />Department of Zoology, Sri Venkateswara College, University of Delhi, South Campus, New Delhi, 110 021 India
- />Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110 007 India
| |
Collapse
|
19
|
Complete Genome Sequence of a Novel Bacillus sp. VT 712 Strain Isolated from the Duodenum of a Patient with Intestinal Cancer. GENOME ANNOUNCEMENTS 2016; 4:4/4/e00786-16. [PMID: 27491975 PMCID: PMC4974327 DOI: 10.1128/genomea.00786-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We report here the complete genome sequence of the spore-forming Bacillus sp. strain VT 712 isolated from the duodenum of a patient with intestinal cancer. The genome is 3,921,583 bp, with 37.9% G+C content. It contains 3,768 predicted protein-coding genes for multidrug resistance transporters, virulence factors, and daunorubicin resistance.
Collapse
|
20
|
Comparative Genomics Reveals Biomarkers to Identify Lactobacillus Species. Indian J Microbiol 2016; 56:265-76. [PMID: 27407290 DOI: 10.1007/s12088-016-0605-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/09/2016] [Indexed: 12/19/2022] Open
Abstract
Bacteria possessing multiple copies of 16S rRNA (rrs) gene demonstrate high intragenomic heterogeneity. It hinders clear distinction at species level and even leads to overestimation of the bacterial diversity. Fifty completely sequenced genomes belonging to 19 species of Lactobacillus species were found to possess 4-9 copies of rrs each. Multiple sequence alignment of 268 rrs genes from all the 19 species could be classified into 20 groups. Lactobacillus sanfranciscensis TMW 1.1304 was the only species where all the 7 copies of rrs were exactly similar and thus formed a distinct group. In order to circumvent the problem of high heterogeneity arising due to multiple copies of rrs, 19 additional genes (732-3645 nucleotides in size) common to Lactobacillus genomes, were selected and digested with 10 Type II restriction endonucleases (RE), under in silico conditions. The following unique gene-RE combinations: recA (1098 nts)-HpyCH4 V, CviAII, BfuCI and RsaI were found to be useful in identifying 29 strains representing 17 species. Digestion patterns of genes-ruvB (1020 nts), dnaA (1368 nts), purA (1290 nts), dnaJ (1140 nts), and gyrB (1944 nts) in combination with REs-AluI, BfuCI, CviAI, Taq1, and Tru9I allowed clear identification of an additional 14 strains belonging to 8 species. Digestion pattern of genes recA, ruvB, dnaA, purA, dnaJ and gyrB can be used as biomarkers for identifying different species of Lactobacillus.
Collapse
|
21
|
More RP, Purohit HJ. The Identification of Discriminating Patterns from 16S rRNA Gene to Generate Signature for Bacillus Genus. J Comput Biol 2016; 23:651-61. [PMID: 27104769 DOI: 10.1089/cmb.2016.0002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The 16S ribosomal RNA (16S rRNA) gene has been widely used for the taxonomic classification of bacteria. A molecular signature is a set of nucleotide patterns, which constitute a regular expression that is specific to each particular taxon. Our main goal was to identify discriminating nucleotide patterns in 16S rRNA gene and then to generate signatures for taxonomic classification. To demonstrate our approach, we used the phylum Firmicutes as a model using representative taxa Bacilli (class), Bacillales (order), Bacillaceae (family), and Bacillus (genus), according to their dominance at each hierarchical taxonomic level. We applied combined composite vector and multiple sequence alignment approaches to generate gene-specific signatures. Further, we mapped all the patterns into the different hypervariable regions of 16S rRNA gene and confirmed the most appropriate distinguishing region as V3-V4 for targeted taxa. We also examined the evolution in discriminating patterns of signatures across taxonomic levels. We assessed the comparative classification accuracy of signatures with other methods (i.e., RDP Classifier, KNN, and SINA). Results revealed that the signatures for taxa Bacilli, Bacillales, Bacillaceae, and Bacillus could correctly classify isolate sequences with sensitivity of 0.99, 0.97, 0.94, and 0.89, respectively, and specificity close to 0.99. We developed signature-based software DNA Barcode Identification (DNA BarID) for taxonomic classification that is available at website http://www.neeri.res.in/DNA_BarID.htm . This pattern-based study provides a deeper understanding of taxon-specific discriminating patterns in 16S rRNA gene with respect to taxonomic classification.
Collapse
Affiliation(s)
- Ravi P More
- Environmental Genomics Division, CSIR-National Environmental Engineering Research Institute , Nagpur, Maharashtra, India
| | - Hemant J Purohit
- Environmental Genomics Division, CSIR-National Environmental Engineering Research Institute , Nagpur, Maharashtra, India
| |
Collapse
|
22
|
Nam JY, Kim DH, Kim SH, Lee W, Shin HS, Kim HW. Harnessing dark fermentative hydrogen from pretreated mixture of food waste and sewage sludge under sequencing batch mode. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:7155-7161. [PMID: 26150291 DOI: 10.1007/s11356-015-4880-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 06/11/2015] [Indexed: 06/04/2023]
Abstract
Food waste and sewage sludge are the most abundant and problematic organic wastes in any society. Mixture of these two wastes may provide appropriate substrate condition for dark fermentative biohydrogen production based on synergistic mutual benefits. This work evaluates continuous hydrogen production from the cosubstrate of food waste and sewage sludge to verify mechanisms of performance improvement in anaerobic sequencing batch reactors. Volatile solid concentration and mixing ratio of food waste and sludge were adjusted to 5 % and 80:20, respectively. Five different hydraulic retention times (HRT) of 36, 42, 48, 72, and 108 h were tested using anaerobic sequencing batch reactors to find out optimal operating condition. Results show that the best performance was achieved at HRT 72 h, where the hydrogen yield, the hydrogen production rate, and hydrogen content were 62.0 mL H2/g VS, 1.0 L H2/L/day, and ~50 %, respectively. Sufficient solid retention time (143 h) and proper loading rate (8.2 g COD/L/day as carbohydrate) at HRT 72h led to the enhanced performance with better hydrogen production showing appropriate n-butyrate/acetate (B/A) ratio of 2.6. Analytical result of terminal-restriction fragment length polymorphism revealed that specific peaks associated with Clostridium sp. and Bacillus sp. were strongly related to enhanced hydrogen production from the cosubstrate of food waste and sewage sludge.
