1
|
Ferreira LL, Gonçalves ABR, Adiala IJB, Loiola S, Dias A, Azulay RS, Silva DA, Gomes MB. A pilot study of mitochondrial genomic ancestry in admixed Brazilian patients with type 1 diabetes. Diabetol Metab Syndr 2024; 16:130. [PMID: 38879575 PMCID: PMC11179274 DOI: 10.1186/s13098-024-01342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/01/2024] [Indexed: 06/19/2024] Open
Abstract
Interactions between multiple genes and environmental factors could be related to the pathogenesis of type 1 diabetes (T1D). The Brazilian population results from different historical miscegenation events, resulting in a highly diverse genetic pool. This study aimed to analyze the mtDNA of patients with T1D and to investigate whether there is a relationship between maternal ancestry, self-reported color and the presence of T1D. The mtDNA control region of 204 patients with T1D residing in three geographic regions of Brazil was sequenced following the International Society for Forensic Genetics (ISFG) recommendations. We obtained a frequency of Native American matrilineal origin (43.6%), African origin (38.2%), and European origin (18.1%). For self-declared color, 42.6% of the patients with diabetes reported that they were White, 50.9% were Brown, and 5.4% were Black. Finally, when we compared the self-declaration data with maternal ancestral origin, we found that for the self-declared White group, there was a greater percentage of haplogroups of Native American origin (50.6%); for the self-declared Black group, there was a greater percentage of African haplogroups (90.9%); and for the Brown group, there was a similar percentage of Native American and African haplogroups (42.3% and 45.2%, respectively). The Brazilian population with diabetic has a maternal heritage of more than 80% Native American and African origin, corroborating the country's colonization history.
Collapse
Affiliation(s)
- Lívia Leite Ferreira
- DNA Diagnostic Laboratory, IBRAG, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Silvia Loiola
- DNA Diagnostic Laboratory, IBRAG, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandra Dias
- Forensic Science and Technology Laboratory, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rossana Sousa Azulay
- Service of Endocrinology, University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | - Dayse Aparecida Silva
- DNA Diagnostic Laboratory, IBRAG, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marília Brito Gomes
- Department of Internal Medicine, Diabetes Unit, Rio de Janeiro State University (UERJ), Boulevard 28 Setembro 77, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
de-Dios T, Carrión P, Olalde I, Llovera Nadal L, Lizano E, Pàmies D, Marques-Bonet T, Balloux F, van Dorp L, Lalueza-Fox C. Salmonella enterica from a soldier from the 1652 siege of Barcelona (Spain) supports historical transatlantic epidemic contacts. iScience 2021; 24:103021. [PMID: 34527890 PMCID: PMC8430385 DOI: 10.1016/j.isci.2021.103021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/14/2021] [Accepted: 08/19/2021] [Indexed: 12/04/2022] Open
Abstract
Ancient pathogen genomics is an emerging field allowing reconstruction of past epidemics. The demise of post-contact American populations may, at least in part, have been caused by paratyphoid fever brought by Europeans. We retrieved genome-wide data from two Spanish soldiers who were besieging the city of Barcelona in 1652, during the Reapers' War. Their ancestry derived from the Basque region and Sardinia, respectively, (at that time, this island belonged to the Spanish kingdom). Despite the proposed plague epidemic, we could not find solid evidence for the presence of the causative plague agent in these individuals. However, we retrieved from one individual a substantial fraction of the Salmonella enterica serovar Paratyphi C lineage linked to paratyphoid fever in colonial period Mexico. Our results support a growing body of evidence that Paratyphi C enteric fever was more prevalent in Europe and the Americas in the past than it is today.
Collapse
Affiliation(s)
- Toni de-Dios
- Institute of Evolutionary Biology (CSIC-UPF), 08003 Barcelona, Spain
| | - Pablo Carrión
- Institute of Evolutionary Biology (CSIC-UPF), 08003 Barcelona, Spain
| | - Iñigo Olalde
- Institute of Evolutionary Biology (CSIC-UPF), 08003 Barcelona, Spain
| | | | - Esther Lizano
- Institute of Evolutionary Biology (CSIC-UPF), 08003 Barcelona, Spain
| | - Dídac Pàmies
- Antequem. Arqueologia-Patrimoni Cultural, 08301 Mataró, Spain
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (CSIC-UPF), 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - François Balloux
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
3
|
First Bronze Age Human Mitogenomes from Calabria (Grotta Della Monaca, Southern Italy). Genes (Basel) 2021; 12:genes12050636. [PMID: 33922908 PMCID: PMC8146030 DOI: 10.3390/genes12050636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/02/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022] Open
Abstract
The Italian peninsula was host to a strong history of migration processes that shaped its genomic variability since prehistoric times. During the Metal Age, Sicily and Southern Italy were the protagonists of intense trade networks and settlements along the Mediterranean. Nonetheless, ancient DNA studies in Southern Italy are, at present, still limited to prehistoric and Roman Apulia. Here, we present the first mitogenomes from a Middle Bronze Age cave burial in Calabria to address this knowledge gap. We adopted a hybridization capture approach, which enabled the recovery of one complete and one partial mitochondrial genome. Phylogenetic analysis assigned these two individuals to the H1e and H5 subhaplogroups, respectively. This preliminary phylogenetic analysis supports affinities with coeval Sicilian populations, along with Linearbandkeramik and Bell Beaker cultures maternal lineages from Central Europe and Iberia. Our work represents a starting point which contributes to the comprehension of migrations and population dynamics in Southern Italy, and highlights this knowledge gap yet to be filled by genomic studies.
Collapse
|
4
|
García-Fernández C, Font-Porterias N, Kučinskas V, Sukarova-Stefanovska E, Pamjav H, Makukh H, Dobon B, Bertranpetit J, Netea MG, Calafell F, Comas D. Sex-biased patterns shaped the genetic history of Roma. Sci Rep 2020; 10:14464. [PMID: 32879340 PMCID: PMC7468237 DOI: 10.1038/s41598-020-71066-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/07/2020] [Indexed: 12/30/2022] Open
Abstract
The Roma population is a European ethnic minority characterized by recent and multiple dispersals and founder effects. After their origin in South Asia around 1,500 years ago, they migrated West. In Europe, they diverged into ethnolinguistically distinct migrant groups that spread across the continent. Previous genetic studies based on genome-wide data and uniparental markers detected Roma founder events and West-Eurasian gene flow. However, to the best of our knowledge, it has not been assessed whether these demographic processes have equally affected both sexes in the population. The present study uses the largest and most comprehensive dataset of complete mitochondrial and Y chromosome Roma sequences to unravel the sex-biased patterns that have shaped their genetic history. The results show that the Roma maternal genetic pool carries a higher lineage diversity from South Asia, as opposed to a single paternal South Asian lineage. Nonetheless, the European gene flow events mainly occurred through the maternal lineages; however, a signal of this gene flow is also traceable in the paternal lineages. We also detect a higher female migration rate among European Roma groups. Altogether, these results suggest that sociocultural factors influenced the emergence of sex-biased genetic patterns at global and local scales in the Roma population through time.
Collapse
Affiliation(s)
- C García-Fernández
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - N Font-Porterias
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - V Kučinskas
- Department of Human and Medical Genetics, Faculty of Medicine, Biomedical Science Institute, Vilnius University, Vilnius, Lithuania
| | - E Sukarova-Stefanovska
- Research Center for Genetic Engineering and Biotechnology "Georgi D. Efremov", Academy of Sciences and Arts of the Republic of North Macedonia - MASA, Skopje, Republic of North Macedonia
| | - H Pamjav
- Institute of Forensic Genetics, Hungarian Institute for Forensic Sciences, Budapest, Hungary
| | - H Makukh
- Institute of Hereditary Pathology, Ukrainian Academy of Medical Sciences, Lviv, Ukraine
| | - B Dobon
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - J Bertranpetit
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - M G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA, Nijmegen, the Netherlands
- Department of Human Genetics, University of Medicine and Pharmacy Craiova, Craiova, Romania
- Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115, Bonn, Germany
| | - F Calafell
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | - D Comas
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
5
|
García Ó, Alonso S, Huber N, Bodner M, Parson W. Forensically relevant phylogeographic evaluation of mitogenome variation in the Basque Country. Forensic Sci Int Genet 2020; 46:102260. [PMID: 32062111 DOI: 10.1016/j.fsigen.2020.102260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/26/2019] [Accepted: 02/01/2020] [Indexed: 11/19/2022]
Abstract
The Basque Country has been the focus of population (genetic) and evolutionary studies for decades, as it represents an interesting evolutionary feature: it is the only European country where a non-Indo-European language is still spoken today and, for which there are no known living or extinct relatives. Early studies that were based on anatomical and serological methods, along with subsequent molecular genetic investigations, contain controversial interpretations of their data. Additionally, the analysis of mitochondrial DNA, which is maternally inherited and thus suitable for the examination of the maternal phylogeny of the population, was the focus of some studies. Early mtDNA studies were however restricted to the information provided by the control region or its hypervariable segments only. These are known to harbour little phylogenetic information, particularly for haplogroup H that is dominant in Westeurasian populations including the Basques. Later studies analysed complete mitogenome sequences. Their information content is however limited, either because the number of samples was low, or because these studies only considered particular haplogroups. In this study we present the full mitogenome sequences of 178 autochthonous Basque individuals that were carefully selected based on their familial descent and discuss the observed phylogenetic signals in the light of earlier published findings. We confirm the presence of Basque-specific mtDNA lineages and extend the knowledge of these lineages by providing data on their distribution in comparison to other Basque and non-Basque populations. This dataset improves our understanding of the Basque mtDNA phylogeny and serves as a high-quality dataset that is provided via EMPOP for forensic genetic purposes.
Collapse
Affiliation(s)
- Óscar García
- Forensic Science Unit, Forensic Genetics Section, Basque Country Police, Erandio (Bizkaia), Spain.
| | - Santos Alonso
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Spain.
| | - Nicole Huber
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria.
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria.
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
6
|
Barbarić L, Lipovac K, Sukser V, Rožić S, Korolija M, Zimmermann B, Parson W. Maternal perspective of Croatian genetic diversity. Forensic Sci Int Genet 2020; 44:102190. [DOI: 10.1016/j.fsigen.2019.102190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 10/14/2019] [Indexed: 01/29/2023]
|
7
|
Sobenin IA, Zhelankin AV, Khasanova ZB, Sinyov VV, Medvedeva LV, Sagaidak MO, Makeev VJ, Kolmychkova KI, Smirnova AS, Sukhorukov VN, Postnov AY, Grechko AV, Orekhov AN. Heteroplasmic Variants of Mitochondrial DNA in Atherosclerotic Lesions of Human Aortic Intima. Biomolecules 2019; 9:biom9090455. [PMID: 31500189 PMCID: PMC6770808 DOI: 10.3390/biom9090455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction and oxidative stress are likely involved in atherogenesis. Since the mitochondrial genome variation can alter functional activity of cells, it is necessary to assess the presence in atherosclerotic lesions of mitochondrial DNA (mtDNA) heteroplasmic mutations known to be associated with different pathological processes and ageing. In this study, mtDNA heteroplasmy and copy number (mtCN) were evaluated in the autopsy-derived samples of aortic intima differing by the type of atherosclerotic lesions. To detect mtDNA heteroplasmic variants, next generation sequencing was used, and mtCN measurement was performed by qPCR. It was shown that mtDNA heteroplasmic mutations are characteristic for particular areas of intimal tissue; in 83 intimal samples 55 heteroplasmic variants were found; mean minor allele frequencies level accounted for 0.09, with 12% mean heteroplasmy level. The mtCN variance measured in adjacent areas of intima was high, but atherosclerotic lesions and unaffected intima did not differ significantly in mtCN values. Basing on the ratio of minor and major nucleotide mtDNA variants, we can conclude that there exists the increase in the number of heteroplasmic mtDNA variants, which corresponds to the extent of atherosclerotic morphologic phenotype.
Collapse
Affiliation(s)
- Igor A Sobenin
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia.
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia.
- Research Institute of Threpsology and Healthy Longevity, Plekhanov Russian University of Economics, 115093 Moscow, Russia.
| | - Andrey V Zhelankin
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia.
| | - Zukhra B Khasanova
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia.
| | - Vasily V Sinyov
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia.
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia.
| | - Lyudmila V Medvedeva
- Federal Research Center of Transplantology and Artificial Organs, 123182 Moscow, Russia.
| | - Maria O Sagaidak
- Vavilov Institute of General Genetics, 117971 Moscow, Russia.
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Moscow Region, Russia.
| | - Vsevolod J Makeev
- Vavilov Institute of General Genetics, 117971 Moscow, Russia.
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Moscow Region, Russia.
