1
|
Patel PN, Diouf A, Dickey TH, Tang WK, Hopp CS, Traore B, Long CA, Miura K, Crompton PD, Tolia NH. A strain-transcending anti-AMA1 human monoclonal antibody neutralizes malaria parasites independent of direct RON2L receptor blockade. Cell Rep Med 2025; 6:101985. [PMID: 40020675 PMCID: PMC11970402 DOI: 10.1016/j.xcrm.2025.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/06/2025] [Accepted: 01/31/2025] [Indexed: 03/03/2025]
Abstract
Plasmodium falciparum apical membrane antigen 1 (AMA1) binds a loop in rhoptry neck protein 2 (RON2L) during red cell invasion and is a target for vaccines and therapeutic antibodies against malaria. Here, we report a panel of AMA1-specific naturally acquired human monoclonal antibodies (hmAbs) derived from individuals living in malaria-endemic regions. Two neutralizing hmAbs engage AMA1 independent of the RON2L-binding site. The hmAb 75B10 demonstrates potent strain-transcending neutralization that is independent of RON2L blockade, emphasizing that epitopes outside the RON2L-binding site elicit broad protection against variant parasite strains. The combination of these hmAbs synergistically enhances parasite neutralization. Vaccination with a structure-based design (SBD1) that mimics the AMA1-RON2L complex elicited antibodies similar to the two neutralizing hmAbs connecting vaccination to naturally acquired immunity in humans. The structural definition of a strain-transcending epitope on AMA1 targeted by naturally acquired hmAb establishes paradigms for developing AMA1-based vaccines and therapeutic antibodies.
Collapse
Affiliation(s)
- Palak N Patel
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Thayne H Dickey
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wai Kwan Tang
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christine S Hopp
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Boubacar Traore
- Malaria Research and Training Centre, Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Point G, Bamako 1805, Mali
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Niraj H Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Kessy EJ, Olotu AI. Controlled human malaria infection: overview and potential application in the evaluation of transmission-blocking interventions in malaria-endemic areas. Malar J 2025; 24:33. [PMID: 39893367 PMCID: PMC11786456 DOI: 10.1186/s12936-025-05277-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/29/2025] [Indexed: 02/04/2025] Open
Abstract
Controlled human malaria infection (CHMI) involves the intentional infection of healthy individuals with malaria parasites, close observation of the volunteers, and clearance of the parasite at a predetermined endpoint. Depending on the need, CHMI can be initiated by either sporozoites or the administration of parasite-infected erythrocytes, with each of the two systems offering different advantages and caveats. Among other uses, CHMI has proven to be a useful tool for the evaluation of new malaria interventions, particularly vaccines and drugs. The majority of CHMI studies have been conducted in Europe, the USA and Australia, with only a handful of studies conducted in malaria-endemic countries. The slow adoption of CHMI in malaria-endemic countries may be attributed to a lack of infrastructure and expertise to conduct studies in malaria-endemic countries and the risk of undue influence and coercion as a result of volunteers' vulnerability due to a lack of education and financial situation. With the need to generate results relevant to the target populations, there has recently been an increase in CHMI studies that are being conducted in malaria-endemic countries. The use of CHMI models for the evaluation of preerythrocytic and blood-stage malaria interventions has been attempted in malaria-endemic countries with great success. There is a need for the adoption of a CHMI model for the evaluation of transmission-blocking interventions in malaria-endemic countries. The establishment of such a model in malaria-endemic countries will facilitate the selection of potential transmission-blocking intervention (TBI) candidates and accelerate their development. Here is an overview of CHMI, key challenges and ethical considerations in adopting CHMI for the evaluation of malaria transmission-blocking interventions in malaria-endemic countries.
Collapse
Affiliation(s)
- Enock J Kessy
- Ifakara Health Institute, P.O. Box 78 373, Dar Es Salaam, Tanzania.
- Nelson Mandela African Institution of Science and Technology, 404 Nganana, 2331 Kikwe, Arumeru, P.O.Box 447, Arusha, Tanzania.
| | - Ally I Olotu
- Ifakara Health Institute, P.O. Box 78 373, Dar Es Salaam, Tanzania
| |
Collapse
|
3
|
Duffy PE, Gorres JP, Healy SA, Fried M. Malaria vaccines: a new era of prevention and control. Nat Rev Microbiol 2024; 22:756-772. [PMID: 39025972 DOI: 10.1038/s41579-024-01065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/20/2024]
Abstract
Malaria killed over 600,000 people in 2022, a death toll that has not improved since 2015. Additionally, parasites and mosquitoes resistant to existing interventions are spreading across Africa and other regions. Vaccines offer hope to reduce the mortality burden: the first licensed malaria vaccines, RTS,S and R21, will be widely deployed in 2024 and should substantially reduce childhood deaths. In this Review, we provide an overview of the malaria problem and the Plasmodium parasite, then describe the RTS,S and R21 vaccines (the first vaccines for any human parasitic disease), summarizing their benefits and limitations. We explore next-generation vaccines designed using new knowledge of malaria pathogenesis and protective immunity, which incorporate antigens and platforms to elicit effective immune responses against different parasite stages in human or mosquito hosts. We describe a decision-making process that prioritizes malaria vaccine candidates for development in a resource-constrained environment. Future vaccines might improve upon the protective efficacy of RTS,S or R21 for children, or address the wider malaria scourge by preventing pregnancy malaria, reducing the burden of Plasmodium vivax or accelerating malaria elimination.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - J Patrick Gorres
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Oladejo M, Tijani AO, Puri A, Chablani L. Adjuvants in cutaneous vaccination: A comprehensive analysis. J Control Release 2024; 369:475-492. [PMID: 38569943 DOI: 10.1016/j.jconrel.2024.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Skin is the body's largest organ and serves as a protective barrier from physical, thermal, and mechanical environmental challenges. Alongside, the skin hosts key immune system players, such as the professional antigen-presenting cells (APCs) like the Langerhans cells in the epidermis and circulating macrophages in the blood. Further, the literature supports that the APCs can be activated by antigen or vaccine delivery via multiple routes of administration through the skin. Once activated, the stimulated APCs drain to the associated lymph nodes and gain access to the lymphatic system. This further allows the APCs to engage with the adaptive immune system and activate cellular and humoral immune responses. Thus, vaccine delivery via skin offers advantages such as reliable antigen delivery, superior immunogenicity, and convenient delivery. Several preclinical and clinical studies have demonstrated the significance of vaccine delivery using various routes of administration via skin. However, such vaccines often employ adjuvant/(s), along with the antigen of interest. Adjuvants augment the immune response to a vaccine antigen and improve the therapeutic efficacy. Due to these reasons, adjuvants have been successfully used with infectious disease vaccines, cancer immunotherapy, and immune-mediated diseases. To capture these developments, this review will summarize preclinical and clinical study results of vaccine delivery via skin in the presence of adjuvants. A focused discussion regarding the FDA-approved adjuvants will address the experiences of using such adjuvant-containing vaccines. In addition, the challenges and regulatory concerns with these adjuvants will be discussed. Finally, the review will share the prospects of adjuvant-containing vaccines delivered via skin.
Collapse
Affiliation(s)
- Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Jerry H Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Akeemat O Tijani
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA.
| | - Lipika Chablani
- Wegmans School of Pharmacy, St. John Fisher University, 3690 East Ave, Rochester, NY 14618, USA.
| |
Collapse
|
5
|
Cummings JF, Polhemus ME, Kester KE, Ockenhouse CF, Gasser RA, Coyne P, Wortmann G, Nielsen RK, Schaecher K, Holland CA, Krzych U, Tornieporth N, Soisson LA, Angov E, Heppner DG. A phase IIa, randomized, double-blind, safety, immunogenicity and efficacy trial of Plasmodium falciparum vaccine antigens merozoite surface protein 1 and RTS,S formulated with AS02 adjuvant in healthy, malaria-naïve adults. Vaccine 2024; 42:3066-3074. [PMID: 38584058 DOI: 10.1016/j.vaccine.2024.03.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND To improve the efficacy of Plasmodium falciparum malaria vaccine RTS,S/AS02, we conducted a study in 2001 in healthy, malaria-naïve adults administered RTS,S/AS02 in combination with FMP1, a recombinant merozoite surface-protein-1, C-terminal 42kD fragment. METHODS A double-blind Phase I/IIa study randomized N = 60 subjects 1:1:1:1 to one of four groups, N = 15/group, to evaluate safety, immunogenicity, and efficacy of intra-deltoid half-doses of RTS,S/AS02 and FMP1/AS02 administered in the contralateral (RTS,S + FMP1-separate) or same (RTS,S + FMP1-same) sites, or FMP1/AS02 alone (FMP1-alone), or RTS,S/AS02 alone (RTS,S-alone) on a 0-, 1-, 3-month schedule. Subjects receiving three doses of vaccine and non-immunized controls (N = 11) were infected with homologous P. falciparum 3D7 sporozoites by Controlled Human Malaria Infection (CHMI). RESULTS Subjects in all vaccination groups experienced mostly mild or moderate local and general adverse events that resolved within eight days. Anti-circumsporozoite antibody levels were lower when FMP1 and RTS,S were co-administered at the same site (35.0 µg/mL: 95 % CI 20.3-63), versus separate arms (57.4 µg/mL: 95 % CI 32.3-102) or RTS,S alone (62.0 µg/mL: 95 % CI: 37.8-101.8). RTS,S-specific lymphoproliferative responses and ex vivo ELISpot CSP-specific interferon-gamma (IFN-γ) responses were indistinguishable among groups receiving RTS,S/AS02. There was no difference in antibody to FMP1 among groups receiving FMP1/AS02. After CHMI, groups immunized with a RTS,S-containing regimen had ∼ 30 % sterile protection against parasitemia, and equivalent delays in time-to-parasitemia. The FMP1/AS02 alone group showed no sterile immunity or delay in parasitemia. CONCLUSION Co-administration of RTS,S and FMP1/AS02 reduced anti-RTS,S antibody, but did not affect tolerability, cellular immunity, or efficacy in a stringent CHMI model. Absence of efficacy or delay of patency in the sporozoite challenge model in the FMP1/AS02 group did not rule out efficacy of FMP1/AS02 in an endemic population. However, a Phase IIb trial of FMP1/AS02 in children in malaria-endemic Kenya did not demonstrate efficacy against natural infection. CLINICALTRIALS gov identifier: NCT01556945.
Collapse
Affiliation(s)
- J F Cummings
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - M E Polhemus
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - K E Kester
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - C F Ockenhouse
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - R A Gasser
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - P Coyne
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - G Wortmann
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - R K Nielsen
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - K Schaecher
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - C A Holland
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - U Krzych
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - L A Soisson
- Malaria Vaccine Development Program, United States Agency for International Development, Washington, DC, USA
| | - E Angov
- Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - D G Heppner
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
6
|
Faber BW, Yeoh LM, Kurtovic L, Mol WEM, Poelert M, Smits E, Rodriguez Garcia R, Mandalawi-Van der Eijk M, van der Werff N, Voorberg-van der Wel A, Remarque EJ, Beeson JG, Kocken CHM. A Diversity Covering (DiCo) Plasmodium vivax apical membrane antigen-1 vaccine adjuvanted with RFASE/RSL10 yields high levels of growth-inhibitory antibodies. Vaccine 2024; 42:1785-1792. [PMID: 38365484 DOI: 10.1016/j.vaccine.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/10/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
Plasmodium vivax malaria is increasingly recognized as a major global health problem and the socio-economic impact of P.vivax-induced burden is huge. Vaccine development against P. vivax malaria has been hampered by the lack of an in vitro culture system and poor access to P. vivax sporozoites. The recent generation of Plasmodium falciparum parasites that express a functional P. vivax AMA1 molecule has provided a platform for in vitro evaluation of PvAMA1 as a potential blood stage vaccine. Three so-called PvAMA1 Diversity Covering (DiCo) proteins were designed to assess their potential to induce a functional and broad humoral immune response to the polymorphic PvAMA1 molecule. Rabbits were immunized with the mixture of three, Pichia-produced, PvAMA1 DiCo proteins, as well as with 2 naturally occurring PvAMA1 alleles. For these three groups, the experimental adjuvant raffinose fatty acid sulfate ester (RFASE) was used, while in a fourth group the purified main mono-esterified constituent (RSL10) of this adjuvant was used. Animals immunized with the mixture of the three PvAMA1 DiCo proteins in RFASE showed high anti-PvAMA1 antibody titers against three naturally occurring PvAMA1variants while also high growth-inhibitory capacity was observed against P. falciparum parasites expressing PvAMA1. This supports further clinical development of the PvAMA1 DiCo mixture as a potential malaria vaccine. However, as the single allele PvAMA1 SalI-group showed similar characteristics in antibody titer and inhibition levels as the PvAMA1 DiCo mixture-group, this raises the question whether a mixture is really necessary to overcome the polymorphism in the vaccine candidate. RFASE induced strong humoral responses, as did the animals immunized with the purified component, RSL10. This suggests that RSL10 is the active ingredient. However, one of the RSL10-immunized animal showed a delayed response, necessitating further research into the clinical development of RSL10.