Collapse
Affiliation(s)
- Joo-Youn Nam
- Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju, 695-971, Korea
| | - Dong-Hoon Kim
- Department of Civil Engineering, Inha University, 253 Yonghyun-dong, Namgu, Incheon, 402-751, Korea
| | - Sang-Hyoun Kim
- Department of Environmental Engineering, Daegu University, 201 Daegudae-ro, Gyeongsan, Gyeongbuk, 712-714, Korea
| | - Wontae Lee
- School of Civil and Environmental Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk, 730-701, Korea
| | - Hang-Sik Shin
- Department of Civil and Environmental Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-338, Korea
| | - Hyun-Woo Kim
- Department of Environmental Engineering, Chonbuk National University, 567 Baekjedae-ro, Deokjin-gu, Jeonju, Jeonbuk, 561-756, Korea.
| |
Collapse
|
23
|
Kumar R, Koul S, Kumar P, Kalia VC. Searching Biomarkers in the Sequenced Genomes of Staphylococcus for their Rapid Identification. Indian J Microbiol 2016; 56:64-71. [PMID: 26843698 DOI: 10.1007/s12088-016-0565-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 01/11/2016] [Indexed: 12/19/2022] Open
Abstract
Bacterial identification using rrs (16S rRNA) gene is widely reported. Bacteria possessing multiple copies of rrs lead to overestimation of its diversity. Staphylococcus genomes carries 5-6 copies of rrs showing high similarity in their nucleotide sequences, which lead to ambiguous results. The genomes of 31 strains of Staphylococcus representing 7 species were searched for the presence of common genes. In silico digestion of 34 common genes using 10 restriction endonucleases (REs) lead to select gene-RE combinations, which could be used as biomarkers. RE digestion of recA allowed unambiguous identification of 13 genomes representing all the 7 species. In addition, a few more genes (argH, argR, cysS, gyrB, purH, and pyrE) and RE combinations permitted further identification of 12 strains. By employing additional RE and genes unique to a particular strain, it was possible to identify the rest 6 Staphylococcus aureus strains. This approach has the potential to be utilized for rapid detection of Staphylococcus strains.
Collapse
Affiliation(s)
- Ravi Kumar
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007 India
| | - Shikha Koul
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007 India ; Academy for Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, 110001 India
| | - Prasun Kumar
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007 India
| | - Vipin Chandra Kalia
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007 India ; Academy for Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, 110001 India
| |
Collapse
|
24
|
Piubeli F, de Lourdes Moreno M, Kishi LT, Henrique-Silva F, García MT, Mellado E. Phylogenetic Profiling and Diversity of Bacterial Communities in the Death Valley, an Extreme Habitat in the Atacama Desert. Indian J Microbiol 2015; 55:392-9. [PMID: 26543264 PMCID: PMC4627947 DOI: 10.1007/s12088-015-0539-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/13/2015] [Indexed: 10/23/2022] Open
Abstract
The Atacama Desert, one of the driest deserts in the world, represents a unique extreme environmental ecosystem to explore the bacterial diversity as it is considered to be at the dry limit for life. A 16S rRNA gene (spanning the hyper variable V3 region) library was constructed from an alkaline sample of unvegetated soil at the hyperarid margin in the Atacama Desert. A total of 244 clone sequences were used for MOTHUR analysis, which revealed 20 unique phylotypes or operational taxonomic units (OTUs). V3 region amplicons of the 16S rRNA were suitable for distinguishing the bacterial community to the genus and specie level. We found that all OTUs were affiliated with taxa representative of the Firmicutes phylum. The extremely high abundance of Firmicutes indicated that most bacteria in the soil were spore-forming survivors. In this study we detected a narrower diversity as compared to other ecological studies performed in other areas of the Atacama Desert. The reported genera were Oceanobacillus (representing the 69.5 % of the clones sequenced), Bacillus, Thalassobacillus and Virgibacillus. The present work shows physical and chemical parameters have a prominent impact on the microbial community structure. It constitutes an example of the communities adapted to live in extreme conditions caused by dryness and metal concentrations .
Collapse
Affiliation(s)
- Francine Piubeli
- />Department of Genetics and Evolution (DGE), UFSCar, Via Washington Luis, Km. 235, São Carlos, SP Brazil
- />Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, C/Profesor García González, 2, 41012 Seville, Spain
| | - María de Lourdes Moreno
- />Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, C/Profesor García González, 2, 41012 Seville, Spain
| | - Luciano Takeshi Kishi
- />Department of Genetics and Evolution (DGE), UFSCar, Via Washington Luis, Km. 235, São Carlos, SP Brazil
| | - Flavio Henrique-Silva
- />Department of Genetics and Evolution (DGE), UFSCar, Via Washington Luis, Km. 235, São Carlos, SP Brazil
| | - María Teresa García
- />Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, C/Profesor García González, 2, 41012 Seville, Spain
| | - Encarnación Mellado
- />Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, C/Profesor García González, 2, 41012 Seville, Spain
| |
Collapse
|
25
|
Kalia VC, Kumar R, Kumar P, Koul S. A Genome-Wide Profiling Strategy as an Aid for Searching Unique Identification Biomarkers for Streptococcus. Indian J Microbiol 2015; 56:46-58. [PMID: 26843696 DOI: 10.1007/s12088-015-0561-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/13/2015] [Indexed: 12/19/2022] Open
Abstract
The use of rrs (16S rRNA) gene is widely regarded as the "gold standard" for identifying bacteria and determining their phylogenetic relationships. Nevertheless, multiple copies of this gene in a genome is likely to give an overestimation of the bacterial diversity. In each of the 50 Streptococcus genomes (16 species, 50 strains), 4-7 copies of rrs are present. The nucleotide sequences of these rrs genes show high similarity within and among genomes, which did not allow unambiguous identification. A genome-wide search revealed the presence of 27 gene sequences common to all the Streptococcus species. Digestion of these 27 gene sequences with 10 type II restriction endonucleases (REs) showed that unique RE digestion in purH gene is sufficient for clear cut identification of 30 genomes belonging to 16 species. Additional gene-RE combinations allowed identification of another 15 strains belonging to S. pneumoniae, S. pyogenes, and S. suis. For the rest 5 strains, a combination of 2 genes was required for identifying them. The proposed strategy is likely to prove helpful in proper detection of pathogens like Streptococcus.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India ; Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001 India
| | - Ravi Kumar
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Prasun Kumar
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Shikha Koul
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India ; Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001 India
| |
Collapse
|
26
|
Kalia VC, Kumar P. Genome Wide Search for Biomarkers to Diagnose Yersinia Infections. Indian J Microbiol 2015; 55:366-74. [PMID: 26543261 DOI: 10.1007/s12088-015-0552-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/01/2015] [Indexed: 01/12/2023] Open
Abstract