- Engelhardt Institute of Molecular Biology, 119991 Moscow, Russia.
| | - Kira I Kolmychkova
- Institute for Atherosclerosis Research, Skolkovo Innovation Center, 143026 Moscow, Russia.
| | - Anna S Smirnova
- Institute for Atherosclerosis Research, Skolkovo Innovation Center, 143026 Moscow, Russia.
| | - Vasily N Sukhorukov
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia.
- Research Institute of Human Morphology, 117418 Moscow, Russia.
| | - Anton Y Postnov
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia.
- Research Institute of Human Morphology, 117418 Moscow, Russia.
| | - Andrey V Grechko
- Federal Scientific Clinical Center for Resuscitation and Rehabilitation, 141534 Moscow Region, Russia.
| | - Alexander N Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovation Center, 143026 Moscow, Russia.
- Research Institute of Human Morphology, 117418 Moscow, Russia.
| |
Collapse
|
8
|
Ben Halim N, Hsouna S, Lasram K, Chargui M, Khemira L, Saidane R, Abdelhak S, Kefi R. Mitochondrial DNA structure of an isolated Tunisian Berber population and its relationship with Mediterranean populations. Ann Hum Biol 2018; 45:86-97. [DOI: 10.1080/03014460.2017.1414875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nizar Ben Halim
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur in Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Sana Hsouna
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur in Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Khaled Lasram
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur in Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Mariem Chargui
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur in Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Laaroussi Khemira
- Association de Sauvegarde de la Nature et de Protection de l’Environnement à Douiret (ASNAPED), Tunis, Tunisia
| | - Rachid Saidane
- Association de Sauvegarde de la Nature et de Protection de l’Environnement à Douiret (ASNAPED), Tunis, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur in Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Rym Kefi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur in Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
9
|
Elkamel S, Boussetta S, Khodjet-El-Khil H, Benammar Elgaaied A, Cherni L. Ancient and recent Middle Eastern maternal genetic contribution to North Africa as viewed by mtDNA diversity in Tunisian Arab populations. Am J Hum Biol 2018; 30:e23100. [PMID: 29359455 DOI: 10.1002/ajhb.23100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/06/2017] [Accepted: 12/29/2017] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES Through previous mitochondrial DNA studies, the Middle Eastern maternal genetic contribution to Tunisian populations appears limited. In fact, most of the studied communities were cosmopolitan, or of Berber or Andalusian origin. To provide genetic evidence for the actual contribution of Middle Eastern mtDNA lineages to Tunisia, we focused on two Arab speaking populations from Kairouan and Wesletia known to belong to an Arab genealogical lineage. MATERIALS AND METHODS A total of 114 samples were sequenced for the mtDNA HVS-I and HVS-II regions. Using these data, we evaluated the distribution of Middle Eastern haplogroups in the study populations, constructed interpolation maps, and established phylogenetic networks allowing estimation of the coalescence time for three specific Middle Eastern subclades (R0a, J1b, and T1). RESULTS Both studied populations displayed North African genetic structure and Middle Eastern lineages with a frequency of 12% and 28.12% in Kairouan and Wesletia, respectively. TMRCA estimates for haplogroups T1a, R0a, and J1b in Tunisian Arabian samples were around 15 000 YBP, 9000 to 5000 YBP, and 960 to 600 YBP, respectively. CONCLUSIONS The Middle Eastern maternal genetic contribution to Tunisian populations, as to other North African populations, occurred mostly in deep prehistory. They were brought in different migration waves during the Upper Paleolithic, probably with the expansion of Iberomaurusian culture, and during Epipaleolithic and Early Neolithic periods, which are concomitant with the Capsian civilization. Middle Eastern lineages also came to Tunisia during the recent Islamic expansion of the 7th CE and the subsequent massive Bedouin migration during the 11th CE.
Collapse
Affiliation(s)
- Sarra Elkamel
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Sami Boussetta
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Houssein Khodjet-El-Khil
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Amel Benammar Elgaaied
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Lotfi Cherni
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia.,High Institute of Biotechnology, University of Monastir, Monastir, 5000, Tunisia
| |
Collapse
|
10
|
García O, Ajuriagerra J, Alday A, Alonso S, Pérez J, Soto A, Uriarte I, Yurrebaso I. Frequencies of the precision ID ancestry panel markers in Basques using the Ion Torrent PGM TM platform. Forensic Sci Int Genet 2017; 31:e1-e4. [DOI: 10.1016/j.fsigen.2017.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/03/2017] [Accepted: 09/08/2017] [Indexed: 01/13/2023]
|
11
|
Hernández CL, Dugoujon JM, Novelletto A, Rodríguez JN, Cuesta P, Calderón R. The distribution of mitochondrial DNA haplogroup H in southern Iberia indicates ancient human genetic exchanges along the western edge of the Mediterranean. BMC Genet 2017; 18:46. [PMID: 28525980 PMCID: PMC5437654 DOI: 10.1186/s12863-017-0514-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/11/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The structure of haplogroup H reveals significant differences between the western and eastern edges of the Mediterranean, as well as between the northern and southern regions. Human populations along the westernmost Mediterranean coasts, which were settled by individuals from two continents separated by a relatively narrow body of water, show the highest frequencies of mitochondrial haplogroup H. These characteristics permit the analysis of ancient migrations between both shores, which may have occurred via primitive sea crafts and early seafaring. We collected a sample of 750 autochthonous people from the southern Iberian Peninsula (Andalusians from Huelva and Granada provinces). We performed a high-resolution analysis of haplogroup H by control region sequencing and coding SNP screening of the 337 individuals harboring this maternal marker. Our results were compared with those of a wide panel of populations, including individuals from Iberia, the Maghreb, and other regions around the Mediterranean, collected from the literature. RESULTS Both Andalusian subpopulations showed a typical western European profile for the internal composition of clade H, but eastern Andalusians from Granada also revealed interesting traces from the eastern Mediterranean. The basal nodes of the most frequent H sub-haplogroups, H1 and H3, harbored many individuals of Iberian and Maghrebian origins. Derived haplotypes were found in both regions; haplotypes were shared far more frequently between Andalusia and Morocco than between Andalusia and the rest of the Maghreb. These and previous results indicate intense, ancient and sustained contact among populations on both sides of the Mediterranean. CONCLUSIONS Our genetic data on mtDNA diversity, combined with corresponding archaeological similarities, provide support for arguments favoring prehistoric bonds with a genetic legacy traceable in extant populations. Furthermore, the results presented here indicate that the Strait of Gibraltar and the adjacent Alboran Sea, which have often been assumed to be an insurmountable geographic barrier in prehistory, served as a frequently traveled route between continents.
Collapse
Affiliation(s)
- Candela L. Hernández
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Jean M. Dugoujon
- CNRS UMR 5288 Laboratoire d’Anthropologie Moléculaire et d’Imagerie de Synthèse (AMIS), Université Paul Sabatier Toulouse III, Toulouse, France
| | | | | | - Pedro Cuesta
- Centro de Proceso de Datos, Universidad Complutense, Madrid, Spain
| | - Rosario Calderón
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, Madrid, Spain
| |
Collapse
|
12
|
Palencia-Madrid L, Cardoso S, Keyser C, López-Quintana JC, Guenaga-Lizasu A, de Pancorbo MM. Ancient mitochondrial lineages support the prehistoric maternal root of Basques in Northern Iberian Peninsula. Eur J Hum Genet 2017; 25:631-636. [PMID: 28272540 DOI: 10.1038/ejhg.2017.24] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/23/2017] [Accepted: 02/01/2017] [Indexed: 11/09/2022] Open
Abstract
The Basque population inhabits the Franco-Cantabrian region in southwest Europe where Palaeolithic human groups took refuge during the Last Glacial Maximum. Basques have been an isolated population, largely considered as one of the most ancient European populations and it is possible that they maintained some pre-Neolithic genetic characteristics. This work shows the results of mitochondrial DNA analysis of seven ancient human remains from the Cave of Santimamiñe in the Basque Country dated from Mesolithic to the Late Roman period. In addition, we compared these data with those obtained from a modern sample of Basque population, 158 individuals that nowadays inhabits next to the cave. The results support the hypothesis that Iberians might have been less affected by the Neolithic mitochondrial lineages carried from the Near East than populations of Central Europe and revealed the unexpected presence of prehistoric maternal lineages such as U5a2a and U3a in the Basque region. Comparison between ancient and current population samples upholds the hypothesis of continuity of the maternal lineages in the area of the Franco-Cantabrian region.
Collapse
Affiliation(s)
- Leire Palencia-Madrid
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Sergio Cardoso
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Christine Keyser
- Laboratoire AMIS, CNRS, UMR 5288, Institut de Médecine Légale, Université de Strasbourg, Strasbourg, France
| | | | | | - Marian M de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| |
Collapse
|
13
|
Kefi R, Hechmi M, Naouali C, Jmel H, Hsouna S, Bouzaid E, Abdelhak S, Beraud-Colomb E, Stevanovitch A. On the origin of Iberomaurusians: new data based on ancient mitochondrial DNA and phylogenetic analysis of Afalou and Taforalt populations. Mitochondrial DNA A DNA Mapp Seq Anal 2016; 29:147-157. [PMID: 28034339 DOI: 10.1080/24701394.2016.1258406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Western North African population was characterized by the presence of Iberomaurusian civilization at the Epiplaeolithic period (around 20,000 years before present (YBP) to 10,000 YBP). The origin of this population is still not clear: they may come from Europe, Near East, sub-Saharan Africa or they could have evolved in situ in North Africa. With the aim to contribute to a better knowledge of the settlement of North Africa we analysed the mitochondrial DNA extracted from Iberomaurusian skeletons exhumed from the archaeological site of Afalou (AFA) (15,000-11,000 YBP) in Algeria and from the archaeological site of Taforalt (TAF) (23,000-10,800 YBP) in Morocco. Then, we carried out a phylogenetic analysis relating these Iberomaurusians to 61 current Mediterranean populations. The genetic structure of TAF and AFA specimens contains only North African and Eurasian maternal lineages. These finding demonstrate the presence of these haplotypes in North Africa from at least 20,000 YBP. The very low contribution of a Sub-Saharan African haplotype in the Iberomaurusian samples is confirmed. We also highlighted the existence of genetic flows between Southern and Northern coast of the Mediterranean.
Collapse
Affiliation(s)
- Rym Kefi
- a Laboratory of Biomedical Genomics and Oncogenetics , Institut Pasteur de Tunis , Tunis , Tunisia.,b University Tunis El Manar , Tunis , Tunisia
| | - Meriem Hechmi
- a Laboratory of Biomedical Genomics and Oncogenetics , Institut Pasteur de Tunis , Tunis , Tunisia
| | - Chokri Naouali
- a Laboratory of Biomedical Genomics and Oncogenetics , Institut Pasteur de Tunis , Tunis , Tunisia.,b University Tunis El Manar , Tunis , Tunisia
| | - Haifa Jmel
- a Laboratory of Biomedical Genomics and Oncogenetics , Institut Pasteur de Tunis , Tunis , Tunisia
| | - Sana Hsouna
- a Laboratory of Biomedical Genomics and Oncogenetics , Institut Pasteur de Tunis , Tunis , Tunisia.,b University Tunis El Manar , Tunis , Tunisia
| | - Eric Bouzaid
- c Institut National de Police Scientifique Laboratoire de Marseille , Marseille , France
| | - Sonia Abdelhak
- a Laboratory of Biomedical Genomics and Oncogenetics , Institut Pasteur de Tunis , Tunis , Tunisia.,b University Tunis El Manar , Tunis , Tunisia
| | | | - Alain Stevanovitch
- c Institut National de Police Scientifique Laboratoire de Marseille , Marseille , France
| |
Collapse
|
14
|
Phylogenetic and population-based approaches to mitogenome variation do not support association with male infertility. J Hum Genet 2016; 62:361-371. [PMID: 27904151 DOI: 10.1038/jhg.2016.130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 11/08/2022]
Abstract
Infertility has a complex multifactorial etiology and a high prevalence worldwide. Several studies have pointed to variation in the mitochondrial DNA (mtDNA) molecule as a factor responsible for the different disease phenotypes related to infertility. We analyzed 53 mitogenomes of infertile males from Galicia (northwest Spain), and these haplotypes were meta-analyzed phylogenetically with 43 previously reported from Portugal. Taking advantage of the large amount of information available, we additionally carried out association tests between patient mtDNA single-nucleotide polymorphisms (mtSNPs) and haplogroups against Iberian matched controls retrieved from The 1000 Genomes Project and the literature. Phylogenetic and association analyses did not reveal evidence of association between mtSNPs/haplogroups and infertility. Ratios and patterns in patients of nonsynonymous/synonymous changes, and variation at homoplasmic, heteroplasmic and private variants, fall within expected values for healthy individuals. Moreover, the haplogroup background of patients was variable and fits well with patterns typically observed in healthy western Europeans. We did not find evidence of association of mtSNPs or haplogroups pointing to a role for mtDNA in male infertility. A thorough review of the literature on mtDNA variation and infertility revealed contradictory findings and methodological and theoretical problems that overall undermine previous positive findings.
