1
|
Bai T, Li J, Chi X, Li H, Tang Y, Liu Z, Ma X. Cooperative and Independent Functionality of tmRNA and SmpB in Aeromonas veronii: A Multifunctional Exploration Beyond Ribosome Rescue. Int J Mol Sci 2025; 26:409. [PMID: 39796263 PMCID: PMC11722516 DOI: 10.3390/ijms26010409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
The trans-translation system, mediated by transfer-messenger RNA (tmRNA, encoded by the ssrA gene) and its partner protein SmpB, helps to release ribosomes stalled on defective mRNA and targets incomplete protein products for hydrolysis. Knocking out the ssrA and smpB genes in various pathogens leads to different phenotypic changes, indicating that they have both cooperative and independent functionalities. This study aimed to clarify the functional relationships between tmRNA and SmpB in Aeromonas veronii, a pathogen that poses threats in aquaculture and human health. We characterized the expression dynamics of the ssrA and smpB genes at different growth stages of the pathogen, assessed the responses of deletion strains ΔssrA and ΔsmpB to various environmental stressors and carbon source supplementations, and identified the gene-regulatory networks involving both genes by integrating transcriptomic and phenotypic analyses. Our results showed that the gene ssrA maintained stable expression throughout the bacterial growth period, while smpB exhibited upregulated expression in response to nutrient deficiencies. Compared to the wild type, both the ΔssrA and ΔsmpB strains exhibited attenuated resistance to most stress conditions. However, ΔssrA independently responded to starvation, while ΔsmpB specifically showed reduced resistance to lower concentrations of Fe3+ and higher concentrations of Na+ ions, as well as increased utilization of the carbon source β-Methyl-D-glucoside. The transcriptomic analysis supported these phenotypic results, demonstrating that tmRNA and SmpB cooperate under nutrient-deficient conditions but operate independently in nutrient-rich environments. Phenotypic experiments confirmed that SsrA and SmpB collaboratively regulate genes involved in siderophore synthesis and iron uptake systems in response to extracellular iron deficiency. The findings of the present study provide crucial insights into the functions of the trans-translation system and highlight new roles for tmRNA and SmpB beyond trans-translation.
Collapse
Affiliation(s)
- Taipeng Bai
- Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (T.B.); (J.L.); (X.C.); (H.L.); (Y.T.)
| | - Juanjuan Li
- Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (T.B.); (J.L.); (X.C.); (H.L.); (Y.T.)
| | - Xue Chi
- Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (T.B.); (J.L.); (X.C.); (H.L.); (Y.T.)
| | - Hong Li
- Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (T.B.); (J.L.); (X.C.); (H.L.); (Y.T.)
| | - Yanqiong Tang
- Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (T.B.); (J.L.); (X.C.); (H.L.); (Y.T.)
| | - Zhu Liu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China;
| | - Xiang Ma
- Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (T.B.); (J.L.); (X.C.); (H.L.); (Y.T.)
| |
Collapse
|
2
|
Mylona E, Pereira-Dias J, Keane JA, Karkey A, Dongol S, Khokhar F, Tran TA, Cormie C, Higginson E, Baker S. Phenotypic variation in the lipopolysaccharide O-antigen of Salmonella Paratyphi A and implications for vaccine development. Vaccine 2024; 42:126404. [PMID: 39383552 DOI: 10.1016/j.vaccine.2024.126404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024]
Abstract
Enteric fever remains a major public health problem in South and Southeast Asia. The recent roll-out of the typhoid conjugate vaccine protecting against S. Typhi exhibits great promise for disease reduction in high burden areas. However, some endemic regions remain vulnerable to S. Paratyphi A due to a lack of licensed vaccines and inadequate WASH. Several developmental S. Paratyphi A vaccines exploit O-antigen as the target antigen. It has been hypothesised that O-antigen is under selective and environmental pressure, with mutations in O-antigen biosynthesis genes being reported, but their phenotypic effects are unknown. Here, we aimed to evaluate O-antigen variation in S. Paratyphi A originating from Nepal, and the potential effect of this variation on antibody binding. O-antigen variation was determined by measuring LPS laddering shift following electrophoresis; this analysis was complemented with genomic characterisation of the O-antigen region. We found structural O-antigen variation in <10 % of S. Paratyphi A organisms, but a direct underlying genetic cause could not be identified. High-content imaging was performed to determine antibody binding by commercial O2 monoclonal (mAb) and polyclonal antibodies, as well as polyclonal sera from convalescent patients naturally infected with S. Paratyphi A. Commercial mAbs detected only a fraction of an apparently "clonal" bacterial population, suggesting phase variation and nonuniform O-antigen composition. Notably, and despite visible subpopulation clusters, O-antigen structural changes did not appear to affect the binding ability of polyclonal human antibody considerably, which led to no obvious differences in the functionality of antibodies targeting organisms with different O-antigen conformations. Although these results need to be confirmed in organisms from alternative endemic areas, they are encouraging the use of O-antigen as the target antigen in S. Paratyphi A vaccines.
Collapse
Affiliation(s)
- Elli Mylona
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Joana Pereira-Dias
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jacqueline A Keane
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Abhilasha Karkey
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal; The Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sabina Dongol
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Fahad Khokhar
- Department of Veterinary Medicine, Cambridge Veterinary School, University of Cambridge, Cambridge, UK
| | - Tuan-Anh Tran
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Claire Cormie
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ellen Higginson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK; Human Immunology Laboratory, IAVI, London, UK
| |
Collapse
|
3
|
Nickerson CA, McLean RJC, Barrila J, Yang J, Thornhill SG, Banken LL, Porterfield DM, Poste G, Pellis NR, Ott CM. Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability. Microbiol Mol Biol Rev 2024; 88:e0014423. [PMID: 39158275 PMCID: PMC11426028 DOI: 10.1128/mmbr.00144-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
SUMMARYUnderstanding the dynamic adaptive plasticity of microorganisms has been advanced by studying their responses to extreme environments. Spaceflight research platforms provide a unique opportunity to study microbial characteristics in new extreme adaptational modes, including sustained exposure to reduced forces of gravity and associated low fluid shear force conditions. Under these conditions, unexpected microbial responses occur, including alterations in virulence, antibiotic and stress resistance, biofilm formation, metabolism, motility, and gene expression, which are not observed using conventional experimental approaches. Here, we review biological and physical mechanisms that regulate microbial responses to spaceflight and spaceflight analog environments from both the microbe and host-microbe perspective that are relevant to human health and habitat sustainability. We highlight instrumentation and technology used in spaceflight microbiology experiments, their limitations, and advances necessary to enable next-generation research. As spaceflight experiments are relatively rare, we discuss ground-based analogs that mimic aspects of microbial responses to reduced gravity in spaceflight, including those that reduce mechanical forces of fluid flow over cell surfaces which also simulate conditions encountered by microorganisms during their terrestrial lifecycles. As spaceflight mission durations increase with traditional astronauts and commercial space programs send civilian crews with underlying health conditions, microorganisms will continue to play increasingly critical roles in health and habitat sustainability, thus defining a new dimension of occupational health. The ability of microorganisms to adapt, survive, and evolve in the spaceflight environment is important for future human space endeavors and provides opportunities for innovative biological and technological advances to benefit life on Earth.
Collapse
Affiliation(s)
- Cheryl A. Nickerson
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Jennifer Barrila
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Laura L. Banken
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - D. Marshall Porterfield
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - George Poste
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, Arizona, USA
| | | | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
4
|
Deng Y, Zang S, Lin Z, Xu L, Cheng C, Feng J. The Pleiotropic Phenotypes Caused by an hfq Null Mutation in Vibrio harveyi. Microorganisms 2023; 11:2741. [PMID: 38004752 PMCID: PMC10672845 DOI: 10.3390/microorganisms11112741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Hfq is a global regulator and can be involved in multiple cellular processes by assisting small regulatory RNAs (sRNAs) to target mRNAs. To gain insight into the virulence regulation of Hfq in Vibrio harveyi, the hfq null mutant, ∆hfq, was constructed in V. harveyi strain 345. Compared with the wild-type strain, the mortality of pearl gentian sharply declined from 80% to 0% in ∆hfq when infected with a dose that was 7.5-fold the median lethal dose (LD50). Additionally, ∆hfq led to impairments of bacterial growth, motility, and biofilm formation and resistance to reactive oxygen species, chloramphenicol, and florfenicol. A transcriptome analysis indicated that the expression of 16.39% genes on V. harveyi 345 were significantly changed after the deletion of hfq. Without Hfq, the virulence-related pathways, including flagellar assembly and bacterial chemotaxis, were repressed. Moreover, eleven sRNAs, including sRNA0405, sRNA0078, sRNA0419, sRNA0145, and sRNA0097, which, respectively, are involved in chloramphenicol/florfenicol resistance, outer membrane protein synthesis, electron transport, amino acid metabolism, and biofilm formation, were significantly down-regulated. In general, Hfq contributes to the virulence of V. harveyi 345 probably via positively regulating bacterial motility and biofilm formation. It is involved in flagellar assembly and bacterial chemotaxis by binding sRNAs and regulating the target mRNAs.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.D.); (S.Z.); (Z.L.); (L.X.); (C.C.)
| |
Collapse
|
5
|
Park S, Jung B, Kim E, Yoon H, Hahn TW. Evaluation of Salmonella Typhimurium Lacking fruR, ssrAB, or hfq as a Prophylactic Vaccine against Salmonella Lethal Infection. Vaccines (Basel) 2022; 10:vaccines10091413. [PMID: 36146494 PMCID: PMC9506222 DOI: 10.3390/vaccines10091413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) is one of the primary causes of foodborne gastroenteritis; occasionally, it causes invasive infection in humans. Because of its broad host range, covering diverse livestock species, foods of animal origin pose a critical threat of NTS contamination. However, there is currently no licensed vaccine against NTS infection. FruR, also known as Cra (catabolite repressor/activator), was initially identified as the transcriptional repressor of the fructose (fru) operon, and then found to activate or repress the transcription of many different genes associated with carbon and energy metabolism. In view of its role as a global regulator, we constructed a live attenuated vaccine candidate, ΔfruR, and evaluated its prophylactic effect against NTS infection in mice. A Salmonella Typhimurium mutant strain lacking fruR was defective in survival inside macrophages and exhibited attenuated virulence in infected mice. Immunization with the ΔfruR mutant stimulated the production of antibodies, including the IgG, IgM, and IgG subclasses, and afforded a protection of 100% to mice against the challenge of lethal infection with a virulent Salmonella strain. The prophylactic effect obtained after ΔfruR immunization was also validated by the absence of signs of hepatosplenomegaly, as these mice had comparable liver and spleen weights in comparison with healthy mice. These results suggest that the ΔfruR mutant strain can be further exploited as a promising vaccine candidate against Salmonella lethal infection.