Bacterial identification on the basis of the highly conserved 16S rRNA (rrs) gene is limited by its presence in multiple copies and a very high level of similarity among them. The need is to look for other genes with unique characteristics to be used as biomarkers. Fifty-one sequenced genomes belonging to 10 different Yersinia species were used for searching genes common to all the genomes. Out of 304 common genes, 34 genes of sizes varying from 0.11 to 4.42 kb, were selected and subjected to in silico digestion with 10 different Restriction endonucleases (RE) (4-6 base cutters). Yersinia species have 6-7 copies of rrs per genome, which are difficult to distinguish by multiple sequence alignments or their RE digestion patterns. However, certain unique combinations of other common gene sequences-carB, fadJ, gluM, gltX, ileS, malE, nusA, ribD, and rlmL and their RE digestion patterns can be used as markers for identifying 21 strains belonging to 10 Yersinia species: Y. aldovae, Y. enterocolitica, Y. frederiksenii, Y. intermedia, Y. kristensenii, Y. pestis, Y. pseudotuberculosis, Y. rohdei, Y. ruckeri, and Y. similis. This approach can be applied for rapid diagnostic applications.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Prasun Kumar
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| |
Collapse
|
27
|
Kalia VC, Kumar P, Kumar R, Mishra A, Koul S. Genome Wide Analysis for Rapid Identification of Vibrio Species. Indian J Microbiol 2015; 55:375-83. [PMID: 26543262 DOI: 10.1007/s12088-015-0553-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 12/17/2022] Open
Abstract
The highly conserved 16S rRNA (rrs) gene is generally used for bacterial identification. In organisms possessing multiple copies of rrs, high intra-genomic heterogeneity does not allow easy distinction among different species. In order to identify Vibrio species, a wide range of genes have been employed. There is an urgent requirement of a consensus gene, which can be used as biomarker for rapid identification. Eight sequenced genomes of Vibrio species were screened for selecting genes which were common among all the genomes. Out of 108 common genes, 24 genes of sizes varying from 0.11 to 3.94 kb were subjected to in silico digestion with 10 type II restriction endonucleases (RE). A few unique genes-dapF, fadA, hisD, ilvH, lpxC, recF, recR, rph and ruvB in combination with certain REs provided unique digestion patterns, which can be used as biomarkers. This protocol can be exploited for rapid diagnosis of Vibrio species.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007 India ; Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001 India
| | - Prasun Kumar
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007 India
| | - Ravi Kumar
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007 India
| | - Anjali Mishra
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007 India
| | - Shikha Koul
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007 India ; Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001 India
| |
Collapse
|
28
|
Bacillus stamsii sp. nov., a facultatively anaerobic sugar degrader that is numerically dominant in freshwater lake sediment. Syst Appl Microbiol 2015; 38:379-89. [DOI: 10.1016/j.syapm.2015.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 05/29/2015] [Accepted: 06/29/2015] [Indexed: 11/23/2022]
|
29
|
Shifts in Microbial Community and Its Correlation with Degradative Efficiency in a Wastewater Treatment Plant. Appl Biochem Biotechnol 2015; 176:2131-43. [DOI: 10.1007/s12010-015-1703-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/01/2015] [Indexed: 11/26/2022]
|
30
|
Tokdar P, Sanakal A, Ranadive P, Khora SS, George S, Deshmukh SK. Molecular, Physiological and Phenotypic Characterization of Paracoccus denitrificans ATCC 19367 Mutant Strain P-87 Producing Improved Coenzyme Q10. Indian J Microbiol 2015; 55:184-93. [PMID: 25805905 PMCID: PMC4363252 DOI: 10.1007/s12088-014-0506-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is a blockbuster nutraceutical molecule which is often used as an oral supplement in the supportive therapy for cardiovascular diseases, cancer and neurodegenerative diseases. It is commercially produced by fermentation process, hence constructing the high yielding CoQ10 producing strains is a pre-requisite for cost effective production. Paracoccus denitrificans ATCC 19367, a biochemically versatile organism was selected to carry out the studies on CoQ10 yield improvement. The wild type strain was subjected to iterative rounds of mutagenesis using gamma rays and NTG, followed by selection on various inhibitors like CoQ10 structural analogues and antibiotics. The screening of mutants were carried out using cane molasses based optimized medium with feeding strategies at shake flask level. In the course of study, the mutant P-87 having marked resistance to gentamicin showed 1.25-fold improvements in specific CoQ10 content which was highest among all tested mutant strains. P-87 was phenotypically differentiated from the wild type strain on the basis of carbohydrate assimilation and FAME profile. Molecular differentiation technique based on AFLP profile showed intra specific polymorphism between wild type strain and P-87. This study demonstrated the beneficial outcome of induced mutations leading to gentamicin resistance for improvement of CoQ10 production in P. denitrificans mutant strain P-87. To investigate the cause of gentamicin resistance, rpIF gene from P-87 and wild type was sequenced. No mutations were detected on the rpIF partial sequence of P-87; hence gentamicin resistance in P-87 could not be conferred with rpIF gene. However, detecting the mutations responsible for gentamicin resistance in P-87 and correlating its role in CoQ10 overproduction is essential. Although only 1.25-fold improvement in specific CoQ10 content was achieved through mutant P-87, this mutant showed very interesting characteristic, differentiating it from its wild type parent strain P. denitrificans ATCC 19367, which are presented in this paper.
Collapse
Affiliation(s)
- Pradipta Tokdar
- />Fermentation Technology-Natural Products Department, Piramal Enterprises Ltd., 1 Nirlon Complex, Off Western Express Highway, Goregaon (East), Mumbai, 400063 India
| | - Akshata Sanakal
- />Fermentation Technology-Natural Products Department, Piramal Enterprises Ltd., 1 Nirlon Complex, Off Western Express Highway, Goregaon (East), Mumbai, 400063 India
| | - Prafull Ranadive
- />Fermentation Technology-Natural Products Department, Piramal Enterprises Ltd., 1 Nirlon Complex, Off Western Express Highway, Goregaon (East), Mumbai, 400063 India
| | - Samanta Shekhar Khora
- />School of Bio Sciences and Technology, VIT University, Vellore, 632014 Tamil Nadu India
| | - Saji George
- />Fermentation Technology-Natural Products Department, Piramal Enterprises Ltd., 1 Nirlon Complex, Off Western Express Highway, Goregaon (East), Mumbai, 400063 India
| | - Sunil Kumar Deshmukh
- />Fermentation Technology-Natural Products Department, Piramal Enterprises Ltd., 1 Nirlon Complex, Off Western Express Highway, Goregaon (East), Mumbai, 400063 India
| |
Collapse
|
31
|
Genome Wide Analysis for Searching Novel Markers to Rapidly Identify Clostridium Strains. Indian J Microbiol 2015; 55:250-7. [PMID: 26063934 DOI: 10.1007/s12088-015-0535-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/08/2015] [Indexed: 10/23/2022] Open
Abstract
Microbial classification is based largely on the 16S rRNA (rrs) gene sequence, which is conserved throughout the prokaryotic domain. The Ribosomal Database Project (RDP) has become a reference point for almost all practical purposes. The use of this gene is limited by the fact that it can be used to identify only to the extent to what has been known and is available in the RDP. In order to identify an organism whose rrs is not present in the RDP database, we need to generate novel markers to place the unknown on the evolutionary map. Here, sequenced genomes of 27 Clostridium strains belonging to 9 species have been used to identify two sets of genes: (1) common to most of the species, and (2) unique to a species. Combinations of genes (recN, dnaJ, secA, mutS, and/or grpE) and their unique restriction endonuclease digestion (AluI, BfaI and/or Tru9I) patterns have been established to rapidly identify Clostridium species. This strategy for identifying novel markers can be extended to all other organisms and diagnostic applications.