Collapse
Affiliation(s)
- Bart W Faber
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, the Netherlands.
| | - Lee M Yeoh
- Burnet Institute, Melbourne, Victoria, Australia; Department of Medicine, The University of Melbourne, Victoria, Australia
| | - Liriye Kurtovic
- Burnet Institute, Melbourne, Victoria, Australia; Central Clinical School and Department of Microbiology, Monash University, Victoria, Australia
| | | | | | | | | | | | - Nicole van der Werff
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | | | - Edmond J Remarque
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria, Australia; Central Clinical School and Department of Microbiology, Monash University, Victoria, Australia; Department of Infectious Diseases, University of Melbourne, Victoria, Australia
| | - Clemens H M Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, the Netherlands
| |
Collapse
|
7
|
Martinez FJ, White M, Guillotte-Blisnick M, Huon C, Boucharlat A, Agou F, England P, Popovici J, Hou MM, Silk SE, Barrett JR, Nielsen CM, Reimer JM, Mukherjee P, Chauhan VS, Minassian AM, Draper SJ, Chitnis CE. PvDBPII elicits multiple antibody-mediated mechanisms that reduce growth in a Plasmodium vivax challenge trial. NPJ Vaccines 2024; 9:10. [PMID: 38184681 PMCID: PMC10771494 DOI: 10.1038/s41541-023-00796-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/07/2023] [Indexed: 01/08/2024] Open
Abstract
The receptor-binding domain, region II, of the Plasmodium vivax Duffy binding protein (PvDBPII) binds the Duffy antigen on the reticulocyte surface to mediate invasion. A heterologous vaccine challenge trial recently showed that a delayed dosing regimen with recombinant PvDBPII SalI variant formulated with adjuvant Matrix-MTM reduced the in vivo parasite multiplication rate (PMR) in immunized volunteers challenged with the Thai P. vivax isolate PvW1. Here, we describe extensive analysis of the polyfunctional antibody responses elicited by PvDBPII immunization and identify immune correlates for PMR reduction. A classification algorithm identified antibody features that significantly contribute to PMR reduction. These included antibody titre, receptor-binding inhibitory titre, dissociation constant of the PvDBPII-antibody interaction, complement C1q and Fc gamma receptor binding and specific IgG subclasses. These data suggest that multiple immune mechanisms elicited by PvDBPII immunization are likely to be associated with protection and the immune correlates identified could guide the development of an effective vaccine for P. vivax malaria. Importantly, all the polyfunctional antibody features that correlated with protection cross-reacted with both PvDBPII SalI and PvW1 variants, suggesting that immunization with PvDBPII should protect against diverse P. vivax isolates.
Collapse
Affiliation(s)
- Francisco J Martinez
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, Paris, France
| | - Michael White
- Infectious Disease Epidemiology and Analytics G5 Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | | | - Christèle Huon
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, Paris, France
| | - Alix Boucharlat
- Chemogenomic and Biological Screening Core Facility, C2RT, Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Paris, France
| | - Fabrice Agou
- Chemogenomic and Biological Screening Core Facility, C2RT, Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Paris, France
| | - Patrick England
- Molecular Biophysics Facility, CNRS UMR 3528, Institut Pasteur, Paris, France
| | - Jean Popovici
- Malaria Reasearch Unit, Institut Pasteur du Cambodge, Pnom Penh, Cambodia
| | - Mimi M Hou
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| | - Sarah E Silk
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| | - Jordan R Barrett
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| | - Carolyn M Nielsen
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| | | | | | - Virander S Chauhan
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Angela M Minassian
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Chetan E Chitnis
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, Paris, France.
| |
Collapse
|
8
|
Kibwana E, Kapulu M. Controlled Human Malaria Infection Studies in Africa-Past, Present, and Future. Curr Top Microbiol Immunol 2024; 445:337-365. [PMID: 35704094 PMCID: PMC7616462 DOI: 10.1007/82_2022_256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Controlled human infection studies have contributed significantly to the understanding of pathogeneses and treatment of infectious diseases. In malaria, deliberately infecting humans with malaria parasites was used as a treatment for neurosyphilis in the early 1920s. More recently, controlled human malaria infection (CHMI) has become a valuable, cost-effective tool to fast-track the development and evaluation of new anti-malarial drugs and/or vaccines. CHMI studies have also been used to define host/parasite interactions and immunological correlates of protection. CHMI involves infecting a small number of healthy volunteers with malaria parasites, monitoring their parasitemia and providing anti-malarial treatment when a set threshold is reached. In this review we discuss the introduction, development, and challenges of modern-day Plasmodium falciparum CHMI studies conducted in Africa, and the impact of naturally acquired immunity on infectivity and vaccine efficacy. CHMIs have shown to be an invaluable tool particularly in accelerating malaria vaccine research. Although there are limitations of CHMI studies for estimating public health impacts and for regulatory purposes, their strength lies in proof-of-concept efficacy data at an early stage of development, providing a faster way to select vaccines for further development and providing valuable insights in understanding the mechanisms of immunity to malarial infection.
Collapse
Affiliation(s)
- Elizabeth Kibwana
- Bioscience Department, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya
| | - Melissa Kapulu
- Bioscience Department, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya
| |
Collapse
|
9
|
Abo YN, Jamrozik E, McCarthy JS, Roestenberg M, Steer AC, Osowicki J. Strategic and scientific contributions of human challenge trials for vaccine development: facts versus fantasy. THE LANCET. INFECTIOUS DISEASES 2023; 23:e533-e546. [PMID: 37573871 DOI: 10.1016/s1473-3099(23)00294-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 08/15/2023]
Abstract
The unprecedented speed of delivery of SARS-CoV-2 pandemic vaccines has redefined the limits for all vaccine development. Beyond the aspirational 100-day timeline for tomorrow's hypothetical pandemic vaccines, there is a sense of optimism that development of other high priority vaccines can be accelerated. Early in the COVID-19 pandemic, an intense and polarised academic and public discourse arose concerning the role of human challenge trials for vaccine development. A case was made for human challenge trials as a powerful tool to establish early proof-of-concept of vaccine efficacy in humans, inform vaccine down selection, and address crucial knowledge gaps regarding transmission, pathogenesis, and immune protection. We review the track record of human challenge trials contributing to the development of vaccines for 19 different pathogens and discuss relevant limitations, barriers, and pitfalls. This Review also highlights opportunities for efforts to broaden the scope and boost the effects of human challenge trials, to accelerate all vaccine development.
Collapse
Affiliation(s)
- Yara-Natalie Abo
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital Melbourne, Parkville, VIC, Australia.
| | - Euzebiusz Jamrozik
- Ethox and Pandemic Sciences Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK; Monash-WHO Collaborating Centre for Bioethics, Monash University, Melbourne, VIC, Australia
| | - James S McCarthy
- Department of Infectious Diseases, The University of Melbourne, Parkville, VIC, Australia; Victorian Infectious Diseases Services, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Meta Roestenberg
- Controlled Human Infections Center, Leiden University Medical Center, Leiden, Netherlands
| | - Andrew C Steer
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital Melbourne, Parkville, VIC, Australia
| | - Joshua Osowicki
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital Melbourne, Parkville, VIC, Australia
| |
Collapse
|
10
|
Rodríguez-Obediente K, Yepes-Pérez Y, Benavides-Ortiz D, Díaz-Arévalo D, Reyes C, Arévalo-Pinzón G, Patarroyo MA. Invasion-inhibitory peptides chosen by natural selection analysis as an antimalarial strategy. Mol Immunol 2023; 163:86-103. [PMID: 37769577 DOI: 10.1016/j.molimm.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023]
Abstract
Plasmodium vivax's biological complexity has restricted in vitro culture development for characterising antigens involved in erythrocyte invasion and their immunological relevance. The murine model is proposed as a suitable alternative in the search for therapeutic candidates since Plasmodium yoelii uses homologous proteins for its invasion. The AMA-1 protein is essential for parasite invasion of erythrocytes as it is considered an important target for infection control. This study has focused on functional PyAMA-1 peptides involved in host-pathogen interaction; the protein is located in regions under negative selection as determined by bioinformatics analysis. It was found that pyama1 has two highly conserved regions amongst species (>70%) under negative selection. Fourteen synthetic peptides spanning both conserved regions were evaluated; 5 PyAMA-1 peptides having high specific binding (HABP) to murine erythrocytes were identified. The parasite's invasion inhibition capability was analysed through in vitro assays, suggesting that peptides 42681 (43-ENTERSIKLINPWDKYMEKY-62), 42903 (206-RYSSNDANNENQPFSFTPEK-225) and 42904 (221-FTPEKIENYKDLSYLTKNLR-240) had greater than 50% inhibition profile and restricted P. yoelii intra-erythrocyte development. This work proposes that the screening of conserved HABPs under negative selective pressure might be good candidates for developing a synthetic anti-malarial vaccine since they share functionally-relevant characteristics, such as interspecies conservation, specific RBC binding profile, invasion and parasite development inhibition capability, and the predicted B-epitopes within were recognised by sera obtained from experimentally-infected mice.
Collapse
Affiliation(s)
- Kewin Rodríguez-Obediente
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; MSc programme in Microbiology, Biotechnology Institute, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Yoelis Yepes-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Daniel Benavides-Ortiz
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; School of Health Sciences, Universidad Colegio Mayor de Cundinamarca, Bogotá, Colombia
| | - Diana Díaz-Arévalo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - César Reyes
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Gabriela Arévalo-Pinzón
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; Microbiology Department, Science Faculty, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
11
|
Rajneesh, Tiwari R, Singh VK, Kumar A, Gupta RP, Singh AK, Gautam V, Kumar R. Advancements and Challenges in Developing Malaria Vaccines: Targeting Multiple Stages of the Parasite Life Cycle. ACS Infect Dis 2023; 9:1795-1814. [PMID: 37708228 DOI: 10.1021/acsinfecdis.3c00332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Malaria, caused by Plasmodium species, remains a major global health concern, causing millions of deaths annually. While the introduction of the RTS,S vaccine has shown promise, there is a pressing need for more effective vaccines due to the emergence of drug-resistant parasites and insecticide-resistant vectors. However, the complex life cycle and genetic diversity of the parasite, technical obstacles, limited funding, and the impact of the 2019 pandemic have hindered progress in malaria vaccine development. This review focuses on advancements in malaria vaccine development, particularly the ongoing clinical trials targeting antigens from different stages of the Plasmodium life cycle. Additionally, we discuss the rationale, strategies, and challenges associated with vaccine design, aiming to enhance the immune response and protective efficacy of vaccine candidates. A cost-effective and multistage vaccine could hold the key to controlling and eradicating malaria.
Collapse
Affiliation(s)
- Rajneesh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rahul Tiwari
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vishal K Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Awnish Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rohit P Gupta
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
- Department of Applied Microbiology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Akhilesh K Singh
- Faculty of Dental Science, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vibhav Gautam
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rajiv Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
12
|
Maritz-Olivier C, Ferreira M, Olivier NA, Crafford J, Stutzer C. Mining gene expression data for rational identification of novel drug targets and vaccine candidates against the cattle tick, Rhipicephalus microplus. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 91:291-317. [PMID: 37755526 PMCID: PMC10562289 DOI: 10.1007/s10493-023-00838-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023]
Abstract
Control of complex parasites via vaccination remains challenging, with the current combination of vaccines and small drugs remaining the choice for an integrated control strategy. Studies conducted to date, are providing evidence that multicomponent vaccines will be needed for the development of protective vaccines against endo- and ectoparasites, though multicomponent vaccines require an in-depth understanding of parasite biology which remains insufficient for ticks. With the rapid development and spread of acaricide resistance in ticks, new targets for acaricide development also remains to be identified, along with novel targets that can be exploited for the design of lead compounds. In this study, we analysed the differential gene expression of Rhipicephalus microplus ticks that were fed on cattle vaccinated with a multi-component vaccine (Bm86 and 3 putative Bm86-binding proteins). The data was scrutinised for the identification of vaccine targets, small drug targets and novel pathways that can be evaluated in future studies. Limitations associated with targeting novel proteins for vaccine and/or drug design is also discussed and placed into the context of challenges arising when targeting large protein families and intracellular localised proteins. Lastly, this study provide insight into how Bm86-based vaccines may reduce successful uptake and digestion of the bloodmeal and overall tick fecundity.
Collapse
Affiliation(s)
- Christine Maritz-Olivier
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa.
| | - Mariëtte Ferreira
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Nicholas A Olivier
- DNA Microarray Laboratory, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Jan Crafford
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Christian Stutzer
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa.
| |
Collapse
|
13
|
Yanik S, Venkatesh V, Parker ML, Ramaswamy R, Diouf A, Sarkar D, Miura K, Long CA, Boulanger MJ, Srinivasan P. Structure guided mimicry of an essential P. falciparum receptor-ligand complex enhances cross neutralizing antibodies. Nat Commun 2023; 14:5879. [PMID: 37735574 PMCID: PMC10514071 DOI: 10.1038/s41467-023-41636-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Invasion of human erythrocytes by Plasmodium falciparum (Pf) merozoites relies on the interaction between two parasite proteins: apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2). While antibodies to AMA1 provide limited protection against Pf in non-human primate malaria models, clinical trials using recombinant AMA1 alone (apoAMA1) yielded no protection due to insufficient functional antibodies. Immunization with AMA1 bound to RON2L, a 49-amino acid peptide from its ligand RON2, has shown superior protection by increasing the proportion of neutralizing antibodies. However, this approach relies on the formation of a complex in solution between the two vaccine components. To advance vaccine development, here we engineered chimeric antigens by replacing the AMA1 DII loop, displaced upon ligand binding, with RON2L. Structural analysis confirmed that the fusion chimera (Fusion-FD12) closely mimics the binary AMA1-RON2L complex. Immunization studies in female rats demonstrated that Fusion-FD12 immune sera, but not purified IgG, neutralized vaccine-type parasites more efficiently compared to apoAMA1, despite lower overall anti-AMA1 titers. Interestingly, Fusion-FD12 immunization enhanced antibodies targeting conserved epitopes on AMA1, leading to increased neutralization of non-vaccine type parasites. Identifying these cross-neutralizing antibody epitopes holds promise for developing an effective, strain-transcending malaria vaccine.