Collapse
Affiliation(s)
- Soyeon Park
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Bogyo Jung
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Eunsuk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- Correspondence: (H.Y.); (T.-W.H.)
| | - Tae-Wook Hahn
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (H.Y.); (T.-W.H.)
| |
Collapse
|
6
|
Barrila J, Yang J, Franco Meléndez KP, Yang S, Buss K, Davis TJ, Aronow BJ, Bean HD, Davis RR, Forsyth RJ, Ott CM, Gangaraju S, Kang BY, Hanratty B, Nydam SD, Nauman EA, Kong W, Steel J, Nickerson CA. Spaceflight Analogue Culture Enhances the Host-Pathogen Interaction Between Salmonella and a 3-D Biomimetic Intestinal Co-Culture Model. Front Cell Infect Microbiol 2022; 12:705647. [PMID: 35711662 PMCID: PMC9195300 DOI: 10.3389/fcimb.2022.705647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Physical forces associated with spaceflight and spaceflight analogue culture regulate a wide range of physiological responses by both bacterial and mammalian cells that can impact infection. However, our mechanistic understanding of how these environments regulate host-pathogen interactions in humans is poorly understood. Using a spaceflight analogue low fluid shear culture system, we investigated the effect of Low Shear Modeled Microgravity (LSMMG) culture on the colonization of Salmonella Typhimurium in a 3-D biomimetic model of human colonic epithelium containing macrophages. RNA-seq profiling of stationary phase wild type and Δhfq mutant bacteria alone indicated that LSMMG culture induced global changes in gene expression in both strains and that the RNA binding protein Hfq played a significant role in regulating the transcriptional response of the pathogen to LSMMG culture. However, a core set of genes important for adhesion, invasion, and motility were commonly induced in both strains. LSMMG culture enhanced the colonization (adherence, invasion and intracellular survival) of Salmonella in this advanced model of intestinal epithelium using a mechanism that was independent of Hfq. Although S. Typhimurium Δhfq mutants are normally defective for invasion when grown as conventional shaking cultures, LSMMG conditions unexpectedly enabled high levels of colonization by an isogenic Δhfq mutant. In response to infection with either the wild type or mutant, host cells upregulated transcripts involved in inflammation, tissue remodeling, and wound healing during intracellular survival. Interestingly, infection by the Δhfq mutant led to fewer transcriptional differences between LSMMG- and control-infected host cells relative to infection with the wild type strain. This is the first study to investigate the effect of LSMMG culture on the interaction between S. Typhimurium and a 3-D model of human intestinal tissue. These findings advance our understanding of how physical forces can impact the early stages of human enteric salmonellosis.
Collapse
Affiliation(s)
- Jennifer Barrila
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- *Correspondence: Jennifer Barrila, ; Cheryl A. Nickerson,
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
| | - Karla P. Franco Meléndez
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Genomics and Bioinformatics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Gainesville, FL, United States
| | - Shanshan Yang
- Bioinformatics Core Facility, Bioscience, Knowledge Enterprise, Arizona State University, Tempe, AZ, United States
| | - Kristina Buss
- Bioinformatics Core Facility, Bioscience, Knowledge Enterprise, Arizona State University, Tempe, AZ, United States
| | - Trenton J. Davis
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Bruce J. Aronow
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Heather D. Bean
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Richard R. Davis
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
| | - Rebecca J. Forsyth
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
| | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, United States
| | - Sandhya Gangaraju
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
| | - Bianca Y. Kang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
| | - Brian Hanratty
- Bioinformatics Core Facility, Bioscience, Knowledge Enterprise, Arizona State University, Tempe, AZ, United States
| | - Seth D. Nydam
- Department of Animal Care & Technologies, Arizona State University, Tempe, AZ, United States
| | - Eric A. Nauman
- School of Mechanical Engineering, Weldon School of Biomedical Engineering and Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States
| | - Wei Kong
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, United States
| | - Jason Steel
- Bioinformatics Core Facility, Bioscience, Knowledge Enterprise, Arizona State University, Tempe, AZ, United States
| | - Cheryl A. Nickerson
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- *Correspondence: Jennifer Barrila, ; Cheryl A. Nickerson,
| |
Collapse
|
7
|
Zhang Y, Liu Z, Tang Y, Ma X, Tang H, Li H, Liu Z. Cbl upregulates cysH for hydrogen sulfide production in Aeromonas veronii. PeerJ 2021; 9:e12058. [PMID: 34589297 PMCID: PMC8435198 DOI: 10.7717/peerj.12058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022] Open
Abstract
Endogenous hydrogen sulfide (H2S) is generated in many metabolism pathways, and has been recognized as a second messenger against antibiotics and reactive oxygen species (ROS). In Aeromonas veronii, Small Protein B (SmpB) plays an important role in resisting stress. The absence of smpB could trigger sulfate assimilation pathway to adapt the nutrient deficiency, of which was mediated by up-regulation of cbl and cys genes and followed with enhancing H2S production. To figure out the mutual regulations of cbl and cys genes, a series of experiments were performed. Compared with the wild type, cysH was down-regulated significantly in cbl deletion by qRT-PCR. The fluorescence analysis further manifested that Cbl had a positive regulatory effect on the promoter of cysJIH. Bacterial one-hybrid analysis and electrophoretic mobility shift assay (EMSA) verified that Cbl bound with the promoter of cysJIH. Collectively, the tolerance to adversity could be maintained by the production of H2S when SmpB was malfunctioned, of which the activity of cysJIH promoter was positively regulated by upstream Cbl protein. The outcomes also suggested the enormous potentials of Aeromonas veronii in environmental adaptability.
Collapse
Affiliation(s)
| | | | | | - Xiang Ma
- Hainan University, Haikou, China
| | | | - Hong Li
- Hainan University, Haikou, China
| | - Zhu Liu
- Hainan University, Haikou, China
| |
Collapse
|
8
|
Correia Santos S, Bischler T, Westermann AJ, Vogel J. MAPS integrates regulation of actin-targeting effector SteC into the virulence control network of Salmonella small RNA PinT. Cell Rep 2021; 34:108722. [PMID: 33535041 DOI: 10.1016/j.celrep.2021.108722] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/25/2020] [Accepted: 01/13/2021] [Indexed: 10/22/2022] Open
Abstract
A full understanding of the contribution of small RNAs (sRNAs) to bacterial virulence demands knowledge of their target suites under infection-relevant conditions. Here, we take an integrative approach to capturing targets of the Hfq-associated sRNA PinT, a known post-transcriptional timer of the two major virulence programs of Salmonella enterica. Using MS2 affinity purification and RNA sequencing (MAPS), we identify PinT ligands in bacteria under in vitro conditions mimicking specific stages of the infection cycle and in bacteria growing inside macrophages. This reveals PinT-mediated translational inhibition of the secreted effector kinase SteC, which had gone unnoticed in previous target searches. Using genetic, biochemical, and microscopic assays, we provide evidence for PinT-mediated repression of steC mRNA, eventually delaying actin rearrangements in infected host cells. Our findings support the role of PinT as a central post-transcriptional regulator in Salmonella virulence and illustrate the need for complementary methods to reveal the full target suites of sRNAs.
Collapse
Affiliation(s)
- Sara Correia Santos
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Alexander J Westermann
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany; Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.
| | - Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany; Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.
| |
Collapse
|
9
|
Hfq modulates global protein pattern and stress response in Bordetella pertussis. J Proteomics 2020; 211:103559. [DOI: 10.1016/j.jprot.2019.103559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/17/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022]
|
10
|
The Major RNA-Binding Protein ProQ Impacts Virulence Gene Expression in Salmonella enterica Serovar Typhimurium. mBio 2019; 10:mBio.02504-18. [PMID: 30602583 PMCID: PMC6315103 DOI: 10.1128/mbio.02504-18] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
FinO domain proteins such as ProQ of the model pathogen Salmonella enterica have emerged as a new class of major RNA-binding proteins in bacteria. ProQ has been shown to target hundreds of transcripts, including mRNAs from many virulence regions, but its role, if any, in bacterial pathogenesis has not been studied. Here, using a Dual RNA-seq approach to profile ProQ-dependent gene expression changes as Salmonella infects human cells, we reveal dysregulation of bacterial motility, chemotaxis, and virulence genes which is accompanied by altered MAPK (mitogen-activated protein kinase) signaling in the host. Comparison with the other major RNA chaperone in Salmonella, Hfq, reinforces the notion that these two global RNA-binding proteins work in parallel to ensure full virulence. Of newly discovered infection-associated ProQ-bound small noncoding RNAs (sRNAs), we show that the 3'UTR-derived sRNA STnc540 is capable of repressing an infection-induced magnesium transporter mRNA in a ProQ-dependent manner. Together, this comprehensive study uncovers the relevance of ProQ for Salmonella pathogenesis and highlights the importance of RNA-binding proteins in regulating bacterial virulence programs.IMPORTANCE The protein ProQ has recently been discovered as the centerpiece of a previously overlooked "third domain" of small RNA-mediated control of gene expression in bacteria. As in vitro work continues to reveal molecular mechanisms, it is also important to understand how ProQ affects the life cycle of bacterial pathogens as these pathogens infect eukaryotic cells. Here, we have determined how ProQ shapes Salmonella virulence and how the activities of this RNA-binding protein compare with those of Hfq, another central protein in RNA-based gene regulation in this and other bacteria. To this end, we apply global transcriptomics of pathogen and host cells during infection. In doing so, we reveal ProQ-dependent transcript changes in key virulence and host immune pathways. Moreover, we differentiate the roles of ProQ from those of Hfq during infection, for both coding and noncoding transcripts, and provide an important resource for those interested in ProQ-dependent small RNAs in enteric bacteria.
Collapse
|
11
|
Transcriptional profiling of the mutualistic bacterium Vibrio fischeri and an hfq mutant under modeled microgravity. NPJ Microgravity 2018; 4:25. [PMID: 30588486 PMCID: PMC6299092 DOI: 10.1038/s41526-018-0060-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023] Open
Abstract
For long-duration space missions, it is critical to maintain health-associated homeostasis between astronauts and their microbiome. To achieve this goal it is important to more fully understand the host–symbiont relationship under the physiological stress conditions of spaceflight. To address this issue we examined the impact of a spaceflight analog, low-shear-modeled microgravity (LSMMG), on the transcriptome of the mutualistic bacterium Vibrio fischeri. Cultures of V. fischeri and a mutant defective in the global regulator Hfq (∆hfq) were exposed to either LSMMG or gravity conditions for 12 h (exponential growth) and 24 h (stationary phase growth). Comparative transcriptomic analysis revealed few to no significant differentially expressed genes between gravity and the LSMMG conditions in the wild type or mutant V. fischeri at exponential or stationary phase. There was, however, a pronounced change in transcriptomic profiles during the transition between exponential and stationary phase growth in both V. fischeri cultures including an overall decrease in gene expression associated with translational activity and an increase in stress response. There were also several upregulated stress genes specific to the LSMMG condition during the transition to stationary phase growth. The ∆hfq mutants exhibited a distinctive transcriptome profile with a significant increase in transcripts associated with flagellar synthesis and transcriptional regulators under LSMMG conditions compared to gravity controls. These results indicate the loss of Hfq significantly influences gene expression under LSMMG conditions in a bacterial symbiont. Together, these results improve our understanding of the mechanisms by which microgravity alters the physiology of beneficial host-associated microbes.