Collapse
|
32
|
Ben Abdallah D, Frikha-Gargouri O, Tounsi S. Bacillus amyloliquefaciens strain 32a as a source of lipopeptides for biocontrol of Agrobacterium tumefaciens strains. J Appl Microbiol 2015; 119:196-207. [PMID: 25764969 DOI: 10.1111/jam.12797] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 11/30/2022]
Abstract
AIMS A Bacillus amyloliquefaciens strain, designated 32a, was used to identify new compounds active against Agrobacterium tumefaciens and to evaluate their efficiency to control crown gall on carrot discs. METHODS AND RESULTS Based on PCR-assays, four gene clusters were shown to direct the synthesis of the cyclic lipopeptides surfactin, iturin A, bacillomycin D and fengycin. Mass spectrometry analysis of culture supernatant led to the identification of these secondary metabolites, except bacillomycin, with heterogeneous mixture of homologues. Antimicrobial assays using lipopeptides-enriched extract showed a strong inhibitory activity against several bacterial and fungal strains, including Ag. tumefaciens. Biological control assays on carrot discs using both 32a spores and extract resulted in significant protection against crown gall disease, similar to that provided by the reference antagonistic strain Agrobacterium rhizogenes K1026. CONCLUSIONS In contrast to all active compounds against Ag. tumefaciens that are of proteinaceous nature, this work enables for the first time to correlate the strong protective effect of B. amyloliquefaciens strain 32a towards crown gall disease with the production of a mixture of lipopeptides. SIGNIFICANCE AND IMPACT OF THE STUDY The findings could be useful for growers and nursery men who are particularly interested in the biocontrol of the crown gall disease.
Collapse
Affiliation(s)
- D Ben Abdallah
- Biopesticides Team (LPIP), Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - O Frikha-Gargouri
- Biopesticides Team (LPIP), Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - S Tounsi
- Biopesticides Team (LPIP), Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
33
|
Sharma A, Sangwan N, Negi V, Kohli P, Khurana JP, Rao DLN, Lal R. Pan-genome dynamics of Pseudomonas gene complements enriched across hexachlorocyclohexane dumpsite. BMC Genomics 2015; 16:313. [PMID: 25898829 PMCID: PMC4405911 DOI: 10.1186/s12864-015-1488-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/25/2015] [Indexed: 11/16/2022] Open
Abstract
Background Phylogenetic heterogeneity across Pseudomonas genus is complemented by its diverse genome architecture enriched by accessory genetic elements (plasmids, transposons, and integrons) conferring resistance across this genus. Here, we sequenced a stress tolerant genotype i.e. Pseudomonas sp. strain RL isolated from a hexachlorocyclohexane (HCH) contaminated pond (45 mg of total HCH g−1 sediment) and further compared its gene repertoire with 17 reference ecotypes belonging to P. stutzeri, P. mendocina, P. aeruginosa, P. psychrotolerans and P. denitrificans, representing metabolically diverse ecosystems (i.e. marine, clinical, and soil/sludge). Metagenomic data from HCH contaminated pond sediment and similar HCH contaminated sites were further used to analyze the pan-genome dynamics of Pseudomonas genotypes enriched across increasing HCH gradient. Results Although strain RL demonstrated clear species demarcation (ANI ≤ 80.03%) from the rest of its phylogenetic relatives, it was found to be closest to P. stutzeri clade which was further complemented functionally. Comparative functional analysis elucidated strain specific enrichment of metabolic pathways like α-linoleic acid degradation and carbazole degradation in Pseudomonas sp. strain RL and P. stutzeri XLDN-R, respectively. Composition based methods (%codon bias and %G + C difference) further highlighted the significance of horizontal gene transfer (HGT) in evolution of nitrogen metabolism, two-component system (TCS) and methionine metabolism across the Pseudomonas genomes used in this study. An intact mobile class-I integron (3,552 bp) with a captured gene cassette encoding for dihydrofolate reductase (dhfra1) was detected in strain RL, distinctly demarcated from other integron harboring species (i.e. P. aeruginosa, P. stutzeri, and P. putida). Mobility of this integron was confirmed by its association with Tnp21-like transposon (95% identity) suggesting stress specific mobilization across HCH contaminated sites. Metagenomics data from pond sediment and recently surveyed HCH adulterated soils revealed the in situ enrichment of integron associated transposase gene (TnpA6100) across increasing HCH contamination (0.7 to 450 mg HCH g−1 of soil). Conclusions Unlocking the potential of comparative genomics supplemented with metagenomics, we have attempted to resolve the environment and strain specific demarcations across 18 Pseudomonas gene complements. Pan-genome analyses of these strains indicate at astoundingly diverse metabolic strategies and provide genetic basis for the cosmopolitan existence of this taxon. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1488-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anukriti Sharma
- Department of Zoology, University of Delhi, New Delhi, 110007, India.
| | - Naseer Sangwan
- Department of Zoology, University of Delhi, New Delhi, 110007, India.
| | - Vivek Negi
- Department of Zoology, University of Delhi, New Delhi, 110007, India.
| | - Puneet Kohli
- Department of Zoology, University of Delhi, New Delhi, 110007, India.
| | - Jitendra Paul Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India.
| | - Desiraju Lakshmi Narsimha Rao
- All India Network Project on Soil Biodiversity and Biofertilizers, Indian Institute of Soil Science, Bhopal, 462038, India.
| | - Rup Lal
- Department of Zoology, University of Delhi, New Delhi, 110007, India.
| |
Collapse
|
34
|
Singh M, Kumar P, Ray S, Kalia VC. Challenges and Opportunities for Customizing Polyhydroxyalkanoates. Indian J Microbiol 2015; 55:235-49. [PMID: 26063933 DOI: 10.1007/s12088-015-0528-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/09/2015] [Indexed: 02/01/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) as an alternative to synthetic plastics have been gaining increasing attention. Being natural in their origin, PHAs are completely biodegradable and eco-friendly. However, consistent efforts to exploit this biopolymer over the last few decades have not been able to pull PHAs out of their nascent stage, inspite of being the favorite of the commercial world. The major limitations are: (1) the high production cost, which is due to the high cost of the feed and (2) poor thermal and mechanical properties of polyhydroxybutyrate (PHB), the most commonly produced PHAs. PHAs have the physicochemical properties which are quite comparable to petroleum based plastics, but PHB being homopolymers are quite brittle, less elastic and have thermal properties which are not suitable for processing them into sturdy products. These properties, including melting point (Tm), glass transition temperature (Tg), elastic modulus, tensile strength, elongation etc. can be improved by varying the monomeric composition and molecular weight. These enhanced characteristics can be achieved by modifications in the types of substrates, feeding strategies, culture conditions and/or genetic manipulations.
