1
|
Swarup G, Medchalmi S, Ramachandran G, Sayyad Z. Molecular aspects of cytoprotection by Optineurin during stress and disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119895. [PMID: 39753182 DOI: 10.1016/j.bbamcr.2024.119895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Optineurin/OPTN is an adapter protein that plays a crucial role in mediating many cellular functions, including autophagy, vesicle trafficking, and various signalling pathways. Mutations of OPTN are linked with neurodegenerative disorders, glaucoma, and amyotrophic lateral sclerosis (ALS). Recent work has shown that OPTN provides cytoprotection from many types of stress, including oxidative stress, endoplasmic reticulum stress, protein homeostasis stress, tumour necrosis factor α, and microbial infection. Here, we discuss the mechanisms involved in cytoprotective functions of OPTN, which possibly depend on its ability to modulate various stress-induced signalling pathways. ALS- and glaucoma-causing mutants of OPTN are altered in this regulation, which may affect cell survival, particularly under various stress conditions. We suggest that OPTN deficiency created by mutations may cooperate with stress-induced signalling to enhance or cause neurodegeneration. Other functions of OPTN, such as neurotrophin secretion and vesicle trafficking, may also contribute to cytoprotection.
Collapse
Affiliation(s)
- Ghanshyam Swarup
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India.
| | - Swetha Medchalmi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Gopalakrishna Ramachandran
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, India
| | - Zuberwasim Sayyad
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India; Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA.
| |
Collapse
|
2
|
Gholampour F, Masjedi F, Janfeshan S, Karimi Z. Remote limb ischemic pre-conditioning prevents renal Ischemia/reperfusion injury in rats by modulating oxidative stress and TNF-α/NF-κB/TGF-/βapelin signaling pathway. Mol Biol Rep 2024; 52:4. [PMID: 39570475 DOI: 10.1007/s11033-024-10109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Remote limb ischemic pre-conditioning (RIPreC) can invoke potent renal protection. The involvement of oxidative stress and inflammatory pathways in renal ischemia/reperfusion injury (I/RI) was also confirmed. This study was designed to investigate the RIPreC effects on IRI-induced kidney dysfunction in rats through NFĸB/TNF-α/TGF-ꞵ/apelin signaling pathway. METHODS Renal I/RI was induced by occluding the kidney arteries for 45 min, then reperfusion for 24 h. Four similar cycles of left femoral artery ischemia (2 min)/reperfusion (3 min) before the onset of kidney ischemia were performed to create RIPreC. Animals were randomly divided into three groups: sham, I/R, and RIPreC + I/R. Following the reperfusion phase, urine and blood samples were taken, and the kidney was removed for functional, molecular, and histological examination. RESULTS When compared to sham rats, renal IRI resulted in decreased creatinine clearance and increased sodium fractional excretion, lower antioxidant enzyme activities, higher malondialdehyde content and higher nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), transforming growth factor-betta (TGF-β), and Apelin expression levels, and histologically damaged kidney tissue. All of the alterations, as mentioned earlier, were alleviated using the RIPreC treatment. CONCLUSION Thus, RIPreC can protect against renal dysfunction after renal I/RI via modulation of the TNF-α/NF-κB/TGF-ꞵ/Apelin signaling pathway and strengthening the antioxidant defense system.
Collapse
Affiliation(s)
| | - Fatemeh Masjedi
- Nephro-Urology Research Center, Shiraz University of Medical Sciences, Research Tower, Khalili Avenue, Shiraz, 7193635899, Iran
| | - Sahar Janfeshan
- Nephro-Urology Research Center, Shiraz University of Medical Sciences, Research Tower, Khalili Avenue, Shiraz, 7193635899, Iran
| | - Zeinab Karimi
- Nephro-Urology Research Center, Shiraz University of Medical Sciences, Research Tower, Khalili Avenue, Shiraz, 7193635899, Iran.
| |
Collapse
|
3
|
Su CC, Liu C, Adi V, Chan KC, Tseng HC. Age-related effects of optineurin deficiency in the mouse eye. Vision Res 2024; 224:108463. [PMID: 39208752 DOI: 10.1016/j.visres.2024.108463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Optineurin (OPTN) is a gene associated with familial normal tension glaucoma (NTG). While NTG involves intraocular pressure (IOP)-independent neurodegeneration of the visual pathway that progresses with age, how OPTN dysfunction leads to NTG remains unclear. Here, we generated an OPTN knockout mouse (Optn-/-) model to test the hypothesis that a loss-of-function mechanism induces structural and functional eye deterioration with aging. Eye anatomy, visual function, IOP, retinal histology, and retinal ganglion cell survival were compared to littermate wild-type (WT) control mice. Consistent with OPTN's role in NTG, loss of OPTN did not increase IOP or alter gross eye anatomy in young (2-3 months) or aged (12 months) mice. When retinal layers were quantitated, young Optn-/- mice had thinner retina in the peripheral regions than young WT mice, primarily due to thinner ganglion cell-inner plexiform layers. Despite this, visual function in Optn-/- mice was not severely impaired, even with aging. We also assessed relative abundance of retinal cell subtypes, including amacrine cells, bipolar cells, cone photoreceptors, microglia, and astrocytes. While many of these cellular subtypes were unaffected by Optn deletion, more dopaminergic amacrine cells were observed in aged Optn-/- mice. Taken together, our findings showed that complete loss of Optn resulted in mild retinal changes and less visual function impairment, supporting the possibility that OPTN-associated glaucoma does not result from a loss-of-function disease mechanism. Further research using these Optn mice will elucidate detailed molecular pathways involved in NTG and identify clinical or environmental risk factors that can be targeted for glaucoma treatment.
Collapse
Affiliation(s)
- Chien-Chia Su
- Duke Eye Center, Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA; Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Crystal Liu
- Departments of Ophthalmology and Radiology, Neuroscience Institute, and Tech4Health Institute, New York University Grossman School of Medicine, New York, NY 10017, USA
| | - Vishnu Adi
- Departments of Ophthalmology and Radiology, Neuroscience Institute, and Tech4Health Institute, New York University Grossman School of Medicine, New York, NY 10017, USA
| | - Kevin C Chan
- Departments of Ophthalmology and Radiology, Neuroscience Institute, and Tech4Health Institute, New York University Grossman School of Medicine, New York, NY 10017, USA; Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA
| | - Henry C Tseng
- Duke Eye Center, Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Kliza KW, Song W, Pinzuti I, Schaubeck S, Kunzelmann S, Kuntin D, Fornili A, Pandini A, Hofmann K, Garnett JA, Stieglitz B, Husnjak K. N4BP1 functions as a dimerization-dependent linear ubiquitin reader which regulates TNF signalling. Cell Death Discov 2024; 10:183. [PMID: 38643192 PMCID: PMC11032371 DOI: 10.1038/s41420-024-01913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/22/2024] Open
Abstract
Signalling through TNFR1 modulates proinflammatory gene transcription and programmed cell death, and its impairment causes autoimmune diseases and cancer. NEDD4-binding protein 1 (N4BP1) is a critical suppressor of proinflammatory cytokine production that acts as a regulator of innate immune signalling and inflammation. However, our current understanding about the molecular properties that enable N4BP1 to exert its suppressive potential remain limited. Here, we show that N4BP1 is a novel linear ubiquitin reader that negatively regulates NFκB signalling by its unique dimerization-dependent ubiquitin-binding module that we named LUBIN. Dimeric N4BP1 strategically positions two non-selective ubiquitin-binding domains to ensure preferential recognition of linear ubiquitin. Under proinflammatory conditions, N4BP1 is recruited to the nascent TNFR1 signalling complex, where it regulates duration of proinflammatory signalling in LUBIN-dependent manner. N4BP1 deficiency accelerates TNFα-induced cell death by increasing complex II assembly. Under proapoptotic conditions, caspase-8 mediates proteolytic processing of N4BP1, resulting in rapid degradation of N4BP1 by the 26 S proteasome, and acceleration of apoptosis. In summary, our findings demonstrate that N4BP1 dimerization creates a novel type of ubiquitin reader that selectively recognises linear ubiquitin which enables the timely and coordinated regulation of TNFR1-mediated inflammation and cell death.
Collapse
Affiliation(s)
- Katarzyna W Kliza
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt (Main), Germany.
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany.
| | - Wei Song
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Oncology, University of Oxford, Oxford, UK
| | - Irene Pinzuti
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Simone Schaubeck
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt (Main), Germany
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, Francis Crick Institute, London, UK
| | - David Kuntin
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt (Main), Germany
- Department of Biology, University of York, Wentworth Way, York, UK
| | - Arianna Fornili
- School of Physical and Chemical Sciences, Queen Mary University of London, London, UK
| | | | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - James A Garnett
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, UK
| | - Benjamin Stieglitz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| | - Koraljka Husnjak
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt (Main), Germany.
| |
Collapse
|
5
|
Jin J, Huang R, Chang Y, Yi X. Roles and mechanisms of optineurin in bone metabolism. Biomed Pharmacother 2024; 172:116258. [PMID: 38350370 DOI: 10.1016/j.biopha.2024.116258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
Optineurin (OPTN) is a widely expressed multifunctional articulatory protein that participates in cellular or mitochondrial autophagy, vesicular transport, and endoplasmic reticulum (ER) stress via interactions with various proteins. Skeletal development is a complex biological process that requires the participation of various osteoblasts, such as bone marrow mesenchymal stem cells (BMSCs), and osteogenic, osteoclastic, and chondrogenic cells. OPTN was recently found to be involved in the regulation of osteoblast activity, which affects bone metabolism. OPTN inhibits osteoclastogenesis via signaling pathways, including NF-κB, IFN-β, and NRF2. OPTN can promote the differentiation of BMSCs toward osteogenesis and inhibit lipogenic differentiation by delaying BMSC senescence and autophagy. These effects are closely related to the development of bone metabolism disorders, such as Paget's disease of bone, rheumatoid arthritis, and osteoporosis. Therefore, this review aims to explore the role and mechanism of OPTN in the regulation of bone metabolism and related bone metabolic diseases. Our findings will provide new targets and strategies for the prevention and treatment of bone metabolic diseases.