Collapse
|
12
|
Kröger C, Rothhardt JE, Brokatzky D, Felsl A, Kary SC, Heermann R, Fuchs TM. The small RNA RssR regulates myo-inositol degradation by Salmonella enterica. Sci Rep 2018; 8:17739. [PMID: 30531898 PMCID: PMC6288124 DOI: 10.1038/s41598-018-35784-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 10/08/2018] [Indexed: 12/25/2022] Open
Abstract
Small noncoding RNAs (sRNAs) with putative regulatory functions in gene expression have been identified in the enteropathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). Two sRNAs are encoded by the genomic island GEI4417/4436 responsible for myo-inositol (MI) degradation, suggesting a role in the regulation of this metabolic pathway. We show that a lack of the sRNA STnc2160, termed RssR, results in a severe growth defect in minimal medium (MM) with MI. In contrast, the second sRNA STnc1740 was induced in the presence of glucose, and its overexpression slightly attenuated growth in the presence of MI. Constitutive expression of RssR led to an increased stability of the reiD mRNA, which encodes an activator of iol genes involved in MI utilization, via interaction with its 5′-UTR. SsrB, a response regulator contributing to the virulence properties of salmonellae, activated rssR transcription by binding the sRNA promoter. In addition, the absence of the RNA chaperone Hfq resulted in strongly decreased levels of RssR, attenuated S. Typhimurium growth with MI, and reduced expression of several iol genes required for MI degradation. Considered together, the extrinsic RssR allows fine regulation of cellular ReiD levels and thus of MI degradation by acting on the reiD mRNA stability.
Collapse
Affiliation(s)
- Carsten Kröger
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | - Johannes E Rothhardt
- Lehrstuhl für Mikrobielle Ökologie, ZIEL - Institute for Food & Health, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Dominik Brokatzky
- Lehrstuhl für Mikrobielle Ökologie, ZIEL - Institute for Food & Health, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Angela Felsl
- Lehrstuhl für Mikrobielle Ökologie, ZIEL - Institute for Food & Health, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Stefani C Kary
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | - Ralf Heermann
- Biozentrum, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152, Martinsried/München, Germany
| | - Thilo M Fuchs
- Lehrstuhl für Mikrobielle Ökologie, ZIEL - Institute for Food & Health, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany. .,Friedrich-Loeffler-Institut, Institut für molekulare Pathogenese, Naumburger Str. 96a, 07743, Jena, Germany.
| |
Collapse
|
13
|
Westermann AJ. Regulatory RNAs in Virulence and Host-Microbe Interactions. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0002-2017. [PMID: 30003867 PMCID: PMC11633609 DOI: 10.1128/microbiolspec.rwr-0002-2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Bacterial regulatory RNAs are key players in adaptation to changing environmental conditions and response to diverse cellular stresses. However, while regulatory RNAs of bacterial pathogens have been intensely studied under defined conditions in vitro, characterization of their role during the infection of eukaryotic host organisms is lagging behind. This review summarizes our current understanding of the contribution of the different classes of regulatory RNAs and RNA-binding proteins to bacterial virulence and illustrates their role in infection by reviewing the mechanisms of some prominent representatives of each class. Emerging technologies are described that bear great potential for global, unbiased studies of virulence-related RNAs in bacterial model and nonmodel pathogens in the future. The review concludes by deducing common principles of RNA-mediated gene expression control of virulence programs in different pathogens, and by defining important open questions for upcoming research in the field.
Collapse
Affiliation(s)
- Alexander J Westermann
- Institute of Molecular Infection Biology, University of Würzburg
- Helmholtz Institute for RNA-Based Infection Research, D-97080 Würzburg, Germany
| |
Collapse
|
14
|
Identification and functional characterization of bacterial small non-coding RNAs and their target: A review. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Ellis MJ, Carfrae LA, Macnair CR, Trussler RS, Brown ED, Haniford DB. Silent but deadly: IS200 promotes pathogenicity in Salmonella Typhimurium. RNA Biol 2017; 15:176-181. [PMID: 29120256 DOI: 10.1080/15476286.2017.1403001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Bacterial transposons were long thought of as selfish mobile genetic elements that propagate at the expense of 'host' bacterium fitness. However, limited transposition can benefit the host organism by promoting DNA rearrangements and facilitating horizontal gene transfer. Here we discuss and provide context for our recently published work which reported the surprising finding that an otherwise dormant transposon, IS200, encodes a regulatory RNA in Salmonella Typhimurium. This previous work identified a trans-acting sRNA that is encoded in the 5'UTR of IS200 transposase mRNA (tnpA). This sRNA represses expression of genes encoded within Salmonella Pathogenicity Island 1 (SPI-1), and accordingly limits invasion into non-phagocytic cells in vitro. We present new data here that shows IS200 elements are important for colonization of the mouse gastrointestinal tract. We discuss our previous and current findings in the context of transposon biology and suggest that otherwise 'silent' transposons may in fact play an important role in controlling host gene expression.
Collapse
Affiliation(s)
- Michael J Ellis
- a Department of Biochemistry , University of Western Ontario , London , ON Canada
| | - Lindsey A Carfrae
- b Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research , McMaster University , Hamilton , ON Canada
| | - Craig R Macnair
- b Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research , McMaster University , Hamilton , ON Canada
| | - Ryan S Trussler
- a Department of Biochemistry , University of Western Ontario , London , ON Canada
| | - Eric D Brown
- b Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research , McMaster University , Hamilton , ON Canada
| | - David B Haniford
- a Department of Biochemistry , University of Western Ontario , London , ON Canada
| |
Collapse
|
16
|
Barquist L, Westermann AJ, Vogel J. Molecular phenotyping of infection-associated small non-coding RNAs. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2016.0081. [PMID: 27672158 DOI: 10.1098/rstb.2016.0081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2016] [Indexed: 02/07/2023] Open
Abstract
Infection is a complicated balance, with both pathogen and host struggling to tilt the result in their favour. Bacterial infection biology has relied on forward genetics for many of its advances, defining phenotype in terms of replication in model systems. However, many known virulence factors fail to produce robust phenotypes, particularly in the systems most amenable to genetic manipulation, such as cell-culture models. This has particularly been limiting for the study of the bacterial regulatory small RNAs (sRNAs) in infection. We argue that new sequencing-based technologies can work around this problem by providing a 'molecular phenotype', defined in terms of the specific transcriptional dysregulation in the infection system induced by gene deletion. We illustrate this using the example of our recent study of the PinT sRNA using dual RNA-seq, that is, simultaneous RNA sequencing of host and pathogen during infection. We additionally discuss how other high-throughput technologies, in particular genetic interaction mapping using transposon insertion sequencing, may be used to further dissect molecular phenotypes. We propose a strategy for how high-throughput technologies can be integrated in the study of non-coding regulators as well as bacterial virulence factors, enhancing our ability to rapidly generate hypotheses with regards to their function.This article is part of the themed issue 'The new bacteriology'.
Collapse
Affiliation(s)
- Lars Barquist
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2/D15, 97080 Würzburg, Germany
| | - Alexander J Westermann
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2/D15, 97080 Würzburg, Germany
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2/D15, 97080 Würzburg, Germany Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
17
|
Schulz EC, Seiler M, Zuliani C, Voigt F, Rybin V, Pogenberg V, Mücke N, Wilmanns M, Gibson TJ, Barabas O. Intermolecular base stacking mediates RNA-RNA interaction in a crystal structure of the RNA chaperone Hfq. Sci Rep 2017; 7:9903. [PMID: 28852099 PMCID: PMC5575007 DOI: 10.1038/s41598-017-10085-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/02/2017] [Indexed: 11/18/2022] Open
Abstract
The RNA-chaperone Hfq catalyses the annealing of bacterial small RNAs (sRNAs) with target mRNAs to regulate gene expression in response to environmental stimuli. Hfq acts on a diverse set of sRNA-mRNA pairs using a variety of different molecular mechanisms. Here, we present an unusual crystal structure showing two Hfq-RNA complexes interacting via their bound RNA molecules. The structure contains two Hfq6:A18 RNA assemblies positioned face-to-face, with the RNA molecules turned towards each other and connected via interdigitating base stacking interactions at the center. Biochemical data further confirm the observed interaction, and indicate that RNA-mediated contacts occur between Hfq-RNA complexes with various (ARN)X motif containing RNA sequences in vitro, including the stress response regulator OxyS and its target, fhlA. A systematic computational survey also shows that phylogenetically conserved (ARN)X motifs are present in a subset of sRNAs, some of which share similar modular architectures. We hypothesise that Hfq can co-opt RNA-RNA base stacking, an unanticipated structural trick, to promote the interaction of (ARN)X motif containing sRNAs with target mRNAs on a “speed-dating” fashion, thereby supporting their regulatory function.
Collapse
Affiliation(s)
- Eike C Schulz
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany.,Hamburg Outstation, European Molecular Biology Laboratory, Hamburg, 22603, Germany.,Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Markus Seiler
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany.,Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438, Frankfurt a.M., Germany
| | - Cecilia Zuliani
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Franka Voigt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany.,Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Vladimir Rybin
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Vivian Pogenberg
- Hamburg Outstation, European Molecular Biology Laboratory, Hamburg, 22603, Germany
| | - Norbert Mücke
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, 69120, Germany
| | - Matthias Wilmanns
- Hamburg Outstation, European Molecular Biology Laboratory, Hamburg, 22603, Germany
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Orsolya Barabas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany.
| |
Collapse
|
18
|
InvS Coordinates Expression of PrgH and FimZ and Is Required for Invasion of Epithelial Cells by Salmonella enterica serovar Typhimurium. J Bacteriol 2017; 199:JB.00824-16. [PMID: 28439039 DOI: 10.1128/jb.00824-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/20/2017] [Indexed: 11/20/2022] Open
Abstract
Deep sequencing has revolutionized our understanding of the bacterial RNA world and has facilitated the identification of 280 small RNAs (sRNAs) in Salmonella Despite the suspicions that sRNAs may play important roles in Salmonella pathogenesis, the functions of most sRNAs remain unknown. To advance our understanding of RNA biology in Salmonella virulence, we searched for sRNAs required for bacterial invasion into nonphagocytic cells. After screening 75 sRNAs, we discovered that the ablation of InvS caused a significant decrease of Salmonella invasion into epithelial cells. A proteomic analysis showed that InvS modulated the levels of several type III secreted Salmonella proteins. The level of PrgH, a type III secretion apparatus protein, was significantly lower in the absence of InvS, consistent with the known roles of PrgH in effector secretion and bacterial invasion. We discovered that InvS modulates fimZ expression and hence flagellar gene expression and motility. We propose that InvS coordinates the increase of PrgH and decrease in FimZ that promote efficient Salmonella invasion into nonphagocytic cells.IMPORTANCE Salmonellosis continues to be the most common foodborne infection reported by the CDC in the United States. Central to Salmonella pathogenesis is the ability to invade nonphagocytic cells and to replicate inside host cells. Invasion genes are known to be regulated by protein transcriptional networks, but little is known about the role played by small RNAs (sRNAs) in this process. We have identified a novel sRNA, InvS, that is involved in Salmonella invasion. Our result will likely provide an opportunity to better understand the fundamental question of how Salmonella regulates invasion gene expression and may inform strategies for therapeutic intervention.