Collapse
|
15
|
Turchi C, Stanciu F, Paselli G, Buscemi L, Parson W, Tagliabracci A. The mitochondrial DNA makeup of Romanians: A forensic mtDNA control region database and phylogenetic characterization. Forensic Sci Int Genet 2016; 24:136-142. [DOI: 10.1016/j.fsigen.2016.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/26/2016] [Accepted: 06/18/2016] [Indexed: 01/13/2023]
|
16
|
Barral-Arca R, Pischedda S, Gómez-Carballa A, Pastoriza A, Mosquera-Miguel A, López-Soto M, Martinón-Torres F, Álvarez-Iglesias V, Salas A. Meta-Analysis of Mitochondrial DNA Variation in the Iberian Peninsula. PLoS One 2016; 11:e0159735. [PMID: 27441366 PMCID: PMC4956223 DOI: 10.1371/journal.pone.0159735] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022] Open
Abstract
The Iberian Peninsula has been the focus of attention of numerous studies dealing with mitochondrial DNA (mtDNA) variation, most of them targeting the control region segment. In the present study we sequenced the control region of 3,024 Spanish individuals from areas where available data were still limited. We also compiled mtDNA haplotypes from the literature involving 4,588 sequences and 28 population groups or small regions. We meta-analyzed all these data in order to shed further light on patterns of geographic variation, taking advantage of the large sample size and geographic coverage, in contrast with the atomized sampling strategy of previous work. The results indicate that the main mtDNA haplogroups show primarily clinal geographic patterns across the Iberian geography, roughly along a North-South axis. Haplogroup HV0 (where haplogroup U is nested) is more prevalent in the Franco Cantabrian region, in good agreement with previous findings that identified this area as a climate refuge during the Last Glacial Maximum (LGM), prior to a subsequent demographic re-expansion towards Central Europe and the Mediterranean. Typical sub-Saharan and North African lineages are slightly more prevalent in South Iberia, although at low frequencies; this pattern has been shaped mainly by the transatlantic slave trade and the Arab invasion of the Iberian Peninsula. The results also indicate that summary statistics that aim to measure molecular variation, or AMOVA, have limited sensitivity to detect population substructure, in contrast to patterns revealed by phylogeographic analysis. Overall, the results suggest that mtDNA variation in Iberia is substantially stratified. These patterns might be relevant in biomedical studies given that stratification is a common cause of false positives in case-control mtDNA association studies, and should be also considered when weighting the DNA evidence in forensic casework, which is strongly dependent on haplotype frequencies.
Collapse
Affiliation(s)
- Ruth Barral-Arca
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
- GenPop Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Galicia, Spain
| | - Sara Pischedda
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
- GenPop Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Galicia, Spain
| | - Alberto Gómez-Carballa
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
- GenPop Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Galicia, Spain
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario and Universidade de Santiago de Compostela (USC), Galicia, Spain
| | - Ana Pastoriza
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - Ana Mosquera-Miguel
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - Manuel López-Soto
- Servicio de Biología, Instituto Nacional de Toxicología y Ciencias Forenses, Departamento de Sevilla, Sevilla, Spain
| | - Federico Martinón-Torres
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario and Universidade de Santiago de Compostela (USC), Galicia, Spain
- Pediatric Emergency and Critical Care Division, Department of Pediatrics, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Galicia, Spain
| | - Vanesa Álvarez-Iglesias
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
- GenPop Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Galicia, Spain
- * E-mail:
| |
Collapse
|
17
|
Núñez C, Baeta M, Cardoso S, Palencia-Madrid L, García-Romero N, Llanos A, M. de Pancorbo M. Mitochondrial DNA Reveals the Trace of the Ancient Settlers of a Violently Devastated Late Bronze and Iron Ages Village. PLoS One 2016; 11:e0155342. [PMID: 27176817 PMCID: PMC4866787 DOI: 10.1371/journal.pone.0155342] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 04/27/2016] [Indexed: 11/19/2022] Open
Abstract
La Hoya (Alava, Basque Country) was one of the most important villages of the Late Bronze and Iron Ages of the north of the Iberian Peninsula, until it was violently devastated around the 4th century and abandoned in the 3rd century B.C. Archaeological evidences suggest that descendants from La Hoya placed their new settlement in a nearby hill, which gave rise to the current village of Laguardia. In this study, we have traced the genetic imprints of the extinct inhabitants of La Hoya through the analysis of maternal lineages. In particular, we have analyzed the mitochondrial DNA (mtDNA) control region of 41 human remains recovered from the archaeological site for comparison with a sample of 51 individuals from the geographically close present-day population of Laguardia, as well as 56 individuals of the general population of the province of Alava, where the archaeological site and Laguardia village are located. MtDNA haplotypes were successfully obtained in 25 out of 41 ancient samples, and 14 different haplotypes were identified. The major mtDNA subhaplogroups observed in La Hoya were H1, H3, J1 and U5, which show a distinctive frequency pattern in the autochthonous populations of the north of the Iberian Peninsula. Approximate Bayesian Computation analysis was performed to test the most likely model for the local demographic history. The results did not sustain a genealogical continuity between Laguardia and La Hoya at the haplotype level, although factors such as sampling effects, recent admixture events, and genetic bottlenecks need to be considered. Likewise, the highly similar subhaplogroup composition detected between La Hoya and Laguardia and Alava populations do not allow us to reject a maternal genetic continuity in the human groups of the area since at least the Iron Age to present times. Broader analyses, based on a larger collection of samples and genetic markers, would be required to study fine-scale population events in these human groups.
Collapse
Affiliation(s)
- Carolina Núñez
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Miriam Baeta
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Sergio Cardoso
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Leire Palencia-Madrid
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Noemí García-Romero
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco (UPV/EHU), Vitoria-Gasteiz, Spain
| | | | - Marian M. de Pancorbo
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco (UPV/EHU), Vitoria-Gasteiz, Spain
- * E-mail:
| |
Collapse
|
18
|
Bhatti S, Aslamkhan M, Abbas S, Attimonelli M, Aydin HH, de Souza EMS. Genetic analysis of mitochondrial DNA control region variations in four tribes of Khyber Pakhtunkhwa, Pakistan. Mitochondrial DNA A DNA Mapp Seq Anal 2016; 28:687-697. [PMID: 27159729 DOI: 10.3109/24701394.2016.1174222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Due to its geo strategic position at the crossroad of Asia, Pakistan has gained crucial importance of playing its pivotal role in subsequent human migratory events, both prehistoric and historic. This human movement became possible through an ancient overland network of trails called "The Silk Route" linking Asia Minor, Middle East China, Central Asia and Southeast Asia. This study was conducted to analyze complete mitochondrial control region samples of 100 individuals of four major Pashtun tribes namely, Bangash, Khattak, Mahsuds and Orakzai in the province of Khyber Pakhtunkhwa, Pakistan. All Pashtun tribes revealed high genetic diversity which is comparable to the other Central Asian, Southeast Asian and European populations. The configuration of genetic variation and heterogeneity further unveiled through Multidimensional Scaling, Principal Component Analysis and phylogenetic analysis. The results revealed that Pashtun are the composite mosaic of West Eurasian ancestry of numerous geographic origin. They received substantial gene flow during different invasive movements and have a high element of the Western provenance. The most common haplogroups reported in this study are: South Asian haplogroups M (28%) and R (8%); whereas, West Asians haplogroups are present, albeit in high frequencies (67%) and widespread over all; HV (15%), U (17%), H (9%), J (8%), K (8%), W (4%), N (3%) and T (3%). Moreover, we linked the unexplored genetic connection between Ashkenazi Jews and Pashtun. The presence of specific haplotypes J1b (4%) and K1a1b1a (5%) pointed to a genetic connection of Jewish conglomeration in Khattak tribe. This was a result of an ancient genetic influx in the early Neolithic period that led to the formation of a diverse genetic substratum in present day Pashtun.
Collapse
Affiliation(s)
- Shahzad Bhatti
- a Department of Human Genetics and Molecular Biology , University of Health Sciences Lahore , Pakistan.,b Institute of Molecular Biology and Biotechnology, University of Lahore , Lahore , Pakistan
| | - M Aslamkhan
- a Department of Human Genetics and Molecular Biology , University of Health Sciences Lahore , Pakistan
| | - Sana Abbas
- b Institute of Molecular Biology and Biotechnology, University of Lahore , Lahore , Pakistan
| | - Marcella Attimonelli
- c Department of Biosciences, Biotechnologies and Biopharmaceutics , University of Bari , Italy
| | - Hikmet Hakan Aydin
- d Department of Medical Biochemistry , Ege University School of Medicine , Bornova Izmir , Turkey
| | | |
Collapse
|
19
|
Messina F, Scano G, Contini I, Martínez-Labarga C, De Stefano GF, Rickards O. Linking between genetic structure and geographical distance: Study of the maternal gene pool in the Ethiopian population. Ann Hum Biol 2016; 44:53-69. [PMID: 26883569 DOI: 10.3109/03014460.2016.1155646] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background The correlation between genetics and geographical distance has already been examined through the study of the dispersion of human populations, especially in terms of uniparental genetic markers. Aim The present work characterises, at the level of the mitochondrial DNA (mtDNA), two new samples of Amhara and Oromo populations from Ethiopia to evaluate the possible pattern of distribution for mtDNA variation and to test the hypothesis of the Isolation-by-Distance (IBD) model among African, European and Middle-Eastern populations. Subjects and methods This study analysed 173 individuals belonging to two ethnic groups of Ethiopia, Amhara and Oromo, by assaying HVS-I and HVS-II of mtDNA D-loop and informative coding region SNPs of mtDNA. Results The analysis suggests a relationship between genetic and geographic distances, affirming that the mtDNA pool of Africa, Europe and the Middle East might be coherent with the IBD model. Moreover, the mtDNA gene pools of the Sub-Saharan African and Mediterranean populations were very different. Conclusion In this study the pattern of mtDNA distribution, beginning with the Ethiopian plateau, was tested in the IBD model. It could be affirmed that, on a continent scale, the mtDNA pool of Africa, Europe and the Middle East might fall under the IBD model.
Collapse
Affiliation(s)
- Francesco Messina
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Giuseppina Scano
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Irene Contini
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Cristina Martínez-Labarga
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Gian Franco De Stefano
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Olga Rickards
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| |
Collapse
|
20
|
Chaitanya L, Ralf A, van Oven M, Kupiec T, Chang J, Lagacé R, Kayser M. Simultaneous Whole Mitochondrial Genome Sequencing with Short Overlapping Amplicons Suitable for Degraded DNA Using the Ion Torrent Personal Genome Machine. Hum Mutat 2015; 36:1236-47. [PMID: 26387877 PMCID: PMC5057296 DOI: 10.1002/humu.22905] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/01/2015] [Indexed: 11/13/2022]
Abstract
Whole mitochondrial (mt) genome analysis enables a considerable increase in analysis throughput, and improves the discriminatory power to the maximum possible phylogenetic resolution. Most established protocols on the different massively parallel sequencing (MPS) platforms, however, invariably involve the PCR amplification of large fragments, typically several kilobases in size, which may fail due to mtDNA fragmentation in the available degraded materials. We introduce a MPS tiling approach for simultaneous whole human mt genome sequencing using 161 short overlapping amplicons (average 200 bp) with the Ion Torrent Personal Genome Machine. We illustrate the performance of this new method by sequencing 20 DNA samples belonging to different worldwide mtDNA haplogroups. Additional quality control, particularly regarding the potential detection of nuclear insertions of mtDNA (NUMTs), was performed by comparative MPS analysis using the conventional long-range amplification method. Preliminary sensitivity testing revealed that detailed haplogroup inference was feasible with 100 pg genomic input DNA. Complete mt genome coverage was achieved from DNA samples experimentally degraded down to genomic fragment sizes of about 220 bp, and up to 90% coverage from naturally degraded samples. Overall, we introduce a new approach for whole mt genome MPS analysis from degraded and nondegraded materials relevant to resolve and infer maternal genetic ancestry at complete resolution in anthropological, evolutionary, medical, and forensic applications.