Collapse
Affiliation(s)
- Sean Yanik
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Varsha Venkatesh
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Michelle L Parker
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Raghavendran Ramaswamy
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Deepti Sarkar
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Martin J Boulanger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Prakash Srinivasan
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA.
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA.
| |
Collapse
|
14
|
Patel PN, Dickey TH, Diouf A, Salinas ND, McAleese H, Ouahes T, Long CA, Miura K, Lambert LE, Tolia NH. Structure-based design of a strain transcending AMA1-RON2L malaria vaccine. Nat Commun 2023; 14:5345. [PMID: 37660103 PMCID: PMC10475129 DOI: 10.1038/s41467-023-40878-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023] Open
Abstract
Apical membrane antigen 1 (AMA1) is a key malaria vaccine candidate and target of neutralizing antibodies. AMA1 binds to a loop in rhoptry neck protein 2 (RON2L) to form the moving junction during parasite invasion of host cells, and this complex is conserved among apicomplexan parasites. AMA1-RON2L complex immunization achieves higher growth inhibitory activity than AMA1 alone and protects mice against Plasmodium yoelii challenge. Here, three single-component AMA1-RON2L immunogens were designed that retain the structure of the two-component AMA1-RON2L complex: one structure-based design (SBD1) and two insertion fusions. All immunogens elicited high antibody titers with potent growth inhibitory activity, yet these antibodies did not block RON2L binding to AMA1. The SBD1 immunogen induced significantly more potent strain-transcending neutralizing antibody responses against diverse strains of Plasmodium falciparum than AMA1 or AMA1-RON2L complex vaccination. This indicates that SBD1 directs neutralizing antibody responses to strain-transcending epitopes in AMA1 that are independent of RON2L binding. This work underscores the importance of neutralization mechanisms that are distinct from RON2 blockade. The stable single-component SBD1 immunogen elicits potent strain-transcending protection that may drive the development of next-generation vaccines for improved malaria and apicomplexan parasite control.
Collapse
Affiliation(s)
- Palak N Patel
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thayne H Dickey
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Nichole D Salinas
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Holly McAleese
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tarik Ouahes
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Lynn E Lambert
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Niraj H Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Martinez FJ, Guillotte-Blisnick M, Huon C, England P, Popovici J, Laude H, Arowas L, Ungeheuer MN, Reimer JM, Carter D, Reed S, Mukherjee P, Chauhan VS, Chitnis CE. Immunogenicity of a Plasmodium vivax vaccine based on the duffy binding protein formulated using adjuvants compatible for use in humans. Sci Rep 2023; 13:13904. [PMID: 37626150 PMCID: PMC10457348 DOI: 10.1038/s41598-023-40043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The invasion of reticulocytes by Plasmodium vivax merozoites is dependent on the interaction of the Plasmodium vivax Duffy Binding Protein (PvDBP) with the Duffy antigen receptor for chemokines (DARC). The N-terminal cysteine-rich region II of PvDBP (PvDBPII), which binds DARC, is a leading P. vivax malaria vaccine candidate. Here, we have evaluated the immunogenicity of recombinant PvDBPII formulated with the adjuvants Matrix-M and GLA-SE in mice. Analysis of the antibody responses revealed comparable ELISA recognition titres as well as similar recognition of native PvDBP in P. vivax schizonts by immunofluorescence assay. Moreover, antibodies elicited by the two adjuvant formulations had similar functional properties such as avidity, isotype profile and inhibition of PvDBPII-DARC binding. Furthermore, the anti-PvDBPII antibodies were able to block the interaction of DARC with the homologous PvDBPII SalI allele as well as the heterologous PvDBPII PvW1 allele from a Thai clinical isolate that is used for controlled human malaria infections (CHMI). The cross-reactivity of these antibodies with PvW1 suggest that immunization with the PvDBPII SalI strain should neutralize reticulocyte invasion by the challenge P. vivax strain PvW1.
Collapse
Affiliation(s)
- Francisco J Martinez
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, 25-28 Rue du Dr. Roux, 75015, Paris, France
| | - Micheline Guillotte-Blisnick
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, 25-28 Rue du Dr. Roux, 75015, Paris, France
| | - Christèle Huon
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, 25-28 Rue du Dr. Roux, 75015, Paris, France
| | - Patrick England
- Plate-Forme de Biophysique Moléculaire, CNRS UMR 3528, Institut Pasteur, Université Paris Cité, Paris, France
| | - Jean Popovici
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Hélène Laude
- Investigational Clinical Service and Access to Research Bio-Resources (ICAReB), Institut Pasteur, Paris, France
| | - Laurence Arowas
- Investigational Clinical Service and Access to Research Bio-Resources (ICAReB), Institut Pasteur, Paris, France
| | - Marie-Noëlle Ungeheuer
- Investigational Clinical Service and Access to Research Bio-Resources (ICAReB), Institut Pasteur, Paris, France
| | | | - Darrick Carter
- HDT Bio, Seattle, WA, USA
- PAI Life Sciences Inc., Seattle, WA, USA
| | | | | | - Virander S Chauhan
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Chetan E Chitnis
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, 25-28 Rue du Dr. Roux, 75015, Paris, France.
| |
Collapse
|
16
|
Lykins WR, Fox CB. Practical Considerations for Next-Generation Adjuvant Development and Translation. Pharmaceutics 2023; 15:1850. [PMID: 37514037 PMCID: PMC10385070 DOI: 10.3390/pharmaceutics15071850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Over the last several years, there has been increased interest from academia and the pharmaceutical/biotech industry in the development of vaccine adjuvants for new and emerging vaccine modalities. Despite this, vaccine adjuvant development still has some of the longest timelines in the pharmaceutical space, from discovery to clinical approval. The reasons for this are manyfold and range from complexities in translation from animal to human models, concerns about safety or reactogenicity, to challenges in sourcing the necessary raw materials at scale. In this review, we will describe the current state of the art for many adjuvant technologies and how they should be approached or applied in the development of new vaccine products. We postulate that there are many factors to be considered and tools to be applied earlier on in the vaccine development pipeline to improve the likelihood of clinical success. These recommendations may require a modified approach to some of the common practices in new product development but would result in more accessible and practical adjuvant-containing products.
Collapse
|
17
|
Srinivasan P, Yanik S, Venkatesh V, Parker M, Diouf A, Sarkar D, Miura K, Long C, Boulanger M. Structure guided mimicry of an essential P. falciparum receptor-ligand complex enhances cross neutralizing antibodies. RESEARCH SQUARE 2023:rs.3.rs-2733434. [PMID: 37131813 PMCID: PMC10153359 DOI: 10.21203/rs.3.rs-2733434/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Invasion of human red blood cells (RBCs) by Plasmodium falciparum (Pf) merozoites relies on the interaction between two parasite proteins, apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2) 1,2 . Antibodies to AMA1 confer limited protection against P. falciparum in non-human primate malaria models 3,4 . However, clinical trials with recombinant AMA1 alone (apoAMA1) saw no protection, likely due to inadequate levels of functional antibodies 5-8 . Notably, immunization with AMA1 in its ligand bound conformation using RON2L, a 49 amino acid peptide from RON2, confers superior protection against P. falciparum malaria by enhancing the proportion of neutralizing antibodies 9,10 . A limitation of this approach, however, is that it requires the two vaccine components to form a complex in solution. To facilitate vaccine development, we engineered chimeric antigens by strategically replacing the AMA1 DII loop that is displaced upon ligand binding with RON2L. Structural characterization of the fusion chimera, Fusion-F D12 to 1.55 Å resolution showed that it closely mimics the binary receptor-ligand complex. Immunization studies showed that Fusion-F D12 immune sera neutralized parasites more efficiently than apoAMA1 immune sera despite having an overall lower anti-AMA1 titer, suggesting improvement in antibody quality. Furthermore, immunization with Fusion-F D12 enhanced antibodies targeting conserved epitopes on AMA1 resulting in greater neutralization of non-vaccine type parasites. Identifying epitopes of such cross-neutralizing antibodies will help in the development of an effective, strain-transcending malaria vaccine. Our fusion protein design is a robust vaccine platform that can be enhanced by incorporating polymorphisms in AMA1 to effectively neutralize all P. falciparum parasites.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Carole Long
- Laboratory of Malaria and Vector Resarch, NIAID/NIH
| | | |
Collapse
|
18
|
Pulido-Quevedo FA, Arévalo-Pinzón G, Castañeda-Ramírez JJ, Barreto-Santamaría A, Patarroyo ME, Patarroyo MA. Plasmodium falciparum rhoptry neck protein 4 has conserved regions mediating interactions with receptors on human erythrocytes and hepatocyte membrane. Int J Med Microbiol 2023; 313:151579. [PMID: 37030083 DOI: 10.1016/j.ijmm.2023.151579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/25/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023] Open
Abstract
Plasmodium falciparum-related malaria represents a serious worldwide public health problem due to its high mortality rates. P. falciparum expresses rhoptry neck protein 4 (PfRON4) in merozoite and sporozoite rhoptries, it participates in tight junction-TJ formation via the AMA-1/RON complex and is refractory to complete genetic deletion. Despite this, which PfRON4 key regions interact with host cells remain unknown; such information would be useful for combating falciparum malaria. Thirty-two RON4 conserved region-derived peptides were chemically synthesised for determining and characterising PfRON4 regions having high host cell binding affinity (high activity binding peptides or HABPs). Receptor-ligand interaction/binding assays determined their specific binding capability, the nature of their receptors and their ability to inhibit in vitro parasite invasion. Peptides 42477, 42479, 42480, 42505 and 42513 had greater than 2% erythrocyte binding activity, whilst peptides 42477 and 42480 specifically bound to HepG2 membrane, both of them having micromolar and submicromolar range dissociation constants (Kd). Cell-peptide interaction was sensitive to treating erythrocytes with trypsin and/or chymotrypsin and HepG2 with heparinase I and chondroitinase ABC, suggesting protein-type (erythrocyte) and heparin and/or chondroitin sulphate proteoglycan receptors (HepG2) for PfRON4. Erythrocyte invasion inhibition assays confirmed HABPs' importance during merozoite invasion. PfRON4 800-819 (42477) and 860-879 (42480) regions specifically interacted with host cells, thereby supporting their inclusion in a subunit-based, multi-antigen, multistage anti-malarial vaccine.
Collapse
Affiliation(s)
- Fredy A Pulido-Quevedo
- Receptor-Ligand Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, Colombia; MSc programme in Biochemistry, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45 # 26-85, Bogotá, Colombia
| | - Gabriela Arévalo-Pinzón
- Microbiology Department, Faculty of Sciences, Pontificia Universidad Javeriana, Carrera 7 # 40-62, Bogotá, Colombia
| | - Jeimmy J Castañeda-Ramírez
- Receptor-Ligand Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, Colombia
| | - Adriana Barreto-Santamaría
- Receptor-Ligand Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, Colombia; Faculty of Sciences, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 # 55-37, Bogotá, Colombia
| | - Manuel E Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, Colombia; Health Sciences Division, Main Campus, Universidad Santo Tomás, Carrera 9 # 51-11, Bogotá, Colombia; Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45 # 26-85, Bogotá, Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, Colombia; Health Sciences Division, Main Campus, Universidad Santo Tomás, Carrera 9 # 51-11, Bogotá, Colombia; Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45 # 26-85, Bogotá, Colombia.
| |
Collapse
|
19
|
Malaria Vaccines. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
20
|
Somanathan A, Mian SY, Chaddha K, Uchoi S, Bharti PK, Tandon R, Gaur D, Chauhan VS. Process development and preclinical evaluation of a major Plasmodium falciparum blood stage vaccine candidate, Cysteine-Rich Protective Antigen (CyRPA). Front Immunol 2022; 13:1005332. [PMID: 36211427 PMCID: PMC9535676 DOI: 10.3389/fimmu.2022.1005332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum Cysteine-Rich Protective Antigen (CyRPA) is an essential, highly conserved merozoite antigen that forms an important multi-protein complex (RH5/Ripr/CyRPA) necessary for erythrocyte invasion. CyRPA is a promising blood-stage vaccine target that has been shown to elicit potent strain-transcending parasite neutralizing antibodies. Recently, we demonstrated that naturally acquired immune anti-CyRPA antibodies are invasion-inhibitory and therefore a correlate of protection against malaria. Here, we describe a process for the large-scale production of tag-free CyRPA vaccine in E. coli and demonstrate its parasite neutralizing efficacy with commonly used adjuvants. CyRPA was purified from inclusion bodies using a one-step purification method with high purity (>90%). Biochemical and biophysical characterization showed that the purified tag-free CyRPA interacted with RH5, readily detected by a conformation-specific CyRPA monoclonal antibody and recognized by sera from malaria infected individuals thus indicating that the recombinant antigen was correctly folded and retained its native conformation. Tag-free CyRPA formulated with Freund’s adjuvant elicited highly potent parasite neutralizing antibodies achieving inhibition of >90% across diverse parasite strains. Importantly, we identified tag-free CyRPA/Alhydrogel formulation as most effective in inducing a highly immunogenic antibody response that exhibited efficacious, cross-strain in vitro parasite neutralization achieving ~80% at 10 mg/ml. Further, CyRPA/Alhydrogel vaccine induced anti-parasite cytokine response in mice. In summary, our study provides a simple, scalable, cost-effective process for the production of tag-free CyRPA that in combination with human-compatible adjuvant induces efficacious humoral and cell-mediated immune response.