Collapse
Affiliation(s)
- Junjie Jin
- School of Sports and Human Sciences, Shenyang Sport University, No. 36 Jinqiansong East Road, Sujiatun District, Shenyang, Liaoning 110115, China
| | - Ruiqi Huang
- School of Physical Education, Liaoning Normal University, Dalian 116029, China
| | - Yixing Chang
- Jilin University, No. 2699 Qianjin Street, Changchun, Jilin 130012, China
| | - Xuejie Yi
- Exercise and Health Research Center/Department of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Sujiatun District, Shenyang , Liaoning 110115, China.
| |
Collapse
|
6
|
Yadav M, Bhardwaj A, Yadav A, Dada R, Tanwar M. Molecular genetics of primary open-angle glaucoma. Indian J Ophthalmol 2023; 71:1739-1756. [PMID: 37203025 PMCID: PMC10391438 DOI: 10.4103/ijo.ijo_2570_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Glaucoma is a series of linked optic diseases resulting in progressive vision loss and total blindness due to the acquired loss of retinal ganglion cells. This harm to the optic nerve results in visual impairment and, ultimately, total blindness if left untreated. Primary open-angle glaucoma (POAG) is the most frequent variety within the large family of glaucoma. It is a multifaceted and heterogeneous condition with several environmental and genetic variables aiding in its etiology. By 2040, there will be 111.8 million glaucoma patients globally, with Asia and Africa accounting for the vast majority. The goal of this review is to elaborate on the role of genes (nuclear and mitochondrial) as well as their variants in the pathogenesis of POAG. PubMed and Google Scholar databases were searched online for papers until September 2022. Prevalence and inheritance patterns vary significantly across different ethnic and geographic populations. Numerous causative genetic loci may exist; however, only a few have been recognized and characterized. Further investigation into the genetic etiology of POAG is expected to uncover novel and intriguing causal genes, allowing for a more precise pathogenesis pattern of the disease.
Collapse
Affiliation(s)
- Manoj Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Harayana, India
| | - Aarti Bhardwaj
- Department of Genetics, Maharshi Dayanand University, Rohtak, Harayana, India
| | - Anshu Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Harayana, India
| | - Rima Dada
- Department of Anatomy, AIIMS, New Delhi, India
| | - Mukesh Tanwar
- Department of Genetics, Maharshi Dayanand University, Rohtak, Harayana, India
| |
Collapse
|
7
|
Silva IAL, Varela D, Cancela ML, Conceição N. Zebrafish optineurin: genomic organization and transcription regulation. Genome 2022; 65:513-523. [PMID: 36037528 DOI: 10.1139/gen-2022-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Optineurin (OPTN) is involved in a variety of mechanisms such as autophagy, vesicle trafficking, and NF-κB signaling. Mutations in the OPTN gene have been associated with different pathologies including glaucoma, amyotrophic lateral sclerosis and Paget's disease of bone. Since the relationship between fish and mammalian OPTN is not well understood the objective of the present work was to characterize the zebrafish optn gene and protein structure and to investigate its transcriptional regulation. Through a comparative in silico analysis, we observed that zebrafish optn presents genomic features similar to those of its human counterpart, including its neighboring genes and structure. A comparison of OPTN protein from different species revealed a high degree of conservation in its functional domains and 3D structure. Furthermore, our in vitro transient-reporter analysis identified a functional promoter in the upstream region of the zebrafish optn gene, along with a region important for its transcription regulation. Site-directed mutagenesis revealed that the NF-κB motif is responsible for the activation of this region. In conclusion, with this study, we characterize zebrafish optn and our results indicate that zebrafish can be considered as an alternative model to study OPTN's biological role in bone-related diseases.
Collapse
Affiliation(s)
- Iris A L Silva
- University of Algarve, Faro, Portugal.,University of Algarve, Faro, Portugal;
| | - Débora Varela
- University of Algarve, Faro, Portugal.,University of Algarve, Faro, Portugal;
| | - M Leonor Cancela
- University of Algarve, Faro, Portugal.,University of Algarve, Faro, Portugal;
| | - Natércia Conceição
- University of Algarve Department of Biomedical Sciences and Medicine, Faro, Portugal;
| |
Collapse
|
8
|
Knockdown of optineurin controls C2C12 myoblast differentiation via regulating myogenin and MyoD expressions. Differentiation 2021; 123:1-8. [PMID: 34844057 DOI: 10.1016/j.diff.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022]
Abstract
Mutations in optineurin (OPTN) have been identified in a small proportion of sporadic and familial amyotrophic lateral sclerosis (ALS) cases. Recent evidences suggest that OPTN would be involved in not only the pathophysiological mechanisms of motor neuron death of ALS but also myofiber degeneration of sporadic inclusion body myositis. However, the detailed role of OPTN in muscle remains unclear. Initially, we showed that OPTN expression levels were significantly increased in the denervated muscles of mice, suggesting that OPTN may be involved in muscle homeostasis. To reveal the molecular role of OPTN in muscle atrophy, we used cultured C2C12 myotubes treated with tumor necrosis factor-like inducer of apoptosis (TWEAK) as an in vitro model of muscle atrophy. Our data showed that OPTN had no effect on the process of muscle atrophy in this model. On the other hand, we found that myogenic differentiation was affected by OPTN. Immunoblotting analysis showed that OPTN protein levels gradually decreased during C2C12 differentiation. Furthermore, OPTN knockdown inhibited C2C12 differentiation, accompanied by reduction of mRNA and protein expression levels of myogenin and MyoD. These findings suggested that OPTN may have a novel function in muscle homeostasis and play a role in the pathogenesis of neuromuscular diseases.
Collapse
|
9
|
Ames J, Yadavalli T, Suryawanshi R, Hopkins J, Agelidis A, Patil C, Fredericks B, Tseng H, Valyi-Nagy T, Shukla D. OPTN is a host intrinsic restriction factor against neuroinvasive HSV-1 infection. Nat Commun 2021; 12:5401. [PMID: 34518549 PMCID: PMC8437952 DOI: 10.1038/s41467-021-25642-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 08/11/2021] [Indexed: 11/09/2022] Open
Abstract
Fast-replicating neurotropic herpesviruses exemplified by herpes simplex virus-1 (HSV-1) naturally infect the central nervous system (CNS). However, most individuals intrinsically suppress the virus during a primary infection and preclude it from significantly damaging the CNS. Optineurin (OPTN) is a conserved autophagy receptor with little understanding of its role in neurotropic viral infections. We show that OPTN selectively targets HSV-1 tegument protein, VP16, and the fusion glycoprotein, gB, to degradation by autophagy. OPTN-deficient mice challenged with HSV-1 show significant cognitive decline and susceptibility to lethal CNS infection. OPTN deficiency unveils severe consequences for recruitment of adaptive immunity and suppression of neuronal necroptosis. Ocular HSV-1 infection is lethal without OPTN and is rescued using a necroptosis inhibitor. These results place OPTN at the crux of neuronal survival from potentially lethal CNS viral infections.
Collapse
Affiliation(s)
- Joshua Ames
- Department of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Rahul Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - James Hopkins
- Department of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Alexander Agelidis
- Department of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Chandrashekhar Patil
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Brian Fredericks
- Department of Pathology, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Henry Tseng
- Duke Eye Center and Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - Tibor Valyi-Nagy
- Department of Pathology, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA.
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA.
| |
Collapse
|
10
|
Šonský I, Vodička P, Vodičková Kepková K, Hansíková H. Mitophagy in Huntington's disease. Neurochem Int 2021; 149:105147. [PMID: 34329735 DOI: 10.1016/j.neuint.2021.105147] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/26/2023]
Abstract
Huntington's disease (HD), as well as Parkinson's disease and Alzheimer's disease, belong to a group of neurodegenerative diseases characterized by common features, such as the progressive loss of neurons and the presence of pathogenic forms of misfolded protein aggregates. A quality control system such as autophagy is crucial for the clearance of protein aggregates and dysfunctional organelles and thus essential for the maintenance of neuronal homeostasis. The constant high energy demand of neuronal tissue links neurodegeneration to mitochondria. Inefficient removal of damaged mitochondria is thought to contribute to the pathogenesis of neurodegenerative diseases such as HD. In addition, direct involvement of the huntingtin protein in the autophagic machinery has been described. In this review, we focus on mitophagy, a selective form of autophagy responsible for mitochondrial turnover. We also discuss the relevance of pharmacological regulation of mitophagy in the future therapeutic approach to neurodegenerations, including HD.
Collapse
Affiliation(s)
- I Šonský
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - P Vodička
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - K Vodičková Kepková
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - H Hansíková
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
| |
Collapse
|
11
|
Inhibitory feedback control of NF-κB signalling in health and disease. Biochem J 2021; 478:2619-2664. [PMID: 34269817 PMCID: PMC8286839 DOI: 10.1042/bcj20210139] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Cells must adapt to changes in their environment to maintain cell, tissue and organismal integrity in the face of mechanical, chemical or microbiological stress. Nuclear factor-κB (NF-κB) is one of the most important transcription factors that controls inducible gene expression as cells attempt to restore homeostasis. It plays critical roles in the immune system, from acute inflammation to the development of secondary lymphoid organs, and also has roles in cell survival, proliferation and differentiation. Given its role in such critical processes, NF-κB signalling must be subject to strict spatiotemporal control to ensure measured and context-specific cellular responses. Indeed, deregulation of NF-κB signalling can result in debilitating and even lethal inflammation and also underpins some forms of cancer. In this review, we describe the homeostatic feedback mechanisms that limit and ‘re-set’ inducible activation of NF-κB. We first describe the key components of the signalling pathways leading to activation of NF-κB, including the prominent role of protein phosphorylation and protein ubiquitylation, before briefly introducing the key features of feedback control mechanisms. We then describe the array of negative feedback loops targeting different components of the NF-κB signalling cascade including controls at the receptor level, post-receptor signalosome complexes, direct regulation of the critical ‘inhibitor of κB kinases’ (IKKs) and inhibitory feedforward regulation of NF-κB-dependent transcriptional responses. We also review post-transcriptional feedback controls affecting RNA stability and translation. Finally, we describe the deregulation of these feedback controls in human disease and consider how feedback may be a challenge to the efficacy of inhibitors.