Collapse
Affiliation(s)
- Lakshmi Chaitanya
- Department of Genetic IdentificationErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Arwin Ralf
- Department of Genetic IdentificationErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Mannis van Oven
- Department of Genetic IdentificationErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Tomasz Kupiec
- Institute of Forensic ResearchSection of Forensic GeneticsKrakówPoland
| | - Joseph Chang
- Thermo Fisher ScientificSouth San FranciscoCalifornia, USA
| | - Robert Lagacé
- Thermo Fisher ScientificSouth San FranciscoCalifornia, USA
| | - Manfred Kayser
- Department of Genetic IdentificationErasmus MC University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
21
|
Gómez-Carballa A, Moreno F, Álvarez-Iglesias V, Martinón-Torres F, García-Magariños M, Pantoja-Astudillo JA, Aguirre-Morales E, Bustos P, Salas A. Revealing latitudinal patterns of mitochondrial DNA diversity in Chileans. Forensic Sci Int Genet 2015; 20:81-88. [PMID: 26517175 DOI: 10.1016/j.fsigen.2015.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/03/2015] [Accepted: 10/05/2015] [Indexed: 12/22/2022]
Abstract
The territory of Chile is particularly long and narrow, which combined with its mountainous terrain, makes it a unique scenario for human genetic studies. We obtained 995 control region mitochondrial DNA (mtDNA) sequences from Chileans representing populations living at different latitudes of the country from the North to the southernmost region. The majority of the mtDNA profiles are of Native American origin (∼88%). The remaining haplotypes are mostly of recent European origin (∼11%), and only a minor proportion is of recent African ancestry (∼1%). While these proportions are relatively uniform across the country, more structured patterns of diversity emerge when examining the variation from a phylogeographic perspective. For instance, haplogroup A2 reaches ∼9% in the North, and its frequency decreases gradually to ∼1% in the southernmost populations, while the frequency of haplogroup D (sub-haplogroups D1 and D4) follows the opposite pattern: 36% in the southernmost region, gradually decreasing to 21% in the North. Furthermore, there are remarkable signatures of founder effects in specific sub-clades of Native American (e.g. haplogroups D1j and D4p) and European (e.g. haplogroups T2b3 and K1a4a1a+195) ancestry. We conclude that the magnitude of the latitudinal differences observed in the patterns of mtDNA variation might be relevant in forensic casework.
Collapse
Affiliation(s)
- Alberto Gómez-Carballa
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Grupo de Medicina Xenómica (GMX), Facultade de Medicina, Universidade de Santiago de Compostela, 15872 Galicia, Spain; Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigación Sanitaria de Santiago and Universidade de Santiago de Compostela (USC), Galicia, Spain
| | - Fabián Moreno
- Servicio Médico Legal, Ministerio de Justicia, Santiago, Chile
| | - Vanesa Álvarez-Iglesias
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Grupo de Medicina Xenómica (GMX), Facultade de Medicina, Universidade de Santiago de Compostela, 15872 Galicia, Spain
| | - Federico Martinón-Torres
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigación Sanitaria de Santiago and Universidade de Santiago de Compostela (USC), Galicia, Spain; Translational Pediatrics and Infectious Diseases Section, Department of Pediatrics, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Galicia, Spain
| | - Manuel García-Magariños
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Grupo de Medicina Xenómica (GMX), Facultade de Medicina, Universidade de Santiago de Compostela, 15872 Galicia, Spain
| | | | | | - Patricio Bustos
- Servicio Médico Legal, Ministerio de Justicia, Santiago, Chile
| | - Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Grupo de Medicina Xenómica (GMX), Facultade de Medicina, Universidade de Santiago de Compostela, 15872 Galicia, Spain; Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigación Sanitaria de Santiago and Universidade de Santiago de Compostela (USC), Galicia, Spain.
| |
Collapse
|
22
|
Hsouna S, Ben Halim N, Lasram K, Meiloud G, Arfa I, Kerkeni E, Romdhane L, Jamoussi H, Bahri S, Ben Ammar S, Abid A, Barakat A, Houmeida A, Abdelhak S, Kefi R. Study of the T16189C variant and mitochondrial lineages in Tunisian and overall Mediterranean region. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:1558-63. [PMID: 25208176 DOI: 10.3109/19401736.2014.953136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mitochondrial DNA (mtDNA) variant T16189C has been investigated in several metabolic diseases. In this study, we aimed to estimate the frequency of the T16189C variant in Tunisian and other Mediterranean populations and to evaluate the impact of this variant on the phylogeny of Mediterranean populations. Blood sample of 240 unrelated Tunisian subjects were recruited from several Tunisian localities. The hypervariable region 1 of the mtDNA were amplified and sequenced. Additional sequences (N = 4921) from Mediterranean populations were compiled from previous studies. The average frequency of T16189C variant in Tunisia (29%) is similar to that observed in North African and Near Eastern populations. Our findings showed positive correlation of the T16189C variant with Sub-Saharan and North African lineages, while a negative correlation was found with the Eurasian haplogroups, reaching its maximum with the Eurasian haplogroup H. The principal component analyses showed a high internal heterogeneity between Tunisian localities. At the Mediterranean scale, Tunisians are closer to North African (Algerian and Moroccan) and Near Eastern populations (Syrians and Palestinians) than to Europeans.
Collapse
Affiliation(s)
- Sana Hsouna
- a Biomedical Genomics and Oncogenetics laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia
| | - Nizar Ben Halim
- a Biomedical Genomics and Oncogenetics laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia
| | - Khaled Lasram
- a Biomedical Genomics and Oncogenetics laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia
| | - Ghlana Meiloud
- b Laboratoire de Biochimie et Biologie Moléculaire , Faculté des Sciences et Techniques , Nouakchott , Mauritania
| | - Imen Arfa
- a Biomedical Genomics and Oncogenetics laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia
| | - Emna Kerkeni
- c Genetics Laboratory, Faculté de Médecine de Monastir , Monastir , Tunisia
| | - Lilia Romdhane
- a Biomedical Genomics and Oncogenetics laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia
| | - Henda Jamoussi
- a Biomedical Genomics and Oncogenetics laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia
| | - Sonia Bahri
- e Department of Biochemistry , Institut Pasteur de Tunis , Tunis , Tunisia , and
| | - Slim Ben Ammar
- e Department of Biochemistry , Institut Pasteur de Tunis , Tunis , Tunisia , and
| | - Abdelmajid Abid
- a Biomedical Genomics and Oncogenetics laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia .,d Service de Consultation Externe et Exploration Fonctionnelle, Institut National de Nutrition , Tunis , Tunisia
| | - Abdelhamid Barakat
- f Laboratoire de Génétique Moléculaire Humaine, Département de Recherche Scientifique , Institut Pasteur du Maroc , Casablanca , Morocco
| | - Ahmed Houmeida
- b Laboratoire de Biochimie et Biologie Moléculaire , Faculté des Sciences et Techniques , Nouakchott , Mauritania
| | - Sonia Abdelhak
- a Biomedical Genomics and Oncogenetics laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia
| | - Rym Kefi
- a Biomedical Genomics and Oncogenetics laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia
| |
Collapse
|
23
|
Rothe J, Melisch C, Powers N, Geppert M, Zander J, Purps J, Spors B, Nagy M. Genetic research at a fivefold children's burial from medieval Berlin. Forensic Sci Int Genet 2015; 15:90-7. [DOI: 10.1016/j.fsigen.2014.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022]
|
24
|
Fachal L, Mosquera-Miguel A, Pastor P, Ortega-Cubero S, Lorenzo E, Oterino-Durán A, Toriello M, Quintáns B, Camiña-Tato M, Sesar A, Vega A, Sobrido MJ, Salas A. No evidence of association between common European mitochondrial DNA variants in Alzheimer, Parkinson, and migraine in the Spanish population. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:54-65. [PMID: 25349034 DOI: 10.1002/ajmg.b.32276] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/25/2014] [Indexed: 11/07/2022]
Abstract
Certain mitochondrial DNA (mtDNA) variants and haplogroups have been found to be associated with neurological disorders. Several studies have suggested that mtDNA variation could have an etiologic role in these disorders by affecting the ATP production on high-energy demanding organs, such as the brain. We have analyzed 15 mtDNA SNPs (mtSNPs) in five cohorts of cases presenting Alzheimer disease (AD), Parkinson disease (PD), and migraine, and in controls, to evaluate the role mtDNA variation in disease risk. Association tests were undertaken both for mtSNPs and mitochondrial haplogroups. No significant association was detected for any mtSNP or haplogroup in AD and PD cohorts. Two mtSNPs were associated with one migraine cohort after correcting for multiple tests, namely, T4216C and G13708A and haplogroup J (FDR q-value = 0.02; Santiago's cohort). However, this association was not confirmed in a second replication migraine series. A review of the literature reveals the existence of inconsistent findings and methodological shortcomings affecting a large proportion of mtDNA association studies on AD, PD, and migraine. A detailed inspection of the literature highlights the need for performing more rigorous methodological and statistical standards in mtDNA genetic association studies aimed to avoid false positive results of association between mtDNA variants and neurological diseases.
Collapse
Affiliation(s)
- Laura Fachal
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica, CIBERER, IDIS, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Marques SL, Goios A, Rocha AM, Prata MJ, Amorim A, Gusmão L, Alves C, Alvarez L. Portuguese mitochondrial DNA genetic diversity-An update and a phylogenetic revision. Forensic Sci Int Genet 2014; 15:27-32. [PMID: 25457629 DOI: 10.1016/j.fsigen.2014.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/22/2014] [Accepted: 10/03/2014] [Indexed: 10/24/2022]
Abstract
In recent years a large amount of mitochondrial population data for forensic purposes has been produced. Current efforts are focused at increasing the number of studied populations while generating updated genetic information of forensic quality. However, complete mitochondrial control region sequences are still scarce for most populations and even more so for complete mitochondrial genomes. In the case of Portugal, previous population genetics studies have already revealed the general portrait of HVS-I and HVS-II mitochondrial diversity, becoming now important to update and expand the mitochondrial region analysed. Accordingly, a total of 292 complete control region sequences from continental Portugal were obtained, under a stringent experimental design to ensure the quality of data through double sequencing of each target region. Furthermore, H-specific coding region SNPs were examined to detail haplogroup classification and complete mitogenomes were obtained for all sequences belonging to haplogroups U4 and U5. In general, a typical Western European haplogroup composition was found in mainland Portugal, associated to high level of mitochondrial genetic diversity. Within the country, no signs of substructure were detected. The typing of extra coding region SNPs has provided the refinement or confirmation of the previous classification obtained with EMMA tool in 96% of the cases. Finally, it was also possible to enlarge haplogroup U phylogeny with 28 new U4 and U5 mitogenomes.
Collapse
Affiliation(s)
- Sofia L Marques
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Ana Goios
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.
| | - Ana M Rocha
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Maria João Prata
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Department of Biology, Faculty of Sciences of the University of Porto, Porto, Portugal
| | - António Amorim
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Department of Biology, Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Leonor Gusmão
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Cíntia Alves
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Luis Alvarez
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| |
Collapse
|
26
|
Bodner M, Iuvaro A, Strobl C, Nagl S, Huber G, Pelotti S, Pettener D, Luiselli D, Parson W. Helena, the hidden beauty: Resolving the most common West Eurasian mtDNA control region haplotype by massively parallel sequencing an Italian population sample. Forensic Sci Int Genet 2014; 15:21-6. [PMID: 25303789 DOI: 10.1016/j.fsigen.2014.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/16/2014] [Indexed: 01/24/2023]
Abstract
The analysis of mitochondrial (mt)DNA is a powerful tool in forensic genetics when nuclear markers fail to give results or maternal relatedness is investigated. The mtDNA control region (CR) contains highly condensed variation and is therefore routinely typed. Some samples exhibit an identical haplotype in this restricted range. Thus, they convey only weak evidence in forensic queries and limited phylogenetic information. However, a CR match does not imply that also the mtDNA coding regions are identical or samples belong to the same phylogenetic lineage. This is especially the case for the most frequent West Eurasian CR haplotype 263G 315.1C 16519C, which is observed in various clades within haplogroup H and occurs at a frequency of 3-4% in many European populations. In this study, we investigated the power of massively parallel complete mtGenome sequencing in 29 Italian samples displaying the most common West Eurasian CR haplotype - and found an unexpected high diversity. Twenty-eight different haplotypes falling into 19 described sub-clades of haplogroup H were revealed in the samples with identical CR sequences. This study demonstrates the benefit of complete mtGenome sequencing for forensic applications to enforce maximum discrimination, more comprehensive heteroplasmy detection, as well as highest phylogenetic resolution.