Collapse
Affiliation(s)
- Anjali Somanathan
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Syed Yusuf Mian
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Kritika Chaddha
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Seemalata Uchoi
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Praveen K. Bharti
- ICMR-National Institute of Research in Tribal Health (NIRTH), Jabalpur, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Deepak Gaur
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Virander Singh Chauhan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- *Correspondence: Virander Singh Chauhan,
| |
Collapse
|
21
|
Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022; 35:e0000821. [PMID: 35862754 PMCID: PMC9491212 DOI: 10.1128/cmr.00008-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Collapse
Affiliation(s)
- Robert K. M. Choy
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | - A. Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Richard I. Walker
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Jorge Flores
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| |
Collapse
|
22
|
Thiam LG, Mangou K, Ba A, Mbengue A, Bei AK. Leveraging genome editing to functionally evaluate Plasmodium diversity. Trends Parasitol 2022; 38:558-571. [PMID: 35469746 DOI: 10.1016/j.pt.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
The ambitious goal of malaria elimination requires an in-depth understanding of the parasite's biology to counter the growing threat of antimalarial resistance and immune evasion. Timely assessment of the functional impact of antigenic diversity in the early stages of vaccine development will be critical for achieving the goal of malaria control, elimination, and ultimately eradication. Recent advances in targeted genome editing enabled the functional validation of resistance-associated markers in Plasmodium falciparum, the deadliest malaria-causing pathogen and strain-specific immune neutralization. This review explores recent advances made in leveraging genome editing to aid the functional evaluation of Plasmodium diversity and highlights how these techniques can assist in prioritizing both therapeutic and vaccine candidates.
Collapse
Affiliation(s)
- Laty Gaye Thiam
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Khadidiatou Mangou
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Aboubacar Ba
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Alassane Mbengue
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Amy K Bei
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA.
| |
Collapse
|
23
|
Stochastic expression of invasion genes in Plasmodium falciparum schizonts. Nat Commun 2022; 13:3004. [PMID: 35637187 PMCID: PMC9151791 DOI: 10.1038/s41467-022-30605-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
Genetically identical cells are known to exhibit differential phenotypes in the same environmental conditions. These phenotypic variants are linked to transcriptional stochasticity and have been shown to contribute towards adaptive flexibility of a wide range of unicellular organisms. Here, we investigate transcriptional heterogeneity and stochastic gene expression in Plasmodium falciparum by performing the quasilinear multiple annealing and looping based amplification cycles (MALBAC) based amplification and single cell RNA sequencing of blood stage schizonts. Our data reveals significant transcriptional variations in the schizont stage with a distinct group of highly variable invasion gene transcripts being identified. Moreover, the data reflects several diversification processes including putative developmental “checkpoint”; transcriptomically distinct parasite sub-populations and transcriptional switches in variable gene families (var, rifin, phist). Most of these features of transcriptional variability are preserved in isogenic parasite cell populations (albeit with a lesser amplitude) suggesting a role of epigenetic factors in cell-to-cell transcriptional variations in human malaria parasites. Lastly, we apply quantitative RT-PCR and RNA-FISH approach and confirm stochastic expression of key invasion genes, such as, msp1, msp3, msp7, eba181 and ama1 which represent prime candidates for invasion-blocking vaccines. Genetically identical cells can be phenotypically diverse to allow adaptive flexibility in a given environment. This phenotypic diversity is driven by epigenetic and transcriptional variability. Here, Tripathi et al. perform scRNA-seq of isogenic and non-isogenic Plasmodium falciparum schizont populations to explore transcriptional heterogeneity and stochastic gene expression during the course of development.
Collapse
|
24
|
Shibeshi W, Bagchus W, Yalkinoglu Ö, Tappert A, Engidawork E, Oeuvray C. Reproducibility of malaria sporozoite challenge model in humans for evaluating efficacy of vaccines and drugs: a systematic review. BMC Infect Dis 2021; 21:1274. [PMID: 34930178 PMCID: PMC8686662 DOI: 10.1186/s12879-021-06953-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The development of novel malaria vaccines and antimalarial drugs is limited partly by emerging challenges to conduct field trials in malaria endemic areas, including unknown effects of existing immunity and a reported fall in malaria incidence. As a result, Controlled Human Malaria Infection (CHMI) has become an important approach for accelerated development of malarial vaccines and drugs. We conducted a systematic review of the literature to establish aggregate evidence on the reproducibility of a malaria sporozoite challenge model. METHODS A systematic review of research articles published between 1990 and 2018 on efficacy testing of malaria vaccines and drugs using sporozoite challenge and sporozoite infectivity studies was conducted using Pubmed, Scopus, Embase and Cochrane Library, ClinicalTrials.gov and Trialtrove. The inclusion criteria were randomized and non-randomized, controlled or open-label trials using P. falciparum or P. vivax sporozoite challenges. The data were extracted from articles using standardized data extraction forms and descriptive analysis was performed for evidence synthesis. The endpoints considered were infectivity, prepatent period, parasitemia and safety of sporozoite challenge. RESULTS Seventy CHMI trials conducted with a total of 2329 adult healthy volunteers were used for analysis. CHMI was induced by bites of mosquitoes infected with P. falciparum or P. vivax in 52 trials and by direct venous inoculation of P. falciparum sporozoites (PfSPZ challenge) in 18 trials. Inoculation with P. falciparum-infected mosquitoes produced 100% infectivity in 40 studies and the mean/median prepatent period assessed by thick blood smear (TBS) microscopy was ≤ 12 days in 24 studies. On the other hand, out of 12 infectivity studies conducted using PfSPZ challenge, 100% infection rate was reproduced in 9 studies with a mean or median prepatent period of 11 to 15.3 days as assessed by TBS and 6.8 to 12.6 days by PCR. The safety profile of P. falciparum and P.vivax CHMI was characterized by consistent features of malaria infection. CONCLUSION There is ample evidence on consistency of P. falciparum CHMI models in terms of infectivity and safety endpoints, which supports applicability of CHMI in vaccine and drug development. PfSPZ challenge appears more feasible for African trials based on current evidence of safety and efficacy.
Collapse
Affiliation(s)
- Workineh Shibeshi
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
- Global Health Institute of Merck, Ares Trading S.A., A subsidiary of Merck KGaA, Darmstadt, Germany.
| | - Wilhelmina Bagchus
- Translational Medicine, Merck Serono S.A., An Affiliate of Merck KGaA, Darmstadt, Germany
| | - Özkan Yalkinoglu
- Translational Medicine, Merck Healthcare KGaA, Darmstadt, Germany
| | - Aliona Tappert
- Global Patient Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Claude Oeuvray
- Global Health Institute of Merck, Ares Trading S.A., A subsidiary of Merck KGaA, Darmstadt, Germany
| |
Collapse
|
25
|
A three-antigen Plasmodium falciparum DNA prime-Adenovirus boost malaria vaccine regimen is superior to a two-antigen regimen and protects against controlled human malaria infection in healthy malaria-naïve adults. PLoS One 2021; 16:e0256980. [PMID: 34495988 PMCID: PMC8425539 DOI: 10.1371/journal.pone.0256980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/15/2021] [Indexed: 12/13/2022] Open
Abstract
Background A DNA-prime/human adenovirus serotype 5 (HuAd5) boost vaccine encoding Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP) and Pf apical membrane antigen-1 (PfAMA1), elicited protection in 4/15 (27%) of subjects against controlled human malaria infection (CHMI) that was statistically associated with CD8+ T cell responses. Subjects with high level pre-existing immunity to HuAd5 were not protected, suggesting an adverse effect on vaccine efficacy (VE). We replaced HuAd5 with chimpanzee adenovirus 63 (ChAd63), and repeated the study, assessing both the two-antigen (CSP, AMA1 = CA) vaccine, and a novel three-antigen (CSP, AMA1, ME-TRAP = CAT) vaccine that included a third pre-erythrocytic stage antigen [malaria multiple epitopes (ME) fused to the Pf thrombospondin-related adhesive protein (TRAP)] to potentially enhance protection. Methodology This was an open label, randomized Phase 1 trial, assessing safety, tolerability, and VE against CHMI in healthy, malaria naïve adults. Forty subjects (20 each group) were to receive three monthly CA or CAT DNA priming immunizations, followed by corresponding ChAd63 boost four months later. Four weeks after the boost, immunized subjects and 12 infectivity controls underwent CHMI by mosquito bite using the Pf3D7 strain. VE was assessed by determining the differences in time to parasitemia as detected by thick blood smears up to 28-days post CHMI and utilizing the log rank test, and by calculating the risk ratio of each treatment group and subtracting from 1, with significance calculated by the Cochran-Mantel-Haenszel method. Results In both groups, systemic adverse events (AEs) were significantly higher after the ChAd63 boost than DNA immunizations. Eleven of 12 infectivity controls developed parasitemia (mean 11.7 days). In the CA group, 15 of 16 (93.8%) immunized subjects developed parasitemia (mean 12.0 days). In the CAT group, 11 of 16 (63.8%) immunized subjects developed parasitemia (mean 13.0 days), indicating significant protection by log rank test compared to infectivity controls (p = 0.0406) and the CA group (p = 0.0229). VE (1 minus the risk ratio) in the CAT group was 25% compared to -2% in the CA group. The CA and CAT vaccines induced robust humoral (ELISA antibodies against CSP, AMA1 and TRAP, and IFA responses against sporozoites and Pf3D7 blood stages), and cellular responses (IFN-γ FluoroSpot responses to CSP, AMA1 and TRAP) that were not associated with protection. Conclusions This study demonstrated that the ChAd63 CAT vaccine exhibited significant protective efficacy, and confirmed protection was afforded by adding a third antigen (T) to a two-antigen (CA) formulation to achieve increased VE. Although the ChAd63-CAT vaccine was associated with increased frequencies of systemic AEs compared to the CA vaccine and, historically, compared to the HuAd5 vectored malaria vaccine encoding CSP and AMA1, they were transient and associated with increased vector dosing.
Collapse
|
26
|
Dassah S, Adu B, Sirima SB, Mordmüller B, Ngoa UA, Atuguba F, Arthur FKN, Mensah BA, Kaddumukasa M, Bang P, Kremsner PG, Mategula D, Flach C, Milligan P, Theisen M. Extended follow-up of children in a phase2b trial of the GMZ2 malaria vaccine. Vaccine 2021; 39:4314-4319. [PMID: 34175127 DOI: 10.1016/j.vaccine.2021.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The GMZ2/alum candidate malaria vaccine had an efficacy of 14% (95% confidence interval [CI]: 3.6%, 23%) against clinical malaria over 6 months of follow-up in a phase2b multicentre trial in children 1-5 years of age. Here we report the extended follow up of safety and efficacy over 2 years. METHODS A total of 1849 (GMZ2 = 926, rabies = 923) children aged 12-60 months were randomized to receive intramuscularly, either 3 doses of 100 μg GMZ2/alum or 3 doses of rabies vaccine as control 28 days apart. The children were followed-up for 24 months for clinical malaria episodes and adverse events. The primary endpoint was documented fever with parasitaemia of at least 5000/μL. RESULTS There were 2,062 malaria episodes in the GMZ2/alum group and 2,115 in the rabies vaccine group in the intention-to-treat analysis, vaccine efficacy (VE) of 6.5% (95%: CI -1.6%, 14.0%). In children aged 1-2 years at enrolment, VE was 3.6% (95 %CI: -9.1%, 14.8%) in the first year and -4.1% (95 %CI: -18.7%, 87%) in the second year. In children aged 3-5 years at enrolment VE was 19.9% (95 %CI: 7.7%, 30.4%) in the first year and 6.3% (95 %CI: -10.2%, 20.3%) in the second year (interaction by year, P = 0.025, and by age group, P = 0.085). A total of 187 (GMZ2 = 91, rabies = 96) serious adverse events were recorded in 167 individuals over the entire period of the study. There were no GMZ2 vaccine related serious adverse events. CONCLUSIONS GMZ2/alum was well tolerated. Follow-up over 2 years confirmed a low level of vaccine efficacy with slightly higher efficacy in older children, which suggests GMZ2 may act in concert with naturally acquired immunity.