Collapse
Affiliation(s)
- Mamtesh Singh
- Department of Zoology, Gargi College, University of Delhi, Siri Fort Road, Delhi, 110049 India
| | - Prasun Kumar
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Subhasree Ray
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Vipin C Kalia
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| |
Collapse
|
35
|
Diversity of the Intestinal Bacteria of Cattle Fed on Diets with Different Doses of Gelatinized Starch-Urea. Indian J Microbiol 2015; 55:269-77. [PMID: 26063936 DOI: 10.1007/s12088-015-0526-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/03/2015] [Indexed: 10/23/2022] Open
Abstract
Gelatinized starch-urea (Starea, SU) is an effective and economical source of urea for ruminants. Here we assessed the influence of dietary supplementation with gelatinized starch-urea on the diversity of intestinal bacteria in finishing cattle. Fifty steers were randomly allotted to five treatments with diets supplemented with different doses of Starea [0 % (SU0), 8 % (SU8), 16 % (SU16), 24 % (SU24), and 32 % (SU32) of urea-N in total nitrogen]. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes was used to examine the effect of dietary supplementation of Starea on intestinal bacterial flora. Shannon-Weaver and Simpson diversity indices consistently showed the lowest bacterial diversity in the SU0 treatment. Increasing doses of Starea increased the diversity up to SU24 after which, diversity decreased. Cluster analysis of 16S rRNA gene DGGE profiles indicates that the intestinal bacterial communities associated with cattle that were not supplemented with Starea in feed differed in composition and structure from those supplemented with Starea. The amount of Starea supplemented in cattle diets influenced the abundance of several key species affiliated with Lachnospiraceae, Ruminococcaceae, Peptostreptococcaceae, Comamonadaceae and Moraxellaceae. These results suggest that Starea influences the composition and structure of intestinal bacteria which may play a role in promoting ruminant health and production performance.
Collapse
|
36
|
Torres MJ, Petroselli G, Daz M, Erra-Balsells R, Audisio MC. Bacillus subtilis subsp. subtilis CBMDC3f with antimicrobial activity against Gram-positive foodborne pathogenic bacteria: UV-MALDI-TOF MS analysis of its bioactive compounds. World J Microbiol Biotechnol 2015; 31:929-40. [PMID: 25820813 DOI: 10.1007/s11274-015-1847-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/21/2015] [Indexed: 02/07/2023]
Abstract
In this work a new Bacillus sp. strain, isolated from honey, was characterized phylogenetically. Its antibacterial activity against three relevant foodborne pathogenic bacteria was studied; the main bioactive metabolites were analyzed using ultraviolet matrix assisted laser desorption-ionization mass spectrometry (UV-MALDI MS). Bacillus CBMDC3f was phylogenetically characterized as Bacillus subtilis subsp. subtilis after rRNA analysis of the 16S subunit and the gyrA gene (access codes Genbank JX120508 and JX120516, respectively). Its antibacterial potential was evaluated against Listeria monocytogenes (9 strains), B. cereus (3 strains) and Staphylococcus aureus ATCC29213. Its cell suspension and cell-free supernatant (CFS) exerted significant anti-Listeria and anti-S. aureus activities, while the lipopeptides fraction (LF) also showed anti-B. cereus effect. The UV-MALDI-MS analysis revealed surfactin, iturin and fengycin in the CFS, whereas surfactin predominated in the LF. The CFS from CBMDC3f contained surfactin, iturin and fengycin with four, two and four homologues per family, respectively, whereas four surfactin, one iturin and one fengycin homologues were identified in the LF. For some surfactin homologues, their UV-MALDI-TOF/TOF (MS/MS; Laser Induced Decomposition method, LID) spectra were also obtained. Mass spectrometry analysis contributed with relevant information about the type of lipopeptides that Bacillus strains can synthesize. From our results, surfactin would be the main metabolite responsible for the antibacterial effect.
Collapse
Affiliation(s)
- M J Torres
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Av.Bolivia 5150, 4400, Salta, Argentina
| | | | | | | | | |
Collapse
|
37
|
Xu K, Yuan Z, Rayner S, Hu X. Genome comparison provides molecular insights into the phylogeny of the reassigned new genus Lysinibacillus. BMC Genomics 2015; 16:140. [PMID: 25888315 PMCID: PMC4363355 DOI: 10.1186/s12864-015-1359-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/19/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lysinibacillus sphaericus (formerly named Bacillus sphaericus) is incapable of polysaccharide utilization and some isolates produce active insecticidal proteins against mosquito larvae. Its taxonomic status was changed to the genus Lysinibacillus in 2007 with some other organisms previously regarded as members of Bacillus. However, this classification is mainly based on physiology and phenotype and there is limited genomic information to support it. RESULTS In this study, four genomes of L. sphaericus were sequenced and compared with those of 24 representative strains belonging to Lysinibacillus and Bacillus. The results show that Lysinibacillus strains are phylogenetically related based on the genome sequences and composition of core genes. Comparison of gene function indicates the major difference between Lysinibacillus and the two Bacillus species is related to metabolism and cell wall/membrane biogenesis. Although L. sphaericus mosquitocidal isolates are highly conserved, other Lysinibacillus strains display a large heterogeneity. It was observed that mosquitocidal toxin genes in L. sphaericus were in close proximity to genome islands (GIs) and mobile genetic elements (MGEs). Furthermore, different copies and varying genomic location of the GIs containing binA/binB was observed amongst the different isolates. In addition, a plasmid highly similar to pBsph, but lacking the GI containing binA/binB, was found in L. sphaericus SSII-1. CONCLUSIONS Our results confirm the taxonomy of the new genus Lysinibacillus at the genome level and suggest a new species for mosquito-toxic L. sphaericus. Based on our findings, we hypothesize that (1) Lysinibacillus strains evolved from a common ancestor and the mosquitocidal L. sphaericus toxin genes were acquired by horizontal gene transfer (HGT), and (2) capture and loss of plasmids occurs in the population, which plays an important role in the transmission of binA/binB.