Collapse
Affiliation(s)
- Martin Bodner
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Alessandra Iuvaro
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria; Department of Medical and Surgical Sciences, Institute of Legal Medicine, University of Bologna, Bologna, Italy
| | - Christina Strobl
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Simone Nagl
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Gabriela Huber
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Susi Pelotti
- Department of Medical and Surgical Sciences, Institute of Legal Medicine, University of Bologna, Bologna, Italy
| | - Davide Pettener
- Department of Biological, Geological and Environmental Science, Laboratory of Molecular Anthropology, University of Bologna, Bologna, Italy
| | - Donata Luiselli
- Department of Biological, Geological and Environmental Science, Laboratory of Molecular Anthropology, University of Bologna, Bologna, Italy.
| | - Walther Parson
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria; Penn State Eberly College of Science, University Park, PA, USA.
| |
Collapse
|
27
|
Cuba: exploring the history of admixture and the genetic basis of pigmentation using autosomal and uniparental markers. PLoS Genet 2014; 10:e1004488. [PMID: 25058410 PMCID: PMC4109857 DOI: 10.1371/journal.pgen.1004488] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 05/20/2014] [Indexed: 11/19/2022] Open
Abstract
We carried out an admixture analysis of a sample comprising 1,019 individuals from all the provinces of Cuba. We used a panel of 128 autosomal Ancestry Informative Markers (AIMs) to estimate the admixture proportions. We also characterized a number of haplogroup diagnostic markers in the mtDNA and Y-chromosome in order to evaluate admixture using uniparental markers. Finally, we analyzed the association of 16 single nucleotide polymorphisms (SNPs) with quantitative estimates of skin pigmentation. In the total sample, the average European, African and Native American contributions as estimated from autosomal AIMs were 72%, 20% and 8%, respectively. The Eastern provinces of Cuba showed relatively higher African and Native American contributions than the Western provinces. In particular, the highest proportion of African ancestry was observed in the provinces of Guantánamo (40%) and Santiago de Cuba (39%), and the highest proportion of Native American ancestry in Granma (15%), Holguín (12%) and Las Tunas (12%). We found evidence of substantial population stratification in the current Cuban population, emphasizing the need to control for the effects of population stratification in association studies including individuals from Cuba. The results of the analyses of uniparental markers were concordant with those observed in the autosomes. These geographic patterns in admixture proportions are fully consistent with historical and archaeological information. Additionally, we identified a sex-biased pattern in the process of gene flow, with a substantially higher European contribution from the paternal side, and higher Native American and African contributions from the maternal side. This sex-biased contribution was particularly evident for Native American ancestry. Finally, we observed that SNPs located in the genes SLC24A5 and SLC45A2 are strongly associated with melanin levels in the sample.
Collapse
|
28
|
Craniometric analysis of European Upper Palaeolithic and Mesolithic samples supports discontinuity at the Last Glacial Maximum. Nat Commun 2014; 5:4094. [PMID: 24912847 PMCID: PMC5010115 DOI: 10.1038/ncomms5094] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/12/2014] [Indexed: 11/08/2022] Open
Abstract
The Last Glacial Maximum (LGM) represents the most significant climatic event since the emergence of anatomically modern humans (AMH). In Europe, the LGM may have played a role in changing morphological features as a result of adaptive and stochastic processes. We use craniometric data to examine morphological diversity in pre- and post-LGM specimens. Craniometric variation is assessed across four periods--pre-LGM, late glacial, Early Holocene and Middle Holocene--using a large, well-dated, data set. Our results show significant differences across the four periods, using a MANOVA on size-adjusted cranial measurements. A discriminant function analysis shows separation between pre-LGM and later groups. Analyses repeated on a subsample, controlled for time and location, yield similar results. The results are largely influenced by facial measurements and are most consistent with neutral demographic processes. These findings suggest that the LGM had a major impact on AMH populations in Europe prior to the Neolithic.
Collapse
|
29
|
Sarac J, Sarić T, Auguštin DH, Jeran N, Kovačević L, Cvjetan S, Lewis AP, Metspalu E, Reidla M, Novokmet N, Vidovič M, Nevajda B, Glasnović A, Marjanović D, Missoni S, Villems R, Rudan P. Maternal genetic heritage of Southeastern Europe reveals a new Croatian isolate and a novel, local sub-branching in the x2 haplogroup. Ann Hum Genet 2014; 78:178-94. [PMID: 24621318 DOI: 10.1111/ahg.12056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/30/2013] [Indexed: 11/29/2022]
Abstract
High mtDNA variation in Southeastern Europe (SEE) is a reflection of the turbulent and complex demographic history of this area, influenced by gene flow from various parts of Eurasia and a long history of intermixing. Our results of 1035 samples (488 from Croatia, 239 from Bosnia and 130 from Herzegovina, reported earlier, and 97 Slovenians and 81 individuals from Žumberak, reported here for the first time) show that the SEE maternal genetic diversity fits within a broader European maternal genetic landscape. The study also shows that the population of Žumberak, located in the continental part of Croatia, developed some unique mtDNA haplotypes and elevated haplogroup frequencies due to distinctive demographic history and can be considered a moderate genetic isolate. We also report seven samples from the Bosnian population and one Herzegovinian sample designated as X2* individuals that could not be assigned to any of its sublineages (X2a'o) according to the existing X2 phylogeny. In an attempt to clarify the phylogeny of our X2 samples, their mitochondrial DNA has been completely sequenced. We suppose that these lineages are signs of local microdifferentiation processes that occurred in the recent demographic past in this area and could possibly be marked as SEE-specific X2 sublineages.
Collapse
Affiliation(s)
- Jelena Sarac
- Institute for Anthropological Research, 10000 Zagreb, Croatia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kefi R, Hsouna S, Ben Halim N, Lasram K, Romdhane L, Messai H, Abdelhak S. Phylogeny and genetic structure of Tunisians and their position within Mediterranean populations. ACTA ACUST UNITED AC 2014; 26:593-604. [PMID: 24491098 DOI: 10.3109/19401736.2013.879649] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Tunisia is located at the crossroads of Europe, the Middle East and Sub-Saharan Africa. This position might lead to numerous waves of migrations, contributing to the current genetic landscape of Tunisians. In this study, we analyzed 815 mitochondrial DNA (mtDNA) sequences from Tunisia in order to characterize the mitochondrial DNA genetic structure of this region, to construct the processes for its composition and to compare it to other Mediterranean populations. To that end, additional 4206 mtDNA sequences were compiled from previous studies performed in African (1237), Near Eastern (231) and European (2738) populations. Both phylogenetic and statistical analyses were performed. This study confirmed the mosaic genetic structure of the Tunisian population with the predominance of the Eurasian lineages, followed by the Sub-Saharan and North African lineages. Among Tunisians, the highest haplogroup and haplotype diversity were observed in particular in the Capital Tunis. No significant differentiation was observed between both geographical (Northern versus Southern Tunisia) and different ethnic groups in Tunisia. Our results highlight the presence of outliers and most frequent unique sequences in Tunisia (10.2%) compared to 45 Mediterranean populations. Phylogenetic analysis showed that the majority of Tunisian localities were closer to North Africans and Near Eastern populations than to Europeans. The exception was found for Berbers from Jerba which are clustered with Sardinians and Valencians.
Collapse
Affiliation(s)
- Rym Kefi
- Biomedical Genomics and Oncogenetics Laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia and
| | | | | | | | | | | | | |
Collapse
|
31
|
Hernández CL, Reales G, Dugoujon JM, Novelletto A, Rodríguez JN, Cuesta P, Calderón R. Human maternal heritage in Andalusia (Spain): its composition reveals high internal complexity and distinctive influences of mtDNA haplogroups U6 and L in the western and eastern side of region. BMC Genet 2014; 15:11. [PMID: 24460736 PMCID: PMC3905667 DOI: 10.1186/1471-2156-15-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 01/17/2014] [Indexed: 12/03/2022] Open
Abstract
Background The archeology and history of the ancient Mediterranean have shown that this sea has been a permeable obstacle to human migration. Multiple cultural exchanges around the Mediterranean have taken place with presumably population admixtures. A gravitational territory of those migrations has been the Iberian Peninsula. Here we present a comprehensive analysis of the maternal gene pool, by means of control region sequencing and PCR-RFLP typing, of autochthonous Andalusians originating from the coastal provinces of Huelva and Granada, located respectively in the west and the east of the region. Results The mtDNA haplogroup composition of these two southern Spanish populations has revealed a wide spectrum of haplogroups from different geographical origins. The registered frequencies of Eurasian markers, together with the high incidence and diversification of African maternal lineages (15% of the total mitochondrial variability) among Huelva Andalusians when compared to its eastwards relatives of Granada and other Iberian populations, constitute relevant findings unknown up-to-date on the characteristics of mtDNA within Andalusia that testifies a female population substructure. Therefore, Andalusia must not be considered a single, unique population. Conclusions The maternal legacy among Andalusians reflects distinctive local histories, pointing out the role of the westernmost territory of Peninsular Spain as a noticeable recipient of multiple and diverse human migrations. The obtained results underline the necessity of further research on genetic relationships in both sides of the western Mediterranean, using carefully collected samples from autochthonous individuals. Many studies have focused on recent North African gene flow towards Iberia, yet scientific attention should be now directed to thoroughly study the introduction of European genes in northwest Africa across the sea, in order to determine its magnitude, timescale and methods, and to compare them to those terrestrial movements from eastern Africa and southwestern Asia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rosario Calderón
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
32
|
Santos C, Fregel R, Cabrera VM, Álvarez L, Larruga JM, Ramos A, López MA, Pilar Aluja M, González AM. Mitochondrial DNA and Y-chromosome structure at the mediterranean and atlantic façades of the iberian peninsula. Am J Hum Biol 2013; 26:130-41. [DOI: 10.1002/ajhb.22497] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/31/2013] [Accepted: 12/07/2013] [Indexed: 01/24/2023] Open
Affiliation(s)
- Cristina Santos
- Unitat Antropologia Biològica; Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
| | - Rosa Fregel
- Department of Genetics; University of La Laguna; 38271 Tenerife Canary Islands Spain
| | - Vicente M. Cabrera
- Department of Genetics; University of La Laguna; 38271 Tenerife Canary Islands Spain
| | - Luis Álvarez
- Unitat Antropologia Biològica; Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
- IPATIMUP; Institute of Molecular Pathology and Immunology of the University of Porto; 4200-465 Porto Portugal
| | - Jose M. Larruga
- Department of Genetics; University of La Laguna; 38271 Tenerife Canary Islands Spain
| | - Amanda Ramos
- Unitat Antropologia Biològica; Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
- Centre of Research in Natural Resources (CIRN), Department of Biology; University of the Azores; 9500-321 Ponta Delgada Portugal
- Molecular and Cellular Biology Institute (IBMC); University of Porto; 4150-180 Porto Portugal
| | - Miguel A. López
- Clinical Management and Biotechnology Unit; Torre Cárdena Hospital; 04008 Almería Spain
| | - María Pilar Aluja
- Unitat Antropologia Biològica; Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
| | - Ana M. González
- Department of Genetics; University of La Laguna; 38271 Tenerife Canary Islands Spain
| |
Collapse
|
33
|
Coia V, Capocasa M, Anagnostou P, Pascali V, Scarnicci F, Boschi I, Battaggia C, Crivellaro F, Ferri G, Alù M, Brisighelli F, Busby GBJ, Capelli C, Maixner F, Cipollini G, Viazzo PP, Zink A, Destro Bisol G. Demographic histories, isolation and social factors as determinants of the genetic structure of Alpine linguistic groups. PLoS One 2013; 8:e81704. [PMID: 24312576 PMCID: PMC3847036 DOI: 10.1371/journal.pone.0081704] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/15/2013] [Indexed: 11/25/2022] Open
Abstract
Great European mountain ranges have acted as barriers to gene flow for resident populations since prehistory and have offered a place for the settlement of small, and sometimes culturally diverse, communities. Therefore, the human groups that have settled in these areas are worth exploring as an important potential source of diversity in the genetic structure of European populations. In this study, we present new high resolution data concerning Y chromosomal variation in three distinct Alpine ethno-linguistic groups, Italian, Ladin and German. Combining unpublished and literature data on Y chromosome and mitochondrial variation, we were able to detect different genetic patterns. In fact, within and among population diversity values observed vary across linguistic groups, with German and Italian speakers at the two extremes, and seem to reflect their different demographic histories. Using simulations we inferred that the joint effect of continued genetic isolation and reduced founding group size may explain the apportionment of genetic diversity observed in all groups. Extending the analysis to other continental populations, we observed that the genetic differentiation of Ladins and German speakers from Europeans is comparable or even greater to that observed for well known outliers like Sardinian and Basques. Finally, we found that in south Tyroleans, the social practice of Geschlossener Hof, a hereditary norm which might have favored male dispersal, coincides with a significant intra-group diversity for mtDNA but not for Y chromosome, a genetic pattern which is opposite to those expected among patrilocal populations. Together with previous evidence regarding the possible effects of “local ethnicity” on the genetic structure of German speakers that have settled in the eastern Italian Alps, this finding suggests that taking socio-cultural factors into account together with geographical variables and linguistic diversity may help unveil some yet to be understood aspects of the genetic structure of European populations.