Collapse
Affiliation(s)
- Sylvester Dassah
- Navrongo Health Research Centre, Navrongo, Ghana; Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Sodiomon B Sirima
- National de Recherche et de Formation sur le Paludisme, Burkina Faso
| | | | - Ulysse Ateba Ngoa
- Institute of Tropical Medicine, University of Tübingen, Germany; Centre de Recherches Médicales de Lambaréné (CERMEL), Gabon
| | | | - Fareed K N Arthur
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Benedicta A Mensah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | | | - Peter Bang
- Department for Vaccine Development, Statens Serum Institut, Copenhagen, Denmark
| | - Peter G Kremsner
- National de Recherche et de Formation sur le Paludisme, Burkina Faso; Institute of Tropical Medicine, University of Tübingen, Germany
| | - Donnie Mategula
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, UK
| | - Clare Flach
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, UK
| | - Paul Milligan
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, UK
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark; Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Denmark.
| |
Collapse
|
27
|
Minassian AM, Silk SE, Barrett JR, Nielsen CM, Miura K, Diouf A, Loos C, Fallon JK, Michell AR, White MT, Edwards NJ, Poulton ID, Mitton CH, Payne RO, Marks M, Maxwell-Scott H, Querol-Rubiera A, Bisnauthsing K, Batra R, Ogrina T, Brendish NJ, Themistocleous Y, Rawlinson TA, Ellis KJ, Quinkert D, Baker M, Lopez Ramon R, Ramos Lopez F, Barfod L, Folegatti PM, Silman D, Datoo M, Taylor IJ, Jin J, Pulido D, Douglas AD, de Jongh WA, Smith R, Berrie E, Noe AR, Diggs CL, Soisson LA, Ashfield R, Faust SN, Goodman AL, Lawrie AM, Nugent FL, Alter G, Long CA, Draper SJ. Reduced blood-stage malaria growth and immune correlates in humans following RH5 vaccination. MED 2021; 2:701-719.e19. [PMID: 34223402 PMCID: PMC8240500 DOI: 10.1016/j.medj.2021.03.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/19/2021] [Accepted: 03/25/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Development of an effective vaccine against the pathogenic blood-stage infection of human malaria has proved challenging, and no candidate vaccine has affected blood-stage parasitemia following controlled human malaria infection (CHMI) with blood-stage Plasmodium falciparum. METHODS We undertook a phase I/IIa clinical trial in healthy adults in the United Kingdom of the RH5.1 recombinant protein vaccine, targeting the P. falciparum reticulocyte-binding protein homolog 5 (RH5), formulated in AS01B adjuvant. We assessed safety, immunogenicity, and efficacy against blood-stage CHMI. Trial registered at ClinicalTrials.gov, NCT02927145. FINDINGS The RH5.1/AS01B formulation was administered using a range of RH5.1 protein vaccine doses (2, 10, and 50 μg) and was found to be safe and well tolerated. A regimen using a delayed and fractional third dose, in contrast to three doses given at monthly intervals, led to significantly improved antibody response longevity over ∼2 years of follow-up. Following primary and secondary CHMI of vaccinees with blood-stage P. falciparum, a significant reduction in parasite growth rate was observed, defining a milestone for the blood-stage malaria vaccine field. We show that growth inhibition activity measured in vitro using purified immunoglobulin G (IgG) antibody strongly correlates with in vivo reduction of the parasite growth rate and also identify other antibody feature sets by systems serology, including the plasma anti-RH5 IgA1 response, that are associated with challenge outcome. CONCLUSIONS Our data provide a new framework to guide rational design and delivery of next-generation vaccines to protect against malaria disease. FUNDING This study was supported by USAID, UK MRC, Wellcome Trust, NIAID, and the NIHR Oxford-BRC.
Collapse
Affiliation(s)
| | - Sarah E. Silk
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Carolin Loos
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Ashlin R. Michell
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Michael T. White
- Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Nick J. Edwards
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Ian D. Poulton
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Celia H. Mitton
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Ruth O. Payne
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Michael Marks
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Hector Maxwell-Scott
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Antonio Querol-Rubiera
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Karen Bisnauthsing
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Rahul Batra
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Tatiana Ogrina
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Nathan J. Brendish
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | | | | | | | - Doris Quinkert
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Megan Baker
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | - Lea Barfod
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Daniel Silman
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Mehreen Datoo
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Iona J. Taylor
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Jing Jin
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - David Pulido
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Willem A. de Jongh
- ExpreSion Biotechnologies, SCION-DTU Science Park, Agern Allé 1, Hørsholm 2970, Denmark
| | - Robert Smith
- Clinical BioManufacturing Facility, University of Oxford, Oxford OX3 7JT, UK
| | - Eleanor Berrie
- Clinical BioManufacturing Facility, University of Oxford, Oxford OX3 7JT, UK
| | | | | | | | | | - Saul N. Faust
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Anna L. Goodman
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | | | - Fay L. Nugent
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Galit Alter
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
28
|
França ACB, Françoso KS, Marques RF, Trossini GHG, Gomes RA, Póvoa MM, Cunha MG, Silveira ELV, Soares IS. Antibodies Against the Plasmodium vivax Apical Membrane Antigen 1 From the Belem Strain Share Common Epitopes Among Other Worldwide Variants. Front Cell Infect Microbiol 2021; 11:616230. [PMID: 33796476 PMCID: PMC8009186 DOI: 10.3389/fcimb.2021.616230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/23/2021] [Indexed: 12/31/2022] Open
Abstract
Malaria is a human parasitic disease distributed in many tropical countries and caused by various Plasmodium species. Plasmodium vivax has the largest geographical distribution of the Plasmodium species and is predominant in the Americas, including Brazil. Only a small number of P. vivax vaccine formulations have successfully reached clinical trials relative to their P. falciparum counterparts. One of the candidate antigens for a blood-stage P. vivax vaccine is apical membrane antigen 1 (PvAMA-1). Due to the worldwide distribution of Plasmodium parasites, a high degree of variability has been detected in this antigen sequence, representing a considerable challenge to the development of a universal vaccine against malaria. In this study, we evaluated how PvAMA-1 polymorphisms influence vaccine-derived immune responses in P. vivax malaria. To this end, we expressed 9 recombinant protein representatives of different PvAMA-1 allelic variants in the yeast Pichia pastoris: Belem, Chesson I, Sal-1, Indonesia XIX, SK0814, TC103, PNG_05_ESP, PNG_62_MU, and PNG_68_MAS. After protein expression and purification, we evaluated the breadth of the immune responses derived from malaria-exposed individuals from the Amazon region. From 611 serum samples of malaria-exposed individuals, 53.68% of them reacted against the PvAMA-1 Belem through ELISA. Positive samples were further tested against recombinant proteins representing the other PvAMA-1 allelic variants. Whereas Sal-1, Chesson I and SK0814 variants were highly recognized by tested serum samples, Indonesia XIX, TC103, PNG_05_ESP, PNG_62_MU, and PNG_68_MAS were only slightly recognized. Moreover, polyclonal sera derived from C57BL/6 mice immunized with the PvAMA-1 Belem protein predominantly recognized Belem, Sal-1, Chesson I, SK0814, and Indonesia XIX through ELISA. Last, ELISA-based competition assays demonstrated that a previous interaction between anti-Belem polyclonal serum and Sal-1, Chesson I, SK0814, or Indonesia XIX proteins could further inhibit antibody binding to the Belem variant. Our human and mouse data suggest the presence of common epitopes or cross-reactivity between Belem, Sal-1, Chesson I, and SK0814 variants. Although the PvAMA-1 Belem variant induces strain-transcendent antibodies, PvAMA-1 variants from Thailand and Papua New Guinea may need to be included in a universal vaccine formulation to achieve protection against P. vivax malaria.
Collapse
Affiliation(s)
- Ana Caroline Barbosa França
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Kátia Sanches Françoso
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodolfo Ferreira Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gustavo H. G. Trossini
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Renan A. Gomes
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Maristela G. Cunha
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Eduardo L. V. Silveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Irene S. Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Abstract
Introduction: An effective vaccine against malaria forms a global health priority. Both naturally acquired immunity and sterile protection induced by irradiated sporozoite immunization were described decades ago. Still no vaccine exists that sufficiently protects children in endemic areas. Identifying immunological correlates of vaccine efficacy can inform rational vaccine design and potentially accelerate clinical development.Areas covered: We discuss recent research on immunological correlates of malaria vaccine efficacy, including: insights from state-of-the-art omics platforms and systems vaccinology analyses; functional anti-parasitic assays; pre-immunization predictors of vaccine efficacy; and comparison of correlates of vaccine efficacy against controlled human malaria infections (CHMI) and against naturally acquired infections.Expert Opinion: Effective vaccination may be achievable without necessarily understanding immunological correlates, but the relatively disappointing efficacy of malaria vaccine candidates in target populations is concerning. Hypothesis-generating omics and systems vaccinology analyses, alongside assessment of pre-immunization correlates, have the potential to bring about paradigm-shifts in malaria vaccinology. Functional assays may represent in vivo effector mechanisms, but have scarcely been formally assessed as correlates. Crucially, evidence is still meager that correlates of vaccine efficacy against CHMI correspond with those against naturally acquired infections in target populations. Finally, the diversity of immunological assays and efficacy endpoints across malaria vaccine trials remains a major confounder.
Collapse
Affiliation(s)
| | - Matthew B B McCall
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| |
Collapse
|
30
|
Lozano JM, Rodríguez Parra Z, Hernández-Martínez S, Yasnot-Acosta MF, Rojas AP, Marín-Waldo LS, Rincón JE. The Search of a Malaria Vaccine: The Time for Modified Immuno-Potentiating Probes. Vaccines (Basel) 2021; 9:vaccines9020115. [PMID: 33540947 PMCID: PMC7913233 DOI: 10.3390/vaccines9020115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022] Open
Abstract
Malaria is a deadly disease that takes the lives of more than 420,000 people a year and is responsible for more than 229 million clinical cases globally. In 2019, 95% of malaria morbidity occurred in African countries. The development of a highly protective vaccine is an urgent task that remains to be solved. Many vaccine candidates have been developed, from the use of the entire attenuated and irradiated pre-erythrocytic parasite forms (or recombinantly expressed antigens thereof) to synthetic candidates formulated in a variety of adjuvants and delivery systems, however these have unfortunately proven a limited efficacy. At present, some vaccine candidates are finishing safety and protective efficacy trials, such as the PfSPZ and the RTS,S/AS01 which are being introduced in Africa. We propose a strategy for introducing non-natural elements into target antigens representing key epitopes of Plasmodium spp. Accordingly, chemical strategies and knowledge of host immunity to Plasmodium spp. have served as the basis. Evidence is obtained after being tested in experimental rodent models for malaria infection and recognized for human sera from malaria-endemic regions. This encourages us to propose such an immune-potentiating strategy to be further considered in the search for new vaccine candidates.
Collapse
Affiliation(s)
- José Manuel Lozano
- Grupo de Investigación Mimetismo Molecular de los Agentes Infecciosos, Departamento de Farmacia, Universidad Nacional de Colombia—Sede Bogotá, 111321 Bogota, Colombia;
- Correspondence: ; Tel.: +57-3102-504-657
| | - Zully Rodríguez Parra
- Grupo de Investigación Mimetismo Molecular de los Agentes Infecciosos, Departamento de Farmacia, Universidad Nacional de Colombia—Sede Bogotá, 111321 Bogota, Colombia;
| | - Salvador Hernández-Martínez
- Dirección de Infección e Inmunidad, Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62508 Cuernavaca, Morelos, Mexico;
| | - Maria Fernanda Yasnot-Acosta
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba, Universidad de Córdoba, 230002 Monteria, Colombia;
| | - Angela Patricia Rojas
- Grupo de Investigación Biología Celular y Autoinmuniad, Departamento de Farmacia, Universidad Nacional de Colombia-Sede Bogotá, 111321 Bogota, Colombia;
| | | | - Juan Edilberto Rincón
- Departamento de Ingeniería y Mecatrónica, Universidad Nacional de Colombia-Sede Bogotá, 111321 Bogota, Colombia;
| |
Collapse
|
31
|
Diversify and Conquer: The Vaccine Escapism of Plasmodium falciparum. Microorganisms 2020; 8:microorganisms8111748. [PMID: 33171746 PMCID: PMC7694999 DOI: 10.3390/microorganisms8111748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Over the last century, a great deal of effort and resources have been poured into the development of vaccines to protect against malaria, particularly targeting the most widely spread and deadly species of the human-infecting parasites: Plasmodium falciparum. Many of the known proteins the parasite uses to invade human cells have been tested as vaccine candidates. However, precisely because of the importance and immune visibility of these proteins, they tend to be very diverse, and in many cases redundant, which limits their efficacy in vaccine development. With the advent of genomics and constantly improving sequencing technologies, an increasingly clear picture is emerging of the vast genomic diversity of parasites from different geographic areas. This diversity is distributed throughout the genome and includes most of the vaccine candidates tested so far, playing an important role in the low efficacy achieved. Genomics is a powerful tool to search for genes that comply with the most desirable attributes of vaccine targets, allowing us to evaluate function, immunogenicity and also diversity in the worldwide parasite populations. Even predicting how this diversity might evolve and spread in the future becomes possible, and can inform novel vaccine efforts.