Collapse
Affiliation(s)
- Kai Xu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China. .,University of the Chinese Academy of Sciences, Beijing, 100039, China.
| | - Zhiming Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Simon Rayner
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Xiaomin Hu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
38
|
Bhushan A, Mukherjee T, Joshi J, Shankar P, Kalia VC. Insights into the Origin of Clostridium botulinum Strains: Evolution of Distinct Restriction Endonuclease Sites in rrs (16S rRNA gene). Indian J Microbiol 2015; 55:140-50. [PMID: 25805900 DOI: 10.1007/s12088-015-0514-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 01/12/2015] [Indexed: 11/26/2022] Open
Abstract
Diversity analysis of Clostridium botulinum strains is complicated by high microheterogeneity caused by the presence of 9-22 copies of rrs (16S rRNA gene). The need is to mine genetic markers to identify very closely related strains. Multiple alignments of the nucleotide sequences of the 212 rrs of 13 C. botulinum strains revealed intra- and inter-genomic heterogeneity. Low intragenomic heterogeneity in rrs was evident in strains 230613, Alaska E43, Okra, Eklund 17B, Langeland, 657, Kyoto, BKT015925, and Loch Maree. The most heterogenous rrs sequences were those of C. botulinum strains ATCC 19397, Hall, H04402065, and ATCC 3502. In silico restriction mapping of these rrs sequences was observable with 137 type II Restriction endonucleases (REs). Nucleotide changes (NC) at these RE sites resulted in appearance of distinct and additional sites, and loss in certain others. De novo appearances of RE sites due to NC were recorded at different positions in rrs gene. A nucleotide transition A>G in rrs of C. botulinum Loch Maree and 657 resulted in the generation of 4 and 10 distinct RE sites, respectively. Transitions A>G, G>A, and T>C led to the loss of RE sites. A perusal of the entire NC and in silico RE mapping of rrs of C. botulinum strains provided insights into their evolution. Segregation of strains on the basis of RE digestion patterns of rrs was validated by the cladistic analysis involving six house keeping genes: dnaN, gyrB, metG, prfA, pyrG, and Rho.
Collapse
Affiliation(s)
- Ashish Bhushan
- Microbial Biotechnology and Genomics, CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Tanmoy Mukherjee
- Microbial Biotechnology and Genomics, CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Jayadev Joshi
- Microbial Biotechnology and Genomics, CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Pratap Shankar
- Microbial Biotechnology and Genomics, CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Vipin Chandra Kalia
- Microbial Biotechnology and Genomics, CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| |
Collapse
|
39
|
Meena KK, Kumar M, Mishra S, Ojha SK, Wakchaure GC, Sarkar B. Phylogenetic study of methanol oxidizers from chilika-lake sediments using genomic and metagenomic approaches. Indian J Microbiol 2015; 55:151-62. [PMID: 25805901 DOI: 10.1007/s12088-015-0510-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 01/03/2015] [Indexed: 01/13/2023] Open
Abstract
Group-wise diversity of sediment methylotrophs of Chilika lake (Lat. 19°28'-19°54'N; Long. 85°06'-85°35'E) Odisha, India at various identified sites was studied. Both the culturable and unculturable (metagenome) methylotrophs were investigated in the lake sediments employing both mxaF and 16S rRNA genes as markers. ARDRA profiling, 16S rRNA gene sequencing, PAGE profiling of HaeIII, EcoRI restricted mxaF gene and the mxaF gene sequences using culture-dependent approach revealed the relatedness of α-proteobacteria and Methylobacterium, Hyphomicrobium and Ancyclobacter sp. The total viable counts of the culturable aerobic methylotrophs were relatively higher in sediments near the sea mouth (S3; Panaspada), also demonstrated relatively high salinity (0.1 M NaCl) tolerance. Metagenomic DNA from the sediments, amplified using GC clamp mxaF primers and resolved through DGGE, revealed the diversity within the unculturable methylotrophic bacterium Methylobacterium organophilum, Ancyclobacter aquaticus, Burkholderiales and Hyphomicrobium sp. Culture-independent analyses revealed that up to 90 % of the methylotrophs were unculturable. The study enhances the general understandings of the metagenomic methylotrophs from such a special ecological niche.
Collapse
Affiliation(s)
- Kamlesh K Meena
- National Bureau of Agriculturally Important Microorganisms, Mau Nath Bhanjan, 275 101 UP India ; National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, Maharashtra India
| | - Manish Kumar
- National Bureau of Agriculturally Important Microorganisms, Mau Nath Bhanjan, 275 101 UP India
| | - Snehasish Mishra
- School of Biotechnology, KIIT University, Campus-11, Bhubaneswar, 751024 Odisha India
| | - Sanjay Kumar Ojha
- School of Biotechnology, KIIT University, Campus-11, Bhubaneswar, 751024 Odisha India
| | - Goraksha C Wakchaure
- National Institute of Abiotic Stress Management, Baramati, Pune, 413115 Maharashtra India
| | - Biplab Sarkar
- National Institute of Abiotic Stress Management, Baramati, Pune, 413115 Maharashtra India
| |
Collapse
|
40
|
Vandini A, Temmerman R, Frabetti A, Caselli E, Antonioli P, Balboni PG, Platano D, Branchini A, Mazzacane S. Hard surface biocontrol in hospitals using microbial-based cleaning products. PLoS One 2014; 9:e108598. [PMID: 25259528 PMCID: PMC4178175 DOI: 10.1371/journal.pone.0108598] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 08/23/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Healthcare-Associated Infections (HAIs) are one of the most frequent complications occurring in healthcare facilities. Contaminated environmental surfaces provide an important potential source for transmission of many healthcare-associated pathogens, thus indicating the need for new and sustainable strategies. AIM This study aims to evaluate the effect of a novel cleaning procedure based on the mechanism of biocontrol, on the presence and survival of several microorganisms responsible for HAIs (i.e. coliforms, Staphyloccus aureus, Clostridium difficile, and Candida albicans) on hard surfaces in a hospital setting. METHODS The effect of microbial cleaning, containing spores of food grade Bacillus subtilis, Bacillus pumilus and Bacillus megaterium, in comparison with conventional cleaning protocols, was evaluated for 24 weeks in three independent hospitals (one in Belgium and two in Italy) and approximately 20000 microbial surface samples were collected. RESULTS Microbial cleaning, as part of the daily cleaning protocol, resulted in a reduction of HAI-related pathogens by 50 to 89%. This effect was achieved after 3-4 weeks and the reduction in the pathogen load was stable over time. Moreover, by using microbial or conventional cleaning alternatively, we found that this effect was directly related to the new procedure, as indicated by the raise in CFU/m2 when microbial cleaning was replaced by the conventional procedure. Although many questions remain regarding the actual mechanisms involved, this study demonstrates that microbial cleaning is a more effective and sustainable alternative to chemical cleaning and non-specific disinfection in healthcare facilities. CONCLUSIONS This study indicates microbial cleaning as an effective strategy in continuously lowering the number of HAI-related microorganisms on surfaces. The first indications on the actual level of HAIs in the trial hospitals monitored on a continuous basis are very promising, and may pave the way for a novel and cost-effective strategy to counteract or (bio)control healthcare-associated pathogens.