Collapse
MESH Headings
- Chromosomes, Human, Y/genetics
- Demography/history
- Ethnicity/genetics
- Ethnicity/history
- Evolution, Molecular
- Female
- Gene Flow
- Genetic Variation
- History, 15th Century
- History, 16th Century
- History, 17th Century
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Linguistics
- Male
- Mitochondria/genetics
- Polymorphism, Single Nucleotide
- White People/ethnology
- White People/genetics
- White People/history
Collapse
Affiliation(s)
- Valentina Coia
- Accademia Europea di Bolzano (EURAC), Istituto per le Mummie e l'Iceman, Bolzano, Italy
- * E-mail: (VC); (GDB)
| | - Marco Capocasa
- Dipartimento Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
- Istituto Italiano di Antropologia, Rome, Italy
| | - Paolo Anagnostou
- Istituto Italiano di Antropologia, Rome, Italy
- Dipartimento Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
| | - Vincenzo Pascali
- Istituto di Medicina Legale e delle Assicurazioni, Università Cattolica di Roma, Rome, Italy
| | - Francesca Scarnicci
- Istituto di Medicina Legale e delle Assicurazioni, Università Cattolica di Roma, Rome, Italy
| | - Ilaria Boschi
- Istituto di Medicina Legale e delle Assicurazioni, Università Cattolica di Roma, Rome, Italy
| | - Cinzia Battaggia
- Dipartimento Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
| | - Federica Crivellaro
- Sezione di Antropologia, Museo Nazionale Preistorico Etnografico “Luigi Pigorini”, Rome, Italy
| | - Gianmarco Ferri
- Dipartimento Integrato di Servizi Diagnostici e di Laboratorio e di Medicina Legale, Università di Modena e Reggio Emilia, Modena, Italy
| | - Milena Alù
- Dipartimento Integrato di Servizi Diagnostici e di Laboratorio e di Medicina Legale, Università di Modena e Reggio Emilia, Modena, Italy
| | - Francesca Brisighelli
- Istituto di Medicina Legale e delle Assicurazioni, Università Cattolica di Roma, Rome, Italy
| | | | - Cristian Capelli
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Frank Maixner
- Accademia Europea di Bolzano (EURAC), Istituto per le Mummie e l'Iceman, Bolzano, Italy
| | - Giovanna Cipollini
- Accademia Europea di Bolzano (EURAC), Istituto per le Mummie e l'Iceman, Bolzano, Italy
| | - Pier Paolo Viazzo
- Dipartimento Culture, Politica e Società-Sezione Scienze Antropologiche, Università degli Studi di Torino, Turin, Italy
| | - Albert Zink
- Accademia Europea di Bolzano (EURAC), Istituto per le Mummie e l'Iceman, Bolzano, Italy
| | - Giovanni Destro Bisol
- Istituto Italiano di Antropologia, Rome, Italy
- Dipartimento Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
- * E-mail: (VC); (GDB)
| |
Collapse
|
34
|
Brotherton P, Haak W, Templeton J, Brandt G, Soubrier J, Jane Adler C, Richards SM, Der Sarkissian C, Ganslmeier R, Friederich S, Dresely V, van Oven M, Kenyon R, Van der Hoek MB, Korlach J, Luong K, Ho SYW, Quintana-Murci L, Behar DM, Meller H, Alt KW, Cooper A. Neolithic mitochondrial haplogroup H genomes and the genetic origins of Europeans. Nat Commun 2013; 4:1764. [PMID: 23612305 DOI: 10.1038/ncomms2656] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 02/27/2013] [Indexed: 11/09/2022] Open
Abstract
Haplogroup H dominates present-day Western European mitochondrial DNA variability (>40%), yet was less common (~19%) among Early Neolithic farmers (~5450 BC) and virtually absent in Mesolithic hunter-gatherers. Here we investigate this major component of the maternal population history of modern Europeans and sequence 39 complete haplogroup H mitochondrial genomes from ancient human remains. We then compare this 'real-time' genetic data with cultural changes taking place between the Early Neolithic (~5450 BC) and Bronze Age (~2200 BC) in Central Europe. Our results reveal that the current diversity and distribution of haplogroup H were largely established by the Mid Neolithic (~4000 BC), but with substantial genetic contributions from subsequent pan-European cultures such as the Bell Beakers expanding out of Iberia in the Late Neolithic (~2800 BC). Dated haplogroup H genomes allow us to reconstruct the recent evolutionary history of haplogroup H and reveal a mutation rate 45% higher than current estimates for human mitochondria.
Collapse
Affiliation(s)
- Paul Brotherton
- The Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia 5005, Australia.,Archaeogenetics Research Group, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Wolfgang Haak
- The Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jennifer Templeton
- The Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Guido Brandt
- Institute of Anthropology, Colonel-Kleinmann Weg 2, Johannes Gutenberg University, Mainz, D-55128 Mainz, Germany
| | - Julien Soubrier
- The Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Christina Jane Adler
- The Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Stephen M Richards
- The Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Clio Der Sarkissian
- The Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Robert Ganslmeier
- State Office for Heritage Management and Archaeology Saxony-Anhalt / State Museum for Prehistory Halle, Richard-Wagner-Straße 9, D-06114 Halle/Saale, Germany
| | - Susanne Friederich
- State Office for Heritage Management and Archaeology Saxony-Anhalt / State Museum for Prehistory Halle, Richard-Wagner-Straße 9, D-06114 Halle/Saale, Germany
| | - Veit Dresely
- State Office for Heritage Management and Archaeology Saxony-Anhalt / State Museum for Prehistory Halle, Richard-Wagner-Straße 9, D-06114 Halle/Saale, Germany
| | - Mannis van Oven
- Department of Forensic Molecular Biology, Erasmus MC, University Medical Centre, Rotterdam, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | - Simon Y W Ho
- School of Biological Sciences, The University of Sydney, New South Wales 2006, Australia
| | | | | | - Harald Meller
- State Office for Heritage Management and Archaeology Saxony-Anhalt / State Museum for Prehistory Halle, Richard-Wagner-Straße 9, D-06114 Halle/Saale, Germany
| | - Kurt W Alt
- Institute of Anthropology, Colonel-Kleinmann Weg 2, Johannes Gutenberg University, Mainz, D-55128 Mainz, Germany
| | - Alan Cooper
- Institute of Anthropology, Colonel-Kleinmann Weg 2, Johannes Gutenberg University, Mainz, D-55128 Mainz, Germany
| | | |
Collapse
|
35
|
González-Vioque E, Bornstein B, Gallardo ME, Fernández-Moreno MÁ, Garesse R. The pathogenicity scoring system for mitochondrial tRNA mutations revisited. Mol Genet Genomic Med 2013; 2:107-14. [PMID: 24689073 PMCID: PMC3960052 DOI: 10.1002/mgg3.47] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 09/27/2013] [Accepted: 10/09/2013] [Indexed: 11/14/2022] Open
Abstract
Confirming the pathogenicity of mitochondrial tRNA point mutations is one of the classical challenges in the field of mitochondrial medicine. In addition to genetic and functional studies, the evaluation of a genetic change using a pathogenicity scoring system is extremely useful to discriminate between disease-causing mutations from neutral polymorphisms. The pathogenicity scoring system is very robust for confirming pathogenicity, especially of mutations that show impaired activity in functional studies. However, mutations giving normal results using the same functional approaches are disregarded, and this compromises the power of the system to rule out pathogenicity. We propose to include a new criterion in the pathogenicity scoring systems regarding mutations which fail to show any mitochondrial defect in functional studies. To evaluate this proposal we characterized two mutations, m.8296A>G and m.8347A>G, in the mitochondrial tRNALys gene (MT-TK) using trans-mitochondrial cybrid analysis. m.8347A>G mutation severely impairs oxidative phosphorylation, suggesting that it is highly pathogenic. By contrast, the behavior of cybrids homoplasmic for the m.8296A>G mutation is similar to cybrids containing wild-type mitochondrial DNA (mtDNA). The results indicate that including not only positive but also negative outcomes of functional studies in the scoring system is critical for facilitating the diagnosis of this complex group of diseases.
Collapse
Affiliation(s)
- Emiliano González-Vioque
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidad Autónoma de Madrid 28029, Madrid, Spain ; Laboratorio de Enfermedades Mitocondriales, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12) Madrid, Spain
| | - Belén Bornstein
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidad Autónoma de Madrid 28029, Madrid, Spain ; Servicio de Bioquímica, Instituto de Investigación Sanitaria Puerta de Hierro Majadahonda Madrid, Spain
| | - María Esther Gallardo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidad Autónoma de Madrid 28029, Madrid, Spain ; Laboratorio de Enfermedades Mitocondriales, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12) Madrid, Spain
| | - Miguel Ángel Fernández-Moreno
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidad Autónoma de Madrid 28029, Madrid, Spain ; Laboratorio de Enfermedades Mitocondriales, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12) Madrid, Spain
| | - Rafael Garesse
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidad Autónoma de Madrid 28029, Madrid, Spain ; Laboratorio de Enfermedades Mitocondriales, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12) Madrid, Spain
| |
Collapse
|
36
|
Pardo-Seco J, Amigo J, González-Manteiga W, Salas A. A generalized model to estimate the statistical power in mitochondrial disease studies involving 2×k tables. PLoS One 2013; 8:e73567. [PMID: 24086285 PMCID: PMC3785462 DOI: 10.1371/journal.pone.0073567] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 07/28/2013] [Indexed: 11/23/2022] Open
Abstract
Background Mitochondrial DNA (mtDNA) variation (i.e. haplogroups) has been analyzed in regards to a number of multifactorial diseases. The statistical power of a case-control study determines the a priori probability to reject the null hypothesis of homogeneity between cases and controls. Methods/Principal Findings We critically review previous approaches to the estimation of the statistical power based on the restricted scenario where the number of cases equals the number of controls, and propose a methodology that broadens procedures to more general situations. We developed statistical procedures that consider different disease scenarios, variable sample sizes in cases and controls, and variable number of haplogroups and effect sizes. The results indicate that the statistical power of a particular study can improve substantially by increasing the number of controls with respect to cases. In the opposite direction, the power decreases substantially when testing a growing number of haplogroups. We developed mitPower (http://bioinformatics.cesga.es/mitpower/), a web-based interface that implements the new statistical procedures and allows for the computation of the a priori statistical power in variable scenarios of case-control study designs, or e.g. the number of controls needed to reach fixed effect sizes. Conclusions/Significance The present study provides with statistical procedures for the computation of statistical power in common as well as complex case-control study designs involving 2×k tables, with special application (but not exclusive) to mtDNA studies. In order to reach a wide range of researchers, we also provide a friendly web-based tool – mitPower – that can be used in both retrospective and prospective case-control disease studies.
Collapse
Affiliation(s)
- Jacobo Pardo-Seco
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Grupo de Medicina Xenómica (GMX), Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - Jorge Amigo
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Grupo de Medicina Xenómica (GMX), Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - Wenceslao González-Manteiga
- Departamento de Estadística e Investigación Operativa, Universidade de Santiago de Compostela, Santiago de Compostela A Coruña, Spain
| | - Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Grupo de Medicina Xenómica (GMX), Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
- * E-mail:
| |
Collapse
|
37
|
Gómez P, Gómez J, Corao AI, De Canga J, Coto E. Effect of mitochondrial,APOE. ACEandNOS3gene polymorphisms on cardiovascular risk factors among theVaqueiros de Alzada, a Northern Spain human isolate. Ann Hum Biol 2013; 41:94-7. [DOI: 10.3109/03014460.2013.827738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Linguistic isolates in Portugal: insights from the mitochondrial DNA pattern. Forensic Sci Int Genet 2013; 7:618-623. [PMID: 24041913 DOI: 10.1016/j.fsigen.2013.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 08/15/2013] [Accepted: 08/21/2013] [Indexed: 11/23/2022]
Abstract
Miranda do Douro, located in the northeastern region of Portugal, has notable characteristics not only from a geographic or naturalistic point of view, but also from a cultural perspective. A remarkable one is the coexistence of two different languages: Portuguese and Mirandese, the second being an Astur-Leonese dialect. The current persistence of the Astur-Leonese dialect in this population falls on the singularity of the region: relative isolation, implying difficulties to communicate with other Portuguese regions, while the same location facilitated the establishment of social and commercial relationships with adjacent Spanish territories, origin of the Astur-Leonese language. The objective of this study was to characterize the population from Miranda through the analysis of maternal lineages in order to evaluate whether its mitochondrial DNA diversity fitted the patterns previously reported for other populations from the Iberian Peninsula. Viewing that, the entire control region of mitochondrial DNA from 121 individuals was examined. Miranda showed a haplogroup composition usual for a Western European population, in the sense that as high as 63.6% of sequences belonged to macro-haplogroup R0. Lineages ascribed to have an African (L2a and L1b) origin, were detected, but reaching an amount commonly found in Portugal. Miranda also presented a few haplogroups typically found in Jewish populations, while rarely observed in other Iberian populations. The finding can be explained by gene flow with crypto-Jew communities that since long are known to be established in the region where Miranda is located. In Miranda, both genetic and nucleotide diversities presented low values (0.9292 ± 0.0180 and 0.01101 ± 0.00614 respectively) when compared to populations from its micro-geographical framework, which constitute a sign of population isolation that certainly provided conditions for the survival of the Astur-Leonese dialect in the region.