Collapse
|
19
|
Lago M, Monteil V, Douche T, Guglielmini J, Criscuolo A, Maufrais C, Matondo M, Norel F. Proteome remodelling by the stress sigma factor RpoS/σ S in Salmonella: identification of small proteins and evidence for post-transcriptional regulation. Sci Rep 2017; 7:2127. [PMID: 28522802 PMCID: PMC5437024 DOI: 10.1038/s41598-017-02362-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022] Open
Abstract
The RpoS/σS sigma subunit of RNA polymerase is the master regulator of the general stress response in many Gram-negative bacteria. Extensive studies have been conducted on σS-regulated gene expression at the transcriptional level. In contrast, very limited information regarding the impact of σS on global protein production is available. In this study, we used a mass spectrometry-based proteomics approach to explore the wide σS-dependent proteome of the human pathogen Salmonella enterica serovar Typhimurium. Our present goals were twofold: (1) to survey the protein changes associated with the ΔrpoS mutation and (2) to assess the coding capacity of σS-dependent small RNAs. Our proteomics data, and complementary assays, unravelled the large impact of σS on the Salmonella proteome, and validated expression and σS regulation of twenty uncharacterized small proteins of 27 to 96 amino acids. Furthermore, a large number of genes regulated at the protein level only were identified, suggesting that post-transcriptional regulation is an important component of the σS response. Novel aspects of σS in the control of important catabolic pathways such as myo-inositol, L-fucose, propanediol, and ethanolamine were illuminated by this work, providing new insights into the physiological remodelling involved in bacterial adaptation to a non-actively growing state.
Collapse
Affiliation(s)
- Magali Lago
- Institut Pasteur, Laboratoire Systèmes Macromoléculaires et Signalisation, Département de Microbiologie, rue du Dr. Roux, 75015, Paris, France
- CNRS ERL6002, rue du Docteur Roux, 75015, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, rue du Dr. Roux, 75015, Paris, France
| | - Véronique Monteil
- Institut Pasteur, Laboratoire Systèmes Macromoléculaires et Signalisation, Département de Microbiologie, rue du Dr. Roux, 75015, Paris, France
- CNRS ERL6002, rue du Docteur Roux, 75015, Paris, France
- Institut Pasteur, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie structurale et Chimie, rue du Dr. Roux, 75015, Paris, France
| | - Thibaut Douche
- Institut Pasteur, Unité de Spectrométrie de Masse Structurale et Protéomique, Département de Biologie Structurale et Chimie, UMR3528, rue du Dr. Roux, 75015, Paris, France
| | - Julien Guglielmini
- Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, rue du Dr. Roux, 75015, Paris, France
| | - Alexis Criscuolo
- Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, rue du Dr. Roux, 75015, Paris, France
| | - Corinne Maufrais
- Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, rue du Dr. Roux, 75015, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Unité de Spectrométrie de Masse Structurale et Protéomique, Département de Biologie Structurale et Chimie, UMR3528, rue du Dr. Roux, 75015, Paris, France
| | - Françoise Norel
- Institut Pasteur, Laboratoire Systèmes Macromoléculaires et Signalisation, Département de Microbiologie, rue du Dr. Roux, 75015, Paris, France.
- CNRS ERL6002, rue du Docteur Roux, 75015, Paris, France.
- Institut Pasteur, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie structurale et Chimie, rue du Dr. Roux, 75015, Paris, France.
| |
Collapse
|
20
|
Ahmed W, Zheng K, Liu ZF. Small Non-Coding RNAs: New Insights in Modulation of Host Immune Response by Intracellular Bacterial Pathogens. Front Immunol 2016; 7:431. [PMID: 27803700 PMCID: PMC5067535 DOI: 10.3389/fimmu.2016.00431] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/03/2016] [Indexed: 12/20/2022] Open
Abstract
Pathogenic bacteria possess intricate regulatory networks that temporally control the production of virulence factors and enable the bacteria to survive and proliferate within host cell. Small non-coding RNAs (sRNAs) have been identified as important regulators of gene expression in diverse biological contexts. Recent research has shown bacterial sRNAs involved in growth and development, cell proliferation, differentiation, metabolism, cell signaling, and immune response through regulating protein–protein interactions or via their ability to base pair with RNA and DNA. In this review, we provide a brief overview of mechanism of action employed by immune-related sRNAs, their known functions in immunity, and how they can be integrated into regulatory circuits that govern virulence, which will facilitate our understanding of pathogenesis and the development of novel, more effective therapeutic approaches to treat infections caused by intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Waqas Ahmed
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , China
| | - Ke Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , China
| | - Zheng-Fei Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , China
| |
Collapse
|
21
|
Deng Y, Chen C, Zhao Z, Zhao J, Jacq A, Huang X, Yang Y. The RNA Chaperone Hfq Is Involved in Colony Morphology, Nutrient Utilization and Oxidative and Envelope Stress Response in Vibrio alginolyticus. PLoS One 2016; 11:e0163689. [PMID: 27685640 PMCID: PMC5042437 DOI: 10.1371/journal.pone.0163689] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/13/2016] [Indexed: 12/26/2022] Open
Abstract
Hfq is a global regulator that is involved in environmental adaptation of bacteria and in pathogenicity. To gain insight into the role of Hfq in Vibrio alginolyticus, an hfq deletion mutant was constructed in V. alginolyticus ZJ-T strain and phenotypically characterized. Deletion of hfq led to an alteration of colony morphology and reduced extracellular polysaccharide production, a general impairment of growth in both rich medium and minimal media with different carbon sources or amino acids, enhanced sensitivity to oxidative stress and to several antibiotics. Furthermore, a differential transcriptomic analysis showed significant changes of transcript abundance for 306 protein coding genes, with 179 genes being up regulated and 127 down-regulated. Several of these changes could be related to the observed phenotypes of the mutant. Transcriptomic data also provided evidence for the induction of the extracytoplasmic stress response in absence of Hfq. Altogether, these findings point to broad regulatory functions for Hfq in V. alginolyticus cells, likely to underlie an important role in pathogenicity.
Collapse
Affiliation(s)
- Yiqin Deng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chang Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Xisha/Nansha Ocean observation and research station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- * E-mail:
| | - Zhe Zhao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Jingjing Zhao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Annick Jacq
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Xiaochun Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiying Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Higginson EE, Galen JE, Levine MM, Tennant SM. Microgravity as a biological tool to examine host-pathogen interactions and to guide development of therapeutics and preventatives that target pathogenic bacteria. Pathog Dis 2016; 74:ftw095. [PMID: 27630185 DOI: 10.1093/femspd/ftw095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 12/16/2022] Open
Abstract
Space exploration programs have long been interested in the effects of spaceflight on biology. This research is important not only in its relevance to future deep space exploration, but also because it has allowed investigators to ask questions about how gravity impacts cell behavior here on Earth. In the 1980s, scientists designed and built the first rotating wall vessel, capable of mimicking the low shear environment found in space. This vessel has since been used to investigate growth of both microorganisms and human tissue cells in low shear modeled microgravity conditions. Bacterial behavior has been shown to be altered both in space and under simulated microgravity conditions. In some cases, bacteria appear attenuated, whereas in others virulence is enhanced. This has consequences not only for manned spaceflight, but poses larger questions about the ability of bacteria to sense the world around them. By using the microgravity environment as a tool, we can exploit this phenomenon in the search for new therapeutics and preventatives against pathogenic bacteria for use both in space and on Earth.
Collapse
Affiliation(s)
- Ellen E Higginson
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - James E Galen
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Myron M Levine
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sharon M Tennant
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
23
|
Liu P, Chen Y, Wang D, Tang Y, Tang H, Song H, Sun Q, Zhang Y, Liu Z. Genetic Selection of Peptide Aptamers That Interact and Inhibit Both Small Protein B and Alternative Ribosome-Rescue Factor A of Aeromonas veronii C4. Front Microbiol 2016; 7:1228. [PMID: 27588015 PMCID: PMC4988972 DOI: 10.3389/fmicb.2016.01228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 07/22/2016] [Indexed: 12/29/2022] Open
Abstract
Aeromonas veronii is a pathogenic gram-negative bacterium, which infects a variety of animals and results in mass mortality. The stalled-ribosome rescues are reported to ensure viability and virulence under stress conditions, of which primarily include trans-translation and alternative ribosome-rescue factor A (ArfA) in A. veronii. For identification of specific peptides that interact and inhibit the stalled-ribosome rescues, peptide aptamer library (pTRG-SN-peptides) was constructed using pTRG as vector and Staphylococcus aureus nuclease (SN) as scaffold protein, in which 16 random amino acids were introduced to form an exposed surface loop. In the meantime both Small Protein B (SmpB) which acts as one of the key components in trans-translation, and ArfA were inserted to pBT to constitute pBT-SmpB and pBT-ArfA, respectively. The peptide aptamer PA-2 was selected from pTRG-SN-peptides by bacterial two-hybrid system (B2H) employing pBT-SmpB or pBT-ArfA as baits. The conserved sites G133K134 and D138K139R140 of C-terminal SmpB were identified by interacting with N-terminal SN, and concurrently the residue K62 of ArfA was recognized by interacting with the surface loop of the specific peptide aptamer PA-2. The expression plasmids pN-SN or pN-PA-2, which combined the duplication origin of pRE112 with the neokanamycin promoter expressing SN or PA-2, were created and transformed into A. veronii C4, separately. The engineered A. veronii C4 which endowing SN or PA-2 expression impaired growth capabilities under stress conditions including temperatures, sucrose, glucose, potassium chloride (KCl) and antibiotics, and the stress-related genes rpoS and nhaP were down-regulated significantly by Quantitative Real-time PCR (qRT-PCR) when treating in 2.0% KCl. Thus, the engineered A. veronii C4 conferring PA-2 expression might be potentially attenuated vaccine, and also the peptide aptamer PA-2 could develop as anti-microbial drugs targeted to the ribosome rescued factors in A. veronii.