Collapse
|
12
|
Duarte JN. Neuroinflammatory Mechanisms of Mitochondrial Dysfunction and Neurodegeneration in Glaucoma. J Ophthalmol 2021; 2021:4581909. [PMID: 33953963 PMCID: PMC8064803 DOI: 10.1155/2021/4581909] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/29/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
The exact mechanism of retinal ganglion cell loss in the pathogenesis of glaucoma is yet to be understood. Mitochondrial damage-associated molecular patterns (DAMPs) resulting from mitochondrial dysfunction have been linked to Leber's hereditary optic neuropathy and autosomal dominant optic atrophy, as well as to brain neurodegenerative diseases. Recent evidence shows that, in conditions where mitochondria are damaged, a sustained inflammatory response and downstream pathological inflammation may ensue. Mitochondrial damage has been linked to the accumulation of age-related mitochondrial DNA mutations and mitochondrial dysfunction, possibly through aberrant reactive oxygen species production and defective mitophagy. The present review focuses on how mitochondrial dysfunction may overwhelm the ability of neurons and glial cells to adequately maintain homeostasis and how mitochondria-derived DAMPs trigger the immune system and induce neurodegeneration.
Collapse
Affiliation(s)
- Joao N. Duarte
- Neuroinflammation Unit, Biotech Research & Innovation Center, University of Copenhagen, Copenhagen, Denmark
- Department of Ophthalmology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Immunology, Section 7631, Rigshospitalet, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Host genetics exerts lifelong effects upon hindgut microbiota and its association with bovine growth and immunity. ISME JOURNAL 2021; 15:2306-2321. [PMID: 33649551 PMCID: PMC8319427 DOI: 10.1038/s41396-021-00925-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 12/22/2022]
Abstract
The gut microbiota is a complex ecological community that plays multiple critical roles within a host. Known intrinsic and extrinsic factors affect gut microbiota structure, but the influence of host genetics is understudied. To investigate the role of host genetics upon the gut microbiota structure, we performed a longitudinal study in which we evaluated the hindgut microbiota and its association with animal growth and immunity across life. We evaluated three different growth stages in an Angus-Brahman multibreed population with a graduated spectrum of genetic variation, raised under variable environmental conditions and diets. We found the gut microbiota structure was changed significantly during growth when preweaning, and fattening calves experienced large variations in diet and environmental changes. However, regardless of the growth stage, we found gut microbiota is significantly influenced by breed composition throughout life. Host genetics explained the relative abundances of 52.2%, 40.0%, and 37.3% of core bacterial taxa at the genus level in preweaning, postweaning, and fattening calves, respectively. Sutterella, Oscillospira, and Roseburia were consistently associated with breed composition at these three growth stages. Especially, butyrate-producing bacteria, Roseburia and Oscillospira, were associated with nine single-nucleotide polymorphisms (SNPs) located in genes involved in the regulation of host immunity and metabolism in the hindgut. Furthermore, minor allele frequency analysis found breed-associated SNPs in the short-chain fatty acids (SCFAs) receptor genes that promote anti-inflammation and enhance intestinal epithelial barrier functions. Our findings provide evidence of dynamic and lifelong host genetic effects upon gut microbiota, regardless of growth stages. We propose that diet, environmental changes, and genetic components may explain observed variation in critical hindgut microbiota throughout life.
Collapse
|
14
|
Moazzeni H, Khani M, Elahi E. Insights into the regulatory molecules involved in glaucoma pathogenesis. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:782-827. [PMID: 32935930 DOI: 10.1002/ajmg.c.31833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022]
Abstract
Glaucoma is an important cause of irreversible blindness, characterized by optic nerve anomalies. Increased intraocular pressure (IOP) and aging are major risk factors. Retinal ganglion cells and trabecular meshwork cells are certainly involved in the etiology of glaucoma. Glaucoma is usually a complex disease, and various genes and functions may contribute to its etiology. Among these may be genes that encode regulatory molecules. In this review, regulatory molecules including 18 transcription factors (TFs), 195 microRNAs (miRNAs), 106 long noncoding RNAs (lncRNAs), and two circular RNAs (circRNAs) that are reasonable candidates for having roles in glaucoma pathogenesis are described. The targets of the regulators are reported. Glaucoma-related features including apoptosis, stress responses, immune functions, ECM properties, IOP, and eye development are affected by the targeted genes. The targeted genes that are frequently targeted by multiple regulators most often affect apoptosis and the related features of cell death and cell survival. BCL2, CDKN1A, and TP53 are among the frequent targets of three types of glaucoma-relevant regulators, TFs, miRNAs, and lncRNAs. TP53 was itself identified as a glaucoma-relevant TF. Several of the glaucoma-relevant TFs are themselves among frequent targets of regulatory molecules, which is consistent with existence of a complex network involved in glaucoma pathogenesis.
Collapse
Affiliation(s)
- Hamidreza Moazzeni
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Marzieh Khani
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
15
|
Saccà SC, Paluan F, Gandolfi S, Manni G, Cutolo CA, Izzotti A. Common aspects between glaucoma and brain neurodegeneration. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 786:108323. [PMID: 33339584 DOI: 10.1016/j.mrrev.2020.108323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/10/2020] [Indexed: 01/05/2023]
Abstract
Neurodegeneration can be defined as progressive cell damage to nervous system cells, and more specifically to neurons, which involves morphologic alterations and progressive loss of function until cell death. Glaucoma exhibits many aspects of neurodegenerative disease. This review examines the pathogenesis of glaucoma, comparing it with that of Alzheimer's disease (AD) and Parkinson's disease (PD), highlighting their common features. Indeed, in all three diseases there are not only the same types of pathogenic events, but also similarities of temporal cadences that determine neuronal damage. All three age-related illnesses have oxidative damage and mitochondrial dysfunction as the first pathogenic steps. The consequence of these alterations is the death of visual neurons in glaucoma, cognitive neurons in AD and regulatory motor neurons (substantia nigra) in PD. The study of these common pathogenic events (oxidative stress, mitochondrial dysfunction, protein degradation, apoptosis and autophagy) leads us to consider common therapeutic strategies for the treatment and prevention of these diseases. Also, examination of the genetic aspects of the pathways involved in neurodegenerative processes plays a key role in shedding light on the details of pathogenesis and can suggest new treatments. This review discusses the common molecular aspects involved in these three oxidative-stress and age-related diseases.
Collapse
Affiliation(s)
| | - Filippo Paluan
- Department of Health Sciences, University of Genoa, Genoa., Italy
| | - Stefano Gandolfi
- Ophthalmology Unit, Department of Biological, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - Gianluca Manni
- Dept. of Clinical Science and Translational Medicine, University Tor Vergata, Rome, Italy; IRCCS-Fondazione GB Bietti, Rome, Italy
| | | | - Alberto Izzotti
- IRCCS Policlinico San Martino, Genoa, Italy; Department of Experimental Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
16
|
Lee WS, Kato M, Sugawara E, Kono M, Kudo Y, Kono M, Fujieda Y, Bohgaki T, Amengual O, Oku K, Yasuda S, Onodera T, Iwasaki N, Atsumi T. Protective Role of Optineurin Against Joint Destruction in Rheumatoid Arthritis Synovial Fibroblasts. Arthritis Rheumatol 2020; 72:1493-1504. [DOI: 10.1002/art.41290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/14/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Wen Shi Lee
- Hokkaido University, Sapporo, Japan, and Tokyo Medical and Dental University Tokyo Japan
| | | | | | | | | | | | | | | | | | | | - Shinsuke Yasuda
- Hokkaido University, Sapporo, Japan, and Tokyo Medical and Dental University Tokyo Japan
| | | | | | | |
Collapse
|
17
|
Guo Q, Wang J, Weng Q. The diverse role of optineurin in pathogenesis of disease. Biochem Pharmacol 2020; 180:114157. [PMID: 32687832 DOI: 10.1016/j.bcp.2020.114157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Optineurin is a widely expressed protein that possesses multiple functions. Growing evidence suggests that mutation or dysregulation of optineurin can cause several neurodegenerative diseases, including amyotrophic lateral sclerosis, primary open-angle glaucoma, and Huntington's disease, as well as inflammatory digestive disorders such as Crohn's disease. Optineurin engages in vesicular trafficking, receptor regulation, immune reactions, autophagy, and distinct signaling pathways including nuclear factor kappa beta, by which optineurin contributes to cellular death and related diseases, indicating its potential as a therapeutic target. In this review, we discuss the major functions and signaling pathways of optineurin. Furthermore, we illustrate the influence of optineurin mutation or dysregulation to region-specific pathogenesis as well as potential applications of optineurin in therapeutic strategies.