Collapse
|
39
|
Cardoso S, Valverde L, Alfonso-Sánchez MA, Palencia-Madrid L, Elcoroaristizabal X, Algorta J, Catarino S, Arteta D, Herrera RJ, Zarrabeitia MT, Peña JA, de Pancorbo MM. The expanded mtDNA phylogeny of the Franco-Cantabrian region upholds the pre-neolithic genetic substrate of Basques. PLoS One 2013; 8:e67835. [PMID: 23844106 PMCID: PMC3700859 DOI: 10.1371/journal.pone.0067835] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/22/2013] [Indexed: 12/03/2022] Open
Abstract
The European genetic landscape has been shaped by several human migrations occurred since Paleolithic times. The accumulation of archaeological records and the concordance of different lines of genetic evidence during the last two decades have triggered an interesting debate concerning the role of ancient settlers from the Franco-Cantabrian region in the postglacial resettlement of Europe. Among the Franco-Cantabrian populations, Basques are regarded as one of the oldest and more intriguing human groups of Europe. Recent data on complete mitochondrial DNA genomes focused on macrohaplogroup R0 revealed that Basques harbor some autochthonous lineages, suggesting a genetic continuity since pre-Neolithic times. However, excluding haplogroup H, the most representative lineage of macrohaplogroup R0, the majority of maternal lineages of this area remains virtually unexplored, so that further refinement of the mtDNA phylogeny based on analyses at the highest level of resolution is crucial for a better understanding of the European prehistory. We thus explored the maternal ancestry of 548 autochthonous individuals from various Franco-Cantabrian populations and sequenced 76 mitogenomes of the most representative lineages. Interestingly, we identified three mtDNA haplogroups, U5b1f, J1c5c1 and V22, that proved to be representative of Franco-Cantabria, notably of the Basque population. The seclusion and diversity of these female genetic lineages support a local origin in the Franco-Cantabrian area during the Mesolithic of southwestern Europe, ∼10,000 years before present (YBP), with signals of expansions at ∼3,500 YBP. These findings provide robust evidence of a partial genetic continuity between contemporary autochthonous populations from the Franco-Cantabrian region, specifically the Basques, and Paleolithic/Mesolithic hunter-gatherer groups. Furthermore, our results raise the current proportion (≈15%) of the Franco-Cantabrian maternal gene pool with a putative pre-Neolithic origin to ≈35%, further supporting the notion of a predominant Paleolithic genetic substrate in extant European populations.
Collapse
Affiliation(s)
- Sergio Cardoso
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, Spain
| | - Laura Valverde
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, Spain
| | - Miguel A. Alfonso-Sánchez
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, Spain
| | - Leire Palencia-Madrid
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, Spain
| | - Xabier Elcoroaristizabal
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, Spain
| | - Jaime Algorta
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, Bilbao, Spain
- Progenika Biopharma, Parque Tecnológico de Bizkaia, Derio-Bizkaia, Spain
| | - Susana Catarino
- Progenika Biopharma, Parque Tecnológico de Bizkaia, Derio-Bizkaia, Spain
| | - David Arteta
- Progenika Biopharma, Parque Tecnológico de Bizkaia, Derio-Bizkaia, Spain
| | - Rene J. Herrera
- Department of Molecular and Human Genetics, College of Medicine, Florida International University, Miami, Florida, United States of America
| | | | - José A. Peña
- Departmento de Genética, Antropología Física y Fisiología Animal, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, Bilbao, Spain
| | - Marian M. de Pancorbo
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, Spain
- * E-mail:
| |
Collapse
|
40
|
Bekada A, Fregel R, Cabrera VM, Larruga JM, Pestano J, Benhamamouch S, González AM. Introducing the Algerian mitochondrial DNA and Y-chromosome profiles into the North African landscape. PLoS One 2013; 8:e56775. [PMID: 23431392 PMCID: PMC3576335 DOI: 10.1371/journal.pone.0056775] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 01/15/2013] [Indexed: 11/18/2022] Open
Abstract
North Africa is considered a distinct geographic and ethnic entity within Africa. Although modern humans originated in this Continent, studies of mitochondrial DNA (mtDNA) and Y-chromosome genealogical markers provide evidence that the North African gene pool has been shaped by the back-migration of several Eurasian lineages in Paleolithic and Neolithic times. More recent influences from sub-Saharan Africa and Mediterranean Europe are also evident. The presence of East-West and North-South haplogroup frequency gradients strongly reinforces the genetic complexity of this region. However, this genetic scenario is beset with a notable gap, which is the lack of consistent information for Algeria, the largest country in the Maghreb. To fill this gap, we analyzed a sample of 240 unrelated subjects from a northwest Algeria cosmopolitan population using mtDNA sequences and Y-chromosome biallelic polymorphisms, focusing on the fine dissection of haplogroups E and R, which are the most prevalent in North Africa and Europe respectively. The Eurasian component in Algeria reached 80% for mtDNA and 90% for Y-chromosome. However, within them, the North African genetic component for mtDNA (U6 and M1; 20%) is significantly smaller than the paternal (E-M81 and E-V65; 70%). The unexpected presence of the European-derived Y-chromosome lineages R-M412, R-S116, R-U152 and R-M529 in Algeria and the rest of the Maghreb could be the counterparts of the mtDNA H1, H3 and V subgroups, pointing to direct maritime contacts between the European and North African sides of the western Mediterranean. Female influx of sub-Saharan Africans into Algeria (20%) is also significantly greater than the male (10%). In spite of these sexual asymmetries, the Algerian uniparental profiles faithfully correlate between each other and with the geography.
Collapse
Affiliation(s)
- Asmahan Bekada
- Department of Biotechnology, Faculty of Sciences, University of Oran, Oran, Algeria
| | - Rosa Fregel
- Department of Genetics, Faculty of Biology, University of La Laguna, La Laguna, Tenerife, Spain
- Department of Genetics, Faculty of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Gran Canaria, Spain
- Forensic Genetics Laboratory, Institute of Legal Medicine of Las Palmas, Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Vicente M. Cabrera
- Department of Genetics, Faculty of Biology, University of La Laguna, La Laguna, Tenerife, Spain
| | - José M. Larruga
- Department of Genetics, Faculty of Biology, University of La Laguna, La Laguna, Tenerife, Spain
| | - José Pestano
- Department of Genetics, Faculty of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Gran Canaria, Spain
- Forensic Genetics Laboratory, Institute of Legal Medicine of Las Palmas, Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Soraya Benhamamouch
- Department of Biotechnology, Faculty of Sciences, University of Oran, Oran, Algeria
| | - Ana M. González
- Department of Genetics, Faculty of Biology, University of La Laguna, La Laguna, Tenerife, Spain
| |
Collapse
|
41
|
Mielnik-Sikorska M, Daca P, Malyarchuk B, Derenko M, Skonieczna K, Perkova M, Dobosz T, Grzybowski T. The history of Slavs inferred from complete mitochondrial genome sequences. PLoS One 2013; 8:e54360. [PMID: 23342138 PMCID: PMC3544712 DOI: 10.1371/journal.pone.0054360] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 12/11/2012] [Indexed: 12/28/2022] Open
Abstract
To shed more light on the processes leading to crystallization of a Slavic identity, we investigated variability of complete mitochondrial genomes belonging to haplogroups H5 and H6 (63 mtDNA genomes) from the populations of Eastern and Western Slavs, including new samples of Poles, Ukrainians and Czechs presented here. Molecular dating implies formation of H5 approximately 11.5–16 thousand years ago (kya) in the areas of southern Europe. Within ancient haplogroup H6, dated at around 15–28 kya, there is a subhaplogroup H6c, which probably survived the last glaciation in Europe and has undergone expansion only 3–4 kya, together with the ancestors of some European groups, including the Slavs, because H6c has been detected in Czechs, Poles and Slovaks. Detailed analysis of complete mtDNAs allowed us to identify a number of lineages that seem specific for Central and Eastern Europe (H5a1f, H5a2, H5a1r, H5a1s, H5b4, H5e1a, H5u1, some subbranches of H5a1a and H6a1a9). Some of them could possibly be traced back to at least ∼4 kya, which indicates that some of the ancestors of today's Slavs (Poles, Czechs, Slovaks, Ukrainians and Russians) inhabited areas of Central and Eastern Europe much earlier than it was estimated on the basis of archaeological and historical data. We also sequenced entire mitochondrial genomes of several non-European lineages (A, C, D, G, L) found in contemporary populations of Poland and Ukraine. The analysis of these haplogroups confirms the presence of Siberian (C5c1, A8a1) and Ashkenazi-specific (L2a1l2a) mtDNA lineages in Slavic populations. Moreover, we were able to pinpoint some lineages which could possibly reflect the relatively recent contacts of Slavs with nomadic Altaic peoples (C4a1a, G2a, D5a2a1a1).
Collapse
Affiliation(s)
- Marta Mielnik-Sikorska
- Department of Molecular and Forensic Genetics, Bydgoszcz, Institute of Forensic Medicine, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Patrycja Daca
- Department of Molecular and Forensic Genetics, Bydgoszcz, Institute of Forensic Medicine, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Boris Malyarchuk
- Institute of Biological Problems of the North, Far-East Branch of the Russian Academy of Science, Magadan, Russia
| | - Miroslava Derenko
- Institute of Biological Problems of the North, Far-East Branch of the Russian Academy of Science, Magadan, Russia
| | - Katarzyna Skonieczna
- Department of Molecular and Forensic Genetics, Bydgoszcz, Institute of Forensic Medicine, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Maria Perkova
- Institute of Biological Problems of the North, Far-East Branch of the Russian Academy of Science, Magadan, Russia
| | - Tadeusz Dobosz
- Department of Forensic Medicine, Wrocław Medical University, Wrocław, Poland
| | - Tomasz Grzybowski
- Department of Molecular and Forensic Genetics, Bydgoszcz, Institute of Forensic Medicine, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- * E-mail:
| |
Collapse
|
42
|
Brisighelli F, Álvarez-Iglesias V, Fondevila M, Blanco-Verea A, Carracedo Á, Pascali VL, Capelli C, Salas A. Uniparental markers of contemporary Italian population reveals details on its pre-Roman heritage. PLoS One 2012; 7:e50794. [PMID: 23251386 PMCID: PMC3519480 DOI: 10.1371/journal.pone.0050794] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/24/2012] [Indexed: 11/18/2022] Open
Abstract
Background According to archaeological records and historical documentation, Italy has been a melting point for populations of different geographical and ethnic matrices. Although Italy has been a favorite subject for numerous population genetic studies, genetic patterns have never been analyzed comprehensively, including uniparental and autosomal markers throughout the country. Methods/Principal Findings A total of 583 individuals were sampled from across the Italian Peninsula, from ten distant (if homogeneous by language) ethnic communities — and from two linguistic isolates (Ladins, Grecani Salentini). All samples were first typed for the mitochondrial DNA (mtDNA) control region and selected coding region SNPs (mtSNPs). This data was pooled for analysis with 3,778 mtDNA control-region profiles collected from the literature. Secondly, a set of Y-chromosome SNPs and STRs were also analyzed in 479 individuals together with a panel of autosomal ancestry informative markers (AIMs) from 441 samples. The resulting genetic record reveals clines of genetic frequencies laid according to the latitude slant along continental Italy – probably generated by demographical events dating back to the Neolithic. The Ladins showed distinctive, if more recent structure. The Neolithic contribution was estimated for the Y-chromosome as 14.5% and for mtDNA as 10.5%. Y-chromosome data showed larger differentiation between North, Center and South than mtDNA. AIMs detected a minor sub-Saharan component; this is however higher than for other European non-Mediterranean populations. The same signal of sub-Saharan heritage was also evident in uniparental markers. Conclusions/Significance Italy shows patterns of molecular variation mirroring other European countries, although some heterogeneity exists based on different analysis and molecular markers. From North to South, Italy shows clinal patterns that were most likely modulated during Neolithic times.