Collapse
Affiliation(s)
- Alberta Vandini
- CIAS Laboratory, Centre for the Study of physical, chemical and microbiological Contamination of Highly Sterile Environments, Department of Architecture, University of Ferrara, Ferrara, Italy
| | - Robin Temmerman
- Laboratory of Microbial Ecology and Technology, Ghent University, Ghent, Belgium
- Chrisal R & D Department, Lommel, Belgium
| | - Alessia Frabetti
- CIAS Laboratory, Centre for the Study of physical, chemical and microbiological Contamination of Highly Sterile Environments, Department of Architecture, University of Ferrara, Ferrara, Italy
| | - Elisabetta Caselli
- Department of Medical Sciences, Microbiology Section, University of Ferrara, Ferrara, Italy
| | - Paola Antonioli
- Department of Infection Prevention Control and Risk Management, Ferrara University Hospital, Ferrara, Italy
| | - Pier Giorgio Balboni
- Department of Medical Sciences, Microbiology Section, University of Ferrara, Ferrara, Italy
| | - Daniela Platano
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Sante Mazzacane
- CIAS Laboratory, Centre for the Study of physical, chemical and microbiological Contamination of Highly Sterile Environments, Department of Architecture, University of Ferrara, Ferrara, Italy
- * E-mail:
| |
Collapse
|
41
|
Saxena S, Verma J, Shikha, Raj Modi D. RAPD-PCR and 16S rDNA phylogenetic analysis of alkaline protease producing bacteria isolated from soil of India: Identification and detection of genetic variability. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2014. [DOI: 10.1016/j.jgeb.2014.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Szilagyi-Zecchin VJ, Ikeda AC, Hungria M, Adamoski D, Kava-Cordeiro V, Glienke C, Galli-Terasawa LV. Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture. AMB Express 2014; 4:26. [PMID: 24949261 PMCID: PMC4052694 DOI: 10.1186/s13568-014-0026-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 01/23/2014] [Indexed: 12/02/2022] Open
Abstract
Six endophytic bacteria of corn roots were identified as Bacillus sp. and as Enterobacter sp, by sequencing of the 16S rRNA gene. Four of the strains, CNPSo 2476, CNPSo 2477, CNPSo 2478 and CNPSo 2480 were positive for the nitrogen fixation ability evaluated through the acetylene reduction assay and amplification of nifH gene. Two Bacillus strains (CNPSo 2477 and CNPSo 2478) showed outstanding skills for the production of IAA, siderophores and lytic enzymes, but were not good candidates as growth promoters, because they reduced seed germination. However, the same strains were antagonists against the pathogenic fungi Fusarium verticillioides, Colletotrichum graminicola, Bipolaris maydis and Cercospora zea-maydis. As an indication of favorable bacterial action, Enterobacter sp. CNPSo 2480 and Bacillus sp. CNPSo 2481 increased the root volume by 44% and 39%, respectively, and the seed germination by 47% and 56%, respectively. Therefore, these two strains are good candidates for future testing as biological inoculants for corn.
Collapse
|
43
|
Prakash O, Pandey PK, Kulkarni GJ, Mahale KN, Shouche YS. Technicalities and Glitches of Terminal Restriction Fragment Length Polymorphism (T-RFLP). Indian J Microbiol 2014; 54:255-61. [PMID: 24891731 DOI: 10.1007/s12088-014-0461-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/22/2014] [Indexed: 11/30/2022] Open
Abstract
Terminal restriction fragment length polymorphism (T-RFLP) is a rapid, robust, inexpensive and simple tool for microbial community profiling. Methods used for DNA extraction, PCR amplification and digestion of amplified products have a considerable impact on the results of T-RFLP. Pitfalls of the method skew the similarity analysis and compromise its high throughput ability. Despite a high throughput method of data generation, data analysis is still in its infancy and needs more attention. Current article highlights the limitations of the methods used for data generation and analysis. It also provides an overview of the recent methodological developments in T-RFLP which will assist the readers in obtaining real and authentic profiles of the microbial communities under consideration while eluding the inherent biases and technical difficulties.
Collapse
Affiliation(s)
- Om Prakash
- Microbial Culture Collection, National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, 411007 Maharashtra India
| | - Prashant K Pandey
- Microbial Culture Collection, National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, 411007 Maharashtra India
| | - Girish J Kulkarni
- Microbial Culture Collection, National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, 411007 Maharashtra India
| | - Kiran N Mahale
- Microbial Culture Collection, National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, 411007 Maharashtra India
| | - Yogesh S Shouche
- Microbial Culture Collection, National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, 411007 Maharashtra India
| |
Collapse
|
44
|
Liu JH, Jia YP, Chen YT, Xu RD. Microbial treatment for prevention and removal of paraffin deposition on the walls of crude pipelines. Indian J Microbiol 2014; 53:482-4. [PMID: 24426154 DOI: 10.1007/s12088-013-0402-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 03/27/2013] [Indexed: 10/27/2022] Open
Abstract
Two bacterial strains, paraffin removal strain and biosurfactant-producing strain, named BHJ-1 and QFL-1, were isolated from oil production wells in Daqing oilfield of China. They were subsequently identified as Bacillus cereus QAU68 and Bacillus subtilis XCCX, respectively. As an indicator of the degradation paraffin, the inoculum concentration of BHJ-1 and QFL-1 were added in different proportions, the optimum proportion was 5:2. In this proportion the degradation rate of paraffin could reach 64 %, the prevention rate of paraffin could reach 55 %.