Collapse
Affiliation(s)
- Qingyi Guo
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Saccà SC, Vernazza S, Iorio EL, Tirendi S, Bassi AM, Gandolfi S, Izzotti A. Molecular changes in glaucomatous trabecular meshwork. Correlations with retinal ganglion cell death and novel strategies for neuroprotection. PROGRESS IN BRAIN RESEARCH 2020; 256:151-188. [PMID: 32958211 DOI: 10.1016/bs.pbr.2020.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glaucoma is a chronic neurodegenerative disease characterized by retinal ganglion cell loss. Although significant advances in ophthalmologic knowledge and practice have been made, some glaucoma mechanisms are not yet understood, therefore, up to now there is no effective treatment able to ensure healing. Indeed, either pharmacological or surgical approaches to this disease aim in lowering intraocular pressure, which is considered the only modifiable risk factor. However, it is well known that several factors and metabolites are equally (if not more) involved in glaucoma. Oxidative stress, for instance, plays a pivotal role in both glaucoma onset and progression because it is responsible for the trabecular meshwork cell damage and, consequently, for intraocular pressure increase as well as for glaucomatous damage cascade. This review at first shows accurately the molecular-derived dysfunctions in antioxidant system and in mitochondria homeostasis which due to both oxidative stress and aging, lead to a chronic inflammation state, the trabecular meshwork damage as well as the glaucoma neurodegeneration. Therefore, the main molecular events triggered by oxidative stress up to the proapoptotic signals that promote the ganglion cell death have been highlighted. The second part of this review, instead, describes some of neuroprotective agents such as polyphenols or polyunsaturated fatty acids as possible therapeutic source against the propagation of glaucomatous damage.
Collapse
Affiliation(s)
- Sergio C Saccà
- Policlinico San Martino University Hospital, Department of Neuroscience and sense organs, Ophthalmology Unit, Genoa, Italy.
| | | | | | - Sara Tirendi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | - Stefano Gandolfi
- Ophthalmology Unit, Department of Biological, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - Alberto Izzotti
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Mutagenesis Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
19
|
O'Loughlin T, Kruppa AJ, Ribeiro ALR, Edgar JR, Ghannam A, Smith AM, Buss F. OPTN recruitment to a Golgi-proximal compartment regulates immune signalling and cytokine secretion. J Cell Sci 2020; 133:jcs239822. [PMID: 32376785 PMCID: PMC7328155 DOI: 10.1242/jcs.239822] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Optineurin (OPTN) is a multifunctional protein involved in autophagy and secretion, as well as nuclear factor κB (NF-κB) and IRF3 signalling, and OPTN mutations are associated with several human diseases. Here, we show that, in response to viral RNA, OPTN translocates to foci in the perinuclear region, where it negatively regulates NF-κB and IRF3 signalling pathways and downstream pro-inflammatory cytokine secretion. These OPTN foci consist of a tight cluster of small membrane vesicles, which are positive for ATG9A. Disease mutations in OPTN linked to primary open-angle glaucoma (POAG) cause aberrant foci formation in the absence of stimuli, which correlates with the ability of OPTN to inhibit signalling. By using proximity labelling proteomics, we identify the linear ubiquitin assembly complex (LUBAC), CYLD and TBK1 as part of the OPTN interactome and show that these proteins are recruited to this OPTN-positive perinuclear compartment. Our work uncovers a crucial role for OPTN in dampening NF-κB and IRF3 signalling through the sequestration of LUBAC and other positive regulators in this viral RNA-induced compartment, leading to altered pro-inflammatory cytokine secretion.
Collapse
Affiliation(s)
- Thomas O'Loughlin
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Antonina J Kruppa
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Andre L R Ribeiro
- Microbial Diseases, Eastman Dental Institute, University College London, London WC1X 8LD, UK
- Department of Oral and Maxillofacial Surgery, University Centre of Pará, Belém, Brazil
| | - James R Edgar
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Abdulaziz Ghannam
- Microbial Diseases, Eastman Dental Institute, University College London, London WC1X 8LD, UK
| | - Andrew M Smith
- Microbial Diseases, Eastman Dental Institute, University College London, London WC1X 8LD, UK
| | - Folma Buss
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
20
|
Chernyshova K, Inoue K, Yamashita SI, Fukuchi T, Kanki T. Glaucoma-Associated Mutations in the Optineurin Gene Have Limited Impact on Parkin-Dependent Mitophagy. ACTA ACUST UNITED AC 2019; 60:3625-3635. [DOI: 10.1167/iovs.19-27184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Kseniia Chernyshova
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Ophthalmology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Keiichi Inoue
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shun-Ichi Yamashita
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takeo Fukuchi
- Department of Ophthalmology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomotake Kanki
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
21
|
Yamaguchi Y, Ayaki T, Li F, Tsujimura A, Kamada M, Ito H, Maki T, Sawamoto N, Urushitani M, Takahashi R. Phosphorylated NF-κB subunit p65 aggregates in granulovacuolar degeneration and neurites in neurodegenerative diseases with tauopathy. Neurosci Lett 2019; 704:229-235. [DOI: 10.1016/j.neulet.2019.03.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
|
22
|
Selective Autophagy Regulates Innate Immunity Through Cargo Receptor Network. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1209:145-166. [DOI: 10.1007/978-981-15-0606-2_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Markovinovic A, Ljutic T, Béland LC, Munitic I. Optineurin Insufficiency Disbalances Proinflammatory and Anti-inflammatory Factors by Reducing Microglial IFN-β Responses. Neuroscience 2018; 388:139-151. [DOI: 10.1016/j.neuroscience.2018.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022]
|
24
|
Weil R, Laplantine E, Curic S, Génin P. Role of Optineurin in the Mitochondrial Dysfunction: Potential Implications in Neurodegenerative Diseases and Cancer. Front Immunol 2018; 9:1243. [PMID: 29971063 PMCID: PMC6018216 DOI: 10.3389/fimmu.2018.01243] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022] Open
Abstract
Optineurin (Optn) is a 577 aa protein encoded by the Optn gene. Mutations of Optn are associated with normal tension glaucoma and amyotrophic lateral sclerosis, and its gene has also been linked to the development of Paget’s disease of bone and Crohn’s disease. Optn is involved in diverse cellular functions, including NF-κB regulation, membrane trafficking, exocytosis, vesicle transport, reorganization of actin and microtubules, cell cycle control, and autophagy. Besides its role in xenophagy and autophagy of aggregates, Optn has been identified as a primary autophagy receptor, among the five adaptors that translocate to mitochondria during mitophagy. Mitophagy is a selective macroautophagy process during which irreparable mitochondria are degraded, preventing accumulation of defective mitochondria and limiting the release of reactive oxygen species and proapoptotic factors. Mitochondrial quality control via mitophagy is central to the health of cells. One of the important surveillance pathways of mitochondrial health is the recently defined signal transduction pathway involving the mitochondrial PTEN-induced putative kinase 1 (PINK1) protein and the cytosolic RING-between-RING ubiquitin ligase Parkin. Both of these proteins, when mutated, have been identified in certain forms of Parkinson’s disease. By targeting ubiquitinated mitochondria to autophagosomes through its association with autophagy related proteins, Optn is responsible for a critical step in mitophagy. This review reports recent discoveries on the role of Optn in mitophagy and provides insight into its link with neurodegenerative diseases. We will also discuss the involvement of Optn in other pathologies in which mitophagy dysfunctions are involved including cancer.
Collapse
Affiliation(s)
- Robert Weil
- Laboratory of Signaling and Pathogenesis, Institut Pasteur, CNRS UMR3691, Paris, France
| | - Emmanuel Laplantine
- Laboratory of Signaling and Pathogenesis, Institut Pasteur, CNRS UMR3691, Paris, France
| | - Shannel Curic
- Laboratory of Signaling and Pathogenesis, Institut Pasteur, CNRS UMR3691, Paris, France
| | - Pierre Génin
- Laboratory of Signaling and Pathogenesis, Institut Pasteur, CNRS UMR3691, Paris, France
| |
Collapse
|
25
|
Swarup G, Sayyad Z. Altered Functions and Interactions of Glaucoma-Associated Mutants of Optineurin. Front Immunol 2018; 9:1287. [PMID: 29951055 PMCID: PMC6008547 DOI: 10.3389/fimmu.2018.01287] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/22/2018] [Indexed: 12/13/2022] Open
Abstract
Optineurin (OPTN) is an adaptor protein that is involved in mediating a variety of cellular processes such as signaling, vesicle trafficking, and autophagy. Certain mutations in OPTN (gene OPTN) are associated with primary open angle glaucoma, a leading cause of irreversible blindness, and amyotrophic lateral sclerosis, a fatal motor neuron disease. Glaucoma-associated mutations of OPTN are mostly missense mutations. OPTN mediates its functions by interacting with various proteins and altered interactions of OPTN mutants with various proteins primarily contribute to functional defects. It interacts with Rab8, myosin VI, Huntigtin, TBC1D17, and transferrin receptor to mediate various membrane vesicle trafficking pathways. It is an autophagy receptor that mediates cargo-selective as well as non-selective autophagy. Glaucoma-associated mutants of OPTN, E50K, and M98K, cause defective vesicle trafficking, autophagy, and signaling that contribute to death of retinal ganglion cells (RGCs). Transgenic mice expressing E50K-OPTN show loss of RGCs and persistent reactive gliosis. TBK1 protein kinase, which mediates E50K-OPTN and M98K-OPTN induced cell death, is emerging as a potential drug target. Autoimmunity has been implicated in glaucoma but involvement of OPTN or its mutants in autoimmnity has not been explored. In this review, we highlight the main functions of OPTN and how glaucoma-associated mutants alter these functions. We also discuss some of the controversies, such as the role of OPTN in signaling to transcription factor NF-κB, interferon signaling, and use of RGC-5 cell line as a cell culture model.
Collapse
Affiliation(s)
- Ghanshyam Swarup
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
26
|
Toth RP, Atkin JD. Dysfunction of Optineurin in Amyotrophic Lateral Sclerosis and Glaucoma. Front Immunol 2018; 9:1017. [PMID: 29875767 PMCID: PMC5974248 DOI: 10.3389/fimmu.2018.01017] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia, and glaucoma, affect millions of people worldwide. ALS is caused by the loss of motor neurons in the spinal cord, brainstem, and brain, and genetic mutations are responsible for 10% of all ALS cases. Glaucoma is characterized by the loss of retinal ganglion cells and is the most common cause of irreversible blindness. Interestingly, mutations in OPTN, encoding optineurin, are associated with both ALS and glaucoma. Optineurin is a highly abundant protein involved in a wide range of cellular processes, including the inflammatory response, autophagy, Golgi maintenance, and vesicular transport. In this review, we summarize the role of optineurin in cellular mechanisms implicated in neurodegenerative disorders, including neuroinflammation, autophagy, and vesicular trafficking, focusing in particular on the consequences of expression of mutations associated with ALS and glaucoma. This review, therefore showcases the impact of optineurin dysfunction in ALS and glaucoma.