Collapse
Affiliation(s)
- Peng Liu
- Department of Biology, College of Sciences, Shantou University Shantou, China
| | - Yong Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| | - Dan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| | - Yanqiong Tang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| | - Hongqian Tang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| | - Haichao Song
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| | - Qun Sun
- Department of Biotechnology, College of Life Sciences, Sichuan University Chengdu, China
| | - Yueling Zhang
- Department of Biology, College of Sciences, Shantou University Shantou, China
| | - Zhu Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| |
Collapse
|
24
|
Fröhlich KS, Haneke K, Papenfort K, Vogel J. The target spectrum of SdsR small RNA in Salmonella. Nucleic Acids Res 2016; 44:10406-10422. [PMID: 27407104 PMCID: PMC5137417 DOI: 10.1093/nar/gkw632] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/11/2016] [Accepted: 06/29/2016] [Indexed: 12/28/2022] Open
Abstract
Model enteric bacteria such as Escherichia coli and Salmonella enterica express hundreds of small non-coding RNAs (sRNAs), targets for most of which are yet unknown. Some sRNAs are remarkably well conserved, indicating that they serve cellular functions that go beyond the necessities of a single species. One of these ‘core sRNAs’ of largely unknown function is the abundant ∼100-nucleotide SdsR sRNA which is transcribed by the general stress σ-factor, σS and accumulates in stationary phase. In Salmonella, SdsR was known to inhibit the synthesis of the species-specific porin, OmpD. However, sdsR genes are present in almost all enterobacterial genomes, suggesting that additional, conserved targets of this sRNA must exist. Here, we have combined SdsR pulse-expression with whole genome transcriptomics to discover 20 previously unknown candidate targets of SdsR which include mRNAs coding for physiologically important regulators such as the carbon utilization regulator, CRP, the nucleoid-associated chaperone, StpA and the antibiotic resistance transporter, TolC. Processing of SdsR by RNase E results in two cellular SdsR variants with distinct target spectra. While the overall physiological role of this orphan core sRNA remains to be fully understood, the new SdsR targets present valuable leads to determine sRNA functions in resting bacteria.
Collapse
Affiliation(s)
- Kathrin S Fröhlich
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2, D-97080 Würzburg, Germany.,Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, D-82152 Martinsried, Germany
| | - Katharina Haneke
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2, D-97080 Würzburg, Germany
| | - Kai Papenfort
- Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, D-82152 Martinsried, Germany
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2, D-97080 Würzburg, Germany
| |
Collapse
|
25
|
The RNA Chaperone Hfq Is Essential for Virulence and Modulates the Expression of Four Adhesins in Yersinia enterocolitica. Sci Rep 2016; 6:29275. [PMID: 27387855 PMCID: PMC4937351 DOI: 10.1038/srep29275] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/16/2016] [Indexed: 12/13/2022] Open
Abstract
In Enterobacteriaceae, the RNA chaperone Hfq mediates the interaction of small RNAs with target mRNAs, thereby modulating transcript stability and translation. This post-transcriptional control helps bacteria adapt quickly to changing environmental conditions. Our previous mutational analysis showed that Hfq is involved in metabolism and stress survival in the enteropathogen Yersinia enterocolitica. In this study we demonstrate that Hfq is essential for virulence in mice and influences production of surface pathogenicity factors, in particular lipopolysaccharide and adhesins mediating interaction with host tissue. Hfq inhibited the production of Ail, the Ail-like protein OmpX and the MyfA pilin post-transcriptionally. In contrast Hfq promoted production of two major autotransporter adhesins YadA and InvA. While protein secretion in vitro was not affected, hfq mutants exhibited decreased protein translocation by the type III secretion system into host cells, consistent with decreased production of YadA and InvA. The influence of Hfq on YadA resulted from a complex interplay of transcriptional, post-transcriptional and likely post-translational effects. Hfq regulated invA by modulating the expression of the transcriptional regulators rovA, phoP and ompR. Therefore, Hfq is a global coordinator of surface virulence determinants in Y. enterocolitica suggesting that it constitutes an attractive target for developing new antimicrobial strategies.
Collapse
|
26
|
The RNA-Binding Chaperone Hfq Is an Important Global Regulator of Gene Expression in Pasteurella multocida and Plays a Crucial Role in Production of a Number of Virulence Factors, Including Hyaluronic Acid Capsule. Infect Immun 2016; 84:1361-1370. [PMID: 26883595 DOI: 10.1128/iai.00122-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 12/19/2022] Open
Abstract
The Gram-negative bacterium Pasteurella multocida is the causative agent of a number of economically important animal diseases, including avian fowl cholera. Numerous P. multocida virulence factors have been identified, including capsule, lipopolysaccharide (LPS), and filamentous hemagglutinin, but little is known about how the expression of these virulence factors is regulated. Hfq is an RNA-binding protein that facilitates riboregulation via interaction with small noncoding RNA (sRNA) molecules and their mRNA targets. Here, we show that a P. multocida hfq mutant produces significantly less hyaluronic acid capsule during all growth phases and displays reduced in vivo fitness. Transcriptional and proteomic analyses of the hfq mutant during mid-exponential-phase growth revealed altered transcript levels for 128 genes and altered protein levels for 78 proteins. Further proteomic analyses of the hfq mutant during the early exponential growth phase identified 106 proteins that were produced at altered levels. Both the transcript and protein levels for genes/proteins involved in capsule biosynthesis were reduced in the hfq mutant, as were the levels of the filamentous hemagglutinin protein PfhB2 and its secretion partner LspB2. In contrast, there were increased expression levels of three LPS biosynthesis genes, encoding proteins involved in phosphocholine and phosphoethanolamine addition to LPS, suggesting that these genes are negatively regulated by Hfq-dependent mechanisms. Taken together, these data provide the first evidence that Hfq plays a crucial role in regulating the global expression of P. multocida genes, including the regulation of key P. multocida virulence factors, capsule, LPS, and filamentous hemagglutinin.
Collapse
|
27
|
Holmqvist E, Wright PR, Li L, Bischler T, Barquist L, Reinhardt R, Backofen R, Vogel J. Global RNA recognition patterns of post-transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo. EMBO J 2016; 35:991-1011. [PMID: 27044921 PMCID: PMC5207318 DOI: 10.15252/embj.201593360] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/26/2016] [Indexed: 12/22/2022] Open
Abstract
The molecular roles of many RNA‐binding proteins in bacterial post‐transcriptional gene regulation are not well understood. Approaches combining in vivo UV crosslinking with RNA deep sequencing (CLIP‐seq) have begun to revolutionize the transcriptome‐wide mapping of eukaryotic RNA‐binding protein target sites. We have applied CLIP‐seq to chart the target landscape of two major bacterial post‐transcriptional regulators, Hfq and CsrA, in the model pathogen Salmonella Typhimurium. By detecting binding sites at single‐nucleotide resolution, we identify RNA preferences and structural constraints of Hfq and CsrA during their interactions with hundreds of cellular transcripts. This reveals 3′‐located Rho‐independent terminators as a universal motif involved in Hfq–RNA interactions. Additionally, Hfq preferentially binds 5′ to sRNA‐target sites in mRNAs, and 3′ to seed sequences in sRNAs, reflecting a simple logic in how Hfq facilitates sRNA–mRNA interactions. Importantly, global knowledge of Hfq sites significantly improves sRNA‐target predictions. CsrA binds AUGGA sequences in apical loops and targets many Salmonella virulence mRNAs. Overall, our generic CLIP‐seq approach will bring new insights into post‐transcriptional gene regulation by RNA‐binding proteins in diverse bacterial species.
Collapse
Affiliation(s)
- Erik Holmqvist
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Patrick R Wright
- Bioinformatics Group, Department of Computer Science, Albert Ludwig University Freiburg, Freiburg, Germany
| | - Lei Li
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Thorsten Bischler
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Lars Barquist
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Richard Reinhardt
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, Albert Ludwig University Freiburg, Freiburg, Germany BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
28
|
Feliciano JR, Grilo AM, Guerreiro SI, Sousa SA, Leitão JH. Hfq: a multifaceted RNA chaperone involved in virulence. Future Microbiol 2015; 11:137-51. [PMID: 26685037 DOI: 10.2217/fmb.15.128] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hfq has emerged in recent years as a master regulator of gene expression in bacteria, mainly due to its ability to mediate the interaction of small noncoding RNAs with their mRNA targets, including those related to virulence in Gram-negative bacteria. In this work, we review current knowledge on the involvement of Hfq in the regulation of virulence traits related to secretion systems, alternative sigma factors, outer membrane proteins, polysaccharides and iron metabolism. Recent data from transcriptomics and proteomics studies performed for major pathogens are included. We also summarize and correlate current knowledge on how Hfq protein impacts pathogenicity of bacterial pathogens.
Collapse
Affiliation(s)
- Joana R Feliciano
- iBB - Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa. Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | - Soraia I Guerreiro
- iBB - Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa. Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sílvia A Sousa
- iBB - Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa. Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Jorge H Leitão
- iBB - Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa. Av. Rovisco Pais, 1049-001 Lisboa, Portugal.,Departamento de Bioengenharia, Instituto Superior Técnico, Universidade de Lisboa. Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
29
|
Regulated Control of the Assembly and Diversity of LPS by Noncoding sRNAs. BIOMED RESEARCH INTERNATIONAL 2015; 2015:153561. [PMID: 26618164 PMCID: PMC4651636 DOI: 10.1155/2015/153561] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/07/2015] [Accepted: 10/13/2015] [Indexed: 01/31/2023]
Abstract
The outer membrane (OM) of Gram-negative bacteria is asymmetric due to the presence of lipopolysaccharide (LPS) facing the outer leaflet of the OM and phospholipids facing the periplasmic side. LPS is essential for bacterial viability, since it provides a permeability barrier and is a major virulence determinant in pathogenic bacteria. In Escherichia coli, several steps of LPS biosynthesis and assembly are regulated by the RpoE sigma factor and stress responsive two-component systems as well as dedicated small RNAs. LPS composition is highly heterogeneous and dynamically altered upon stress and other challenges in the environment because of the transcriptional activation of RpoE regulon members and posttranslational control by RpoE-regulated Hfq-dependent RybB and MicA sRNAs. The PhoP/Q two-component system further regulates Kdo2-lipid A modification via MgrR sRNA. Some of these structural alterations are critical for antibiotic resistance, OM integrity, virulence, survival in host, and adaptation to specific environmental niches. The heterogeneity arises following the incorporation of nonstoichiometric modifications in the lipid A part and alterations in the composition of inner and outer core of LPS. The biosynthesis of LPS and phospholipids is tightly coupled. This requires the availability of metabolic precursors, whose accumulation is controlled by sRNAs like SlrA, GlmZ, and GlmY.
Collapse
|
30
|
Nakayasu ES, Sydor MA, Brown RN, Sontag RL, Sobreira TJP, Slysz GW, Humphrys DR, Skarina T, Onoprienko O, Di Leo R, Deatherage Kaiser BL, Li J, Ansong C, Cambronne ED, Smith RD, Savchenko A, Adkins JN. Identification of Salmonella Typhimurium Deubiquitinase SseL Substrates by Immunoaffinity Enrichment and Quantitative Proteomic Analysis. J Proteome Res 2015; 14:4029-38. [PMID: 26147956 DOI: 10.1021/acs.jproteome.5b00574] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ubiquitination is a key protein post-translational modification that regulates many important cellular pathways and whose levels are regulated by equilibrium between the activities of ubiquitin ligases and deubiquitinases. Here, we present a method to identify specific deubiquitinase substrates based on treatment of cell lysates with recombinant enzymes, immunoaffinity purification, and global quantitative proteomic analysis. As a model system to identify substrates, we used a virulence-related deubiquitinase, SseL, secreted by Salmonella enterica serovar Typhimurium into host cells. Using this approach, two SseL substrates were identified in the RAW 264.7 murine macrophage-like cell line, S100A6 and heterogeneous nuclear ribonuclear protein K, in addition to the previously reported K63-linked ubiquitin chains. These substrates were further validated by a combination of enzymatic and binding assays. This method can be used for the systematic identification of substrates of deubiquitinases from other organisms and applied to study their functions in physiology and disease.