Collapse
|
32
|
Singh H, Mian SY, Pandey AK, Krishna S, Anand G, Reddy KS, Chaturvedi N, Bahl V, Hans N, Shukla MM, Bassat Q, Mayor A, Miura K, Bharti PK, Long C, Singh N, Chauhan VS, Gaur D. Antibody Combinations Targeting the Essential Antigens CyRPA, RH5, and MSP-119 Potently Neutralize Plasmodium falciparum Clinical Isolates From India and Africa. J Infect Dis 2020; 223:1953-1964. [PMID: 32989463 DOI: 10.1093/infdis/jiaa608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/24/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Targeting multiple key antigens that mediate distinct Plasmodium falciparum erythrocyte invasion pathways is an attractive approach for the development of blood-stage malaria vaccines. However, the challenge is to identify antigen cocktails that elicit potent strain-transcending parasite-neutralizing antibodies efficacious at low immunoglobulin G concentrations feasible to achieve through vaccination. Previous reports have screened inhibitory antibodies primarily against well adapted laboratory parasite clones. However, validation of the parasite-neutralizing efficacy against clinical isolates with minimal in vitro cultivation is equally significant to better ascertain their prospective in vivo potency. METHODS We evaluated the parasite-neutralizing activity of different antibodies individually and in combinations against laboratory adapted clones and clinical isolates. Clinical isolates were collected from Central India and Mozambique, Africa, and characterized for their invasion properties and genetic diversity of invasion ligands. RESULTS In our portfolio, we evaluated 25 triple antibody combinations and identified the MSP-Fu+CyRPA+RH5 antibody combination to elicit maximal parasite neutralization against P. falciparum clinical isolates with variable properties that underwent minimal in vitro cultivation. CONCLUSIONS The MSP-Fu+CyRPA+RH5 combination exhibited highly robust parasite neutralization against P. falciparum clones and clinical isolates, thus substantiating them as promising candidate antigens and establishing a proof of principle for the development of a combinatorial P. falciparum blood-stage malaria vaccine.
Collapse
Affiliation(s)
- Hina Singh
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Syed Yusuf Mian
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Alok K Pandey
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sri Krishna
- National Institute for Research in Tribal Health (NIRTH), Jabalpur, Madhya Pradesh, India
| | - Gaurav Anand
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - K Sony Reddy
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.,School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India
| | - Neha Chaturvedi
- National Institute for Research in Tribal Health (NIRTH), Jabalpur, Madhya Pradesh, India
| | - Vanndita Bahl
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Nidhi Hans
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Man Mohan Shukla
- National Institute for Research in Tribal Health (NIRTH), Jabalpur, Madhya Pradesh, India
| | - Quique Bassat
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ICREA, Barcelona, Spain
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville Maryland, USA
| | - Praveen K Bharti
- National Institute for Research in Tribal Health (NIRTH), Jabalpur, Madhya Pradesh, India
| | - Carole Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville Maryland, USA
| | - Neeru Singh
- National Institute for Research in Tribal Health (NIRTH), Jabalpur, Madhya Pradesh, India
| | - Virander Singh Chauhan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Deepak Gaur
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
33
|
A framework for in situ molecular characterization of coral holobionts using nanopore sequencing. Sci Rep 2020; 10:15893. [PMID: 32985530 PMCID: PMC7522235 DOI: 10.1038/s41598-020-72589-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/03/2020] [Indexed: 01/21/2023] Open
Abstract
Molecular characterization of the coral host and the microbial assemblages associated with it (referred to as the coral holobiont) is currently undertaken via marker gene sequencing. This requires bulky instruments and controlled laboratory conditions which are impractical for environmental experiments in remote areas. Recent advances in sequencing technologies now permit rapid sequencing in the field; however, development of specific protocols and pipelines for the effective processing of complex microbial systems are currently lacking. Here, we used a combination of 3 marker genes targeting the coral animal host, its symbiotic alga, and the associated bacterial microbiome to characterize 60 coral colonies collected and processed in situ, during the Tara Pacific expedition. We used Oxford Nanopore Technologies to sequence marker gene amplicons and developed bioinformatics pipelines to analyze nanopore reads on a laptop, obtaining results in less than 24 h. Reef scale network analysis of coral-associated bacteria reveals broadly distributed taxa, as well as host-specific associations. Protocols and tools used in this work may be applicable for rapid coral holobiont surveys, immediate adaptation of sampling strategy in the field, and to make informed and timely decisions in the context of the current challenges affecting coral reefs worldwide.
Collapse
|
34
|
Bliss' and Loewe's additive and synergistic effects in Plasmodium falciparum growth inhibition by AMA1-RON2L, RH5, RIPR and CyRPA antibody combinations. Sci Rep 2020; 10:11802. [PMID: 32678144 PMCID: PMC7366652 DOI: 10.1038/s41598-020-67877-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/15/2020] [Indexed: 01/10/2023] Open
Abstract
Plasmodium invasion of red blood cells involves malaria proteins, such as reticulocyte-binding protein homolog 5 (RH5), RH5 interacting protein (RIPR), cysteine-rich protective antigen (CyRPA), apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2), all of which are blood-stage malaria vaccine candidates. So far, vaccines containing AMA1 alone have been unsuccessful in clinical trials. However, immunization with AMA1 bound with RON2L (AMA1-RON2L) induces better protection against P. falciparum malaria in Aotus monkeys. We therefore sought to determine whether combinations of RH5, RIPR, CyRPA and AMA1-RON2L antibodies improve their biological activities and sought to develop a robust method for determination of synergy or additivity in antibody combinations. Rabbit antibodies against AMA1-RON2L, RH5, RIPR or CyRPA were tested either alone or in combinations in P. falciparum growth inhibition assay to determine Bliss' and Loewe's additivities. The AMA1-RON2L/RH5 combination consistently demonstrated an additive effect while the CyRPA/RIPR combination showed a modest synergistic effect with Hewlett’s \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S=1.07 \left[95\% \mathrm{C}\mathrm{I}: 1.03, 1.19\right].$$\end{document}S=1.0795%CI:1.03,1.19. Additionally, we provide a publicly-available, online tool to aid researchers in analyzing and planning their own synergy experiments. This study supports future blood-stage vaccine development by providing a solid methodology to evaluate additive and/or synergistic (or antagonistic) effect of vaccine-induced antibodies.
Collapse
|
35
|
A Multistage Formulation Based on Full-Length CSP and AMA-1 Ectodomain of Plasmodium vivax Induces High Antibody Titers and T-cells and Partially Protects Mice Challenged with a Transgenic Plasmodium berghei Parasite. Microorganisms 2020; 8:microorganisms8060916. [PMID: 32560380 PMCID: PMC7356588 DOI: 10.3390/microorganisms8060916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 01/23/2023] Open
Abstract
Infections with Plasmodium vivax are predominant in the Americas, representing 75% of malaria cases. Previously perceived as benign, malaria vivax is, in fact, a highly debilitating and economically important disease. Considering the high complexity of the malaria parasite life cycle, it has been hypothesized that an effective vaccine formulation against Plasmodium should contain multiple antigens expressed in different parasite stages. Based on that, we analyzed a recombinant P. vivax vaccine formulation mixing the apical membrane antigen 1 ectodomain (PvAMA-1) and a full-length circumsporozoite protein (PvCSP-AllFL) previously studied by our group, which elicits a potent antibody response in mice. Genetically distinct strains of mice (C57BL/6 and BALB/c) were immunized with the proteins, alone or in combination, in the presence of poly(I:C) adjuvant, a TLR3 agonist. In C57BL/6, high-antibody titers were induced against PvAMA-1 and the three PvCSP variants (VK210, VK247, and P. vivax-like). Meanwhile, mixing PvAMA-1 with PvCSP-AllFL had no impact on total IgG antibody titers, which were long-lasting. Moreover, antibodies from immunized mice recognized VK210 sporozoites and blood-stage parasites by immunofluorescence assay. However, in the BALB/c model, the antibody response against PvCSP-AllFL was relatively low. PvAMA-1-specific CD3+CD4+ and CD3+CD8+ T-cell responses were observed in C57BL/6 mice, and the cellular response was impaired by PvCSP-AllFL combination. More relevant, the multistage vaccine formulation provided partial protection in mice challenged with a transgenic Plasmodium berghei sporozoite expressing the homologous PvCSP protein.
Collapse
|
36
|
Duffy PE, Patrick Gorres J. Malaria vaccines since 2000: progress, priorities, products. NPJ Vaccines 2020; 5:48. [PMID: 32566259 PMCID: PMC7283239 DOI: 10.1038/s41541-020-0196-3] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Malaria vaccine development entered a new era in 2015 when the pre-erythrocytic Plasmodium falciparum candidate RTS,S was favorably reviewed by the European Medicines Agency and subsequently introduced into national pilot implementation programs, marking the first human anti-parasite vaccine to pass regulatory scrutiny. Since the first trials published in 1997, RTS,S has been evaluated in a series of clinical trials culminating in Phase 3 testing, while testing of other pre-erythrocytic candidates (that target sporozoite- or liver-stage parasites), particularly whole sporozoite vaccines, has also increased. Interest in blood-stage candidates (that limit blood-stage parasite growth) subsided after disappointing human efficacy results, although new blood-stage targets and concepts may revive activity in this area. Over the past decade, testing of transmission-blocking vaccines (that kill mosquito/sexual-stage parasites) advanced to field trials and the first generation of placental malaria vaccines (that clear placenta-sequestering parasites) entered the clinic. Novel antigen discovery, human monoclonal antibodies, structural vaccinology, and improved platforms promise to expand on RTS,S and improve existing vaccine candidates.
Collapse
Affiliation(s)
- Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - J. Patrick Gorres
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
37
|
Dinga JN, Perimbie SN, Gamua SD, Chuma FNG, Njimoh DL, Djikeng A, Pelle R, Titanji VPK. Analysis of the Role of TpUB05 Antigen from Theileria parva in Immune Responses to Malaria in Humans Compared to Its Homologue in Plasmodium falciparum the UB05 Antigen. Pathogens 2020; 9:pathogens9040271. [PMID: 32276308 PMCID: PMC7238281 DOI: 10.3390/pathogens9040271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 11/19/2022] Open
Abstract
Despite the amount of resources deployed and the technological advancements in molecular biology, vaccinology, immunology, genetics, and biotechnology, there are still no effective vaccines against malaria. Immunity to malaria is usually seen to be species- and/or strain-specific. However, there is a growing body of evidence suggesting the possibility of the existence of cross-strain, cross-species, and cross-genus immune responses in apicomplexans. The principle of gene conservation indicates that homologues play a similar role in closely related organisms. The homologue of UB05 in Theileria parva is TpUB05 (XP_763711.1), which has been tested and shown to be associated with protective immunity in East Coast fever. In a bid to identify potent markers of protective immunity to aid malaria vaccine development, TpUB05 was tested in malaria caused by Plasmodium falciparum. It was observed that TpUB05 was better at detecting antigen-specific antibodies in plasma compared to UB05 when tested by ELISA. The total IgG raised against TpUB05 was able to block parasitic growth in vitro more effectively than that raised against UB05. However, there was no significant difference between the two study antigens in recalling peripheral blood mononuclear cell (PBMC) memory through IFN-γ production. This study suggests, for the first time, that TpUB05 from T. parva cross-reacts with UB05 from P. falciparum and is a marker of protective immunity in malaria. Hence, TpUB05 should be considered for possible development as a potential subunit vaccine candidate against malaria.
Collapse
Affiliation(s)
- Jerome Nyhalah Dinga
- Biotechnology Unit, Faculty of Science, University of Buea, P O. Box 63 Buea, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P. O. Box 63 Buea, Cameroon
- Correspondence: ; Tel.: +237-233322134
| | - Stephanie Numenyi Perimbie
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P. O. Box 63 Buea, Cameroon
| | - Stanley Dobgima Gamua
- Biotechnology Unit, Faculty of Science, University of Buea, P O. Box 63 Buea, Cameroon
| | - Francis N. G. Chuma
- Biosciences Eastern and Central Africa—International Livestock Research Institute (BecA-ILRI) Hub, P. O. Box 30709 Nairobi, Kenya
| | - Dieudonné Lemuh Njimoh
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P. O. Box 63 Buea, Cameroon
| | - Appolinaire Djikeng
- Biosciences Eastern and Central Africa—International Livestock Research Institute (BecA-ILRI) Hub, P. O. Box 30709 Nairobi, Kenya
- Centre for Tropical Livestock Genetics and Health, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Easter Bush Campus, EH25 9RG Edinburgh, UK
| | - Roger Pelle
- Biosciences Eastern and Central Africa—International Livestock Research Institute (BecA-ILRI) Hub, P. O. Box 30709 Nairobi, Kenya
| | - Vincent P. K. Titanji
- Biotechnology Unit, Faculty of Science, University of Buea, P O. Box 63 Buea, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P. O. Box 63 Buea, Cameroon
- Faculty of Science, Engineering and Technology, Cameroon Christian University Institute, P.O. Box 5 Bali, Cameroon
| |
Collapse
|
38
|
Odedra A, McCarthy JS. Safety Considerations for Malaria Volunteer Infection Studies: A Mini-Review. Am J Trop Med Hyg 2020; 102:934-939. [PMID: 32189610 DOI: 10.4269/ajtmh.19-0351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Malaria clinical studies entailing the experimental infection of healthy volunteers with Plasmodium parasites by bites from infected mosquitos, injection of cryopreserved sporozoites, or injection of blood-stage parasites provide valuable information for vaccine and drug development. Success of these studies depends on maintaining safety. In this mini-review, we discuss the safety risks and associated mitigation strategies of these three types of experimental malaria infection. We aimed to inform researchers and regulators who are currently involved in or are planning to establish experimental malaria infection studies in endemic or non-endemic settings.