Collapse
Affiliation(s)
- Reka P Toth
- Motor Neuron Disease Research Centre, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julie D Atkin
- Motor Neuron Disease Research Centre, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Biochemistry, La Trobe Institute for Molecular Science, Melbourne, VIC, Australia
| |
Collapse
|
27
|
Ryan TA, Tumbarello DA. Optineurin: A Coordinator of Membrane-Associated Cargo Trafficking and Autophagy. Front Immunol 2018; 9:1024. [PMID: 29867991 PMCID: PMC5962687 DOI: 10.3389/fimmu.2018.01024] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
Abstract
Optineurin is a multifunctional adaptor protein intimately involved in various vesicular trafficking pathways. Through interactions with an array of proteins, such as myosin VI, huntingtin, Rab8, and Tank-binding kinase 1, as well as via its oligomerisation, optineurin has the ability to act as an adaptor, scaffold, or signal regulator to coordinate many cellular processes associated with the trafficking of membrane-delivered cargo. Due to its diverse interactions and its distinct functions, optineurin is an essential component in a number of homeostatic pathways, such as protein trafficking and organelle maintenance. Through the binding of polyubiquitinated cargoes via its ubiquitin-binding domain, optineurin also serves as a selective autophagic receptor for the removal of a wide range of substrates. Alternatively, it can act in an ubiquitin-independent manner to mediate the clearance of protein aggregates. Regarding its disease associations, mutations in the optineurin gene are associated with glaucoma and have more recently been found to correlate with Paget’s disease of bone and amyotrophic lateral sclerosis (ALS). Indeed, ALS-associated mutations in optineurin result in defects in neuronal vesicular localisation, autophagosome–lysosome fusion, and secretory pathway function. More recent molecular and functional analysis has shown that it also plays a role in mitophagy, thus linking it to a number of other neurodegenerative conditions, such as Parkinson’s. Here, we review the role of optineurin in intracellular membrane trafficking, with a focus on autophagy, and describe how upstream signalling cascades are critical to its regulation. Current data and contradicting reports would suggest that optineurin is an important and selective autophagy receptor under specific conditions, whereby interplay, synergy, and functional redundancy with other receptors occurs. We will also discuss how dysfunction in optineurin-mediated pathways may lead to perturbation of critical cellular processes, which can drive the pathologies of number of diseases. Therefore, further understanding of optineurin function, its target specificity, and its mechanism of action will be critical in fully delineating its role in human disease.
Collapse
Affiliation(s)
- Thomas A Ryan
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - David A Tumbarello
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
28
|
Slowicka K, van Loo G. Optineurin Functions for Optimal Immunity. Front Immunol 2018; 9:769. [PMID: 29692786 PMCID: PMC5902560 DOI: 10.3389/fimmu.2018.00769] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/27/2018] [Indexed: 12/04/2022] Open
Abstract
Optineurin (OPTN) was identified 20 years ago in a yeast-two-hybrid screen with a viral protein known to inhibit the cytolytic effects of tumor necrosis factor. Since then, OPTN has been identified as a ubiquitin-binding protein involved in many signaling pathways and cellular processes, and mutations in the OPTN gene have been associated with glaucoma, Paget’s disease of bone and neurodegenerative pathologies. Its role in autophagy, however, has attracted most attention in recent years and may explain (some of) the mechanisms behind the disease-associated mutations of OPTN. In this brief review, we focus on the role of OPTN in inflammation and immunity and describe how this may translate to its involvement in human disease.
Collapse
Affiliation(s)
- Karolina Slowicka
- Unit of Cellular and Molecular Pathophysiology, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Geert van Loo
- Unit of Cellular and Molecular Pathophysiology, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
29
|
Tschurtschenthaler M, Adolph TE. The Selective Autophagy Receptor Optineurin in Crohn's Disease. Front Immunol 2018; 9:766. [PMID: 29692785 PMCID: PMC5902526 DOI: 10.3389/fimmu.2018.00766] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/27/2018] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a pathway that allows cells to target organelles, protein complexes, or invading microorganisms for lysosomal degradation. The specificity of autophagic processes is becoming increasingly recognized and is conferred by selective autophagy receptors such as Optineurin (OPTN). As an autophagy receptor, OPTN controls the clearance of Salmonella infection and mediates mitochondrial turnover. Recent studies demonstrated that OPTN is critically required for pathogen clearance and an appropriate cytokine response in macrophages. Moreover, OPTN emerges as a critical regulator of inflammation emanating from epithelial cells in the intestine. OPTN directly interacts with and promotes the removal of inositol-requiring enzyme 1α, a central inflammatory signaling hub of the stressed endoplasmic reticulum (ER). Perturbations of ER and autophagy functions have been linked to inflammatory bowel disease (IBD) and specifically Crohn's disease. Collectively, these studies may explain how perturbations at the ER can be resolved by selective autophagy to restrain inflammatory processes in the intestine and turn the spotlight on OPTN as a key autophagy receptor. This review covers a timely perspective on the regulation and function of OPTN in health and IBD.
Collapse
Affiliation(s)
- Markus Tschurtschenthaler
- Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Timon Erik Adolph
- Department of Medicine I (Gastroenterology, Endocrinology and Metabolism), Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
30
|
Wang L, Yan J, Niu H, Huang R, Wu S. Autophagy and Ubiquitination in Salmonella Infection and the Related Inflammatory Responses. Front Cell Infect Microbiol 2018; 8:78. [PMID: 29594070 PMCID: PMC5861197 DOI: 10.3389/fcimb.2018.00078] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/27/2018] [Indexed: 12/12/2022] Open
Abstract
Salmonellae are facultative intracellular pathogens that cause globally distributed diseases with massive morbidity and mortality in humans and animals. In the past decades, numerous studies were focused on host defenses against Salmonella infection. Autophagy has been demonstrated to be an important defense mechanism to clear intracellular pathogenic organisms, as well as a regulator of immune responses. Ubiquitin modification also has multiple effects on the host immune system against bacterial infection. It has been indicated that ubiquitination plays critical roles in recognition and clearance of some invading bacteria by autophagy. Additionally, the ubiquitination of autophagy proteins in autophagy flux and inflammation-related substance determines the outcomes of infection. However, many intracellular pathogens manipulate the ubiquitination system to counteract the host immunity. Salmonellae interfere with host responses via the delivery of ~30 effector proteins into cytosol to promote their survival and proliferation. Among them, some could link the ubiquitin-proteasome system with autophagy during infection and affect the host inflammatory responses. In this review, novel findings on the issue of ubiquitination and autophagy connection as the mechanisms of host defenses against Salmonella infection and the subverted processes are introduced.
Collapse
Affiliation(s)
- Lidan Wang
- Department of Microbiology, Medical College of Soochow University, Suzhou, China
| | - Jing Yan
- Department of Microbiology, Medical College of Soochow University, Suzhou, China
| | - Hua Niu
- Department of Microbiology, Medical College of Soochow University, Suzhou, China
| | - Rui Huang
- Department of Microbiology, Medical College of Soochow University, Suzhou, China
| | - Shuyan Wu
- Department of Microbiology, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
31
|
Vendelova E, Ashour D, Blank P, Erhard F, Saliba AE, Kalinke U, Lutz MB. Tolerogenic Transcriptional Signatures of Steady-State and Pathogen-Induced Dendritic Cells. Front Immunol 2018. [PMID: 29541071 PMCID: PMC5835767 DOI: 10.3389/fimmu.2018.00333] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) are key directors of tolerogenic and immunogenic immune responses. During the steady state, DCs maintain T cell tolerance to self-antigens by multiple mechanisms including inducing anergy, deletion, and Treg activity. All of these mechanisms help to prevent autoimmune diseases or other hyperreactivities. Different DC subsets contribute to pathogen recognition by expression of different subsets of pattern recognition receptors, including Toll-like receptors or C-type lectins. In addition to the triggering of immune responses in infected hosts, most pathogens have evolved mechanisms for evasion of targeted responses. One such strategy is characterized by adopting the host’s T cell tolerance mechanisms. Understanding these tolerogenic mechanisms is of utmost importance for therapeutic approaches to treat immune pathologies, tumors and infections. Transcriptional profiling has developed into a potent tool for DC subset identification. Here, we review and compile pathogen-induced tolerogenic transcriptional signatures from mRNA profiling data of currently available bacterial- or helminth-induced transcriptional signatures. We compare them with signatures of tolerogenic steady-state DC subtypes to identify common and divergent strategies of pathogen induced immune evasion. Candidate molecules are discussed in detail. Our analysis provides further insights into tolerogenic DC signatures and their exploitation by different pathogens.