Collapse
Affiliation(s)
- Ernesto S Nakayasu
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Michael A Sydor
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Roslyn N Brown
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Ryan L Sontag
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Tiago J P Sobreira
- National Center for Research in Energy and Materials, National Laboratory for Biosciences (LNBio) , Campinas, Sao Paulo 13083-970, Brazil
| | - Gordon W Slysz
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Daniel R Humphrys
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, Banting and Best Department of Medical Research, Midwest Centre for Structural Genomics, University of Toronto , Toronto, Ontario M5G 1L6, Canada
| | - Olena Onoprienko
- Department of Chemical Engineering and Applied Chemistry, Banting and Best Department of Medical Research, Midwest Centre for Structural Genomics, University of Toronto , Toronto, Ontario M5G 1L6, Canada
| | - Rosa Di Leo
- Department of Chemical Engineering and Applied Chemistry, Banting and Best Department of Medical Research, Midwest Centre for Structural Genomics, University of Toronto , Toronto, Ontario M5G 1L6, Canada
| | - Brooke L Deatherage Kaiser
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Jie Li
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University , Portland, Oregon 97239, United States
| | - Charles Ansong
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Eric D Cambronne
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University , Portland, Oregon 97239, United States
| | - Richard D Smith
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, Banting and Best Department of Medical Research, Midwest Centre for Structural Genomics, University of Toronto , Toronto, Ontario M5G 1L6, Canada
| | - Joshua N Adkins
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| |
Collapse
|
31
|
Proteomic Analyses of Intracellular Salmonella enterica Serovar Typhimurium Reveal Extensive Bacterial Adaptations to Infected Host Epithelial Cells. Infect Immun 2015; 83:2897-906. [PMID: 25939512 DOI: 10.1128/iai.02882-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/27/2015] [Indexed: 12/22/2022] Open
Abstract
Salmonella species can gain access into nonphagocytic cells, where the bacterium proliferates in a unique membrane-bounded compartment. In order to reveal bacterial adaptations to their intracellular niche, here we conducted the first comprehensive proteomic survey of Salmonella isolated from infected epithelial cells. Among ∼ 3,300 identified bacterial proteins, we found that about 100 proteins were significantly altered at the onset of Salmonella intracellular replication. In addition to substantially increased iron-uptake capacities, bacterial high-affinity manganese and zinc transporters were also upregulated, suggesting an overall limitation of metal ions in host epithelial cells. We also found that Salmonella induced multiple phosphate utilization pathways. Furthermore, our data suggested upregulation of the two-component PhoPQ system as well as of many downstream virulence factors under its regulation. Our survey also revealed that intracellular Salmonella has increased needs for certain amino acids and biotin. In contrast, Salmonella downregulated glycerol and maltose utilization as well as chemotaxis pathways.
Collapse
|
32
|
Oliva G, Sahr T, Buchrieser C. Small RNAs, 5′ UTR elements and RNA-binding proteins in intracellular bacteria: impact on metabolism and virulence. FEMS Microbiol Rev 2015; 39:331-349. [DOI: 10.1093/femsre/fuv022] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
33
|
Papenfort K, Vanderpool CK. Target activation by regulatory RNAs in bacteria. FEMS Microbiol Rev 2015; 39:362-78. [PMID: 25934124 DOI: 10.1093/femsre/fuv016] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2015] [Indexed: 12/15/2022] Open
Abstract
Bacterial small regulatory RNAs (sRNAs) are commonly known to repress gene expression by base pairing to target mRNAs. In many cases, sRNAs base pair with and sequester mRNA ribosome-binding sites, resulting in translational repression and accelerated transcript decay. In contrast, a growing number of examples of translational activation and mRNA stabilization by sRNAs have now been documented. A given sRNA often employs a conserved region to interact with and regulate both repressed and activated targets. However, the mechanisms underlying activation differ substantially from repression. Base pairing resulting in target activation can involve sRNA interactions with the 5(') untranslated region (UTR), the coding sequence or the 3(') UTR of the target mRNAs. Frequently, the activities of protein factors such as cellular ribonucleases and the RNA chaperone Hfq are required for activation. Bacterial sRNAs, including those that function as activators, frequently control stress response pathways or virulence-associated functions required for immediate responses to changing environments. This review aims to summarize recent advances in knowledge regarding target mRNA activation by bacterial sRNAs, highlighting the molecular mechanisms and biological relevance of regulation.
Collapse
Affiliation(s)
- Kai Papenfort
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA Department of Biology I, Ludwig-Maximilians-University Munich, 82152 Martinsried, Germany
| | - Carin K Vanderpool
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
34
|
Ellis MJ, Trussler RS, Haniford DB. Hfq binds directly to the ribosome-binding site of IS10 transposase mRNA to inhibit translation. Mol Microbiol 2015; 96:633-50. [PMID: 25649688 PMCID: PMC5006887 DOI: 10.1111/mmi.12961] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2015] [Indexed: 12/31/2022]
Abstract
Hfq is a critical component of post‐transcriptional regulatory networks in most bacteria. It usually functions as a chaperone for base‐pairing small RNAs, although non‐canonical regulatory roles are continually emerging. We have previously shown that Hfq represses IS10/Tn10 transposase expression through both antisense RNA‐dependent and independent mechanisms. In the current work, we set out to define the regulatory role of Hfq in the absence of the IS10 antisense RNA. We show here that an interaction between the distal surface of Hfq and the ribosome‐binding site of transposase mRNA (RNA‐IN) is required for repressing translation initiation. Additionally, this interaction was critical for the in vivo association of Hfq and RNA‐IN. Finally, we present evidence that the small RNA ChiX activates transposase expression by titrating Hfq away from RNA‐IN. The current results are considered in the broader context of Hfq biology and implications for Hfq titration by ChiX are discussed.
Collapse
Affiliation(s)
- Michael J Ellis
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | | |
Collapse
|
35
|
Abstract
ABSTRACT
The study of the bacterial transposons Tn
10
and Tn
5
has provided a wealth of information regarding steps in nonreplicative DNA transposition, transpososome dynamics and structure, as well as mechanisms employed to regulate transposition. The focus of ongoing research on these transposons is mainly on host regulation and the use of the Tn
10
antisense system as a platform to develop riboregulators for applications in synthetic biology. Over the past decade two new regulators of both Tn
10
and Tn
5
transposition have been identified, namely H-NS and Hfq proteins. These are both global regulators of gene expression in enteric bacteria with functions linked to stress-response pathways and virulence and potentially could link the Tn
10
and Tn
5
systems (and thus the transfer of antibiotic resistance genes) to environmental cues. Work summarized here is consistent with the H-NS protein working directly on transposition complexes to upregulate both Tn
10
and Tn
5
transposition. In contrast, evidence is discussed that is consistent with Hfq working at the level of transposase expression to downregulate both systems. With regard to Tn
10
and synthetic biology, some recent work that incorporates the Tn
10
antisense RNA into both transcriptional and translational riboswitches is summarized.
Collapse
|
36
|
Li J, Nakayasu ES, Overall CC, Johnson RC, Kidwai AS, McDermott JE, Ansong C, Heffron F, Cambronne ED, Adkins JN. Global analysis of Salmonella alternative sigma factor E on protein translation. J Proteome Res 2015; 14:1716-26. [PMID: 25686268 DOI: 10.1021/pr5010423] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The alternative sigma factor E (σ(E)) is critical for response to extracytoplasmic stress in Salmonella. Extensive studies have been conducted on σ(E)-regulated gene expression, particularly at the transcriptional level. Increasing evidence suggests however that σ(E) may indirectly participate in post-transcriptional regulation. In this study, we conducted sample-matched global proteomic and transcriptomic analyses to determine the level of regulation mediated by σ(E) in Salmonella. Samples were analyzed from wild-type and isogenic rpoE mutant Salmonella cultivated in three different conditions: nutrient-rich and conditions that mimic early and late intracellular infection. We found that 30% of the observed proteome was regulated by σ(E) combining all three conditions. In different growth conditions, σ(E) affected the expression of a broad spectrum of Salmonella proteins required for miscellaneous functions. Those involved in transport and binding, protein synthesis, and stress response were particularly highlighted. By comparing transcriptomic and proteomic data, we identified genes post-transcriptionally regulated by σ(E) and found that post-transcriptional regulation was responsible for a majority of changes observed in the σ(E)-regulated proteome. Further, comparison of transcriptomic and proteomic data from hfq mutant of Salmonella demonstrated that σ(E)-mediated post-transcriptional regulation was partially dependent on the RNA-binding protein Hfq.
Collapse
|
37
|
Mass spectrometry-based proteomic approaches to study pathogenic bacteria-host interactions. Protein Cell 2015; 6:265-74. [PMID: 25722051 PMCID: PMC4383758 DOI: 10.1007/s13238-015-0136-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 01/21/2015] [Indexed: 02/08/2023] Open
Abstract
Elucidation of molecular mechanisms underlying host-pathogen interactions is important for control and treatment of infectious diseases worldwide. Within the last decade, mass spectrometry (MS)-based proteomics has become a powerful and effective approach to better understand complex and dynamic host-pathogen interactions at the protein level. Herein we will review the recent progress in proteomic analyses towards bacterial infection of their mammalian host with a particular focus on enteric pathogens. Large-scale studies of dynamic proteomic alterations during infection will be discussed from the perspective of both pathogenic bacteria and host cells.
Collapse
|
38
|
Xu G, Zhao Y, Du L, Qian G, Liu F. Hfq regulates antibacterial antibiotic biosynthesis and extracellular lytic-enzyme production in Lysobacter enzymogenes OH11. Microb Biotechnol 2015; 8:499-509. [PMID: 25683974 PMCID: PMC4408182 DOI: 10.1111/1751-7915.12246] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/31/2014] [Accepted: 11/02/2014] [Indexed: 12/14/2022] Open
Abstract
Lysobacter enzymogenes is an important biocontrol agent with the ability to produce a variety of lytic enzymes and novel antibiotics. Little is known about their regulatory mechanisms. Understanding these will be helpful for improving biocontrol of crop diseases and potential medical application. In the present study, we generated an hfq (encoding a putative ribonucleic acid chaperone) deletion mutant, and then utilized a new genomic marker-free method to construct an hfq-complemented strain. We showed for the first time that Hfq played a pleiotropic role in regulating the antibacterial antibiotic biosynthesis and extracellular lytic enzyme activity in L. enzymogenes. Mutation of hfq significantly increased the yield of WAP-8294A2 (an antibacterial antibiotic) as well as the transcription of its key biosynthetic gene, waps1. However, inactivation of hfq almost abolished the extracellular chitinase activity and remarkably decreased the activity of both extracellular protease and cellulase in L. enzymogenes. We further showed that the regulation of hfq in extracellular chitinase production was in part through the impairment of the secretion of chitinase A. Collectively, our results reveal the regulatory roles of hfq in antibiotic metabolite and extracellular lytic enzymes in the underexplored genus of Lysobacter.