Collapse
Affiliation(s)
- Jiang Hong Liu
- Provincial Key Laboratory of Oil and Gas Chemical Technology, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318 Heilongjiang China
| | - Yun Peng Jia
- Provincial Key Laboratory of Oil and Gas Chemical Technology, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318 Heilongjiang China
| | - Yi Tong Chen
- Provincial Key Laboratory of Oil and Gas Chemical Technology, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318 Heilongjiang China
| | - Rui Dan Xu
- School of Life Sciences, Xiamen University, Xiamen, 361005 Fujian China
| |
Collapse
|
45
|
Kumar P, Patel SK, Lee JK, Kalia VC. Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 2013; 31:1543-61. [DOI: 10.1016/j.biotechadv.2013.08.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/01/2013] [Accepted: 08/05/2013] [Indexed: 12/28/2022]
|
46
|
Tang VH, Chang BJ, Srinivasan A, Mathaba LT, Harnett GB, Stewart GA. Skin-associated Bacillus, staphylococcal and micrococcal species from the house dust mite, Dermatophagoides pteronyssinus and bacteriolytic enzymes. EXPERIMENTAL & APPLIED ACAROLOGY 2013; 61:431-447. [PMID: 23783892 DOI: 10.1007/s10493-013-9712-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 06/03/2013] [Indexed: 06/02/2023]
Abstract
Dust mites produce bacteriolytic enzymes, one of which belongs to the NlpC/P60 superfamily comprising bacterial and fungal proteins. Whether this enzyme is derived from the mite or from mite-associated microbes is unclear. To this end, the bacteriology of mites per se, and carpet and mattress dust from a group of asthmatic children and their parents was investigated. Dust from parents' and children's mattresses yielded significantly more colony forming units compared with dust from their corresponding carpets. Zymography demonstrated some dusts contained bacteriolytic enzymes, and in nine of the twelve dust samples from three of five houses examined, a prominent bacteriolytic band was obtained that corresponded to the mite band, although in one home, other lytic bands were detected. Fifty bacterial isolates were obtained from surface-sterilised, commercially obtained Dermatophagoides pteronyssinus. 16S rRNA, tuf and rpoB gene sequencing of nine Gram-positive isolates identified them as Bacillus cereus, B. licheniformis, Staphylococcus aureus, S. epidermidis, S. capitis and Micrococcus luteus, known human skin commensals. 16S rRNA sequence homologies of four of the nine isolates identified as B. licheniformis formed a distinct phylogenetic cluster. All species secreted lytic enzymes during culture although the lytic profiles obtained differed between the rods and the cocci, and none of the bands detected corresponded to those observed in dust or mites. In conclusion, mites harbour a variety of bacterial species often associated with human skin and house dusts contain bacteriolytic enzymes that may be mite-derived. The identification of a novel cluster of B. licheniformis isolates suggests an ecological adaptation to laboratory-reared D. pteronyssinus. It remains to be determined whether the previously described mite-associated 14 K lytic enzyme is derived from a microbial source.
Collapse
Affiliation(s)
- Vivian H Tang
- Microbiology and Immunology, School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Perth, 6009, Australia
| | | | | | | | | | | |
Collapse
|
47
|
Guesmi A, Ettoumi B, El Hidri D, Essanaa J, Cherif H, Mapelli F, Marasco R, Rolli E, Boudabous A, Cherif A. Uneven distribution of Halobacillus trueperi species in arid natural saline systems of Southern Tunisian Sahara. MICROBIAL ECOLOGY 2013; 66:831-839. [PMID: 23949950 DOI: 10.1007/s00248-013-0274-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 07/28/2013] [Indexed: 06/02/2023]
Abstract
The genetic diversity of a collection of 336 spore-forming isolates recovered from five salt-saturated brines and soils (Chott and Sebkhas) mainly located in the hyper-arid regions of the southern Tunisian Sahara has been assessed. Requirements and abilities for growth at a wide range of salinities\ showed that 44.3 % of the isolates were extremely halotolerant, 23 % were moderate halotolerant, and 32.7 % were strict halophiles, indicating that they are adapted to thrive in these saline ecosystems. A wide genetic diversity was documented based on 16S-23S rRNA internal transcribed spacer fingerprinting profiles (ITS) and 16S rRNA gene sequences that clustered the strains into seven genera: Bacillus, Gracilibacillus, Halobacillus, Oceanobacillus, Paenibacillus, Pontibacillus, and Virgibacillus. Halobacillus trueperi was the most encountered species in all the sites and presented a large intraspecific diversity with a multiplicity of ITS types. The most frequent ITS type included 42 isolates that were chosen for assessing of the intraspecific diversity by BOX-PCR fingerprinting. A high intraspecific microdiversity was documented by 14 BOX-PCR genotypes whose distribution correlated with the strain geographic origin. Interestingly, H. trueperi isolates presented an uneven geographic distribution among sites with the highest frequency of isolation from the coastal sites, suggesting a marine rather than terrestrial origin of the strains. The high frequency and diversity of H. trueperi suggest that it is a major ecosystem-adapted microbial component of the Tunisian Sahara harsh saline systems of marine origin.
Collapse
Affiliation(s)
- Amel Guesmi
- Laboratoire MBA, Département de Biologie, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire, 2092, Tunis, Tunisia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
da Silva SB, Cantarelli VV, Ayub MAZ. Production and optimization of poly-γ-glutamic acid by Bacillus subtilis BL53 isolated from the Amazonian environment. Bioprocess Biosyst Eng 2013; 37:469-79. [DOI: 10.1007/s00449-013-1016-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/08/2013] [Indexed: 12/01/2022]
|
49
|
New and old microbial communities colonizing a seventeenth-century wooden church. Folia Microbiol (Praha) 2013; 59:45-51. [DOI: 10.1007/s12223-013-0265-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
|
50
|
Bhushan A, Joshi J, Shankar P, Kushwah J, Raju SC, Purohit HJ, Kalia VC. Development of Genomic Tools for the Identification of Certain Pseudomonas up to Species Level. Indian J Microbiol 2013; 53:253-63. [PMID: 24426119 DOI: 10.1007/s12088-013-0412-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/12/2013] [Indexed: 11/26/2022] Open
Abstract
Pseudomonas is a highly versatile bacterium at the species level with great ecological significance. These genetically and metabolically diverse species have undergone repeated taxonomic revisions. We propose a strategy to identify Pseudomonas up to species level, based on the unique features of their 16S rDNA (rrs) gene sequence, such as the frame work of sequences, sequence motifs and restriction endonuclease (RE) digestion patterns. A species specific phylogenetic framework composed of 31 different rrs sequences, allowed us to segregate 1,367 out of 2,985 rrs sequences of this genus, which have been classified at present only up to genus (Pseudomonas) level, as follows: P. aeruginosa (219 sequences), P. fluorescens (463 sequences), P. putida (347 sequences), P. stutzeri (197 sequences), and P. syringae (141 sequences). These segregations were validated by unique 30-50 nucleotide long motifs and RE digestion patterns in their rrs. A single gene thus provides multiple makers for identification and surveillance of Pseudomonas.
Collapse
Affiliation(s)
- Ashish Bhushan
- Microbial Biotechnology and Genomics, CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Jayadev Joshi
- Microbial Biotechnology and Genomics, CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Pratap Shankar
- Microbial Biotechnology and Genomics, CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Jyoti Kushwah
- Microbial Biotechnology and Genomics, CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Sajan C Raju
- Environmental Genomics Unit, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020 India
| | - Hemant J Purohit
- Environmental Genomics Unit, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020 India
| | - Vipin Chandra Kalia
- Microbial Biotechnology and Genomics, CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| |
Collapse
|