Collapse
Affiliation(s)
- Francesca Brisighelli
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
- Forensic Genetics Laboratory, Institute of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Vanesa Álvarez-Iglesias
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
| | - Manuel Fondevila
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
| | - Alejandro Blanco-Verea
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
| | - Ángel Carracedo
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
- Fundación Pública Galega de Medicina Xenómica (FPGMX-SERGAS), CIBER enfermedades raras, Santiago de Compostela, Galicia, Spain
| | - Vincenzo L. Pascali
- Forensic Genetics Laboratory, Institute of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cristian Capelli
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Antonio Salas
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
- * E-mail:
| |
Collapse
|
43
|
Haplogrouping mitochondrial DNA sequences in Legal Medicine/Forensic Genetics. Int J Legal Med 2012; 126:901-16. [PMID: 22940763 DOI: 10.1007/s00414-012-0762-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 08/06/2012] [Indexed: 12/11/2022]
Abstract
Haplogrouping refers to the classification of (partial) mitochondrial DNA (mtDNA) sequences into haplogroups using the current knowledge of the worldwide mtDNA phylogeny. Haplogroup assignment of mtDNA control-region sequences assists in the focused comparison with closely related complete mtDNA sequences and thus serves two main goals in forensic genetics: first is the a posteriori quality analysis of sequencing results and second is the prediction of relevant coding-region sites for confirmation or further refinement of haplogroup status. The latter may be important in forensic casework where discrimination power needs to be as high as possible. However, most articles published in forensic genetics perform haplogrouping only in a rudimentary or incorrect way. The present study features PhyloTree as the key tool for assigning control-region sequences to haplogroups and elaborates on additional Web-based searches for finding near-matches with complete mtDNA genomes in the databases. In contrast, none of the automated haplogrouping tools available can yet compete with manual haplogrouping using PhyloTree plus additional Web-based searches, especially when confronted with artificial recombinants still present in forensic mtDNA datasets. We review and classify the various attempts at haplogrouping by using a multiplex approach or relying on automated haplogrouping. Furthermore, we re-examine a few articles in forensic journals providing mtDNA population data where appropriate haplogrouping following PhyloTree immediately highlights several kinds of sequence errors.
Collapse
|
44
|
Pardiñas AF, Roca A, Garcia-Vazquez E, Lopez B. Mitochondrial diversity patterns and the Magdalenian resettlement of Europe: new insights from the edge of the Franco-Cantabrian refuge. J Hum Genet 2012; 57:717-26. [PMID: 22895249 DOI: 10.1038/jhg.2012.100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phylogeography of the mitochondrial lineages commonly found in Western Europe can be interpreted in the light of a postglacial resettlement of the continent. The center of this proposal lies in the Franco-Cantabrian glacial refuge, located in the northern Iberian Peninsula and Southwestern France. Recently, this interpretation has been confronted by the unexpected patterns of diversity found in some European haplogroups. To shed new lights on this issue, research on Iberian populations is crucial if events behind the actual genetics of the European continent are to be untangled. In this regard, the region of Asturias has not been extensively studied, despite its convoluted history with prolonged periods of isolation. As mitochondrial DNA is a kind of data that has been commonly used in human population genetics, we conducted a thorough regional study in which we collected buccal swabs from 429 individuals with confirmed Asturian ancestry. The joint analysis of these sequences with a large continent-wide database and previously published diversity patterns allowed us to discuss a new explanation for the population dynamics inside the Franco-Cantabrian area, based on range expansion theory. This approximation to previously contradictory findings has made them compatible with most proposals about the postglacial resettlement of Western Europe.
Collapse
Affiliation(s)
- Antonio F Pardiñas
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Oviedo, Spain
| | | | | | | |
Collapse
|
45
|
Marks SJ, Levy H, Martinez-Cadenas C, Montinaro F, Capelli C. Migration distance rather than migration rate explains genetic diversity in human patrilocal groups. Mol Ecol 2012; 21:4958-69. [PMID: 22765647 DOI: 10.1111/j.1365-294x.2012.05689.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Sarah J Marks
- Department of Zoology, University of Oxford, Oxford, UK
| | | | | | | | | |
Collapse
|
46
|
Cardoso S, Villanueva-Millán MJ, Valverde L, Odriozola A, Aznar JM, Piñeiro-Hermida S, de Pancorbo MM. Mitochondrial DNA control region variation in an autochthonous Basque population sample from the Basque Country. Forensic Sci Int Genet 2012; 6:e106-8. [DOI: 10.1016/j.fsigen.2011.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/07/2011] [Accepted: 12/28/2011] [Indexed: 10/14/2022]
|
47
|
Mosquera-Miguel A, Torrell H, Abasolo N, Arrojo M, Paz E, Ramos-Ríos R, Agra S, Páramo M, Brenlla J, Martínez S, Vilella E, Valero J, Gutiérrez-Zotes A, Martorell L, Costas J, Salas A. No evidence that major mtDNA European haplogroups confer risk to schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:414-21. [PMID: 22467472 DOI: 10.1002/ajmg.b.32044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 03/01/2012] [Indexed: 12/12/2022]
Abstract
Previous studies suggest that genetic factors could be involved in mitochondrial dysfunction observed in schizophrenia (SZ), some of them claiming a role of mtDNA common variants (mtSNPs) and/or haplogroups (hgs) in developing this disorder. These studies, however, have mainly been undertaken on relatively small cohorts of patients and control individuals and most have not yet been replicated. To further analyze the role of mtSNPs in SZ risk, we have carried out the largest genotyping effort to date using two Spanish case-control samples comprising a total of 942 schizophrenic patients and 1,231 unrelated controls: 454 patients and 616 controls from Santiago de Compostela (Galicia) and 488 patients and 615 controls from Reus (Catalonia). A set of 25 mtSNPs representing main branches of the European mtDNA phylogeny were genotyped in the Galician cohort and a subset of 16 out of these 25 mtSNPs was genotyped in the Catalan cohort. These 16 common variants characterize the most common European branches of the mtDNA phylogeny. We did not observe any positive association of mtSNPs and hgs with SZ. We discuss several deficiencies of previous studies that might explain the false positive nature of previous findings, including the confounding effect of population sub-structure and deficient statistical methodologies. It is unlikely that mtSNPs defining the most common European mtDNA haplogroups are related to SZ.
Collapse
Affiliation(s)
- Ana Mosquera-Miguel
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses and Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Cerezo M, Achilli A, Olivieri A, Perego UA, Gómez-Carballa A, Brisighelli F, Lancioni H, Woodward SR, López-Soto M, Carracedo Á, Capelli C, Torroni A, Salas A. Reconstructing ancient mitochondrial DNA links between Africa and Europe. Genome Res 2012; 22:821-6. [PMID: 22454235 PMCID: PMC3337428 DOI: 10.1101/gr.134452.111] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/29/2012] [Indexed: 11/25/2022]
Abstract
Mitochondrial DNA (mtDNA) lineages of macro-haplogroup L (excluding the derived L3 branches M and N) represent the majority of the typical sub-Saharan mtDNA variability. In Europe, these mtDNAs account for <1% of the total but, when analyzed at the level of control region, they show no signals of having evolved within the European continent, an observation that is compatible with a recent arrival from the African continent. To further evaluate this issue, we analyzed 69 mitochondrial genomes belonging to various L sublineages from a wide range of European populations. Phylogeographic analyses showed that ~65% of the European L lineages most likely arrived in rather recent historical times, including the Romanization period, the Arab conquest of the Iberian Peninsula and Sicily, and during the period of the Atlantic slave trade. However, the remaining 35% of L mtDNAs form European-specific subclades, revealing that there was gene flow from sub-Saharan Africa toward Europe as early as 11,000 yr ago.
Collapse
Affiliation(s)
- María Cerezo
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela, 15782 Galicia, Spain
| | - Alessandro Achilli
- Dipartimento di Biologia Cellulare e Ambientale, Università di Perugia, 06123 Perugia, Italy
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27100 Pavia, Italy
| | - Ugo A. Perego
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27100 Pavia, Italy
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah 84115, USA
| | - Alberto Gómez-Carballa
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela, 15782 Galicia, Spain
| | - Francesca Brisighelli
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela, 15782 Galicia, Spain
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Hovirag Lancioni
- Dipartimento di Biologia Cellulare e Ambientale, Università di Perugia, 06123 Perugia, Italy
| | - Scott R. Woodward
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah 84115, USA
| | - Manuel López-Soto
- Instituto Nacional de Toxicología y Ciencias Forenses, 41018 Sevilla, Spain
| | - Ángel Carracedo
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela, 15782 Galicia, Spain
| | - Cristian Capelli
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27100 Pavia, Italy
| | - Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela, 15782 Galicia, Spain
| |
Collapse
|
49
|
Fachal L, Rodríguez-Pazos L, Ginarte M, Toribio J, Salas A, Vega A. Multiple local and recent founder effects of TGM1 in Spanish families. PLoS One 2012; 7:e33580. [PMID: 22511925 PMCID: PMC3325222 DOI: 10.1371/journal.pone.0033580] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 02/16/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mutations in the TGM1 gene encoding transglutaminase 1 are a major cause of autosomal recessive congenital ichthyosis. In the Galician (NW Spain) population, three mutations, c.2278C>T, c.1223_1227delACAC and c.984+1G>A, were observed at high frequency, representing ~46%, ~21% and ~13% of all TGM1 gene mutations, respectively. Moreover, these mutations were reported only once outside of Galicia, pointing to the existence of historical episodes of local severe genetic drift in this region. METHODOLOGY/PRINCIPAL FINDINGS In order to determine whether these mutations were inherited from a common ancestor in the Galician population, and to estimate the number of generations since their initial appearance, we carried out a haplotype-based analysis by way of genotyping 21 SNPs within and flanking the TGM1 gene and 10 flanking polymorphic microsatellite markers spanning a region of 12 Mb. Two linkage disequilibrium based methods were used to estimate the time to the most recent common ancestor (TMRCA), while a Bayesian-based procedure was used to estimate the age of the two mutations. Haplotype reconstruction from unphased genotypes of all members of the affected pedigrees indicated that all carriers for each of the two mutations harbored the same haplotypes, indicating common ancestry. CONCLUSIONS/SIGNIFICANCE In good agreement with the documentation record and the census, both mutations arose between 2,800-2,900 years ago (y.a.), but their TMRCA was in the range 600-1,290 y.a., pointing to the existence of historical bottlenecks in the region followed by population growth. This demographic scenario finds further support on a Bayesian Coalescent Analysis based on TGM1 haplotypes that allowed estimating the occurrence of a dramatic reduction of effective population size around 900-4,500 y.a. (95% highest posterior density) followed by exponential growth.
Collapse
Affiliation(s)
- Laura Fachal
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Laura Rodríguez-Pazos
- Department of Dermatology, Complejo Hospitalario Universitario, SERGAS, Faculty of Medicine, Santiago de Compostela, Spain
| | - Manuel Ginarte
- Department of Dermatology, Complejo Hospitalario Universitario, SERGAS, Faculty of Medicine, Santiago de Compostela, Spain
| | - Jaime Toribio
- Department of Dermatology, Complejo Hospitalario Universitario, SERGAS, Faculty of Medicine, Santiago de Compostela, Spain
| | - Antonio Salas
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, and Departamento de Anatomía Patolóxica e Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
- * E-mail:
| |
Collapse
|
50
|
Genetic continuity in the Franco-Cantabrian region: new clues from autochthonous mitogenomes. PLoS One 2012; 7:e32851. [PMID: 22442672 PMCID: PMC3307710 DOI: 10.1371/journal.pone.0032851] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 02/03/2012] [Indexed: 11/22/2022] Open
Abstract
Background The Late Glacial Maximum (LGM), ∼20 thousand years ago (kya), is thought to have forced the people inhabiting vast areas of northern and central Europe to retreat to southern regions characterized by milder climatic conditions. Archaeological records indicate that Franco-Cantabria might have been the major source for the re-peopling of Europe at the beginning of the Holocene (11.5 kya). However, genetic evidence is still scarce and has been the focus of an intense debate. Methods/Principal Findings Based on a survey of more than 345,000 partial control region sequences and the analysis of 53 mitochondrial DNA (mtDNA) genomes, we identified an mtDNA lineage, HV4a1a, which most likely arose in the Franco-Cantabrian area about 5.4 kya and remained confined to northern Iberia. Conclusions/Significance The HV4a1a lineage and several of its younger branches reveal for the first time genetic continuity in this region and long-term episodes of isolation. This, in turn, could at least in part explain the unique linguistic and cultural features of the Basque region.
Collapse
|