Collapse
Affiliation(s)
- Gaoge Xu
- College of Plant Protection, Nanjing Agricultural University, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, 210095, China
| | | | | | | | | |
Collapse
|
39
|
Li J, Overall CC, Nakayasu ES, Kidwai AS, Jones MB, Johnson RC, Nguyen NT, McDermott JE, Ansong C, Heffron F, Cambronne ED, Adkins JN. Analysis of the Salmonella regulatory network suggests involvement of SsrB and H-NS in σ(E)-regulated SPI-2 gene expression. Front Microbiol 2015; 6:27. [PMID: 25713562 PMCID: PMC4322710 DOI: 10.3389/fmicb.2015.00027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/08/2015] [Indexed: 02/04/2023] Open
Abstract
The extracytoplasmic functioning sigma factor σE is known to play an essential role for Salmonella enterica serovar Typhimurium to survive and proliferate in macrophages and mice. However, its regulatory network is not well-characterized, especially during infection. Here we used microarray to identify genes regulated by σE in Salmonella grown in three conditions: a nutrient-rich condition and two others that mimic early and late intracellular infection. We found that in each condition σE regulated different sets of genes, and notably, several global regulators. When comparing nutrient-rich and infection-like conditions, large changes were observed in the expression of genes involved in Salmonella pathogenesis island (SPI)-1 type-three secretion system (TTSS), SPI-2 TTSS, protein synthesis, and stress responses. In total, the expression of 58% of Salmonella genes was affected by σE in at least one of the three conditions. An important finding is that σE up-regulates SPI-2 genes, which are essential for Salmonella intracellular survival, by up-regulating SPI-2 activator ssrB expression at the early stage of infection and down-regulating SPI-2 repressor hns expression at a later stage. Moreover, σE is capable of countering the silencing of H-NS, releasing the expression of SPI-2 genes. This connection between σE and SPI-2 genes, combined with the global regulatory effect of σE, may account for the lethality of rpoE-deficient Salmonella in murine infection.
Collapse
Affiliation(s)
- Jie Li
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University Portland, OR, USA
| | - Christopher C Overall
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Afshan S Kidwai
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University Portland, OR, USA
| | - Marcus B Jones
- Department of Infectious Diseases, J. Craig Venter Institute Rockville, MD, USA
| | - Rudd C Johnson
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University Portland, OR, USA
| | - Nhu T Nguyen
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University Portland, OR, USA
| | - Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Fred Heffron
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University Portland, OR, USA
| | - Eric D Cambronne
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University Portland, OR, USA
| | - Joshua N Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| |
Collapse
|
40
|
Heroven AK, Dersch P. Coregulation of host-adapted metabolism and virulence by pathogenic yersiniae. Front Cell Infect Microbiol 2014; 4:146. [PMID: 25368845 PMCID: PMC4202721 DOI: 10.3389/fcimb.2014.00146] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/30/2014] [Indexed: 01/07/2023] Open
Abstract
Deciphering the principles how pathogenic bacteria adapt their metabolism to a specific host microenvironment is critical for understanding bacterial pathogenesis. The enteric pathogenic Yersinia species Yersinia pseudotuberculosis and Yersinia enterocolitica and the causative agent of plague, Yersinia pestis, are able to survive in a large variety of environmental reservoirs (e.g., soil, plants, insects) as well as warm-blooded animals (e.g., rodents, pigs, humans) with a particular preference for lymphatic tissues. In order to manage rapidly changing environmental conditions and interbacterial competition, Yersinia senses the nutritional composition during the course of an infection by special molecular devices, integrates this information and adapts its metabolism accordingly. In addition, nutrient availability has an impact on expression of virulence genes in response to C-sources, demonstrating a tight link between the pathogenicity of yersiniae and utilization of nutrients. Recent studies revealed that global regulatory factors such as the cAMP receptor protein (Crp) and the carbon storage regulator (Csr) system are part of a large network of transcriptional and posttranscriptional control strategies adjusting metabolic changes and virulence in response to temperature, ion and nutrient availability. Gained knowledge about the specific metabolic requirements and the correlation between metabolic and virulence gene expression that enable efficient host colonization led to the identification of new potential antimicrobial targets.
Collapse
Affiliation(s)
- Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Institut für Mikrobiology, Technische Universität Braunschweig Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Institut für Mikrobiology, Technische Universität Braunschweig Braunschweig, Germany
| |
Collapse
|
41
|
Blackinton JG, Keene JD. Post-transcriptional RNA regulons affecting cell cycle and proliferation. Semin Cell Dev Biol 2014; 34:44-54. [PMID: 24882724 PMCID: PMC4163074 DOI: 10.1016/j.semcdb.2014.05.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/21/2014] [Indexed: 01/19/2023]
Abstract
The cellular growth cycle is initiated and maintained by punctual, yet agile, regulatory events involving modifications of cell cycle proteins as well as coordinated gene expression to support cyclic checkpoint decisions. Recent evidence indicates that post-transcriptional partitioning of messenger RNA subsets by RNA-binding proteins help physically localize, temporally coordinate, and efficiently translate cell cycle proteins. This dynamic organization of mRNAs encoding cell cycle components contributes to the overall economy of the cell cycle consistent with the post-transcriptional RNA regulon model of gene expression. This review examines several recent studies demonstrating the coordination of mRNA subsets encoding cell cycle proteins during nuclear export and subsequent coupling to protein synthesis, and discusses evidence for mRNA coordination of p53 targets and the DNA damage response pathway. We consider how these observations may connect to upstream and downstream post-transcriptional coordination and coupling of splicing, export, localization, and translation. Published examples from yeast, nematode, insect, and mammalian systems are discussed, and we consider genetic evidence supporting the conclusion that dysregulation of RNA regulons may promote pathogenic states of growth such as carcinogenesis.
Collapse
Affiliation(s)
- Jeff G Blackinton
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Box 3020, Durham, NC 27710, USA
| | - Jack D Keene
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Box 3020, Durham, NC 27710, USA.
| |
Collapse
|
42
|
Lenco J, Tambor V, Link M, Klimentova J, Dresler J, Peterek M, Charbit A, Stulik J. Changes in proteome of the Δhfq strain derived from Francisella tularensis LVS correspond with its attenuated phenotype. Proteomics 2014; 14:2400-9. [PMID: 25156581 DOI: 10.1002/pmic.201400198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/30/2014] [Accepted: 08/19/2014] [Indexed: 12/23/2022]
Abstract
The posttranscriptional regulatory protein Hfq was shown to be an important determinant of the stress resistance and full virulence in the dangerous human pathogen Francisella tularensis. Transcriptomics brought rather limited clues to the precise contribution of Hfq in virulence. To reveal the molecular basis of the attenuation caused by hfq inactivation, we employed iTRAQ in the present study and compared proteomes of the parent and isogenic Δhfq strains. We show that Hfq modulates the level of 76 proteins. Most of them show decreased abundance in the ∆hfq mutant, thereby indicating that Hfq widely acts rather as a positive regulator of Francisella gene expression. Several key Francisella virulence factors including those encoded within the Francisella pathogenicity island were found among the downregulated proteins, which is in a good agreement with the attenuated phenotype of the Δhfq strain. To further validate the iTRAQ exploratory findings, we subsequently performed targeted LC-SRM analysis of selected proteins. This accurate quantification method corroborated the trends found in the iTRAQ data.
Collapse
Affiliation(s)
- Juraj Lenco
- Faculty of Military Health Sciences, Institute of Molecular Pathology, University of Defense, Hradec Kralove, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
43
|
A method to determine lysine acetylation stoichiometries. INTERNATIONAL JOURNAL OF PROTEOMICS 2014; 2014:730725. [PMID: 25143833 PMCID: PMC4131070 DOI: 10.1155/2014/730725] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/11/2014] [Indexed: 01/08/2023]
Abstract
Lysine acetylation is a common protein posttranslational modification that regulates a variety of biological processes. A major bottleneck to fully understanding the functional aspects of lysine acetylation is the difficulty in measuring the proportion of lysine residues that are acetylated. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of protein lysine acetylation. Using this technique, we determined the modification occupancy for ~750 acetylated peptides from mammalian cell lysates. Furthermore, the acetylation on N-terminal tail of histone H4 was cross-validated by treating cells with sodium butyrate, a potent deacetylase inhibitor, and comparing changes in stoichiometry levels measured by our method with immunoblotting measurements. Of note we observe that acetylation stoichiometry is high in nuclear proteins, but very low in mitochondrial and cytosolic proteins. In summary, our method opens new opportunities to study in detail the relationship of lysine acetylation levels of proteins with their biological functions.
Collapse
|
44
|
Identification and characterization of outer membrane vesicle-associated proteins in Salmonella enterica serovar Typhimurium. Infect Immun 2014; 82:4001-10. [PMID: 24935973 DOI: 10.1128/iai.01416-13] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is a primary cause of enteric diseases and has acquired a variety of virulence factors during its evolution into a pathogen. Secreted virulence factors interact with commensal flora and host cells and enable Salmonella to survive and thrive in hostile environments. Outer membrane vesicles (OMVs) released from many Gram-negative bacteria function as a mechanism for the secretion of complex mixtures, including virulence factors. We performed a proteomic analysis of OMVs that were isolated under standard laboratory and acidic minimal medium conditions and identified 14 OMV-associated proteins that were observed in the OMV fraction isolated only under the acidic minimal medium conditions, which reproduced the nutrient-deficient intracellular milieu. The inferred roles of these 14 proteins were diverse, including transporter, enzyme, and transcriptional regulator. The absence of these proteins influenced Salmonella survival inside murine macrophages. Eleven of these proteins were predicted to possess secretion signal sequences at their N termini, and three (HupA, GlnH, and PhoN) of the proteins were found to be translocated into the cytoplasm of host cells. The comparative proteomic profiling of OMVs performed in this study revealed different protein compositions in the OMVs isolated under the two different conditions, which indicates that the OMV cargo depends on the growth conditions and provides a deeper insight into how Salmonella utilizes OMVs to adapt to environmental changes.