Collapse
Affiliation(s)
- Anand Odedra
- QIMR Berghofer Medical Research Institute, Herston, Australia.,Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - James S McCarthy
- The University of Queensland, St Lucia, Australia.,QIMR Berghofer Medical Research Institute, Herston, Australia
| |
Collapse
|
39
|
Bailey JA, Berry AA, Travassos MA, Ouattara A, Boudova S, Dotsey EY, Pike A, Jacob CG, Adams M, Tan JC, Bannen RM, Patel JJ, Pablo J, Nakajima R, Jasinskas A, Dutta S, Takala-Harrison S, Lyke KE, Laurens MB, Niangaly A, Coulibaly D, Kouriba B, Doumbo OK, Thera MA, Felgner PL, Plowe CV. Microarray analyses reveal strain-specific antibody responses to Plasmodium falciparum apical membrane antigen 1 variants following natural infection and vaccination. Sci Rep 2020; 10:3952. [PMID: 32127565 PMCID: PMC7054363 DOI: 10.1038/s41598-020-60551-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/13/2020] [Indexed: 11/30/2022] Open
Abstract
Vaccines based on Plasmodium falciparum apical membrane antigen 1 (AMA1) have failed due to extensive polymorphism in AMA1. To assess the strain-specificity of antibody responses to malaria infection and AMA1 vaccination, we designed protein and peptide microarrays representing hundreds of unique AMA1 variants. Following clinical malaria episodes, children had short-lived, sequence-independent increases in average whole-protein seroreactivity, as well as strain-specific responses to peptides representing diverse epitopes. Vaccination resulted in dramatically increased seroreactivity to all 263 AMA1 whole-protein variants. High-density peptide analysis revealed that vaccinated children had increases in seroreactivity to four distinct epitopes that exceeded responses to natural infection. A single amino acid change was critical to seroreactivity to peptides in a region of AMA1 associated with strain-specific vaccine efficacy. Antibody measurements using whole antigens may be biased towards conserved, immunodominant epitopes. Peptide microarrays may help to identify immunogenic epitopes, define correlates of vaccine protection, and measure strain-specific vaccine-induced antibodies.
Collapse
Affiliation(s)
- Jason A Bailey
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrea A Berry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark A Travassos
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amed Ouattara
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sarah Boudova
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emmanuel Y Dotsey
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA
| | - Andrew Pike
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Matthew Adams
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John C Tan
- Previous address: Roche Sequencing Solutions, Madison, WI, USA
- Nimble Therapeutics, Madison, WI, USA
| | - Ryan M Bannen
- Previous address: Roche Sequencing Solutions, Madison, WI, USA
- Nimble Therapeutics, Madison, WI, USA
| | - Jigar J Patel
- Previous address: Roche Sequencing Solutions, Madison, WI, USA
- Nimble Therapeutics, Madison, WI, USA
| | - Jozelyn Pablo
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA
| | - Rie Nakajima
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA
| | - Algis Jasinskas
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA
| | - Sheetij Dutta
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew B Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Ogobara K Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamadou A Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Philip L Felgner
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA
| | - Christopher V Plowe
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
- Duke Global Health Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
40
|
Seilie AM, Chang M, Hanron AE, Billman ZP, Stone BC, Zhou K, Olsen TM, Daza G, Ortega J, Cruz KR, Smith N, Healy SA, Neal J, Wallis CK, Shelton L, Mankowski TV, Wong-Madden S, Mikolajczak SA, Vaughan AM, Kappe SHI, Fishbaugher M, Betz W, Kennedy M, Hume JCC, Talley AK, Hoffman SL, Chakravarty S, Sim BKL, Richie TL, Wald A, Plowe CV, Lyke KE, Adams M, Fahle GA, Cowan EP, Duffy PE, Kublin JG, Murphy SC. Beyond Blood Smears: Qualification of Plasmodium 18S rRNA as a Biomarker for Controlled Human Malaria Infections. Am J Trop Med Hyg 2020; 100:1466-1476. [PMID: 31017084 PMCID: PMC6553913 DOI: 10.4269/ajtmh.19-0094] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
18S rRNA is a biomarker that provides an alternative to thick blood smears in controlled human malaria infection (CHMI) trials. We reviewed data from CHMI trials at non-endemic sites that used blood smears and Plasmodium 18S rRNA/rDNA biomarker nucleic acid tests (NATs) for time to positivity. We validated a multiplex quantitative reverse transcription–polymerase chain reaction (qRT-PCR) for Plasmodium 18S rRNA, prospectively compared blood smears and qRT-PCR for three trials, and modeled treatment effects at different biomarker-defined parasite densities to assess the impact on infection detection, symptom reduction, and measured intervention efficacy. Literature review demonstrated accelerated NAT-based infection detection compared with blood smears (mean acceleration: 3.2–3.6 days). For prospectively tested trials, the validated Plasmodium 18S rRNA qRT-PCR positivity was earlier (7.6 days; 95% CI: 7.1–8.1 days) than blood smears (11.0 days; 95% CI: 10.3–11.8 days) and significantly preceded the onset of grade 2 malaria-related symptoms (12.2 days; 95% CI: 10.6–13.3 days). Discrepant analysis showed that the risk of a blood smear–positive, biomarker-negative result was negligible. Data modeling predicted that treatment triggered by specific biomarker-defined thresholds can differentiate complete, partial, and non-protective outcomes and eliminate many grade 2 and most grade 3 malaria-related symptoms post-CHMI. Plasmodium 18S rRNA is a sensitive and specific biomarker that can justifiably replace blood smears for infection detection in CHMI trials in non-endemic settings. This study led to biomarker qualification through the U.S. Food and Drug Administration for use in CHMI studies at non-endemic sites, which will facilitate biomarker use for the qualified context of use in drug and vaccine trials.
Collapse
Affiliation(s)
- Annette M Seilie
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Ming Chang
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Amelia E Hanron
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Zachary P Billman
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Brad C Stone
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Kevin Zhou
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Tayla M Olsen
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Glenda Daza
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Jose Ortega
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Kurtis R Cruz
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Nahum Smith
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Washington, Seattle, Washington.,Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Jillian Neal
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Carolyn K Wallis
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Lisa Shelton
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Tracie VonGoedert Mankowski
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Sharon Wong-Madden
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sebastian A Mikolajczak
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Matt Fishbaugher
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Will Betz
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Mark Kennedy
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Jen C C Hume
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Angela K Talley
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | | | | | | | | | - Anna Wald
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington
| | | | - Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Matthew Adams
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gary A Fahle
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | | | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - James G Kublin
- Seattle Malaria Clinical Trials Center, Fred Hutch Cancer Research Center, Seattle, Washington.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sean C Murphy
- Department of Microbiology, University of Washington, Seattle, Washington.,Seattle Malaria Clinical Trials Center, Fred Hutch Cancer Research Center, Seattle, Washington.,Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington.,Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| |
Collapse
|
41
|
Sadegh-Nasseri S. How a Proposed Hypothesis during My PhD Training Shaped My Career. Crit Rev Immunol 2020; 40:449-464. [PMID: 33463956 PMCID: PMC11014643 DOI: 10.1615/critrevimmunol.2020035324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this memoir-style essay, I have narrated the evolution of my scientific career, as deeply influenced by my PhD training and the mentorship of Professor Eli Sercarz. Starting in his lab, and continuing to my own laboratory, many of the questions we have pursued link in some way to Eli's ideas. In this essay, I have summarized the path that I followed after graduating from his lab and highlight findings along the way. I apologize to my colleagues whose work was not discussed here due to the nature of this review and space limitations.
Collapse
|
42
|
Chaudhury S, Duncan EH, Atre T, Dutta S, Spring MD, Leitner WW, Bergmann-Leitner ES. Combining immunoprofiling with machine learning to assess the effects of adjuvant formulation on human vaccine-induced immunity. Hum Vaccin Immunother 2019; 16:400-411. [PMID: 31589550 PMCID: PMC7062453 DOI: 10.1080/21645515.2019.1654807] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adjuvants produce complex, but often subtle, effects on vaccine-induced immune responses that, nonetheless, play a critical role in vaccine efficacy. In-depth profiling of vaccine-induced cytokine, cellular, and antibody responses ("immunoprofiling") combined with machine-learning holds the promise of identifying adjuvant-specific immune response characteristics that can guide rational adjuvant selection. Here, we profiled human immune responses induced by vaccines adjuvanted with two similar, clinically relevant adjuvants, AS01B and AS02A, and identified key distinguishing characteristics, or immune signatures, they imprint on vaccine-induced immunity. Samples for this side-by-side comparison were from malaria-naïve individuals who had received a recombinant malaria subunit vaccine (AMA-1) that targets the pre-erythrocytic stage of the parasite. Both adjuvant formulations contain the same immunostimulatory components, QS21 and MPL, thus this study reveals the subtle impact that adjuvant formulation has on immunogenicity. Adjuvant-mediated immune signatures were established through a two-step approach: First, we generated a broad immunoprofile (serological, functional and cellular characterization of vaccine-induced responses). Second, we integrated the immunoprofiling data and identify what combination of immune features was most clearly able to distinguish vaccine-induced responses by adjuvant using machine learning. The computational analysis revealed statistically significant differences in cellular and antibody responses between cohorts and identified a combination of immune features that was able to distinguish subjects by adjuvant with 71% accuracy. Moreover, the in-depth characterization demonstrated an unexpected induction of CD8+ T cells by the recombinant subunit vaccine, which is rare and highly relevant for future vaccine design.
Collapse
Affiliation(s)
- Sidhartha Chaudhury
- Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, USA
| | - Elizabeth H Duncan
- Malaria Vaccine Branch, U.S. Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Tanmaya Atre
- Malaria Vaccine Branch, U.S. Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sheetij Dutta
- Malaria Vaccine Branch, U.S. Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Michele D Spring
- Department of Bacterial and Parasitic Diseases, AFRIMS, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | | | - Elke S Bergmann-Leitner
- Malaria Vaccine Branch, U.S. Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
43
|
Labbé GM, Miura K, Silk SE, Gu W, Moon JE, Jin J, Payne RO, Fay MP, Dutta S, Long CA, Draper SJ. Harmonization study between three laboratories for expression of malaria vaccine clinical trial IgG antibody ELISA data in µg/mL. Malar J 2019; 18:300. [PMID: 31477111 PMCID: PMC6721210 DOI: 10.1186/s12936-019-2935-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/24/2019] [Indexed: 11/11/2022] Open
Abstract
Background The ability to report vaccine-induced IgG responses in terms of µg/mL, as opposed arbitrary units (AU), enables a more informed interpretation of the magnitude of the immune response, and better comparison between vaccines targeting different antigens. However, these interpretations rely on the accuracy of the methodology, which is used to generate ELISA data in µg/mL. In a previous clinical trial of a vaccine targeting the apical membrane antigen 1 (AMA1) from Plasmodium falciparum, three laboratories (Oxford, NIH and WRAIR) reported ELISA data in µg/mL that were correlated but not concordant. This current study sought to harmonize the methodology used to generate a conversion factor (CF) for ELISA analysis of human anti-AMA1 IgG responses across the three laboratories. Methods Purified IgG was distributed to the three laboratories and, following a set protocol provided by NIH, AMA1-specific human IgG was affinity purified. A new “harmonized CF” was generated by each laboratory using their in-house ELISA, and the original clinical trial ELISA data were re-analysed accordingly. Results Statistical analysis showed that the data remained highly correlated across all three laboratories, although only Oxford and NIH were able to harmonize their CF for ELISA and generate concordant data. Conclusions This study enabled two out of the three laboratories to harmonize their µg/mL readouts for the human anti-AMA1 IgG ELISA, but results reported from WRAIR are ~ twofold higher. Given the need to validate such information for each species and antigen of interest, it is important to bear in mind these likely differences when interpreting µg/mL ELISA data in the future.