Collapse
Affiliation(s)
- Emilia Vendelova
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Diyaaeldin Ashour
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Patrick Blank
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Manfred B Lutz
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
32
|
Wiggs JL, Pasquale LR. Genetics of glaucoma. Hum Mol Genet 2017; 26:R21-R27. [PMID: 28505344 DOI: 10.1093/hmg/ddx184] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022] Open
Abstract
Genetic and genomic studies, including genome-wide association studies (GWAS) have accelerated the discovery of genes contributing to glaucoma, the leading cause of irreversible blindness world-wide. Glaucoma can occur at all ages, with Mendelian inheritance typical for the rare early onset disease (before age 40) and complex inheritance evident in common adult-onset forms of disease. Recent studies have suggested possible therapeutic targets for some patients with early-onset glaucoma based on the molecular and cellular events caused by MYOC, OPTN and TBK1 mutations. Diagnostic genetic tests using early-onset glaucoma genes are also proving useful for pre-symptomatic disease detection and genetic counseling. Recent GWAS completed for three types of common adult-onset glaucoma have identified novel loci for POAG (primary-open-angle glaucoma) (ABCA1, AFAP1, GMDS, PMM2, TGFBR3, FNDC3B, ARHGEF12, GAS7, FOXC1, ATXN2, TXNRD2); PACG (primary angle-closure glaucoma (EPDR1, CHAT, GLIS3, FERMT2, DPM2-FAM102); and exfoliation syndrome (XFS) glaucoma (CACNA1A). In total sixteen genomic regions have been associated with POAG (including the normal tension glaucoma (NTG) subgroup), 8 with PACG and 2 with XFS. These studies are defining important biological pathways and processes that contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Louis R Pasquale
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear, Boston, MA 02114, USA.,Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
33
|
Tanishima M, Takashima S, Honda A, Yasuda D, Tanikawa T, Ishii S, MaruYama T. Identification of optineurin as an interleukin-1 receptor-associated kinase 1-binding protein and its role in regulation of MyD88-dependent signaling. J Biol Chem 2017; 292:17250-17257. [PMID: 28882891 DOI: 10.1074/jbc.m117.813899] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Indexed: 12/13/2022] Open
Abstract
Upon stimulation of toll-like receptors with various microbial ligands, induction of a variety of inflammatory genes is elicited by activation of a myeloid differentiation primary-response protein 88 (MyD88)-dependent signaling pathway. Interleukin-1 (IL-1) receptor-associated kinase 1 (IRAK1) plays an essential role in this pathway by activating nuclear factor κB (NF-κB) and mitogen-activated kinases (MAPKs). Here, we identified optineurin (OPTN) as an IRAK1-binding protein by yeast two-hybrid screening using IRAK1 as bait. A C-terminal fragment of OPTN harboring a ubiquitin-binding domain was co-immunoprecipitated with IRAK1. In reporter analyses, overexpression of OPTN inhibited IL-1β-, IRAK1-, and LPS-induced NF-κB activation. Consistently, OPTN deficiency resulted in increased NF-κB activation in response to IL-1β/LPS stimulation. To address the mechanisms underlying the inhibitory effect of OPTN on NF-κB signaling, we focused on tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6), which is an adaptor protein of IRAK1 and upon polyubiquitination plays a crucial role during NF-κB activation. Overexpression of OPTN prevented TRAF6 polyubiquitination. Furthermore, OPTN H486R mutant, which is unable to recruit the deubiquitinase CYLD, failed to inhibit IRAK1-induced NF-κB activation. These results suggest that the IRAK1-binding protein OPTN negatively regulates IL-1β/LPS-induced NF-κB activation by preventing polyubiquitination of TRAF6.
Collapse
Affiliation(s)
- Mitsuyoshi Tanishima
- From the Laboratory of Cell Recognition and Response, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Shigeo Takashima
- Life Science Research Center, Gifu University, Gifu 501-1194, Japan
| | - Arata Honda
- Organization for Promotion of Tenure Track, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Daisuke Yasuda
- Department of Immunology, Akita University Graduate School of Medicine, Akita 010-8543, Japan, and
| | - Takashi Tanikawa
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan
| | - Satoshi Ishii
- Department of Immunology, Akita University Graduate School of Medicine, Akita 010-8543, Japan, and
| | - Takashi MaruYama
- From the Laboratory of Cell Recognition and Response, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan, .,Department of Immunology, Akita University Graduate School of Medicine, Akita 010-8543, Japan, and
| |
Collapse
|
34
|
Parveen S, Vedagiri D, Nair HG, Parthasarathy H, Harshan KH. Unconventional MAPK-GSK-3β Pathway Behind Atypical Epithelial-Mesenchymal Transition In Hepatocellular Carcinoma. Sci Rep 2017; 7:8842. [PMID: 28821798 PMCID: PMC5562823 DOI: 10.1038/s41598-017-09179-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/20/2017] [Indexed: 11/09/2022] Open
Abstract
We recently reported an atypical epithelial mesenchymal transition (EMT) in human hepatoma cell culture Huh7.5, which was non-responsive to the canonical EMT-transcription factors. Here we characterize major pathways regulating this atypical EMT through whole genome transcriptome profiling and molecular analysis, and identify a unique regulation of EMT by GSK-3β. Our analysis reveals remarkable suppression of several key liver-specific markers in Huh7.5M cells indicating that EMT not only changes the epithelial properties, but alters the characteristics associated with hepatocytes as well. One key finding of this study is that GSK-3β, a known antagonist to β-Catenin signaling and a major pro-apoptotic regulator, is critical for the maintenance of EMT in Huh7.5M cells as its inhibition reversed EMT. Importantly, through these studies we identify that maintenance of EMT by GSK-3β in Huh7.5M is regulated by p38MAPK and ERK1/2 that has not been reported elsewhere and is distinct from another metastatic non-hepatic cell line MDA-MB-231. These data showcase the existence of non-canonical mechanisms behind EMT. The atypicalness of this system underlines the existence of tremendous diversity in cancer-EMT and warrants the necessity to take a measured approach while dealing with metastasis and cancer drug resistance.
Collapse
Affiliation(s)
- Sana Parveen
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Dhiviya Vedagiri
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Hitha Gopalan Nair
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | | | | |
Collapse
|
35
|
Senoo K, Yamashiro K, Yamamoto T, Myokai F, Kawamura M, Takashiba S. Expression of optineurin isolated from rat-injured dental pulp and the effects on inflammatory signals in normal rat kidney cells. Odontology 2017; 106:135-144. [DOI: 10.1007/s10266-017-0314-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 06/04/2017] [Indexed: 01/14/2023]
|
36
|
Markovinovic A, Cimbro R, Ljutic T, Kriz J, Rogelj B, Munitic I. Optineurin in amyotrophic lateral sclerosis: Multifunctional adaptor protein at the crossroads of different neuroprotective mechanisms. Prog Neurobiol 2017; 154:1-20. [PMID: 28456633 DOI: 10.1016/j.pneurobio.2017.04.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/09/2017] [Accepted: 04/16/2017] [Indexed: 12/12/2022]
Abstract
When optineurin mutations showed up on the amyotrophic lateral sclerosis (ALS) landscape in 2010, they differed from most other ALS-causing genes. They seemed to act by loss- rather than gain-of-function, and it was unclear how a polyubiquitin-binding adaptor protein, which was proposed to regulate a variety of cellular functions including cell signaling and vesicle trafficking, could mediate neuroprotection. This review discusses the considerable progress that has been made since then. A large number of mutations in optineurin and optineurin-interacting proteins TANK-binding kinase (TBK1) and p62/SQSTM-1 have been found in the ALS patients, suggesting a common neuroprotective pathway. Moreover, functional studies of the ALS-causing optineurin mutations and the recently established optineurin ubiquitin-binding deficient and knockout mouse models helped identify three major mechanisms likely to mediate neuroprotection: regulation of autophagy, mitigation of (chronic) inflammatory signaling, and blockade of necroptosis. These three processes crosstalk, and require multiple levels of control, many of which can be mediated by optineurin. Based on the role of optineurin in multiple processes and the unexpected finding that targeted optineurin deletion in microglia and oligodendrocytes ultimately leads to the same phenotype of axonal degeneration despite different initial defects, we propose that the failure of the weakest link in the optineurin neuroprotective network is sufficient to disturb homeostasis and set-off the domino effect that could ultimately lead to neurodegeneration.
Collapse
Affiliation(s)
- Andrea Markovinovic
- Laboratory of Molecular Immunology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Raffaello Cimbro
- Division of Rheumatology, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Tereza Ljutic
- Laboratory of Molecular Immunology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Jasna Kriz
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Research Centre of the Mental Health Institute of Quebec, Laval University, Quebec, Quebec G1J 2G3, Canada
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Biomedical Research Institute BRIS, SI-1000 Ljubljana, Slovenia
| | - Ivana Munitic
- Laboratory of Molecular Immunology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia.
| |
Collapse
|
37
|
Lin B, Xu D, Leaman DW. X-linked inhibitor of apoptosis-associated factor 1 regulates TNF receptor 1 complex stability. FEBS Lett 2016; 590:4381-4392. [PMID: 27768232 DOI: 10.1002/1873-3468.12467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/17/2016] [Accepted: 08/30/2016] [Indexed: 11/06/2022]
Abstract
X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) is a cytokine-regulated, tumor necrosis factor (TNF) receptor-associated factor (TRAF) domain-containing protein that has a poorly defined cellular function. Here, we show that ectopically expressed XAF1 inhibits TNF-ɑ-induced NF-κB activation, whereas shRNA silencing of endogenous XAF1 augments it. Our data suggest that XAF1 may inhibit TNF-ɑ-induced NF-κB activation by disrupting the assembly of the TRADD/TRAF2/RIP1 complex (complex I) downstream of TNF receptor activation. XAF1 interacts with TRAF2 and inhibits TRAF2-dependent NF-κB activation, in part, by blocking TRAF2 polyubiquitination. Our findings also indicate that although XAF1 does not directly inhibit RIP1-dependent NF-κB activation, it binds RIP1 and disrupts RIP1/TRADD association. Our data suggest that XAF1 acts as a feedback regulator of the TNF receptor signaling pathway to suppress NF-κB activation.