Collapse
|
45
|
Hu YH, Li YX, Sun L. Edwardsiella tarda Hfq: impact on host infection and global protein expression. Vet Res 2014; 45:23. [PMID: 24568370 PMCID: PMC4015145 DOI: 10.1186/1297-9716-45-23] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/13/2014] [Indexed: 12/29/2022] Open
Abstract
Hfq is an RNA-binding protein that plays an important role in many cellular processes. In this study, we examined the biological effect of the Hfq of Edwardsiella tarda, a severe fish pathogen with a broad host range that includes humans. To facilitate the study, a markerless hfq in-frame deletion wild type, TXhfq, was constructed. Compared to the wild type TX01, TXhfq exhibited (i) retarded planktonic and biofilm growth, (ii) decreased resistance against oxidative stress, (iii) attenuated overall virulence and tissue dissemination and colonization capacity, (iv) impaired ability to replicate in host macrophages and to block host immune response. Introduction of a trans-expressed hfq gene into TXhfq restored the lost virulence of TXhfq. To identify potential Hfq targets, comparative global proteomic analysis was conducted, which revealed that 20 proteins belonging to different functional categories were differentially expressed in TXhfq and TX01. Quantitative real time RT-PCR analysis showed that the mRNA levels of two thirds of the genes of the identified proteins were consistent with the proteomic results. Since TXhfq is dramatically attenuated in virulence, we further examined its potential as a naturally delivered vaccine administered via the immersion route in a flounder model. The results showed that TXhfq induced effective protection against lethal E. tarda challenge. Taken together, our study indicated that Hfq is required for the normal operation of E. tarda in multiple aspects, and that Hfq probably exerts a regulatory effect on a wide range of target genes at both transcription and post-transcription levels.
Collapse
Affiliation(s)
| | | | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
46
|
Kakoschke T, Kakoschke S, Magistro G, Schubert S, Borath M, Heesemann J, Rossier O. The RNA chaperone Hfq impacts growth, metabolism and production of virulence factors in Yersinia enterocolitica. PLoS One 2014; 9:e86113. [PMID: 24454955 PMCID: PMC3893282 DOI: 10.1371/journal.pone.0086113] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/05/2013] [Indexed: 11/18/2022] Open
Abstract
To adapt to changes in environmental conditions, bacteria regulate their gene expression at the transcriptional but also at the post-transcriptional level, e.g. by small RNAs (sRNAs) which modulate mRNA stability and translation. The conserved RNA chaperone Hfq mediates the interaction of many sRNAs with their target mRNAs, thereby playing a global role in fine-tuning protein production. In this study, we investigated the significance of Hfq for the enteropathogen Yersina enterocolitica serotype O:8. Hfq facilitated optimal growth in complex and minimal media. Our comparative protein analysis of parental and hfq-negative strains suggested that Hfq promotes lipid metabolism and transport, cell redox homeostasis, mRNA translation and ATP synthesis, and negatively affects carbon and nitrogen metabolism, transport of siderophore and peptides and tRNA synthesis. Accordingly, biochemical tests indicated that Hfq represses ornithine decarboxylase activity, indole production and utilization of glucose, mannitol, inositol and 1,2-propanediol. Moreover, Hfq repressed production of the siderophore yersiniabactin and its outer membrane receptor FyuA. In contrast, hfq mutants exhibited reduced urease production. Finally, strains lacking hfq were more susceptible to acidic pH and oxidative stress. Unlike previous reports in other Gram-negative bacteria, Hfq was dispensable for type III secretion encoded by the virulence plasmid. Using a chromosomally encoded FLAG-tagged Hfq, we observed increased production of Hfq-FLAG in late exponential and stationary phases. Overall, Hfq has a profound effect on metabolism, resistance to stress and modulates the production of two virulence factors in Y. enterocolitica, namely urease and yersiniabactin.
Collapse
Affiliation(s)
- Tamara Kakoschke
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Munich, Germany
| | - Sara Kakoschke
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Munich, Germany
| | - Giuseppe Magistro
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Munich, Germany
| | - Sören Schubert
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Munich, Germany
| | - Marc Borath
- Protein Analysis Unit, Adolf-Butenandt Institute, Ludwig Maximilians University, Munich, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Munich, Germany
| | - Ombeline Rossier
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Munich, Germany
- * E-mail:
| |
Collapse
|
47
|
RNA-seq reveals the RNA binding proteins, Hfq and RsmA, play various roles in virulence, antibiotic production and genomic flux in Serratia sp. ATCC 39006. BMC Genomics 2013; 14:822. [PMID: 24267595 PMCID: PMC4046660 DOI: 10.1186/1471-2164-14-822] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/14/2013] [Indexed: 11/29/2022] Open
Abstract
Background Serratia sp. ATCC 39006 (S39006) is a Gram-negative enterobacterium that is virulent in plant and animal models. It produces a red-pigmented trypyrrole secondary metabolite, prodigiosin (Pig), and a carbapenem antibiotic (Car), as well as the exoenzymes, pectate lyase and cellulase. Secondary metabolite production in this strain is controlled by a complex regulatory network involving quorum sensing (QS). Hfq and RsmA (two RNA binding proteins and major post-transcriptional regulators of gene expression) play opposing roles in the regulation of several key phenotypes within S39006. Prodigiosin and carbapenem production was abolished, and virulence attenuated, in an S39006 ∆hfq mutant, while the converse was observed in an S39006 rsmA transposon insertion mutant. Results In order to define the complete regulon of Hfq and RsmA, deep sequencing of cDNA libraries (RNA-seq) was used to analyse the whole transcriptome of S39006 ∆hfq and rsmA::Tn mutants. Moreover, we investigated global changes in the proteome using an LC-MS/MS approach. Analysis of differential gene expression showed that Hfq and RsmA directly or indirectly regulate (at the level of RNA) 4% and 19% of the genome, respectively, with some correlation between RNA and protein expression. Pathways affected include those involved in antibiotic regulation, virulence, flagella synthesis, and surfactant production. Although Hfq and RsmA are reported to activate flagellum production in E. coli and an adherent-invasive E. coli hfq mutant was shown to have no flagella by electron microscopy, we found that flagellar production was increased in the S39006 rsmA and hfq mutants. Additionally, deletion of rsmA resulted in greater genomic flux with increased activity of two mobile genetic elements. This was confirmed by qPCR and analysis of rsmA culture supernatant revealed the presence of prophage DNA and phage particles. Finally, expression of a hypothetical protein containing DUF364 increased prodigiosin production and was controlled by a putative 5′ cis-acting regulatory RNA element. Conclusion Using a combination of transcriptomics and proteomics this study provides a systems-level understanding of Hfq and RsmA regulation and identifies similarities and differences in the regulons of two major regulators. Additionally our study indicates that RsmA regulates both core and variable genome regions and contributes to genome stability. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-14-822) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
The transfer-messenger RNA-small protein B system plays a role in avian pathogenic Escherichia coli pathogenicity. J Bacteriol 2013; 195:5064-71. [PMID: 24013628 DOI: 10.1128/jb.00628-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is capable of colonizing outside of the intestinal tract and evolving into a systemic infection. Avian pathogenic E. coli (APEC) is a member of the ExPEC group and causes avian colibacillosis. Transfer-mRNA-small protein B (tmRNA-SmpB)-mediated trans-translation is a bacterial translational control system that directs the modification and degradation of proteins, the biosynthesis of which has stalled or has been interrupted, facilitating the rescue of ribosomes stalled at the 3' ends of defective mRNAs that lack a stop codon. We found that disruption of one, or both, of the smpB or ssrA genes significantly decreased the virulence of the APEC strain E058, as assessed by chicken infection assays. Furthermore, the mutants were obviously attenuated in colonization and persistence assays. The results of quantitative real-time reverse transcription-PCR analysis indicated that the transcription levels of the transcriptional regulation gene rfaH and the virulence genes kpsM, chuA, and iss were significantly decreased compared to those of the wild-type strain. Macrophage infection assays showed that the mutant strains reduced the replication and/or survival ability in the macrophage HD11 cell line compared to that of the parent strain, E058. However, no significant differences were observed in ingestion by macrophages and in chicken serum resistance between the mutant and the wild-type strains. These data indicate that the tmRNA-SmpB system is important in the pathogenesis of APEC O2 strain E058.
Collapse
|
49
|
Caldelari I, Chao Y, Romby P, Vogel J. RNA-mediated regulation in pathogenic bacteria. Cold Spring Harb Perspect Med 2013; 3:a010298. [PMID: 24003243 DOI: 10.1101/cshperspect.a010298] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pathogenic bacteria possess intricate regulatory networks that temporally control the production of virulence factors, and enable the bacteria to survive and proliferate after host infection. Regulatory RNAs are now recognized as important components of these networks, and their study may not only identify new approaches to combat infectious diseases but also reveal new general control mechanisms involved in bacterial gene expression. In this review, we illustrate the diversity of regulatory RNAs in bacterial pathogens, their mechanism of action, and how they can be integrated into the regulatory circuits that govern virulence-factor production.
Collapse
Affiliation(s)
- Isabelle Caldelari
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, F-67084 Strasbourg, France
| | | | | | | |
Collapse
|
50
|
Cui M, Wang T, Xu J, Ke Y, Du X, Yuan X, Wang Z, Gong C, Zhuang Y, Lei S, Su X, Wang X, Huang L, Zhong Z, Peng G, Yuan J, Chen Z, Wang Y. Impact of Hfq on global gene expression and intracellular survival in Brucella melitensis. PLoS One 2013; 8:e71933. [PMID: 23977181 PMCID: PMC3747064 DOI: 10.1371/journal.pone.0071933] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 07/04/2013] [Indexed: 01/30/2023] Open
Abstract
Brucella melitensis is a facultative intracellular bacterium that replicates within macrophages. The ability of brucellae to survive and multiply in the hostile environment of host macrophages is essential to its virulence. The RNA-binding protein Hfq is a global regulator that is involved in stress resistance and pathogenicity. Here we demonstrate that Hfq is essential for stress adaptation and intracellular survival in B. melitensis. A B. melitensis hfq deletion mutant exhibits reduced survival under environmental stresses and is attenuated in cultured macrophages and mice. Microarray-based transcriptome analyses revealed that 359 genes involved in numerous cellular processes were dysregulated in the hfq mutant. From these same samples the proteins were also prepared for proteomic analysis to directly identify Hfq-regulated proteins. Fifty-five proteins with significantly affected expression were identified in the hfq mutant. Our results demonstrate that Hfq regulates many genes and/or proteins involved in metabolism, virulence, and stress responses, including those potentially involved in the adaptation of Brucella to the oxidative, acid, heat stress, and antibacterial peptides encountered within the host. The dysregulation of such genes and/or proteins could contribute to the attenuated hfq mutant phenotype. These findings highlight the involvement of Hfq as a key regulator of Brucella gene expression and facilitate our understanding of the role of Hfq in environmental stress adaptation and intracellular survival of B. melitensis.
Collapse
Affiliation(s)
- Mingquan Cui
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
- College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Tongkun Wang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jie Xu
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Yuehua Ke
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Xinying Du
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Xitong Yuan
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Zhoujia Wang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Chunli Gong
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Yubin Zhuang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
- College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Shuangshuang Lei
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
- College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Xiao Su
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Xuesong Wang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Liuyu Huang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Jing Yuan
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Zeliang Chen
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Yufei Wang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|