Collapse
Affiliation(s)
- Geneviève M Labbé
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD, 20852, USA
| | - Sarah E Silk
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Wenjuan Gu
- Biostatistics Research Branch, NIAID/NIH, Rockville, MD, 20852, USA
| | - James E Moon
- Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Jing Jin
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Ruth O Payne
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Michael P Fay
- Biostatistics Research Branch, NIAID/NIH, Rockville, MD, 20852, USA
| | - Sheetij Dutta
- Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD, 20852, USA
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK.
| |
Collapse
|
44
|
Younis S, Faber BW, Kocken CHM, Remarque EJ. Identification of adjuvants for clinical trials performed with Plasmodium falciparum AMA1 in rabbits. BMC Immunol 2019; 20:25. [PMID: 31362695 PMCID: PMC6664700 DOI: 10.1186/s12865-019-0307-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 07/18/2019] [Indexed: 11/20/2022] Open
Abstract
Background In this study, seven adjuvants were compared for use with Plasmodium falciparum DiCo-Apical Membrane Antigen 1 (Pf-DiCo-AMA1), with the aim to identify an ideal adjuvant which yields high antibody titres and potentially broadens the responses in clinical trials. The following adjuvant formulations were evaluated: SE, SE-GLA, Liposomes, Liposomes-GLA, CoVaccine HT™, ImSaVac-P and ImSaVac-P o/w. The study was performed in rabbits, which were immunized with FVO-AMA1 in combination with one of the seven adjuvants. Antibody levels (humoral responses) and functional activity of the antibodies induced against malaria vaccine candidate AMA1 were evaluated. Thus, in this study the ideal adjuvant is expected to induce high functional antibody levels, a long-lived response, and a broad cross-strain activity. Results AMA1 formulated in all adjuvants was immunogenic. However, the magnitude of the immune responses differed between the seven adjuvants. The highest IgG levels were observed for the CoVaccine HT™ group, this was statistically significant for all four AMA1 variants versus all other adjuvant groups. No differences were observed in the breadth of the humoral response, i.e., increased recognition of AMA1 variants. Also, Growth Inhibition Activity (GIA) for both Plasmodium falciparum strains (FCR3 – homologous to FVO AMA1 protein and NF54 – heterologous to FVO AMA1 protein) were significantly higher in the CoVaccine HT™ group as compared to the other adjuvant groups. Conclusions In brief, all seven vaccine – adjuvant formulations were immunogenic. The magnitude of the immune responses differed between the seven adjuvants. No statistically significant differences were observed in the breadth of the humoral response, nor in longevity of the response. Nevertheless, AMA1 formulated in CoVaccine HT™ appeared as the best adjuvant for use in clinical trials. Electronic supplementary material The online version of this article (10.1186/s12865-019-0307-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sumera Younis
- Biomedical Primate Research Centre, Department of Parasitology, Rijswijk, The Netherlands
| | - Bart W Faber
- Biomedical Primate Research Centre, Department of Parasitology, Rijswijk, The Netherlands
| | - Clemens H M Kocken
- Biomedical Primate Research Centre, Department of Parasitology, Rijswijk, The Netherlands
| | - Edmond J Remarque
- Biomedical Primate Research Centre, Department of Parasitology, Rijswijk, The Netherlands.
| |
Collapse
|
45
|
Khoury DS, Aogo R, Randriafanomezantsoa-Radohery G, McCaw JM, Simpson JA, McCarthy JS, Haque A, Cromer D, Davenport MP. Within-host modeling of blood-stage malaria. Immunol Rev 2019; 285:168-193. [PMID: 30129195 DOI: 10.1111/imr.12697] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Malaria infection continues to be a major health problem worldwide and drug resistance in the major human parasite species, Plasmodium falciparum, is increasing in South East Asia. Control measures including novel drugs and vaccines are in development, and contributions to the rational design and optimal usage of these interventions are urgently needed. Infection involves the complex interaction of parasite dynamics, host immunity, and drug effects. The long life cycle (48 hours in the common human species) and synchronized replication cycle of the parasite population present significant challenges to modeling the dynamics of Plasmodium infection. Coupled with these, variation in immune recognition and drug action at different life cycle stages leads to further complexity. We review the development and progress of "within-host" models of Plasmodium infection, and how these have been applied to understanding and interpreting human infection and animal models of infection.
Collapse
Affiliation(s)
| | - Rosemary Aogo
- Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | | | - James M McCaw
- School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia.,Peter Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital and University of Melbourne, Melbourne, VIC, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | | |
Collapse
|
46
|
Salinas ND, Tang WK, Tolia NH. Blood-Stage Malaria Parasite Antigens: Structure, Function, and Vaccine Potential. J Mol Biol 2019; 431:4259-4280. [PMID: 31103771 DOI: 10.1016/j.jmb.2019.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/22/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Plasmodium parasites are the causative agent of malaria, a disease that kills approximately 450,000 individuals annually, with the majority of deaths occurring in children under the age of 5 years and the development of a malaria vaccine is a global health priority. Plasmodium parasites undergo a complex life cycle requiring numerous diverse protein families. The blood stage of parasite development results in the clinical manifestation of disease. A vaccine that disrupts the blood stage is highly desired and will aid in the control of malaria. The blood stage comprises multiple steps: invasion of, asexual growth within, and egress from red blood cells. This review focuses on blood-stage antigens with emphasis on antigen structure, antigen function, neutralizing antibodies, and vaccine potential.
Collapse
Affiliation(s)
- Nichole D Salinas
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD,, 20892, USA
| | - Wai Kwan Tang
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD,, 20892, USA
| | - Niraj H Tolia
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD,, 20892, USA.
| |
Collapse
|
47
|
Beeson JG, Kurtovic L, Dobaño C, Opi DH, Chan JA, Feng G, Good MF, Reiling L, Boyle MJ. Challenges and strategies for developing efficacious and long-lasting malaria vaccines. Sci Transl Med 2019; 11:11/474/eaau1458. [DOI: 10.1126/scitranslmed.aau1458] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/05/2018] [Accepted: 11/02/2018] [Indexed: 12/24/2022]
Abstract
Although there has been major recent progress in malaria vaccine development, substantial challenges remain for achieving highly efficacious and durable vaccines against Plasmodium falciparum and Plasmodium vivax malaria. Greater knowledge of mechanisms and key targets of immunity are needed to accomplish this goal, together with new strategies for generating potent, long-lasting, functional immunity against multiple antigens. Implementation considerations in endemic areas will ultimately affect vaccine effectiveness, so innovations to simplify and enhance delivery are also needed. Whereas challenges remain, recent exciting progress and emerging knowledge promise hope for the future of malaria vaccines.
Collapse
|
48
|
Bittencourt NC, Leite JA, Silva ABIE, Pimenta TS, Silva-Filho JL, Cassiano GC, Lopes SCP, Dos-Santos JCK, Bourgard C, Nakaya HI, da Silva Ventura AMR, Lacerda MVG, Ferreira MU, Machado RLD, Albrecht L, Costa FTM. Genetic sequence characterization and naturally acquired immune response to Plasmodium vivax Rhoptry Neck Protein 2 (PvRON2). Malar J 2018; 17:401. [PMID: 30382855 PMCID: PMC6208078 DOI: 10.1186/s12936-018-2543-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/22/2018] [Indexed: 12/28/2022] Open
Abstract
Background The genetic diversity of malaria antigens often results in allele variant-specific immunity, imposing a great challenge to vaccine development. Rhoptry Neck Protein 2 (PvRON2) is a blood-stage antigen that plays a key role during the erythrocyte invasion of Plasmodium vivax. This study investigates the genetic diversity of PvRON2 and the naturally acquired immune response to P. vivax isolates. Results Here, the genetic diversity of PvRON21828–2080 and the naturally acquired humoral immune response against PvRON21828–2080 in infected and non-infected individuals from a vivax malaria endemic area in Brazil was reported. The diversity analysis of PvRON21828–2080 revealed that the protein is conserved in isolates in Brazil and worldwide. A total of 18 (19%) patients had IgG antibodies to PvRON21828–2080. Additionally, the analysis of the antibody response in individuals who were not acutely infected with malaria, but had been infected with malaria in the past indicated that 32 patients (33%) exhibited an IgG immune response against PvRON2. Conclusions PvRON2 was conserved among the studied isolates. The presence of naturally acquired antibodies to this protein in the absence of the disease suggests that PvRON2 induces a long-term antibody response. These results indicate that PvRON2 is a potential malaria vaccine candidate. Electronic supplementary material The online version of this article (10.1186/s12936-018-2543-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Najara C Bittencourt
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Juliana A Leite
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | | | - Tamirys S Pimenta
- Laboratório de Ensaios Clínicos e Imunogenética em Malária, Instituto Evandro Chagas/SVS/MS, Ananindeua, PA, Brazil
| | - João Luiz Silva-Filho
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Gustavo C Cassiano
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Stefanie C P Lopes
- Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz - FIOCRUZ, Manaus, AM, Brazil.,Fundação de Medicina Tropical-Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
| | - Joao C K Dos-Santos
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Catarina Bourgard
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Helder I Nakaya
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Marcus V G Lacerda
- Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz - FIOCRUZ, Manaus, AM, Brazil.,Fundação de Medicina Tropical-Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo-USP, São Paulo, Brazil
| | - Ricardo L D Machado
- Laboratório de Ensaios Clínicos e Imunogenética em Malária, Instituto Evandro Chagas/SVS/MS, Ananindeua, PA, Brazil
| | - Letusa Albrecht
- Instituto Carlos Chagas, Fundação Oswaldo Cruz - FIOCRUZ, Curitiba, PR, Brazil.
| | - Fabio T M Costa
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil.
| |
Collapse
|
49
|
Roestenberg M, Kamerling IMC, de Visser SJ. Controlled Human Infections As a Tool to Reduce Uncertainty in Clinical Vaccine Development. Front Med (Lausanne) 2018; 5:297. [PMID: 30420951 PMCID: PMC6215823 DOI: 10.3389/fmed.2018.00297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022] Open
Abstract
Vaccines can be extremely cost-effective public health measures. Unfortunately the research and development (R&D) of novel vaccines is suffering from rising costs and declining success rates. Because many vaccines target low- and middle income markets (LMIC), output needs to be maintained at a constrained budget. In addition, scientific neglect and political uncertainty around reimbursement decisions make it an unattractive arena for private investors. The vaccine development pipeline for LMIC thus is in need for a different, sustainable, and cost-effective development model. In conventional vaccine development, objectives for every clinical development phase have been predefined. However, given the scarcity of resources, the most efficient clinical development path should identify vaccine candidates with the highest potential impact as soon as possible. We argue for a custom-made question-based development path based on the scientific questions, success probabilities and investments required. One question can be addressed by several studies and one study can provide partial answers to multiple questions. An example of a question-based approach is the implementation of a controlled human malaria infection model (CHMI). Malaria vaccine R&D faces major scientific challenges and has limited resources. Therefore, early preliminary efficacy data needs to be obtained in order to reallocate resources as efficiently as possible and reduce clinical development costs. To meet this demand, novel malaria vaccines are tested for efficacy in so-called CHMI trials in which small groups of healthy volunteers are vaccinated and subsequently infected with malaria. Early evaluation studies of critical questions, such as CHMI, are highly rewarding, since they prevent expenditures on projects that are unlikely to succeed. Each set of estimated probabilities and costs (combined with market value) will have its own optimal priority sequence of questions to address. Algorithms can be designed to determine the optimal order in which questions should be addressed. Experimental infections of healthy volunteers is an example of how a question-based approach to vaccine development can be implemented and has the potential to change the arena of clinical vaccine development.
Collapse
Affiliation(s)
- Meta Roestenberg
- Department of Parasitology and Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | | | | |
Collapse
|
50
|
Lacasta A, Mwalimu S, Kibwana E, Saya R, Awino E, Njoroge T, Poole J, Ndiwa N, Pelle R, Nene V, Steinaa L. Immune parameters to p67C antigen adjuvanted with ISA206VG correlate with protection against East Coast fever. Vaccine 2018; 36:1389-1397. [PMID: 29429808 PMCID: PMC5835154 DOI: 10.1016/j.vaccine.2018.01.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/18/2018] [Accepted: 01/28/2018] [Indexed: 11/25/2022]
Abstract
Three doses of p67C antigen generated stronger immune responses than two doses. Antibody titers and CD4+ T-cell proliferation correlated with protection against ECF. The number of doses could not be reduced from three to two without compromising the protection.
East Coast fever (ECF) is a lymphoproliferative disease caused by the tick-transmitted protozoan parasite Theileria parva. ECF is one of the most serious cattle tick-borne diseases in Sub-Saharan Africa. We have previously demonstrated that three doses of the C-terminal part of the sporozoite protein p67 (p67C) adjuvanted with ISA206VG confers partial protection against ECF at a herd level. We have tested the efficacy of two doses of this experimental vaccine, as reducing the vaccination regimen would facilitate its deployment in the field. We reconfirm that three antigen doses gave a significant level of protection to severe disease (46%, ECF score < 6) when compared with the control group, while two doses did not (23%). Animals receiving three doses of p67C developed higher antibody titers and CD4+ T-cell proliferation indices, than those which received two doses. A new panel of immune parameters were tested in order to identify factors correlating with protection: CD4+ proliferation index, total IgG, IgG1, IgG2 and IgM half maximal titers and neutralization capacity of the sera with and without complement. We show that some of the cellular and humoral immune responses provide preliminary correlates of protection.
Collapse
Affiliation(s)
- Anna Lacasta
- Animal and Human Health (AHH), International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya.
| | - Stephen Mwalimu
- Animal and Human Health (AHH), International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya.
| | - Elisabeth Kibwana
- Animal and Human Health (AHH), International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya.
| | - Rosemary Saya
- Animal and Human Health (AHH), International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya.
| | - Elias Awino
- Animal and Human Health (AHH), International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya.
| | - Thomas Njoroge
- Animal and Human Health (AHH), International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya.
| | - Jane Poole
- Research Methods Group, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi, Kenya.
| | - Nicholas Ndiwa
- Research Methods Group, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi, Kenya.
| | - Roger Pelle
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi, Kenya.
| | - Vishvanath Nene
- Animal and Human Health (AHH), International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya.
| | - Lucilla Steinaa
- Animal and Human Health (AHH), International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya.
| |
Collapse
|