Collapse
Affiliation(s)
- Boren Lin
- Department of Biological Sciences, The University of Toledo, OH, USA
| | - Da Xu
- Department of Biological Sciences, The University of Toledo, OH, USA
| | - Douglas W Leaman
- Department of Biological Sciences, The University of Toledo, OH, USA
| |
Collapse
|
38
|
Mitochondrial pathogenic mechanism and degradation in optineurin E50K mutation-mediated retinal ganglion cell degeneration. Sci Rep 2016; 6:33830. [PMID: 27654856 PMCID: PMC5031982 DOI: 10.1038/srep33830] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 09/02/2016] [Indexed: 01/15/2023] Open
Abstract
Mutations in optineurin (OPTN) are linked to the pathology of primary open angle glaucoma (POAG) and amyotrophic lateral sclerosis. Emerging evidence indicates that OPTN mutation is involved in accumulation of damaged mitochondria and defective mitophagy. Nevertheless, the role played by an OPTN E50K mutation in the pathogenic mitochondrial mechanism that underlies retinal ganglion cell (RGC) degeneration in POAG remains unknown. We show here that E50K expression induces mitochondrial fission-mediated mitochondrial degradation and mitophagy in the axons of the glial lamina of aged E50K−tg mice in vivo. While E50K activates the Bax pathway and oxidative stress, and triggers dynamics alteration-mediated mitochondrial degradation and mitophagy in RGC somas in vitro, it does not affect transport dynamics and fission of mitochondria in RGC axons in vitro. These results strongly suggest that E50K is associated with mitochondrial dysfunction in RGC degeneration in synergy with environmental factors such as aging and/or oxidative stress.
Collapse
|
39
|
Saccà SC, Gandolfi S, Bagnis A, Manni G, Damonte G, Traverso CE, Izzotti A. From DNA damage to functional changes of the trabecular meshwork in aging and glaucoma. Ageing Res Rev 2016; 29:26-41. [PMID: 27242026 DOI: 10.1016/j.arr.2016.05.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/24/2022]
Abstract
Glaucoma is a degenerative disease of the eye. Both the anterior and posterior segments of the eye are affected, extensive damage being detectable in the trabecular meshwork and the inner retina-central visual pathway complex. Oxidative stress is claimed to be mainly responsible for molecular damage in the anterior chamber. Indeed, oxidation harms the trabecular meshwork, leading eventually to endothelial cell decay, tissue malfunction, subclinical inflammation, changes in the extracellular matrix and cytoskeleton, altered motility, reduced outflow facility and (ultimately) increased IOP. Moreover, free radicals are involved in aging and can be produced in the brain (as well as in the eye) as a result of ischemia, leading to oxidation of the surrounding neurons. Glaucoma-related cell death occurs by means of apoptosis, and apoptosis is triggered by oxidative stress via (a) mitochondrial damage, (b) inflammation, (c) endothelial dysregulation and dysfunction, and (d) hypoxia. The proteomics of the aqueous humor is significantly altered in glaucoma as a result of oxidation-induced trabecular damage. Those proteins whose aqueous humor levels are increased in glaucoma are biomarkers of trabecular meshwork impairment. Their diffusion from the anterior to the posterior segment of the eye may be relevant in the cascade of events triggering apoptosis in the inner retinal layers, including the ganglion cells.
Collapse
Affiliation(s)
- Sergio Claudio Saccà
- IRCCS San Martino University Hospital, Department of Neuroscience and Sense Organs, San Martino Hospital, Ophthalmology Unit, Viale Benedetto XV, 16132 Genoa, Italy.
| | - Stefano Gandolfi
- Ophthalmology Unit, Department of Biological, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - Alessandro Bagnis
- University of Genoa, Eye Clinic, Department of Neuroscience and Sense Organs, Viale Benedetto XV, 5, 16148 Genoa, Italy
| | - Gianluca Manni
- Dept. of Clinical Science and Translational Medicine, University Tor Vergata, Rome, Italy
| | - Gianluca Damonte
- Dept. of Experimental Medicine, Section of Biochemistry and Center of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Carlo Enrico Traverso
- University of Genoa, Eye Clinic, Department of Neuroscience and Sense Organs, Viale Benedetto XV, 5, 16148 Genoa, Italy
| | - Alberto Izzotti
- Mutagenesis Unit, IRCCS San Martino University Hospital, IST National Institute for Cancer Research, Department of Health Sciences, University of Genoa, Via A. Pastore 1, Genoa I-16132, Italy
| |
Collapse
|
40
|
Slowicka K, Vereecke L, van Loo G. Cellular Functions of Optineurin in Health and Disease. Trends Immunol 2016; 37:621-633. [PMID: 27480243 DOI: 10.1016/j.it.2016.07.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022]
Abstract
Optineurin (OPTN) was initially identified as a regulator of NF-κB and interferon signaling, but attracted most attention because of its association with various human disorders such as glaucoma, Paget disease of bone, and amyotrophic lateral sclerosis. Importantly, OPTN has recently been identified as an autophagy receptor important for the autophagic removal of pathogens, damaged mitochondria, and protein aggregates. This activity is most likely compromised in patients carrying OPTN mutations, and contributes to the observed phenotypes. In this review we summarize recent studies describing the molecular mechanisms by which OPTN controls immunity and autophagy, and discuss these findings in the context of several diseases that have been associated with OPTN (mal)function.
Collapse
Affiliation(s)
- Karolina Slowicka
- Inflammation Research Center, Unit of Cellular and Molecular (Patho)Physiology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Lars Vereecke
- Inflammation Research Center, Unit of Cellular and Molecular (Patho)Physiology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Geert van Loo
- Inflammation Research Center, Unit of Cellular and Molecular (Patho)Physiology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
41
|
Zhu M, Li A, Chen J, Zhang S, Wu J. Effects of optineurin mutants on SH-SY5Y cell survival. Mol Cell Neurosci 2016; 74:18-24. [DOI: 10.1016/j.mcn.2016.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/17/2016] [Accepted: 03/04/2016] [Indexed: 10/22/2022] Open
|
42
|
Lim R, Barker G, Lappas M. Optineurin suppression activates the mediators involved in the terminal effector pathways of human labour and delivery. Reprod Fertil Dev 2016; 29:1074-1084. [PMID: 27133964 DOI: 10.1071/rd15494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/19/2016] [Indexed: 11/23/2022] Open
Abstract
Spontaneous preterm birth remains the major cause of neonatal death and morbidity. Studies in non-gestational tissues report that optineurin (OPTN) is critical in the termination of NFKB1 activity and control of inflammation, central features of spontaneous preterm birth. The aims of the present study were to determine: (1) OPTN expression in fetal membranes and the myometrium during labour; (2) the effects of IL1B on OPTN expression in primary myometrial cells; and (3) the effects of OPTN short interference (si) RNA on IL1B-stimulated proinflammatory and prolabour mediators. OPTN mRNA and protein expression was significantly decreased with spontaneous term labour in fetal membranes and the myometrium. Although there was no effect of spontaneous preterm labour on OPTN expression in fetal membranes, there was decreased OPTN expression in membranes with chorioamnionitis and myometrial cells treated with 1ng mL-1 IL1B for 1 or 6h. In cells transfected with OPTN siRNA, significant increases were seen in IL1B-stimulated IL6, tumour necrosis factor, CXCL8 and monocyte chemoattractant protein-1 mRNA expression and release, cyclo-oxygenase-2 and prostanoid PTGFR receptor mRNA expression and the release of prostaglandin F2α. There was no change in IL1B-stimulated NFKBIA expression; however, there was increased NFKB1 p65 DNA-binding activity. The results of the present study suggest that OPTN is a negative regulator of inflammation-induced prolabour mediators.
Collapse
Affiliation(s)
- Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, The University of Melbourne, Vic. 3084, Australia
| | - Gillian Barker
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, The University of Melbourne, Vic. 3084, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, The University of Melbourne, Vic. 3084, Australia
| |
Collapse
|
43
|
Weil R, Laplantine E, Génin P. Regulation of TBK1 activity by Optineurin contributes to cell cycle-dependent expression of the interferon pathway. Cytokine Growth Factor Rev 2016; 29:23-33. [PMID: 26976762 DOI: 10.1016/j.cytogfr.2016.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022]
Abstract
The innate immune system has evolved to detect and neutralize viral invasions. Triggering of this defense mechanism relies on the production and secretion of soluble factors that stimulate intracellular antiviral defense mechanisms. The Tank Binding Kinase 1 (TBK1) is a serine/threonine kinase in the innate immune signaling pathways including the antiviral response and the host defense against cytosolic infection by bacteries. Given the critical roles of TBK1, important regulatory mechanisms are required to regulate its activity. Among these, Optineurin (Optn) was shown to negatively regulate the interferon response, in addition to its important role in membrane trafficking, protein secretion, autophagy and cell division. As Optn does not carry any enzymatic activity, its functions depend on its precise subcellular localization and its interaction with other proteins, especially with components of the innate immune pathway. This review highlights advances in our understanding of Optn mechanisms of action with focus on the relationships between Optn and TBK1 and their implication in host defense against pathogens. Specifically, how the antiviral immune system is controlled during the cell cycle by the Optn/TBK1 axis and the physiological consequences of this regulatory mechanism are described. This review may serve to a better understanding of the relationships between the different functions of Optn, including those related to immune responses and its associated pathologies such as primary open-angle glaucoma, amyotrophic lateral sclerosis and Paget's disease of bone.
Collapse
Affiliation(s)
- Robert Weil
- Institut Pasteur, Signaling and Pathogenesis Laboratory, CNRS UMR 3691, 75724 Paris Cedex 15, France
| | - Emmanuel Laplantine
- Institut Pasteur, Signaling and Pathogenesis Laboratory, CNRS UMR 3691, 75724 Paris Cedex 15, France
| | - Pierre Génin
- Institut Pasteur, Signaling and Pathogenesis Laboratory, CNRS UMR 3691, 75724 Paris Cedex 15, France.
| |
Collapse
|
44
|
Defects in autophagy caused by glaucoma-associated mutations in optineurin. Exp Eye Res 2016; 144:54-63. [DOI: 10.1016/j.exer.2015.08.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 07/14/2015] [Accepted: 08/18/2015] [Indexed: 11/30/2022]
|
45
|
The role of autophagy in axonal degeneration of the optic nerve. Exp Eye Res 2016; 144:81-9. [DOI: 10.1016/j.exer.2015.08.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 08/06/2015] [Accepted: 08/18/2015] [Indexed: 11/21/2022]
|
46
|
Saccà SC, Gandolfi S, Bagnis A, Manni G, Damonte G, Traverso CE, Izzotti A. The Outflow Pathway: A Tissue With Morphological and Functional Unity. J Cell Physiol 2016; 231:1876-93. [PMID: 26754581 DOI: 10.1002/jcp.25305] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/06/2016] [Indexed: 12/17/2022]
Abstract
The trabecular meshwork (TM) plays an important role in high-tension glaucomas. Indeed, the TM is a true organ, through which the aqueous humor flows from the anterior chamber to Schlemm's canal (SC). Until recently, the TM, which is constituted by endothelial-like cells, was described as a kind of passive filter. In reality, it is much more. The cells delineating the structures of the collagen framework of the TM are endowed with a cytoskeleton, and are thus able to change their shape. These cells also have the ability to secrete the extracellular matrix, which expresses proteins and cytokines, and are capable of phagocytosis and autophagy. The cytoskeleton is attached to the nuclear membrane and can, in millionths of a second, send signals to the nucleus in order to alter the expression of genes in an attempt to adapt to biomechanical insult. Oxidative stress, as happens in aging, has a deleterious effect on the TM, leading eventually to cell decay, tissue malfunction, subclinical inflammation, changes in the extracellular matrix and cytoskeleton, altered motility, reduced outflow facility, and (ultimately) increased IOP. TM failure is the most relevant factor in the cascade of events triggering apoptosis in the inner retinal layers, including ganglion cells. J. Cell. Physiol. 231: 1876-1893, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sergio Claudio Saccà
- Department of Neuroscience and Sense Organs, Ophthalmology Unit, IRCCS San Martino University Hospital, San Martino Hospital, Genoa, Italy
| | - Stefano Gandolfi
- Department of Biological, Biotechnological and Translational Sciences, Ophthalmology Unit, University of Parma, Parma, Italy
| | - Alessandro Bagnis
- Department of Neuroscience and Sense Organs, Eye Clinic, University of Genoa, Genoa, Italy
| | - Gianluca Manni
- Department of Clinical Science and Translational Medicine, University Tor Vergata, Rome, Italy
| | - Gianluca Damonte
- Department of Experimental Medicine, Section of Biochemistry and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Carlo Enrico Traverso
- Department of Neuroscience and Sense Organs, Eye Clinic, University of Genoa, Genoa, Italy
| | - Alberto Izzotti
- Department of Health Sciences, Mutagenesis Unit, IRCCS San Martino University Hospital, IST National Institute for Cancer Research, University of Genoa, Genoa, Italy
| |
Collapse
|
47
|
Slowicka K, Vereecke L, Mc Guire C, Sze M, Maelfait J, Kolpe A, Saelens X, Beyaert R, van Loo G. Optineurin deficiency in mice is associated with increased sensitivity to Salmonella but does not affect proinflammatory NF-κB signaling. Eur J Immunol 2016; 46:971-80. [PMID: 26677802 DOI: 10.1002/eji.201545863] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/25/2015] [Accepted: 12/10/2015] [Indexed: 11/11/2022]
Abstract
Optineurin (OPTN) is an evolutionary conserved and ubiquitously expressed ubiquitin-binding protein that has been implicated in glaucoma, Paget bone disease, amyotrophic lateral sclerosis, and other neurodegenerative diseases. From in vitro studies, OPTN was shown to suppress TNF-induced NF-κB signaling and virus-induced IRF signaling, and was identified as an autophagy receptor required for the clearance of cytosolic Salmonella upon infection. To assess the in vivo functions of OPTN in inflammation and infection, we generated OPTN-deficient mice. OPTN knockout mice are born with normal Mendelian distribution and develop normally without any signs of spontaneous organ abnormality or inflammation. However, no differences in NF-κB activation could be observed in OPTN knockout mice or fibroblasts derived from these mice upon TNF or LPS treatment. Primary bone marrow-derived macrophages from OPTN-deficient mice had slightly impaired IRF signaling and reduced IFN type I production in response to LPS or poly(I,C). Finally, OPTN-deficient mice were more susceptible to infection with Salmonella, confirming in vivo the importance of OPTN in bacterial clearance.
Collapse
Affiliation(s)
- Karolina Slowicka
- Inflammation Research Center, Unit of Cellular and Molecular (Patho)physiology, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lars Vereecke
- Inflammation Research Center, Unit of Cellular and Molecular (Patho)physiology, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Conor Mc Guire
- Inflammation Research Center, Unit of Cellular and Molecular (Patho)physiology, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mozes Sze
- Inflammation Research Center, Unit of Cellular and Molecular (Patho)physiology, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jonathan Maelfait
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Annasaheb Kolpe
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Medical Biotechnology Centre, Ghent, Belgium
| | - Xavier Saelens
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Medical Biotechnology Centre, Ghent, Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, Ghent, Belgium
| | - Geert van Loo
- Inflammation Research Center, Unit of Cellular and Molecular (Patho)physiology, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
48
|
Obaid R, Wani SE, Azfer A, Hurd T, Jones R, Cohen P, Ralston SH, Albagha OME. Optineurin Negatively Regulates Osteoclast Differentiation by Modulating NF-κB and Interferon Signaling: Implications for Paget's Disease. Cell Rep 2015; 13:1096-1102. [PMID: 26527009 PMCID: PMC4646838 DOI: 10.1016/j.celrep.2015.09.071] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 09/08/2015] [Accepted: 09/24/2015] [Indexed: 01/31/2023] Open
Abstract
Paget's disease of bone (PDB) is a common disease characterized by osteoclast activation that leads to various skeletal complications. Susceptibility to PDB is mediated by a common variant at the optineurin (OPTN) locus, which is associated with reduced levels of mRNA. However, it is unclear how this leads to the development of PDB. Here, we show that OPTN acts as a negative regulator of osteoclast differentiation in vitro and that mice with a loss-of-function mutation in Optn have increased osteoclast activity and bone turnover. Osteoclasts derived from Optn mutant mice have an increase in NF-κB activation and a reduction in interferon beta expression in response to RANKL when compared to wild-type mice. These studies identify OPTN as a regulator of bone resorption and are consistent with a model whereby genetically determined reductions in OPTN expression predispose to PDB by enhancing osteoclast differentiation.
Collapse
Affiliation(s)
- Rami Obaid
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Sachin E Wani
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Asim Azfer
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Toby Hurd
- Medical Research Council Human Genetic Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Ruth Jones
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, The Sir James Black Centre, University of Dundee, Dundee DD1 5HE, UK
| | - Philip Cohen
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, The Sir James Black Centre, University of Dundee, Dundee DD1 5HE, UK
| | - Stuart H Ralston
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Omar M E Albagha
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.
| |
Collapse
|
49
|
A Glaucoma-Associated Variant of Optineurin, M98K, Activates Tbk1 to Enhance Autophagosome Formation and Retinal Cell Death Dependent on Ser177 Phosphorylation of Optineurin. PLoS One 2015; 10:e0138289. [PMID: 26376340 PMCID: PMC4574030 DOI: 10.1371/journal.pone.0138289] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/29/2015] [Indexed: 02/03/2023] Open
Abstract
Certain missense mutations in optineurin/OPTN and amplification of TBK1 are associated with normal tension glaucoma. A glaucoma-associated variant of OPTN, M98K, induces autophagic degradation of transferrin receptor (TFRC) and death in retinal cells. Here, we have explored the role of Tbk1 in M98K-OPTN-induced autophagy and cell death, and the effect of Tbk1 overexpression in retinal cells. Cell death induced by M98K-OPTN was dependent on Tbk1 as seen by the effect of Tbk1 knockdown and blocking of Tbk1 activity by a chemical inhibitor. Inhibition of Tbk1 also restores M98K-OPTN-induced transferrin receptor degradation. M98K-OPTN-induced autophagosome formation, autophagy and cell death were dependent on its phosphorylation at S177 by Tbk1. Knockdown of OPTN reduced starvation-induced autophagosome formation. M98K-OPTN expressing cells showed higher levels of Tbk1 activation and enhanced phosphorylation at Ser177 compared to WT-OPTN expressing cells. M98K-OPTN-induced activation of Tbk1 and its ability to be phosphorylated better by Tbk1 was dependent on ubiquitin binding. Phosphorylated M98K-OPTN localized specifically to autophagosomes and endogenous Tbk1 showed increased localization to autophagosomes in M98K-OPTN expressing cells. Overexpression of Tbk1 induced cell death and caspase-3 activation that were dependent on its catalytic activity. Tbk1-induced cell death possibly involves autophagy, as shown by the effect of Atg5 knockdown, and requirement of autophagic function of OPTN. Our results show that phosphorylation of Ser177 plays a crucial role in M98K-OPTN-induced autophagosome formation, autophagy flux and retinal cell death. In addition, we provide evidence for cross talk between two glaucoma associated proteins and their inter-dependence to mediate autophagy-dependent cell death.
Collapse
|
50
|
Wiggs JL. Glaucoma Genes and Mechanisms. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:315-42. [PMID: 26310163 DOI: 10.1016/bs.pmbts.2015.04.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic studies have yielded important genes contributing to both early-onset and adult-onset forms of glaucoma. The proteins encoded by the current collection of glaucoma genes participate in a broad range of cellular processes and biological systems. Approximately half the glaucoma-related genes function in the extracellular matrix, however proteins involved in cytokine signaling, lipid metabolism, membrane biology, regulation of cell division, autophagy, and ocular development also contribute to the disease pathogenesis. While the function of these proteins in health and disease are not completely understood, recent studies are providing insight into underlying disease mechanisms, a critical step toward the development of gene-based therapies. In this review, genes known to cause early-onset glaucoma or contribute to adult-onset glaucoma are organized according to the cell processes or biological systems that are impacted by the function of the disease-related protein product.
Collapse
Affiliation(s)
- Janey L Wiggs
- Harvard Medical School, and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.
| |
Collapse
|